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Abstract

Population genetic modeling can enhance Bayesian phylogenetic inference by providing a

realistic prior on the distribution of branch lengths and times of common ancestry. The

parameters of a population genetic model may also have intrinsic importance, and simulta-

neous estimation of a phylogeny and model parameters has enabled phylodynamic infer-

ence of population growth rates, reproduction numbers, and effective population size

through time. Phylodynamic inference based on pathogen genetic sequence data has

emerged as useful supplement to epidemic surveillance, however commonly-used mecha-

nistic models that are typically fitted to non-genetic surveillance data are rarely fitted to path-

ogen genetic data due to a dearth of software tools, and the theory required to conduct such

inference has been developed only recently. We present a framework for coalescent-based

phylogenetic and phylodynamic inference which enables highly-flexible modeling of demo-

graphic and epidemiological processes. This approach builds upon previous structured coa-

lescent approaches and includes enhancements for computational speed, accuracy, and

stability. A flexible markup language is described for translating parametric demographic or

epidemiological models into a structured coalescent model enabling simultaneous estima-

tion of demographic or epidemiological parameters and time-scaled phylogenies. We dem-

onstrate the utility of these approaches by fitting compartmental epidemiological models to

Ebola virus and Influenza A virus sequence data, demonstrating how important features of

these epidemics, such as the reproduction number and epidemic curves, can be gleaned

from genetic data. These approaches are provided as an open-source package PhyDyn for

the BEAST2 phylogenetics platform.

This is a PLOS Computational Biology Software paper.

Introduction

Mechanistic models guided by expert knowledge can form an efficient prior on epidemic his-

tory when conducting phylodynamic inference with genetic data [1]. Parameters estimated by

fitting mechanistic models, such as the reproduction number R0, are important for epidemic

surveillance and forecasting. Compartmental models defined in terms of ordinary or stochastic
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differential equations are the most common type of mathematical infectious disease model,

but in the area of phylodynamic inference, non-parametric approaches such as skyline coales-

cent models [2] or sampling-birth-death models [3] are more commonly used. Methods to

translate compartmental infectious disease models into a population genetic framework have

been developed only recently [4–8]. We address the gap in software tools for epidemic model-

ing and phylogenetic inference by developing a BEAST2 package, PhyDyn, which includes a

highly-flexible markup language for defining compartmental infectious disease models in

terms of ordinary differential equations. This flexible framework enables phylodynamic infer-

ence with the majority of published compartmental models, such as the common susceptible-

infected-removed (SIR) model [9] and its variants, which are often fitted to non-genetic sur-

veillance data. The PhyDynmodel definition framework supports common mathematical

functions, conditional logic, vectorized parameters and the definition of complex functions of

time and/or state of the system. The PhyDyn package can make use of categorical metadata

associated with each sampled sequences, such as location of sampling, demographic attributes

of an infected patient (age, sex), or clinical biomarkers. Phylogeographic models designed to

estimate migration rates between spatial demes [10–12] are special cases within this modeling

framework, and more complex phylogeographic models (e.g. time-varying or state-dependent

population size or migration rates) can also be easily defined in this framework.

The development of PhyDyn was influenced by and builds upon previous efforts to incor-

porate mechanistic infectious disease models in BEAST2. The bdsir BEAST2 package [13]

implements a simple SIR model which is fitted using an approximation to the sampling-birth-

death process. The phylodynamics BEAST2 package [14] includes simple deterministic and

stochastic SIR models which can be fitted using coalescent processes. More recently, the EpiInf
package has been developed which can fit stochastic SIR models using an exact likelihood with

particle filtering [15]. These epidemic modeling packages are, however, limited to unstruc-

tured populations (no spatial, risk-group, or demographic population heterogeneity). Other

packages have been developed for spatially structured populations with a focus on phylogeo-

graphic inference, especially with the aim of estimating pathogen migration rates between dis-

crete spatial locations [16]. TheMultiTypeTree BEAST2 package [10] implements the exact

structured coalescent model with multiple demes and with constant effective population size

in each deme and constant migration rates between demes. Two BEAST2 packages, BASTA
[17] andMASCOT [11] have been independently developed to use fast approximate structured

coalescent models. These packages mirror the functionality ofMultiTypeTree but include

approximations to reduce computational requirements, enabling estimation of time-invariant

effective population sizes and migration rates between spatial demes.

The PhyDyn BEAST2 package provides new functionality to the BEAST2 phylogenetics

platform by implementing a much more complex family of structured coalescent models. In a

general compartmental model, neither the effective population size nor migration rate between

demes need be constant, and in more general frameworks, coalescence is also allowed between

lineages occupying different demes. The package includes a flexible markup language for

defining compartmental models within the BEAST2 XML. This includes common mathemati-

cal functions making it simple to develop models which incorporate seasonality or which devi-

ate from the simplistic mass-action premise of basic SIR models. Models defined with this

special syntax can be directly incorporated into BEAST2 XML files for easily reproducing and

modifying analyses. The PhyDynmodel markup language supports vectorised parameters (e.g.

an array of transmission rates or population sizes) and simple conditional logic statements, so

that epidemic dynamics can change in a discrete fashion, such as from year to year or in

response to a public-health intervention. Commonly used phylogeographic models based on

the structured coalescent are a special case of the general compartmental models implemented
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in the PhyDyn package, and extensions to the basic phylogeographic model can be imple-

mented, such as by allowing effective population size to vary through time in each deme

according to a mechanistic model.

Design and implementation

In this framework, first described in [5], we define deterministic demographic or epidemiolog-

ical processes of a general form which includes the majority of compartmental models used in

mathematical epidemiology and ecology. Defining compartmental models within this form

facilitates interpretation of the population genetic model developed in the next section. Let

there bem demes, and the population size within each deme is given by the vector-valued

function of time Y1:m(t). We may also havem0 dynamic variables Y 0
1:m0 ðtÞ which are not demes

(hence do not correspond to the state of a lineage), but which may influence the dynamics of

Y. The dynamics of Y arise from a combination of births between and within demes,migra-
tions between demes, and deaths within demes. We denote these as deterministic matrix-val-

ued functions of time and the state of the system, following the framework in [5]:

• Births: F1:m,1:m(t, Y, Y0). This may also correspond to transmission rates between different

types of hosts in epidemiological models.

• Migrations: G1:m,1:m(t, Y, Y0). These rates may have non-geographic interpretations in some

models (e.g. aging, disease progression).

• Deaths: μ1:m(t, Y, Y0). These terms may also correspond to recovery in epidemiological

models.

The elements Fkl(� � �) describe the rate that new individuals in deme l are generated by indi-

viduals in deme k. For example, this may represent the rate that infected hosts of type k trans-

mit to susceptible hosts of type l. The elements Gkl(� � �) represent the rate that individuals in

deme k change state to type l, but these rates do not describe the generation of new individuals.

With the above functions defined, the dynamics of Y(t) can be computed by solving a system

ofm +m0 ordinary differential equations:

_YkðtÞ ¼ � mkðtÞ þ
Xm

l¼1

ðFlkðtÞ þ GlkðtÞ � GklðtÞÞ ð1Þ

The PhyDyn package model markup language requires specifying the non-zero elements of

F(t), G(t) and μ(t). There are multiple published examples of simple compartmental models

developed in this framework [18–23]. In the following sections, we give examples of simple

compartmental models related to infectious diease dynamics and show how these models can

be defined within this framework and code samples are also provided online. We provide

examples of models fitted to data from seasonal human Influenza virus and Ebola virus as well

as a simulation study.

Seasonal human influenza model

We model a single season of Influenza A virus (IAV) H3N2 and apply this model to 102 HA-1

sequences collected between 2004 and 2005 in New York state [24, 25]. We build on a simple

susceptible-infected-recovered (SIR) model which accounts for importations of lineages from

the global reservoir of IAV, which we will see is a requirement for good model fit to these data

(Fig 1). This model has two demes: The first deme corresponds to IAV lineages circulating in

New York, and the second deme corresponds to the global IAV reservoir. The global reservoir

will be modeled as a constant-size coalescent process. Within New York state, new infections
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are generated at the rate βI(t)S(t)/N where β is the per-capita transmission rate per day, I(t) is

the number of infected and infectious hosts, S(t) is the number of hosts susceptible to infec-

tion, and N = S + I + R is the population size. R(t) denotes the number of hosts that have been

infected and are now immune to this particular seasonal variant. With the above definitions,

we define the matrix-valued function of time:

FðtÞ ¼
bIðtÞSðtÞ=NðtÞ 0

0 gNr

" #

: ð2Þ

Note that births within the reservoir do not vary through time and depend on the effective

population size in that deme Nr.
Additionally, we model deaths from the pool of infected using

mðtÞ ¼
gIðtÞ

gNr

" #

: ð3Þ

Births balance deaths in the reservoir population.

Finally, we model a symmetric migration process between the reservoir and New York:

GðtÞ ¼
0 ZIðtÞ

ZIðtÞ 0

" #

; ð4Þ

where η is the per-capita migration rate. Note that migration between the reservoir and New

York are balanced and do not effect the dynamics of I(t) over time.

PhyDyn code for defining these equations can be found at https://github.com/mrc-ide/

PhyDyn/wiki/Influenza-Example.

These three processes lead to the following differential equation for the dynamics of I(t):

_IðtÞ ¼ bIðtÞSðtÞ=NðtÞ � gIðtÞ:

Below, we show a fit of this model where the following parameters are estimated:

• Migration rate η; prior (events per year): lognormal (log mean = 1.38, log sd = 1)

• Recovery rate γ; prior (events per year): lognormal(log mean = 4.8, log sd = 0.25)

• Reproduction number R0 = β/γ; prior: lognormal(log mean 0, log sd = 1)

• Reservoir size Nr; prior: lognormal(log mean = 9.2, log sd = 1)

• Initial number infected in September 2004; prior: lognormal(log mean = 0, log sd = 1)

• Initial number susceptible in September 2004; lognormal(log mean = 9.2, log sd = 1)

Note that the model only had one informative prior, which was for the recovery rate, and

was based on the previous study of viral shedding by Cori et al. [26] Previous work [27] on

identifiability of parameters in phylodynamic models has shown that it is generally impossible

to simultaneously infer transmssion and recovery rates without additional data or strong

assumptions about the sampling rate.

Ebola virus in Western Africa

We develop a susceptible-exposed-infected-recovered (SEIR) model (Fig 1) for the 2014-2015

Ebola Virus (EBOV) epidemic in Western Africa and apply this model to phylogenies

Bayesian phylodynamic inference with complex models
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previously estimated by Dudas et al. [28]. Phylogenies estimated by Dudas are randomly

downsampled to n = 400 to alleviate computational requirements.

According to the SEIR model, infected hosts progress from an uninfectious exposed state

(E) to an infectious state (I) at rate γ0 which influences the generation-time distribution of the

epidemic. Infectious hosts die or recover at the rate γ1. The SEIR model has the following

form:

d
dt
E ¼ bðtÞIðtÞ � g0EðtÞ;

d
dt
I ¼ g0EðtÞ � g1IðtÞ:

ð5Þ

where β(t) is the per-capita transmission rate per year. In a typical mass-action model, we

would have β(t)/ S(t)/(S(t) + E(t) + I(t) + R(t)), however in order to demonstrate the flexibil-

ity of this modeling framework, we will instead use a simple linear function, β(t) = at + b, and

in general a wide variety of parametric and non-parametric functions could be used within the

BEAST2 package to model the force of infection. In addition to demonstrating the flexibility of

PhyDyn, we chose the affine transmission rate model because the mass action assumption is

unrealistic and unnecessary. The number of susceptible individuals was never a limiting factor

in this epidemic and incidence declined primarily in response to public health interventions.

There are two demes in this model corresponding to the potential states of an infected

hosts. The birth matrix with demes in the order (E, I) is

FðtÞ ¼
0 0

bðtÞIðtÞ 0

" #

: ð6Þ

The migration matrix encapsulates all processes which may change the state of a lineage with-

out leading to coalescence of lineages, and this includes progression from E to I:

GðtÞ ¼
0 g0EðtÞ

0 0

" #

ð7Þ

And finally removals are modeled using

mðtÞ ¼
0

g1IðtÞ

" #

: ð8Þ

Fig 1. Compartmental diagram representing structure of models for seasonal human Influenza (A) and Ebola virus model (B). Solid lines represent flux

of hosts between different categories. Dash lines represent migration. Dotted lines represent births (transmission).

https://doi.org/10.1371/journal.pcbi.1006546.g001
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Note that the parametric description of β(t) does not require us to model dynamics of S(t) or

R(t).
PhyDyn code for defining these equations can be found at https://github.com/mrc-ide/

PhyDyn/wiki/Ebola-Example.

The parameters estimated and priors for this model are

• β(t) slope a, prior: Normal(0, 40)

• β(t) intercept b, prior: lognormal(log mean = 4.6, log sd = 1)

• Initial number infected (beginning of 2014), prior: lognormal (log mean = 0, log sd = 1)

In order to reconstruct an epidemic trajectory which closely matched the absolute numbers

of cases through time, we include additional variables that could influence the relationship

between effective population size and the true number of infected hosts. For this purpose we

developed a second EBOV model which included higher variance in the offspring distribution,

reasoning that a higher variance in the number of transmissions per infected case would lead

to higher estimates of the epidemic size [29]. The superspreading model (Fig 1) includes two

infectious compartments, Il and Ih, with per-capita transmission rates β(t) and τβ(t) respec-

tively. The factor of τ> 1 represents a transmission risk ratio for the second infectious deme.

We specify that a constant fraction phr progress from E to Ih, with the remainder going to Il.
With demes in the order (E, Il, Ih), the birth, migration, and death matrices for the super-

spreading model are as follows:

FðtÞ ¼

0 0 0

bðtÞIlðtÞ 0 0

tbðtÞIhðtÞ 0 0

2

6
6
6
4

3

7
7
7
5
; ð9Þ

GðtÞ ¼

0 ð1 � phrÞg0EðtÞ phrg0EðtÞ

0 0 0

0 0 0

2

6
6
6
4

3

7
7
7
5
; ð10Þ

mðtÞ ¼

0

g1IlðtÞ

g1IhðtÞ

2

6
6
6
4

3

7
7
7
5
: ð11Þ

Additional parameters and priors for the superspreading model are

• τ, prior: lognormal(log mean = 1, log sd = 1)

• phr, fixed at 20%

Note that we used an uninformative prior for τ as our previous studies with a related model

showed that superspreading parameters are potentially identifiable [21]. This model did not

include geographic structure, although the samples were geographically diverse, and some

model-misspecification bias is anticipated if migration between spatial demes is sufficiently

small.
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Simulation model

We developed a simulation model with four demes in order to evaluate the ability of BEAST2

to identify and estimate birth rates, migration rates, and transmission risk ratios. This model

includes two types of hosts, with low and high transmission risk. Additionally, each type of

host progresses through two stages of infection, where the first stage is short but has higher

transmission rate. The four demes are denoted Y0l, Y1l, Y0h, Y1h where the first subscript

denotes stage of infection and the second subscript denotes transmission risk level. The model

is illustrated as S1 Fig.

The birth matrix is:

FðtÞ ¼

plf ðtÞw0Y0lðtÞ=WðtÞ 0 ð1 � plÞf ðtÞw0Y0lðtÞ=WðtÞ 0

plf ðtÞY1lðtÞ=WðtÞ 0 ð1 � plÞf ðtÞY1lðtÞ=WðtÞ 0

plf ðtÞw0whY0hðtÞ=WðtÞ 0 ð1 � plÞf ðtÞw0whY0lðtÞ=WðtÞ 0

plf ðtÞwhY1hðtÞ=WðtÞ 0 ð1 � plÞf ðtÞwhY1hðtÞ=WðtÞ 0

2

6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
5

: ð12Þ

In this model, a proportion pl of all transmissions go to the low risk group. Transmissions

from stage 1 are proportional to the transmission risk ratio w0 > 1. Transmissions from the

high risk group are proportional to the transmission risk ratio wh> 1. The variableW(t) =

w0Y0l + Y1l + w0whY0h + whY1h normalizes the proportion of transmissions attributable to each

deme. The variable f(t) gives the total number of transmissions per unit time, and for this we

use a SIRS model:

f ðtÞ ¼ bðY0l þ Y1l þ Y0h þ Y1hÞS=N;

where S(t) is the number susceptible governed by:

_S ¼ � f ðtÞ þ ZSð0Þ � ZSðtÞ;

and, η is the per-capita rate of non-disease related mortality.

The migration matrix captures the disease stage-progression process:

GðtÞ ¼

0 g0Y0lðtÞ 0 0

0 0 0 0

0 0 0 g0Y0hðtÞ

0 0 0 0

2

6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
5

:

The death matrix is

mðtÞ ¼

ZY0lðtÞ

ðZþ g1ÞY1lðtÞ

ZY0h

ðZþ g1ÞY1hðtÞ

2

6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
5

:

PhyDyn code for implementing this model can be found at https://git.io/ftjg5.

To generate simulated data, we simulated epidemics using Gillespie’s exact algorithm over

a discrete population and an initial susceptible population of two or five thousand individuals.
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PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006546 November 13, 2018 7 / 15

https://git.io/ftjg5
https://doi.org/10.1371/journal.pcbi.1006546


A random sample of n = 250 or 500 was collected between times 95 and 250 and the history of

transmissions was used to reconstruct a genealogy. PhyDyn was then used to estimate

• β, prior: lognormal (log mean = -1.6, log sd = 0.5)

• w0, prior: uniform(0, 50)

• wh, prior: uniform(0, 50)

• The initial number infected, prior: lognormal (log mean = 0, log sd = 1)

Note that PhyDyn is fitting deterministic models to data generated from a noisy stochastic

process and some error should be expected due to this approximation. S2 Fig shows a compar-

ison of a single noisy simulated trajectory and a solution of the deterministic model under the

true parameters. All simulation code and BEAST2 XML files are available at https://github.

com/emvolz/PhyDyn-simulations.

Modeling the coalescent process conditioning on a complex demographic

history

The coalescent likelihood is based on the conditional density of a genealogy given epidemic

and demographic parameters. In BEAST2, the coalescent likelihood is used in tandem with

evolutionary models that provide the probability density of a genealogy given a genetic

sequence alignment and evolutionary parameters. But the coalescent likelihood can also be

used if a time-scaled phylogeny has been estimated independently.

Various approximations have been developed for computing the density of a genealogy

conditional on a complex demographic history. These differ by the extent to which they

account for correlation between co-existing lineages in the genealogy, the extent to which they

account for finite size of the population, and the extent to which they account for differences

in coalescent rates in different demes. There is a speed/bias tradeoff between these approxima-

tions, and consequently PhyDynmakes several model variations available. The choice of likeli-

hood approximation depends on time and computational resources available, sample size, and

model complexity. Three likelihood approximations are described in S1 Text, and we derive a

new approximation which has shown greater accuracy in some situations.

The structured coalescent model in [5] which inspired the development of PhyDyn did not

account for all correlations between co-existing lineages or all effects stemming from disparate

coalescent rates between demes. In [20], a fast likelihood approximation was derived which

better accounted for potential bias resulting from highly-disparate coalescent rates in different

demes. This model, denoted QL, also makes strong approximations regarding lineage indepen-

dence: In every internode interval, all lineages are updated according to a linear transforma-

tion which varies through time but not between lineages. These issues were investigated as a

source of bias in the context of phylogeographic models in [30], where yet another likelihood

approximation was proposed for models with constant population size and constant migration

rates.

In the PhyDyn package, we have developed likelihood approximations based on QL which

better account for correlation between lineages. These models, denoted PL1 and PL2, work by

solving a system of differential equations for each lineage while including terms similar to

those in the QLmodel that account for disparate coalescent rates between demes. While these

models are demonstrably more accurate in simulation studies, they require more computation.

All three likelihood approximations are provided in the PhyDyn package. The new PL2model

is the suggested default model choice, however the QLmodel may be preferred for some large

Bayesian phylodynamic inference with complex models
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datasets or when fitting complex models due to computational advantages. The new models

are derived in S1 Text.

Results

Human influenza A/H3N2

The seasonal influenza SIR model which accounts for importations from the global reservoir

was applied to 102 HA/H3N2 sequences collected from New York state during the 2004-2005

flu season. These data were previously analyzed using non-parametric models by [24]. Fig 2

shows the estimated posterior effective number of infections over the course of the influenza

season, and the time of peak prevalence is correctly identified around the end of 2004. We also

compared the model-based estimates to estimates generated in BEAST2 using a conventional

non-parametric Bayesian skyline model which is also shown in Fig 2. The skyline model does

not detect a decrease in prevalence towards the end of the influenza season and does not iden-

tify the time of peak prevalence. We carried out a further comparison with estimates using

a GMRF skyride model fitted in BEAST 1.8 [31, 32] (S3 Fig). The skyride model correctly

detected a peak in Ne in late 2014 and subsequent decline, however variation Ne(t) was quite

small relative to uncertainty in the credible intervals. The peak of Ne was slightly too early, and

Ne was also larger prior to the 2014-15 influenza season due to the effects of unmodeled lineage

importation from outside New York. Skyline and skyride analysis data and files are available at

https://github.com/emvolz/nyflu-skyline. Use of a well-specified parametric compartmental

model imposes a strong prior on the epidemic trajectory which leads to the correct identifica-

tion of the shape and timing of the epidemic curve.

We estimated the reproduction number R0 = 1.16 (95%CI: 1.07-1.30). This value is similar

to many previous estimates based on non-genetic data for seasonal influenza in humans which

according to the recent review in [33] have an interquartile range of 1.18-1.27 for H3N2. Bet-

tancourt et al. [34] estimated R0 = 1.22 for the 2004-05 H3N2 seasonal influenza epidemic in

the entire USA using weekly case report data. An uninformative prior was used for R0 in the

PhyDyn analysis.

Ebola virus in Western Africa

We applied the SEIR and superspreading-SEIR models to Ebola virus phylogenies based on

data first described by [28] and subsequently analyzed in [35]. These phylogenies were

Fig 2. The estimated effective number of H3N2 human influenza infections in 2004-2005 in New York State. A.

Estimates obtained using the parametric seasonal influenza model described in the text. B. Effective population size

estimated using a conventional Bayesian skyline analysis.

https://doi.org/10.1371/journal.pcbi.1006546.g002
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estimated from whole genome sequences collected 2014-2015 during the West African Ebola

epidemic. We derived the maximum clade credibility tree from the analysis by [28] and

extracted a subtree based on sampling four hundred lineages at random. The PhyDyn package

was used to fit the models with fixed tree topologies and branch lengths. Co-estimating the

phylogeny and epidemic parameters is possible and may lead to more robust credible intervals

because the tree prior can influence the topology of the estimated posterior distribution of

trees, but this would also require substantialy more computational effort. The trees were fixed

in this analyis in order to facilitate comparisons with other software and because of computa-

tional tradeoffs. With this fixed tree, PhyDyn executes approximately one million MCMC

steps per 17 hours using a typical CPU. We also ran the analysis using a fixed tree estimated by

maximum likelihood and the treedater R package as described in [35], finding similar results.

The transmission rate (per year) β(t) was estimated as a linear function with slope -13.22

(95%CI:-14.4587- -12.036) and intercept 85.1(95% CI: 83.93-86.16). We estimated similar

reproduction numbers using both models. With the SEIR model, we compute R0 = β(t)/γ1.

We estimate R0 = 1.47(95%CI: 1.41-1.53). With the superspreading-SEIR model, we have a

similar estimate of R0 = 1.52(95%CI:1.48-1.54). Note that uninformative priors were used for

parameters determining R0. As anticipated, the model fits provide substantially different esti-

mates of the cumulative number of infections. Fig 3 shows the estimated cumulative infections

through time using both models alongside the cumulative number of cases reported by WHO

and compiled by the US CDC [35]. Both models provide similar estimates regarding the rela-

tive numbers infected through time and the time of epidemic peak. Using the superspreading

model, the time of peak incidence is estimated to have occurred on November 25, 2014.

According to WHO reports, this occurred only three days later on November 28 (Fig 4.

Estimates of cumulative infections with the superspreading model are consistent with

WHO data, whereas results with the SEIR model are not. The superspreading model accomo-

dates an over-dispersed offspring distribution (the number of transmission per infection),

thereby decreasing effective population size per number infected and yielding larger estimates

for the number infected [29]. We estimate the transmission risk ratio parameter (ratio of trans-

mission rates between high and low compartments) to be 8.1 (95%CI: 6.68-10.73). This implies

that a minority of 10% of infected individuals are responsible for 43%-54% of infections.

Fig 3. Model-based estimates of cumulative infections through time for the 2014-15 Ebola epidemic in Western Africa.

Estimates are shown for the SEIR model (A) and the model which includes super-spreading (B). The red line show the

cumulative number of cases reported by WHO [35].

https://doi.org/10.1371/journal.pcbi.1006546.g003
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Simulations

With simulated tree data, PhyDyn recovers the correct transmission risk ratios and transmis-

sion rates, although performance depends on which structured coalescent model is used. Fig 5

compares estimates across 25 simulations using PL2 and QLmodels on epidemics with 5,000

initial susceptible individuals and a sample size of 500 sampled heterochronously shortly after

epidemic peak. The transmission risk ratio parameters were varied across simulations between

and the per-capita transmission rate was kept constant. S4 Fig shows performance of the PL1
model which was similar to PL2 but had slightly higher bias and lower posterior coverage of

true parameters. Results for a smaller and noisier epidemic (2000 initial susceptibles) is shown

in S5 Fig. The running time of the QLmodel was approximately five times faster than PL2

Fig 4. Estimated effective number of infections through time using the superspreading SEIR model for the 2014-

15 Ebola epidemic in Western Africa. The red vertical line shows the time of peak prevalence inferred from WHO

case reports. The vertical dashed line shows the model estimated time of peak prevalence. The red trajectory shows the

proportion of infections in the high-transmission-rate compartment.

https://doi.org/10.1371/journal.pcbi.1006546.g004

Fig 5. Parameter estimates and credible intervals for 25 simulations with variable transmission risk ratos. The red points show true parameter value. The

parameter β is the per-capita transmission rate, and w0 and wh are respectively the transmission risk ratios in the first stage of infection and the high risk group (cf. Eq

12). A-C: Results generated using the QLmodel. D-F: Results generated using the PL2model. There is one outlier simulation where the transmission rate parameter

could not be estimated precisely and upper bound of the CI was> 70% using both methods.

https://doi.org/10.1371/journal.pcbi.1006546.g005
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which required approximately 12 hours to complete 35,000 MCMC iterations, however QL
has considerable bias at the upper range of transmission risk ratio parameters and correspond-

ing lower posterior coverage.

Good coverage of parameter estimates with estimated 95% credible intervals was observed

with the PL2model. Across 75 parameter estimates (three parameters not counting initial con-

ditions and 25 simulations), estimates did not cover the true value 4 times. Bias of the mean

posterior estimate was quite small; the largest bias was 0.228 for the wh parameter which varied

across simulations between 1 and 9. In contrast, the QLmodel failed to cover much more fre-

quently, however errors were largely confined to larger risk ratios and QL had a tendency to

underestimate risk ratios. Greater bias was observed with the QLmodel, with the greatest bias

observed for the wh parameter (mean bias:-0.48). However the QLmodel also had good preci-

sion with smaller risk ratios as evidenced in the simulation with smaller population size (S5

Fig). In that case, the PL2model showed slight bias towards overestimating risk ratios which

may be due to the deterministic approximation to the noisy epidemic. A similar but less pro-

nounced pattern of bias and precision was observed for other parameters. A complete sum-

mary of simulation results is available at https://github.com/emvolz/PhyDyn-simulations.

Availability and future directions

The PhyDyn package, source code, documentation and examples can be found at https://

github.com/mrc-ide/PhyDyn. The PhyDyn package greatly expands the range of epidemiologi-

cal, ecological, and phylogeographic models that can be fitted within the BEAST2 Bayesian

phylogenetics framework. Extensions enabled by this package include models with parametric

seasonal forcing, non-constant parametric migration or coalescent rates between demes, state-

dependent migration or coalescent rates, and discrete changes in migration or coalescent rates

in response to perturbation of the system (e.g. a public health intervention). The package also

provides a means of utilizing non-geographic categorical metadata which is usually not consid-

ered in phylodynamic analyses, such as clinical or demographic attributes of patients in a viral

phylodynamics application [19].

We have demonstrated the utility of this framework using data from Influenza and Ebola

virus epidemics in humans, finding epidemic parameters and epidemic trajectories consistent

with other surveillance data. In both of these examples, simple structured models were fitted,

but notably without using any categorical metadata associated with sampled sequences. This

demonstrates potential advantages of structured coalescent modeling even in the absence of

informative metadata. In the case of human Influenza A virus, the fitted model included a

deme which accounted for evolution in the unsampled global influenza reservoir, which

allowed estimation of epidemic parameters within the smaller sub-region which was inten-

sively sampled. The use of a parametric mass-action model allowed PhyDyn to correctly detect

the time of epidemic peak and epidemic decline, whereas non-parametric skyline methods did

not detect epidemic decline in this case. And in the application to the Ebola virus epidemic in

Western Africa, models included un-sampled ‘exposed’ categories which accounted for realis-

tic progression of disease among patients, as well as a ‘super-spreading’ compartment which

accounted for over-dispersion in the number of transmissions per infected case.

In developing PhyDyn, the focus has been on developing a highly flexible framework which

is also computationally tractable for moderate sample sizes and model complexity. But flexibil-

ity and computational efficiency has come at the cost of some realism, notably in the determin-

istic nature of the models included in this framework. Future extensions may utilize stochastic

epidemic models such as those described by [36]. Other directions for future development

include semi-parametric modeling, such as models with a spline-valued force of infection [22]
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or models utilizing Gaussian processes [37], and approaches for utilizing continuous-valued

metadata [38].

Supporting information

S1 Text. Structured coalescent likelihood and approximations.

(PDF)

S1 Fig. Diagram representing dynamics of simulation model with four demes. This model

has two levels of transmission rate (l and h) and two stages of infection with higher transmis-

sion in the first stage. Solid lines represents death or stage progression. Dash lines represent

transmissions.

(TIF)

S2 Fig. Comparison of stochastic and deterministic trajectories. The stochastic epidemic

simulation is shown in black and the deterministic ODE model is shown in red.

(TIF)

S3 Fig. Effective population size of influenza H3N2 in New York 2014-15 estimated using

GMRF skyride. The median posterior estimate is shown in the panel on the left, and the panel

on the right shows both the median and 95% credible intervals.

(TIF)

S4 Fig. Parameter estimates using the PL1 coalescent model and credible intervals for 25

simulations with variable transmission risk ratos. The red points show true parameter value.

Top: Transmission rate. Middle: Acute stage transmission risk ratio. Bottom: High risk group

transmission risk ratio.

(TIF)

S5 Fig. Parameter estimates and credible intervals for 20 simulations. The red line shows

the true value. A-C: Results generated using the PL1model. D-F: Results generated using the

QLmodel. The parameters are in the same order as Fig 5 in the main text.

(TIF)
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