@-PLOS | s3toar o

t.)

Check for
updates

G OPEN ACCESS

Citation: Tarkowska A, Carvalho-Silva D, Cook CE,
Turner E, Finn RD, Yates AD (2018) Eleven quick
tips to build a usable REST API for life sciences.
PLoS Comput Biol 14(12): 1006542. https://doi.
org/10.1371/journal.pchi.1006542

Editor: Francis Ouellette, Genome Quebec,
CANADA

Published: December 13, 2018

Copyright: © 2018 Tarkowska et al. This is an open
access article distributed under the terms of the
Creative Commons Attribution License, which
permits unrestricted use, distribution, and
reproduction in any medium, provided the original
author and source are credited.

Funding: AY acknowledges funding from the
Wellcome Trust (WT108749/2/15/Z) and the
European Molecular Biology Laboratory (https:/
www.embl.org). OT acknowledges funding from
the Biotechnology and Biological Sciences
Research Council (BB/N018354/1, https:/bbsrc.
ukri.org/). RF, ET, DCS and CC acknowledge
funding from the European Molecular Biology
Laboratory (https://www.embl.org). The funders
had no role in study design, data collection and
analysis, decision to publish, or preparation of the
manuscript.

Competing interests: The authors have declared
that no competing interests exist.

EDUCATION

Eleven quick tips to build a usable REST API for
life sciences

Aleksandra Tarkowska'**, Denise Carvalho-Silva®'2®, Charles E. Cook'®,
Edd Turner®'®, Robert D. Finn®»'®, Andrew D. Yates®'®*

1 European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome
Genome Campus, Hinxton, Cambridge, United Kingdom, 2 Open Targets, Wellcome Genome Campus,
Hinxton, Cambridge, United Kingdom

® These authors contributed equally to this work.
* olat@ebi.ac.uk (AT); ayates@ebi.ac.uk (AY)

Introduction

In recent years, technological advances have greatly expanded the range of data types gener-
ated by life sciences researchers. These span domains such as molecular structures, nucleotide
and protein sequences, metabolomics, and chemogenomics, resulting in hundreds of public
resources holding diverse data sets for reuse in multiple formats [1]. Most resources focus on a
specific data type, yet their value for researchers is enhanced once cross-referenced and com-
bined with expert annotation and knowledge. Cross-referencing has increasingly been
achieved by implementing website application programming interfaces (web APIs), providing
programming-language—agnostic methods to access online resources. Web APIs enable
dynamic data exchange between resources, augment websites with additional data, and can
provide access to large data sets. Web APIs also enhance adherence to FAIR data principles by
making data Findable, Accessible, Interoperable, and Reusable [2], thus increasing the value of
those resources.

Representational state transfer (REST) [3] is a popular method for providing interoperabil-
ity between a client and server [4] using the hypertext transfer protocol (HTTP), the same
building block as the world wide web, [5] and a common exchange format, e.g., JavaScript
Object Notation (JSON) [6]. REST APIs are considered easier to develop than previous web-
service standards, e.g., Simple Object Access Protocol (SOAP). However, REST specifies a set
of requirements that any implementation of a REST API must address. Although well-known
resources such as the World Wide Web Consortium (W3C) (https://www.w3.org) and the
Internet Engineering Task Force (IETF) (https://www.ietf.org/) provide guidance on how to
implement such a service, they can be difficult to understand and may have limited documen-
tation. We present here 11 quick tips for creating and maintaining REST web APIs that were
developed while implementing various web APIs (https://www.ebi.ac.uk/services) for Euro-
pean Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI)’s data
resources.

Guidelines
Tip 1. Reduce support costs by providing good documentation

Even the best-designed and most intuitive REST API will languish unused if there is no clear,
comprehensive, and up-to-date documentation, preferably including real-world examples.
REST API description languages (DLs) document APIs in human and machine-readable for-
mats. A leading DL is the OpenAPI Specification (OAS; originally known as the Swagger

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006542 December 13,2018 1/8

http://orcid.org/0000-0002-3392-3691
http://orcid.org/0000-0001-5662-1840
http://orcid.org/0000-0001-6905-7150
http://orcid.org/0000-0001-8626-2148
http://orcid.org/0000-0002-8886-4772
https://www.w3.org/
https://www.ietf.org/
https://www.ebi.ac.uk/services
https://doi.org/10.1371/journal.pcbi.1006542
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1006542&domain=pdf&date_stamp=2018-12-13
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1006542&domain=pdf&date_stamp=2018-12-13
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1006542&domain=pdf&date_stamp=2018-12-13
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1006542&domain=pdf&date_stamp=2018-12-13
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1006542&domain=pdf&date_stamp=2018-12-13
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1006542&domain=pdf&date_stamp=2018-12-13
https://doi.org/10.1371/journal.pcbi.1006542
https://doi.org/10.1371/journal.pcbi.1006542
http://creativecommons.org/licenses/by/4.0/
https://www.embl.org
https://www.embl.org
https://bbsrc.ukri.org/
https://bbsrc.ukri.org/
https://www.embl.org

©PLOS

COMPUTATIONAL

BIOLOGY

Specification, https://swagger.io/), a portable and open specification providing metadata for
APIs based on the REST architecture. For example, the OAS is used to generate the interactive
documentation of the Proteins API (https://www.ebi.ac.uk/proteins/api/doc/index.html). DLs
are not a replacement for prose documentation, walk-throughs of your REST API, and worked
examples with detailed request and response specification. DLs can be further enhanced for
the life sciences by including references to controlled vocabularies for the returned data for-
mats (e.g., EDAM ontology [7]) that will aid interoperability. Providing all four types of docu-
mentation will reduce your support costs.

Tip 2. Design an API with stable, consistent, and clear URLs

An early first step in building a REST API is to determine the functionalities your web resource
intends to provide. REST imposes that every resource should be uniquely addressable and
accessed via unique resource locators (URLs) [8], referred to as endpoints. URL schemas that
use nouns as labels (which operates with the HTTP verbs [covered in the next tip]) provides a
transparent control of actions, for example, to remove a “study” the actions would be DELETE
studies/{id}, rather than POST studies/{id}/delete.

Human-readable URLs following this schema style allow easy retrieval of a collection of
resources or details of a single entity. The MGnify (formerly called EBI Metagenomics) REST
API [9] base URL (https://www.ebi.ac.uk/metagenomics/api/) provides access to several
resource collections—such as studies, samples, runs, biomes, and experiment-types—allowing
retrieval of over 150,000 publicly available metagenomics and metatranscriptomics data sets,
sampled from diverse environments. Endpoints that return multiple entities should provide
parameters to help sort and filter returned data. Details about the resource, such as a study,
can be retrieved by providing a unique identifier [10] assigned during the archiving process.
For example, https://www.ebi.ac.uk/metagenomics/api/latest/studies/PRJEB11419 provides
access to The American Gut data sets (https://doi.org/10.1101/277970) and represents the larg-
est human microbiome sample cohort to date. Developing a sensible URL scheme will ensure
your REST API is easy to understand and use.

Tip 3. Use standard HTTP headers to influence how clients will handle
your content

A HTTP response from the server to the client is composed of two parts, the information
about how the request was processed, including HTTP headers with a status-code, and the
message body containing the data from the resource. HTTP headers represent the metadata of
a response. Important client-side headers include Origin, used in cross-origin requests (see
Tip 6); Accept, used to flag the type of format a client wishes to process (see Tip 5); and
Accept-Encoding, used when a client can accept compressed data thereby reducing network
traffic. Important server-side response headers include Content-Type, used to state the format
of returned data; ETag, used to identify the specific version of the returned content; and
Cache-Control, which flags how long a ‘GET’ result can be cached or not cached if using key-
words such as No-Cache or No-Store. The latter of the two response headers helps a browser
caching the data to reduce traffic between a client and a server.

Tip 4. Use appropriate standardised data formats

REST APIs can return data in a number of formats, termed media types [11], through a pro-
cess called content negotiation. The most commonly used media types and formats are:

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006542 December 13,2018 2/8

https://swagger.io/
https://www.ebi.ac.uk/proteins/api/doc/index.html
https://www.ebi.ac.uk/metagenomics/api/
https://www.ebi.ac.uk/metagenomics/api/latest/studies/PRJEB11419
https://doi.org/10.1101/277970
https://doi.org/10.1371/journal.pcbi.1006542

@-PLOS | s3toar o

application/json (JSON): used to encode nested data structures across multiple languages
and is the most prevalent and flexible format;

application/xml (extensible markup language [XML]): mark-up for nested data with mature
tooling for processing;

text/csv (comma separated values—CSV): a two-dimensional matrix data encoding format;

application/octet-stream: used when representing any binary data stream;

text/x-fasta (FASTA): a biological sequence format [12].

Life science APIs may wish to support domain-specific formats to help enable tool integra-
tion. To begin, a client sends an Accept HTTP header [13] to the server shown on Fig 1, which
responds with the best available data representation or an error. The server includes a Con-
tent-Type header specifying the format of the returned data.

REST APIs may offer alternative nonstandard ways to configure the format of the data
retrieved using file extensions or via a URL parameter, e.g., www.example.com/resource.json
or www.example.com/resource?format=json. These alternatives should be avoided if possible,
and if not, they should be implemented as an alternative to using the Accept header rather
than instead of using the Accept header.

Tip 5. Use standard HTTP responses to influence how clients will handle
your content

HTTP defines a set of verbs that can be applied to an endpoint to change the action performed.
The most commonly used are ‘GET to transfer a current representation of the resource from
an endpoint. ‘POST’, ‘PUT’, ‘PATCH’, and ‘DELETE’ (so-called unsafe methods) perform a
processing operation, which could be destructive to the data. ‘GET” must never be used for
unsafe operations. ‘POST” and ‘PATCH’ aside, all other operations are considered idempotent,
which means multiple identical requests have the same effect on the state of the resource. For
example, the HMMER REST API [14] allows a sequence search against a protein database, as
shown in Fig 2.

HTTP also provides five main classes of response status codes:

o 1xx: Informational: request received, continuing process;

o 2xx: Success: the action was successfully received, understood, and accepted, e.g., 200;

o 3xx: Redirection: further action must be taken in order to complete the request, e.g., 302;
« 4xx: Client error: the request contains bad syntax or cannot be fulfilled, e.g., 404;

« 5xx: Server error: the server failed to fulfil an apparently valid request, e.g., 500.

A request to a REST API must return one status code to the client. Incorrect status code
usage is misleading and prevents client applications from properly processing a response. For
example, HTTP 500 must only be returned when there is a server-side error, not when a client
has made a poorly formatted request, in which 400 may be more appropriate.

[usr@srv]$ curl -i -H 'Accept: application/json' \
"https://www.ebi.ac.uk/proteins/api/proteins?offset=0&size=100&organism=Human’

Fig 1. A command line example of the proteins API. A Unix command line using the cURL tool to request
information about proteins from the Proteins API in JSON format for human. API, application programming
interface; JSON, JavaScript Object Notation.

https://doi.org/10.1371/journal.pchi.1006542.9001

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006542 December 13,2018 3/8

http://www.example.com/resource.json
http://www.example.com/resource?format=json
https://doi.org/10.1371/journal.pcbi.1006542.g001
https://doi.org/10.1371/journal.pcbi.1006542

©PLOS

COMPUTATIONAL

BIOLOGY

A) [usr@srv]$ curl -X POST -H "Accept: application/json" -H "Content-Type: application/json" \
-d '{"hmmdb":"pfam","seq":">seq\nAEMGPSENDPNLFVALYDFVASGDNTLSITK"}" \
https://www.ebi.ac.uk/Tools/hmmer/search/hmmscan
{"uuid":"75D55064-64DE-11E8-8825-948CF75AEC3D"}

B) [usr@srv]$ curl -X GET -H "Accept: application/json" \

'https://www.ebi.ac.uk/Tools/hmmer/results/75D55064-64DE-11E8-8825-948CF75AEC3D/score?output=json&range=1,10"

{"results":{"hits":[],"stats":{...}}
C) [usr@srv]$ curl -X DELETE -H "Accept: application/json" \

‘https://www.ebi.ac.uk/Tools/hmmer/results/75D55064-64DE-11E8-8825-948CF75AEC3D/score’
{"uuid":"75D55064-64DE-11E8-8825-948CF75AEC3D" }

Fig 2. An example of search against HMMER REST API. (A) Search is initialised by POSTing a JSON document with a

protein sequence encoded in FASTA format. The client receives a UUID in response. (B) This is used in the second and third

queries to retrieve results using GET. (C) The ticket is removed using DELETE. API, application programming interface;
JSON, JavaScript Object Notation; REST, representational state transfer; UUID, universally unique identifier.

https://doi.org/10.1371/journal.pcbi.1006542.9002

Tip 6. Allow your API to be used on other websites by enabling cross-origin
resource sharing

All web browsers implement the same-origin policy, a security measure allowing JavaScript
code to make requests only between a server and clients of the same origin, which prevents
malicious code from hijacking private data such as cookies. Two websites are said to be the
same origin if they have an identical scheme (e.g., https), host (e.g., www.ebi.ac.uk), and port
(e.g., 443). Cross-origin resource sharing (CORS), part of the Fetch living standard (https://
fetch.spec.whatwg.org/), is a technique for circumventing the same origin policy, allowing
JavaScript on a web page to consume a REST API served from known and trusted origins
securely. The same origin policy is a barrier for open APIs intended to be widely reused.

CORS is automatically used by a browser when a cross-origin request is made. The browser
will add an Origin header (whose value is the current origin) to a request. A server may
respond with an Access-Control-Allow-Origin header indicating the allowed origin or a *,
indicating that all origins are allowed. Returning the header ‘Access-Control-Allow-Origin: *’
on any ‘GET’, ‘HEAD’, or ‘POST’ request in many cases is sufficient to enable CORS. More
complex cases include a preflight step (in which it is evaluated whether an operation can be
safely executed) if the request involves a custom header, an HTTP method other than those
previously mentioned, or a ‘POST’ request body that is not application/x-www-form-urlen-
coded, multipart/form-data, or text/plain. For example, a ‘POST’ request in which the posted
body is a JSON document is subject to this additional step.

The permissive nature and potential security issues arising from using CORS means that
enabling CORS is only recommended for public APIs. CORS plugins exist for all major web
frameworks and more information is available from the CORS organisation website (https://
enable-cors.org). Additionally, the West-Life consortium has provided a web page that checks
CORS compliance (https://www.structuralbiology.eu/network/west-life/creating-web-
services).

Tip 7. Help clients use your API by giving them pregenerated links

A key concept underpinning the world wide web and HTML is the reconciliation of link navi-
gation by clients. That is, a user clicking on a link requires no knowledge of the target URL;
they need only to focus on which link to click. For example, an eCommerce website customer
does not need to construct a URL to checkout their purchase. Instead, the website will provide
a pregenerated link to click on. Similarly, REST APIs can return actions with a response and
inform clients of actions available to them. Providing that these action keywords remain con-
sistent with API changes, a server’s URL scheme is free to change. These APIs are known as

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006542 December 13,2018 4/8

http://www.ebi.ac.uk/
https://fetch.spec.whatwg.org/
https://fetch.spec.whatwg.org/
https://enable-cors.org/
https://enable-cors.org/
https://www.structuralbiology.eu/network/west-life/creating-web-services
https://www.structuralbiology.eu/network/west-life/creating-web-services
https://doi.org/10.1371/journal.pcbi.1006542.g002
https://doi.org/10.1371/journal.pcbi.1006542

©PLOS

COMPUTATIONAL

BIOLOGY

being hypermedia driven, which enriches cross-referencing between related resources, a key
feature for life science applications. A number of standards exist for creating hypermedia
APIs, including JSON for Linked Data (JSON-LD), JSON API, JSON Hypertext Application
Language (HAL), and Collection+JSON [15]. A common implementation of this is to paginate
through a list of results. For example, the Ontology Lookup Service provides pagination to
divide large responses into discrete, manageable chunks [16] using a section of the JSON docu-
ment called _links listing the functions that can be performed. The URLSs provided in the
_links section could be external links to other REST APIs or webpages, thereby improving
cross-referencing between resources. Where the chosen data format cannot encode these links
—as seen, for example, in the Proteins REST API [17] when requesting UniParc data in
FASTA format—then HTTP headers can be used as an alternative. Examples of both methods
can be seen in Fig 3.

Tip 8. Authenticate via a standard method

Authentication is the process of identifying a client when the server is provided with a login
and password (credentials) that match an authorised individual’s information within an
authentication service. We encourage API developers to use common authentication methods
such as OAuth 2.0 [18], JsonWebToken [19], and Basic Authentication [20] through an
encrypted protocol such as an HTTPS (TLS 1.3) connection and to be aware of security issues
that can arise. The Open Web Application Security Project (https://www.owasp.org/) provides
extensive information concerning these issues. In addition, you should be aware of the require-
ments of the General Data Protection Regulation (https://www.eugdpr.org/) if you are process-
ing personal data concerning European Union (EU) citizens.

Tip 9. Keep your API running at all costs

A useful API is one that remains available at all times. Because APIs are intended for program-
matic use, they must scale with demand and be cacheable to avoid reduced network traffic and
avoid unintended denial of service attacks. This can be achieved by making your API stateless,
i.e., allowing each request to be processed in isolation from others by removing the need for
state to be stored on a server. A number of APIs also impose restrictions on access, commonly
achieved by giving a quota of requests from a specific internet address over a period of time.
APIs offering authentication can allow clients to identify themselves using an API token and
have their limits increased or removed. As biological data sets grow in size, with increasingly
larger user bases, it may be important to consider horizontal scaling, whereby more servers are
added to a pool of servers hosting the API. Because this is primarily a technical solution, hid-
den behind a load balancer, it will not be discussed further, but software and system architec-
tural design must be considered early during the development phase so an API can scale when
under a heavy load. In this situation, a stateless API will be easier to scale than a stateful one.
The key is to strike a balance between providing a reliable service and operating within your
service constraints.

Tip 10. Version your API and allow clients to migrate in response to your
changes

Versioning is one of the most debated topics among REST API developers and users, with
many choosing not to version. A REST API must preserve URL design and data formats to
prevent ‘breaking’ client implementations. Resources evolve over time, and these changes
necessitate versioning, as epitomised by Roy Fielding who said ‘Versioning an interface is just
a “polite” way to kill deployed clients’ [21]. Two approaches are available within the REST

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006542 December 13,2018 5/8

https://www.owasp.org/
https://www.eugdpr.org/
https://doi.org/10.1371/journal.pcbi.1006542

@-PLOS | s3toar o

A)

[usr@srv]$ curl -i 'https://www.ebi.ac.uk/ols/api/ontologies?page=1&size=1"

"_links" : {
*first™ & {
"href" : "https://www.ebi.ac.uk/ols/api/ontologies?page=0&size=1"
1
"prev' : {
"href" : "https://www.ebi.ac.uk/ols/api/ontologies?page=0&size=1"
1
"self" : {
"href" : "https://www.ebi.ac.uk/ols/api/ontologies”
1
"next" : {
"href" : "https://www.ebi.ac.uk/ols/api/ontologies?page=28&size=1"
1
"last" : {
"href" : "https://www.ebi.ac.uk/ols/api/ontologies?page=207&size=1"
}
s
"page" : {
"size" 5 1,

"totalElements" : 208,
"totalPages" : 208,
"number" : 1

B)

[usr@srv]$ curl -i -H "Accept: text/x-fasta"
"https://www.ebi.ac.uk/proteins/api/uniparc?offset=0&size=100&taxid=9606"
X-Pagination-TotalRecords: 1138459

Vary: Accept

Content-Type: text/x-fasta

Link: <https://www.ebi.ac.uk/proteins/api/uniparc?offset=0&size=100&taxid=9606>; rel="self"

Link: <https://www.ebi.ac.uk/proteins/api/uniparc?offset=0&size=100&taxid=9606>; rel="first"
Link: <https://www.ebi.ac.uk/proteins/api/uniparc?offset=100&size=100&taxid=9606>; rel="next"
Link: <https://www.ebi.ac.uk/proteins/api/uniparc?offset=1138400&size=100&taxid=9606>; rel="last"

>UPIQ00173A1BO status=active
MDDKASVGKISVSSDSVSTLNSEDFVLVSRQGDETPSTNNGSDDEKTGLKIVGNGSEQQL
QKELADVLMDPPMDDQPGEKELVKRSQLDGEGDGPLSNQLSASSTINPVPLV

Fig 3. Methods of encoding links into a REST API response. (A) An example query to the Ontology Lookup Service for all
available ontologies. The response lists links to access the first, previous, next, and last pages (including supplementary
metadata) of the entire collection. (B) An example query to the Proteins REST API to retrieve all sequences in FASTA
format. Links are encoded in the Link HTTP response header to be parsed by a client. API, application programming
interface; HTTP, hypertext transfer protocol; REST, representational state transfer.

https://doi.org/10.1371/journal.pcbi.1006542.9003

guidelines. The first adds a version number in the URL path, making the version visible but
affects the stability of future URLSs to a resource or endpoint. We recommend the alternative
approach, which is to pass a version in the HTTP request header. For example, sending a
request to version 3 of the GitHub REST API, whose base URL is https://api.github.com,
requires an explicit version set by the header, ‘Accept: application/vnd.github.v3+json’.
Extending media types with the vnd prefix (called a vendor-specific media type) is an accepted
way to declare multiple schemas of data from a single endpoint, but this also increases API
complexity. Providing unversioned shortcuts to the latest version will help drive adoption of
an API. Ideally, API clients should be informed of any significant changes to the specification
of the URL schema via the documentation and disseminated via social media networks main-
tained by the service providers.

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006542 December 13,2018 6/8

https://api.github.com/
https://doi.org/10.1371/journal.pcbi.1006542.g003
https://doi.org/10.1371/journal.pcbi.1006542

©PLOS

COMPUTATIONAL

BIOLOGY

Tip 11. Check whether your web framework can help you out

Many of the tips discussed above have already been implemented by a number of REST-com-
patible frameworks, in a variety of programming languages, e.g., Spring (Java); Django or
Flask (Python); Restify, hapi]S, Express, or Loopback (Node.js); and Catalyst or Mojolicious
(Perl). If your REST API is built using one of these frameworks, then many of these tips will
already be implemented or available through a plugin to simplify implementation.

Conclusion

The use of simple programmatic methods for making life sciences data available in real time
allows researchers to contextualise and interpret their findings against diverse and heteroge-
neous open data sets, negating costly database replication. Our aim is that life sciences reposi-
tories, databases, and archives will provide data managed in adherence to FAIR principles.
These 11 tips help us achieve this through API documentation, good API design, reuse of the
HTTP standard, and the use of common data formats. REST APIs developed according to the
above guidelines allow users to more easily find data, access the content in standards ways, and
navigate across complex datasets contained in multiple data resources to address biological
questions, thereby maximising knowledge and value of the underlying data. Above, we have
presented the guidelines we consider most useful to follow when developing and maintaining
REST APIs, and although it is aggregated in the context of the life sciences, we believe this
information is of value to any domain.

Acknowledgments

The authors wish to acknowledge Awais Athar, Tony Burdett, Melanie Courtot, Leonardo
Gonzales, Kenneth Haug, Jon Hickford, Rodrigo Lopez, Maria Martin, Saqib Mir, Pablo
Moreno, Chris Morris, Anton Petrov, Dave Richardson, and Magali Ruffier, whose experi-
ences have all contributed to this article. All authors have read and approved the final
manuscript.

References

1. Rigden DJ, Fernandez XM. The 2018 Nucleic Acids Research database issue and the online molecular
biology database collection. Nucleic Acids Res. 2018 Jan 4; 46(D1):D1-7. https://doi.org/10.1093/nar/
gkx1235 PMID: 29316735

2. Wilkinson MD, Dumontier M, Aalbersberg IJ, Appleton G, Axton M, Baak A, et al. The FAIR Guiding
Principles for scientific data management and stewardship. Scientific Data. 2016 Mar 15; 3:160018.
https://doi.org/10.1038/sdata.2016.18 PMID: 26978244

3. Fielding RT. Architectural Styles and the Design of Network-based Software Architectures. 2000. 324
p.

4. Richardson L, Amundsen M, Ruby S. RESTful Web APlIs: Services for a Changing World. “ O’Reilly
Media, Inc.”; 2013. 406 p.

5. Leach PJ, Berners-Lee T, Mogul JC, Masinter L, Fielding RT, Gettys J. Hypertext Transfer Protocol—
HTTP/1.1. 1999 Jun; Available from: https://tools.ietf.org/html/rfc2616. [cited 2018 Jan 20].

6. JacksonW. The JSON Schema: JSON Structure Validation. In: JSON Quick Syntax Reference. 2016.
p.21-9.

7. IsonJ, Kalas M, Jonassen |, Bolser D, Uludag M et al. (2013) EDAM: an ontology of bioinformatics oper-
ations, types of data and identifiers, topics and formats. Bioinformatics 29: 1325-1332. https://doi.org/
10.1093/bioinformatics/btt113 PMID: 23479348

8. MasinterL, Berners-Lee T, Fielding RT. Uniform Resource Identifiers (URI): Generic Syntax. 1998 Aug;
Available from: https://tools.ietf.org/html/rfc2396. [cited 2018 Jan 20].

9. Mitchell AL, Scheremetjew M, Denise H, Potter S, Tarkowska A, Qureshi M, et al. EBI Metagenomics in

2017: enriching the analysis of microbial communities, from sequence reads to assemblies. Nucleic
Acids Res. 2018 Jan 4; 46(D1):D726-35. https://doi.org/10.1093/nar/gkx967 PMID: 29069476

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006542 December 13,2018 7/8

https://doi.org/10.1093/nar/gkx1235
https://doi.org/10.1093/nar/gkx1235
http://www.ncbi.nlm.nih.gov/pubmed/29316735
https://doi.org/10.1038/sdata.2016.18
http://www.ncbi.nlm.nih.gov/pubmed/26978244
https://tools.ietf.org/html/rfc2616
https://doi.org/10.1093/bioinformatics/btt113
https://doi.org/10.1093/bioinformatics/btt113
http://www.ncbi.nlm.nih.gov/pubmed/23479348
https://tools.ietf.org/html/rfc2396
https://doi.org/10.1093/nar/gkx967
http://www.ncbi.nlm.nih.gov/pubmed/29069476
https://doi.org/10.1371/journal.pcbi.1006542

G PLOS |sigurmom

10.

1.

12

13.

14.

15.

16.

17.

18.

19.

20.

21.

McMurry JA, Juty N, Blomberg N, Burdett T, Conlin T, Conte N, et al. (2017) Identifiers for the 21st cen-
tury: How to design, provision, and reuse persistent identifiers to maximize utility and impact of life sci-
ence data. PLoS Biol 15(6): e2001414. https://doi.org/10.1371/journal.pbio.2001414 PMID: 28662064

Media Types [Internet]. Available from: http://www.iana.org/assignments/media-types/media-types.
xhtml. [cited 2018 Jan 20].

Lipman DJ, Pearson WR. Rapid and sensitive protein similarity searches. Science. 1985 Mar 22; 227
(4693):1435—41. PMID: 2983426

Mutz AH, Holtman K. HTTP Remote Variant Selection Algorithm—RVSA/1.0. 1998 Mar; Available
from: https://tools.ietf.org/html/rfc2296. [cited 2018 Jan 20].

Finn RD, Clements J, Arndt W, Miller BL, Wheeler TJ, Schreiber F, et al. HMMER web server: 2015
update. Nucleic Acids Res. 2015 Jul 1; 43(W1):W30-8. https://doi.org/10.1093/nar/gkv397 PMID:
25943547

Amundsen Mike. Restful Web Clients: Enabling Reuse Through Hypermedia. “O’Reilly Media, Inc.”;
2017.

Perez-Riverol Y, Ternent T, Koch M, Barsnes H, Vrousgou O, Jupp S, et al. OLS Client and OLS Dialog:
Open Source Tools to Annotate Public Omics Datasets. Proteomics [Internet]. 2017 Oct 1; 17(19).
Available from: http://onlinelibrary.wiley.com/doi/10.1002/pmic.201700244/abstract. [cited 2018 Feb 5].

Nightingale A, Antunes R, Alpi E, Bursteinas B, Gonzales L, Liu W, et al. The Proteins API: accessing
key integrated protein and genome information. Nucleic Acids Res. 2017 Jul 3; 45(W1):W539—-44.
https://doi.org/10.1093/nar/gkx237 PMID: 28383659

Hardt D. The OAuth 2.0 Authorization Framework. 2012 Oct; Available from: hitps://tools.ietf.org/html/
rfc6749. [cited 2018 Jan 20].

Jones M, Bradley J, Sakimura N. JSON Web Token (JWT) [Internet]. 2015. Available from: http://dx.
doi.org/10.17487/rfc7519. [cited 2018 May 31].

Leach PJ, Franks J, Luotonen A, Hallam-Baker PM, Lawrence SD, Hostetler JL, et al. HTTP Authenti-
cation: Basic and Digest Access Authentication. 1999 Jun; Available from: https://tools.ietf.org/html/
rfc2617. [cited 2018 Jan 20].

Evolve The Adobe Digital. EVOLVE’13 | Keynote | Roy Fielding [Internet]. 2013. Available from: http:/
www.slideshare.net/evolve_conference/201308-fielding-evolve/31. [cited 2018 Feb 1].

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006542 December 13,2018 8/8

https://doi.org/10.1371/journal.pbio.2001414
http://www.ncbi.nlm.nih.gov/pubmed/28662064
http://www.iana.org/assignments/media-types/media-types.xhtml
http://www.iana.org/assignments/media-types/media-types.xhtml
http://www.ncbi.nlm.nih.gov/pubmed/2983426
https://tools.ietf.org/html/rfc2296
https://doi.org/10.1093/nar/gkv397
http://www.ncbi.nlm.nih.gov/pubmed/25943547
http://onlinelibrary.wiley.com/doi/10.1002/pmic.201700244/abstract
https://doi.org/10.1093/nar/gkx237
http://www.ncbi.nlm.nih.gov/pubmed/28383659
https://tools.ietf.org/html/rfc6749
https://tools.ietf.org/html/rfc6749
http://dx.doi.org/10.17487/rfc7519
http://dx.doi.org/10.17487/rfc7519
https://tools.ietf.org/html/rfc2617
https://tools.ietf.org/html/rfc2617
http://www.slideshare.net/evolve_conference/201308-fielding-evolve/31
http://www.slideshare.net/evolve_conference/201308-fielding-evolve/31
https://doi.org/10.1371/journal.pcbi.1006542

