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Abstract

We report an experimental design issue in recent machine learning formulations of the

enhancer-promoter interaction problem arising from the fact that many enhancer-promoter

pairs share features. Cross-fold validation schemes which do not correctly separate these

feature sharing enhancer-promoter pairs into one test set report high accuracy, which is

actually arising from high training set accuracy and a failure to properly evaluate generaliza-

tion performance. Cross-fold validation schemes which properly segregate pairs with shared

features show markedly reduced ability to predict enhancer-promoter interactions from epi-

genomic state. Parameter scans with multiple models indicate that local epigenomic fea-

tures of individual pairs of enhancers and promoters cannot distinguish those pairs that

interact from those which do with high accuracy, suggesting that additional information is

required to predict enhancer-promoter interactions.

Introduction

While quantitative modeling of cell-specific enhancer activity and variant impact is progressing

rapidly, predicting the promoter and gene targets of enhancers remains challenging. We therefore

read with great interest the paper by Whalen, et al,[1] which reported a computational model

(TargetFinder) using epigenomic features that could predict enhancer-promoter (EP) interactions

with high accuracy. In this brief note we report that because many EP pairs share features, the ran-

dom cross-fold validation scheme used in Ref. 1 fails to properly evaluate generalization error and

produces inflated test set accuracy. Proper cross-fold validation schemes predict EP interactions

with much lower accuracy, due to the fact that many of the models used exhibit significantly

lower performance on a reserved test set than on the training set data. If a test set is not fully

reserved, these classifiers will fail to generalize to data outside the training data.

Results

Whalen, et al,[1] used an F1-score performance measure, F1 = 2P�R/(P+R), where

P = precision and R = recall, and reported that their average F1 across 6 cell lines was 0.83.
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This typically implies P,R>0.8 and AUPRC,AUROC~0.9, and that most EP pairs are being

correctly classified as interacting or not according the epigenomic state of the enhancer (E),

promoter (P), and the intervening genomic interval, or window (W), between the enhancer

and the promoter. Interestingly, they found that window features (W) were often selected as

being most predictive in the model, and that lack of some epigenomic marks in the genomic

interval were correlated with positive EP interactions, a compelling hypothesis. Curiously, this

high performance was only achieved with gradient boosting using a very large number of

trees, and not with a linear SVM, which achieved F1-score�0.2. In the course of examining

their training data to find direct evidence in support of this hypothesis, we noticed that partly

due to the coarser resolution of the Hi-C interaction data, multiple contiguous enhancers

often positively interact with the same promoter, but are all labelled independent positive EP

interactions for training, even though they potentially share P and W features. If samples with

identical features are not in the same cross-fold validation test set, these shared features could

lead to incorrect evaluation of generalization performance. There are two distinct mechanisms

by which features could be shared. The simplest is that many EP pairs share a promoter. In the

K562 and GM12878 training data from Whalen, et al,[1] over 92% of EP pairs share a pro-

moter with another EP pair and have a 2-fold or greater positive/negative class imbalance, and

are thus subject to significant test set contamination through the shared P features. In Fig 1 we

show how many EP pairs share a promoter with a given number of positive and negative

enhancers (positive and negative EP pairs connected to a single promoter). For clarity, this

plot is repeated in S1 Fig showing the number of promoters and shared enhancers, but since

Fig 1. Most of the EP pairs used for training in Ref. 1 share promoters and promoter features with multiple EP pairs. a) For cell line K562, and b) for cell line

GM12878, for each promoter we show the number of positive and negative EP pairs sharing a promoter. In a) for example, there are 27 interactions in position (7,2),

which means three distinct promoters each interact positively with 7 enhancers and negatively with two enhancers in the training data. When the number of negative and

positive EP pairs interacting with a promoter are imbalanced, they can be predicted correctly from training set promoter features. The blue interactions have a 2-fold or

greater imbalance (pos>neg) and the red interactions have a 2-fold or greater imbalance (neg>pos), and both red and blue interactions (92% of the data) can lead to test

set contamination by shared promoter features.

https://doi.org/10.1371/journal.pcbi.1006625.g001
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these models are trained on EP pairs, the EP pair counts in Fig 1 are relevant for understanding

the degree of potential test set contamination. The greater the class imbalance, the more accu-

rately this set of EP pairs can be predicted from training set promoter features alone. This is a

serious problem for all pairs labelled red or blue in Fig 1. For example, at position (7,2) in Fig

1A, there are 27/(7+2) = 3 distinct promoters in the training data which each interact positively

with 7 enhancers and negatively with two enhancers (two negative EP pairs) in the training

data. When one of these positive pairs is in the training set, a specific but non-generalizable

rule on that promoter’s features would predict the other pairs with accuracy of 78% when they

are in the test-set. This potential problem becomes especially problematic for all EP pairs near

the x and y axes in Fig 1, and most of the negative samples are particularly susceptible. The sec-

ond mechanism by which EP pairs could share features is that the window (W) features are

defined to be the epigenomic signals in the interval between the enhancer and promoter ele-

ments, so enhancers on the same side of the promoter can share window features, or more

generally, any overlapping EP pair can share some common W signal features. We used cross-

fold validation (CV) test sets sorted by chromosomal position so that no EP pairs with either P

or W shared features could be in the same test set, and test set performance could be correctly

evaluated. We also tested a cross-fold validation scheme where all EP pairs sharing a promoter

were constrained to be in the same test set (promoter segregated). In this case, promoter fea-

tures cannot lead to test set contamination, but window features can when using EPW features

or W features to train the model.

We reproduced the published results from TargetFinder using the training data for the

K562 cell line as shown in Fig 2A), and when we further observed that a nonlinear SVM (rbf

with default C and g) could not achieve the high performance of gradient boosting, and that

high test-set F1 is only achieved with 4000 trees, we suspected that test set contamination was

important. When we instead used cross-fold validation (CV) test sets sorted by chromosomal

position so that no EP pairs with shared features could be in the same test set, we found that

test-set F1 dropped dramatically, as shown in Fig 2B. In fact, with sorted chromosomal CV test

tests the predictive performance is only slightly better than random (F1 = 1/11 for this 1:20

ratio of positive to negative interactions). When using the promoter segregated CV test set

scheme, P features cannot lead to test set contamination, but window features can, and do

(EPW and W), when a gradient boosting classifier is used, Fig 2C. A similar but slightly less

dramatic reduction in test-set predictive power is seen when removing or reducing the poten-

tial for test set contamination in the GM12878 cell line (Fig 2D, 2E and 2F).

To examine generalization performance of these models detail, we directly compared train-

ing-set and test-set performance with multiple models, feature sets, and parameters, on both

the random and chromosomally sorted CV test-set schemes. Test and training set F1 are

shown in Fig 3A and 3B as the number of trees are varied for gradient boosting (used in Tar-

getfinder) and random forest methods, using EPW features for K562. Training set F1 is much

greater than test set F1 and increases with the number of trees. With random CV test sets this

leads to an artificially inflated test set F1 = 0.84 for Ntree = 4000 (as reported in Ref. 1 and simi-

lar methods), while with chromosomal CV test sets the correct test set performance is

F1 = 0.13. Full scans of training and test set AUROC, AUPRC, and F1 performance metrics for

gradient boosting and random forests are shown in S2 Fig, showing high training set perfor-

mance with large number of trees and low test set performance for all tree models with chro-

mosomal CV test sets.

We next varied parameters for the nonlinear RBF SVM model. In the RBF SVM the key

parameters are C, which controls the weighting for misclassification error, and g, which

describes the scale of the RBF kernel function and thus controls the smoothness of the decision

boundary. For large C and g the SVM is able to fit the training data with a convoluted decision
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boundary. The training and test set F1 of the RBF SVM are shown in Fig 3C and 3D for C = 1

and C = 1000 as g is varied, and as expected, training set F1 approaches 1 for large g. The

default sklearn package defaults for the rbf SVM are C = 1 and g ¼ 1=nfeatures. For EPW, EP,

and W feature sets nfeatures = (408, 272, and 136), so the default RBF SVM parameters are in

the regime where there is little difference between training and test set accuracy (red points in

Fig 3C and 3D). Full test set and training set performance for C = 1 and C = 1000 are shown in

S3 Fig, and test set F1 for a complete C and g grid scan is shown in S4 Fig for K562 and

Fig 2. The apparently high predictive power of epigenetic state to identify enhancer-promoter (EP) interactions is largely due to

incorrect evaluation of generalization performance. a) For cell line K562, using training data from Ref. 1, with random assignment of

positive and negative EP pairs to cross-fold validation (CV) test sets, a gradient boosting classifier with a very large number of trees

(4000) is able to achieve F1>0.8 with EPW or W features. b) If EP pairs with shared epigenomic features are properly forced to be in the

same CV test set by sorting by chromosomal position, the predictive power is only slightly better than random, F1 = 1/11. c) If EP pairs

sharing the same promoter are forced to be the same test sets, test set contamination through EP features is eliminated, but some can still

occur through shared window features (W). d,e,f) A similar reduction in performance is observed when removing test set

contamination in cell line GM12878 with sorted chromosomal CV test sets.

https://doi.org/10.1371/journal.pcbi.1006625.g002
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GM12878. SVM performance was slightly better for GM12878. Consistent with our results

from the tree models, no choice of RBF SVM parameters or features yielded performance sig-

nificantly better than random with proper chromosomal CV test sets.

Discussion

We have shown that the high accuracy of TargetFinder[1] in predicting EP interactions is

mostly due to improper evaluation of generalization performance. We consider it extremely

Fig 3. Parameter variation in gradient boosting (GB, black), random forest (RF, blue), and SVM models show

significantly higher training set accuracy than test set accuracy for large number of trees or large C and γ. a) For

cell line K562, with random CV test sets, test set performance appears high, but comparison with chromosomal CV

test sets shows that this is due to test set contamination and failure to properly evaluate generalization performance. b)

With chromosomal CV test sets, training set accuracy approaches 1 with large number of trees but now test set

performance is correctly evaluated and test set F1 is very low. c) Nonlinear RBF SVM performance for incorrect

random, and d) proper chromosomal CV test sets. For large g, SVM training set accuracy approaches 1 and test set

accuracy is low. For typical default RBF parameters C = 1 and g = 1/nfeatures (red) test set performance is still not

significantly better than random.

https://doi.org/10.1371/journal.pcbi.1006625.g003
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likely that subsequent publications using similar or identical training data are also subject to

this problem, and that reports of accurate predictive modelling of EP interactions from local

epigenomic state should be re-evaluated.[2–4] On the bright side, there is now considerable

room for improvement in models of EP interactions. Our results showing that no model per-

forms much better than random guessing strongly suggests that local EP (and W) epigenomic

state features alone are insufficient to distinguish interacting and non-interacting EP pairs. We

suspect that EP interactions indeed may be specified by epigenomic state, but that additional

features need to be considered, which are distinguishable from the feature set used in Ref 1 by

their “non-local” nature. These additional features may include relative genomic position, the

presence or absence of competition or interactions between E or P elements, conformational

constraints, or subtle epigenomic state differences between enhancers competing for the same

promoter or multiple promoters. Finally, we note that the inability to correctly evaluate test set

performance is likely to be less of a problem in approaches which learn interactions between

larger scale domains in non-overlapping chromosomal bins.[5]

Supporting information

S1 Fig. a) For cell line K562, and b) for cell line GM12878, we show the number of promoters

with the specified number of positive and negative enhancers sharing a promoter. This is

equivalent to Fig 1 but counts promoters instead of EP pairs.

(TIFF)

S2 Fig. Training (dashed) and test set (solid) AUROC, AUPRC, and F1 performance for

EPW, EP, and W feature sets and for random (top) and chromosomal (bottom) CV test

sets using gradient boosting (GB, black) and random forest (RF, blue) methods, as number

of trees is increased. Training set accuracy is significantly larger than test set accuracy for

large numbers of trees, and test set performance is near random for all models with correctly

segregated chromosomal CV test sets.

(TIFF)

S3 Fig. Training (dashed) and test set (solid) AUROC, AUPRC, and F1 performance for

EPW, EP, and W feature sets and for random (top) and chromosomal (bottom) CV test

sets using a nonlinear RBF SVM model with C = 1 (black) and C = 100 (blue), as g is varied.

Training set accuracy is significantly greater than test set accuracy for large g, and test set per-

formance is near random for all feature sets with properly segregated chromosomal CV test

sets.

(TIFF)

S4 Fig. Test set F1 performance for nonlinear RBF SVM as C and g are varied in complete

grid parameter scan. For K562 performance is near random for chromosomal CV test sets for

all parameter choices. For GM12878 F1 is only is slightly higher than random with chromo-

somal CV test sets.

(TIFF)
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