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Abstract

Here we present an open-source R package ‘meaRtools’ that provides a platform for analyz-

ing neuronal networks recorded on Microelectrode Arrays (MEAs). Cultured neuronal net-

works monitored with MEAs are now being widely used to characterize in vitro models of

neurological disorders and to evaluate pharmaceutical compounds. meaRtools provides

core algorithms for MEA spike train analysis, feature extraction, statistical analysis and plot-

ting of multiple MEA recordings with multiple genotypes and treatments. meaRtools func-

tionality covers novel solutions for spike train analysis, including algorithms to assess

electrode cross-correlation using the spike train tiling coefficient (STTC), mutual information,

synchronized bursts and entropy within cultured wells. Also integrated is a solution to

account for bursts variability originating from mixed-cell neuronal cultures. The package pro-

vides a statistical platform built specifically for MEA data that can combine multiple MEA

recordings and compare extracted features between different genetic models or treatments.

We demonstrate the utilization of meaRtools to successfully identify epilepsy-like pheno-

types in neuronal networks from Celf4 knockout mice. The package is freely available under

the GPL license (GPL> = 3) and is updated frequently on the CRAN web-server repository.

The package, along with full documentation can be downloaded from: https://cran.r-project.

org/web/packages/meaRtools/.
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This is a PLOS Computational Biology Software paper.

Introduction

The MEA platform is now increasingly being used to study the response of neuronal networks

to pharmacological manipulations and the spontaneous activity profiles of neural networks

originating from genetic mouse models and derived from human pluripotent stem cells[1–4].

Recent studies aim to not only evaluate wild-type and mutation associated phenotypes, but

also to recapitulate the in vivo response to various molecules, compounds and drug therapies

[5, 6]. Capturing the many and varied activity features from a cultured neuronal network is

critical for the full and accurate characterization of that network. However, MEA data are

complex to handle. Moreover, an MEA experiment can last several weeks and incorporate

many recordings and various treatments. For these reasons, there is a genuine need for meth-

ods that can adequately characterize those neuronal networks and also provide valid assess-

ments of phenotypic differences between genotypes and drug treatments in an experiment

lasting many days in vitro (DIV).

The meaRtools package provides tools to identify complex phenotypes for assessing the

effect of mutations and the screening of compounds in a multi-well MEA platform, as pre-

sented here and as we previously showed [6]. The algorithms described here add to existing

methods through calculation of cross-correlation and mutual information between electrodes,

as well as enhanced identification of synchronized bursts (including entropy phenotypes for

each well). The latter algorithm is shown here to identify recapitulation of in vivo epilepsy phe-

notypes in cultured neurons of the Celf4 knockout mouse model (Celf4-/-). Incorporated into

the package is also an algorithm that uses electrode-level burst features distributions to identify

burst activity variations originating from neuronal subtypes in primary neuronal cultures. An

earlier version of the package was recently used to examine the effects of microRNA-128 defi-

ciency on the activity of cortical neural networks [6]. Last, the package provides functions to

combine many recordings from multi-DIV experiments and perform rigorous statistical tests

of phenotypic differences between genotypes and/or drug treatments. For ease of reading,

Table 1 lists the main abbreviations used in this article.

Design and implementation

meaRtools’s objective is to provide a comprehensive characterization of electrode-level and

network activity on a MEA plate, that is composed of one or more wells, each well consisting

of multiple electrodes.

Table 1. Abbreviations used in text.

Abbreviation Meaning

aE Active electrodes

DIV Days in vitro
EMD Earth mover’s distance

IBI Inter-burst interval

ISI Inter-spike interval

MW Mann–Whitney test

MD Maximum distance

MEA Microelectrode array

MFR Mean firing rate

NS Network spike

NB Network burst (synchronized bursts)

STTC Spike train tiling coefficient algorithm

https://doi.org/10.1371/journal.pcbi.1006506.t001

meaRtools: Software for comprehensive analysis of MEA experiments
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The package enables a rigorous examination of differences between various genotypes and/

or treatments cultured on the same plate over time. To achieve this purpose, the package pro-

vides functions to perform four major analyses (Fig 1 and supplementary S1 Table):

1. Identify simple and complex single-electrode and network (multiple electrodes) activity

phenotypes. Activity attributes that are extracted include spike and burst features on an

Fig 1. A general scheme of an analysis workflow for several MEA recordings.

https://doi.org/10.1371/journal.pcbi.1006506.g001
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electrode-level, as well as features of synchronized network events on the multi-electrode or

well-level, such as network spikes (NSs), synchronized network bursts (NBs), cross-correla-

tion and entropy calculations.

2. Combine information from multiple recordings of the same experiment. An MEA experi-

ment can have multiple recordings along several weeks while the neuronal culture is viable.

Using meaRtools functions, many recordings of the same plate can be incorporated into a

complete dataset, which can be used to test temporal replicability of results with the added

advantage of enhanced statistical power.

3. Perform reproducible case/control based statistical analysis. Statistical tests are required

when using the MEA platform to characterize and identify differences between genetic

models and various treatments. This need intensifies when incorporating data from many

recordings and comparing wells grouped by identifiers (e.g. drug or other treatment). The

statistical testing scheme presented here is designed to handle this problem specifically.

4. Visualize the results in presentable ready-to-use graphs and charts. The complex picture

arising from MEA recordings can be examined on various resolutions: electrode-level activ-

ity, well-level synchronization and genotype or treatment activity grouped across several

wells and throughout several recordings. These different resolutions can all be visualized

using designated functions. Furthermore, comparisons between genotypes and treatments

are visualized along with statistical test results.

Since meaRtools is implemented in R, we assume familiarity with the R programming envi-

ronment and provide a step-by-step workflow for an exemplary experiment consisting of three

MEA recordings through the package vignette (https://cran.r-project.org/web/packages/

meaRtools/vignettes/meaRtoolsGeneralUsage.html). The vignette provides a thorough guide

to meaRtools, beginning with package installation, input handling and the various commands

to identify activity features, calculate statistics, and plot. Running the vignette while reading

the methods section of this manuscript will provide hands on experience and familiarity with

the package. For those new to R, we recommended the introductory material found at: https://

www.rstudio.com/online-learning.

Input and data organization

The package can analyze multiple recordings with the same plate layout. The input format

is similar to Axion Biosystems ‘spike_list.csv’ format: a comma separated file with a row for

each spike holding spike time, electrode name and spike amplitude (mV, supplementary S2

Table). The input files can be read using the read_spikelist function, which then constructs an

R object of class ‘spike.list’ that holds the following information retrieved from the input files:

electrode names and positions, spike trains (a sequence of action potentials recorded over

time) and recording information (start/end time, machine version). The feature extraction

functions introduced below add layers to this primary ‘spike.list‘ object (supplementary

S1 Table).

The package requires a layout scheme for each experiment that lists all wells used in the

experiment and, when applicable, the treatment of each well (supplementary S3 Table). This

layout scheme is necessary to group wells for statistical comparisons of extracted features. A

treatment label can represent multiple aspects used to distinguish a specific well, such as a

genotype model, a drug treatment exposure, a change in the culture medium, an external stim-

ulus, etc. The term ‘treatment’ will be used henceforth to relate to any of the above.

meaRtools: Software for comprehensive analysis of MEA experiments
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Although we focus here on analyzing Axion Biosystems datasets, the package can read in

data recorded from other platforms, assuming that the data can be manipulated into a straight-

forward text format. In this case, two files are provided, one containing the spike times

recorded on each electrode and one describing the spatial position of each electrode. Our pack-

age provides a vignette that demonstrates how such data can be read in and processed; see

https://cran.r-project.org/web/packages/meaRtools/vignettes/data_input.html.

Identifying simple and complex single and multi-electrode activity

phenotypes

The package provides functions for identifying numerous features that characterize various net-

work activity attributes. Features are calculated at three levels: electrode-, well- and treatment-

level. Well-level calculations combine the information from all the electrodes within the well.

Treatment-level calculations further group wells together by their assigned treatment label.

For the extraction of features for spikes, bursts and NSs described below, the package uti-

lizes code from the open-source sjemea R package [7] and the algorithms of Eytan and Marom

[8] and Legendy and Salcman [9].

Spikes, bursts and network spikes

Spikes, or single action potentials, are not detected by meaRtools. The package accepts a list of

spike time stamps generated using a spike detection algorithm of the user’s choice. To calculate

spike activity features and statistics, the package provides the function calculate_spike_features,
which extracts spike information separately from the spike times of each electrode. Among the

extracted features are various spike statistics per electrode and well, such as: 1) The number of

active electrodes (aEs) per well, 2) The number of spikes, 3) Mean Firing Rate (MFR, in Hz)

and 4) Inter-Spike Interval (ISI), which is the time between two sequential spikes.

Overall, the package provides eleven spiking statistics and features, among which are the

well-level Spike Train Tiling Coefficient (STTC), mutual information and entropy measure-

ments discussed below (supplementary S4 Table).

Bursts are short periods of time with elevated spike frequencies [9]. The package provides

an implementation of two algorithms for detecting rapid spiking periods using the function

calculate_burst_features: the Maximum Interval [10] algorithm and the Poisson Surprise [9]

algorithms that have been extensively used previously to identify spike bursts [11–14]. The use

of both heuristic and statistical modeling approaches for data comparison allows for an

enhanced identification of features [15].

Using either the Maximum Interval or the Poisson Surprise algorithms produces the same

burst features, among which are statistics per electrode and per-well for: 1) The number of

bursts, 2) Burst durations, 3) Burst rates, 4) Spike rates within bursts, 5) IBIs and 6) ISIs within

bursts. Overall, the package provides 19 burst features (supplementary S4 Table).

Network spikes (NSs) are synchronized events of neuronal populations in a short period of

time. The meaRtools package detects these events using a well-established algorithm developed

by Eytan and Marom [8] that was obtained from the sjemea package [7] and previously used

for characterizing synchronized activity [16, 17]. The function calculate_network_spikes detects

NS within each well. A NS is detected when there are at least a user-defined number of aEs

(default 4 aEs, or 25% of total number of electrodes) detected within a user-defined time win-

dow (default 10 ms).

NS features are next extracted using the function summarize.network.spikes, and include

basic statistics for: 1) NS number, 2) ISIs in NS, 3) number and 4) percentage of spikes partici-

pating in NS.

meaRtools: Software for comprehensive analysis of MEA experiments
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Overall, the package provides a total of ten NS features (supplementary S4 Table).

Algorithms to assess network synchronization and burst activity patterns

Spike train tiling coefficient. We have implemented STTC to evaluate pairwise correla-

tions between a pair of electrodes [18]. STTC has recently shown to examine the effects of an

agonist of acetylcholine receptor and several inhibitory antagonists on network synchroniza-

tion [19, 20].

We implemented STTC as follows: Given N active electrodes within a well, we ignore any

possible dependence of distance upon correlation and simply calculate the average STTC from

all N(N-1)/2 pairwise correlations.

Average well-level STTC values per well can be computed using the compute_mean_sttc_-
by_well function.

Entropy and mutual information. Entropy and mutual information have been used pre-

viously to describe and characterize neural spike trains [21–23]. We adapted the two informa-

tion theory metrics based on the original ideas presented by Shannon [24] to MEA data

analysis. These metrics have utility for characterizing recordings of a single well, a set of wells

per treatment, and comparing treatments from the same plate.

Entropy was used as a broad measurement of the amount of disorder measured at an MEA

electrode, as well as across a well. For entropy calculations, we used the standard equation for

calculating the entropy of a system:

HðXÞ ¼ �
Xn

i¼1

pðxiÞ logðpðxiÞÞ

We define H(X) as the calculated entropy measurement for electrode X. i represents a time

interval bin, out of n total separate equally sized time interval bins (default is 0.1s bin size)

from start to end of the recording time. In the probability distribution, xi is set as the number

of spikes in the i’th bin of electrode X divided by the total number of spikes observed in the full

recording. For a well we use a mean statistic across all electrodes within well. When testing a

full plate, we use the mean entropy across a group of wells (combined by treatment) as a test

statistic representing the ‘orderliness’ of the firing patterns. Sets of mean entropies per treat-

ment can be later compared to determine if there is evidence of a shift in the distribution

between two different treatments. Normalized entropy statistics can be collected per well with

the calculate_entropy_and_mi function.

The second metric, mutual information, can be used to compare patterns from two separate

electrodes, and could be extended to represent the network level activity of neuronal firing in a

particular well. This method was used to identify differences in synchronized activity between

neuronal networks from the Celf4-/- mouse model of epilepsy and wild-type (Celf4+/+) control

neuronal networks (see Results).

We start with the generalized equation for mutual information (MI):

I X;Yð Þ ¼
X

y2Y

X

x2X

pðx; yÞ log
pðx; yÞ

pðxÞpðyÞ

We define I(X,Y) as the information shared between electrodes X and Y. We define a num-

ber of equally distributed time interval bins in the time period and for each electrode, count

the spikes in each bi. As before, we transform X and Y into separate probability mass functions,

where the probability of a spike falling in a particular time interval bin equals the count at that

bin divided by the total number of spikes that were detected in the recording.

meaRtools: Software for comprehensive analysis of MEA experiments
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Given that the number of spikes observed during recording time can vary between elec-

trodes, it was important to further transform X and Y to take this into account. For this we

take the spike count in a time interval to infer the presence or absence of a burst, and as such

we can classify each time interval at an electrode as either a burst member or non-member. To

do this we transformed each input vector X such that the value Xi equals 1 if the spike count is

greater than the 75th percentile of spike counts across all bins in X, and set as 0 otherwise.

Such a simple transformation of the data means that the probability mass function for X is col-

lapsed down to p(X = 0) and p(X = 1). Subsequent MI calculations are far more efficient since

in terms of combinatorics, only 4 outcomes at a given time interval are possible: X = 0/Y = 0,

X = 1/Y = 0, X = 0/Y = 1 and X = 1/Y = 1. As such we explicitly compute the mutual informa-

tion between electrodes X and Y as:

I X;Yð Þ ¼
X

x;y2f0;1g

pðx; yÞ log2

pðx; yÞ
pðxÞpðyÞ

We produce a distribution of these pairwise statistics per well, and aggregate the statistics

per treatment. A Mann–Whitney (MW) test can be later performed on these sets of values

between two treatments to determine if there is evidence for neurons in one treatment having

a higher level of coordinated network level firing than in another treatment. Average well-level

pairwise mutual information values per well can be computed using the calculate_entro-
py_and_mi function.

Burst features distributions. Distributions of burst features can be compared and visual-

ized to assess certain burst features by looking at their density distributions along a recording.

This method was previously used to successfully test the effects of a miR-128 knockdown in

cultured neuronal networks [6], and was used in this study to discern between various culture

treatments and cell density (see Results). The reason behind constructing this method is that

primary cultures contain multiple neuronal subtypes (e.g. GABAergic and glutamatergic),

which demonstrate different activity signatures [25, 26]. Thus, merely extracting a mean and

standard deviation of a feature will misrepresent the activity fluctuations that arise from the

combined activity of neuronal subtypes in the network. For example, spike frequencies within

bursts may differ between GABAergic interneurons and glutamatergic neurons [27], with

GABAergic neurons often exhibiting narrower spike wave-forms and faster-spike activity [28,

29]. Furthermore, certain anti-epileptic or anti-psychotic drugs selectively target specific neu-

ronal subtypes. However, this selective effect may not be observed when comparing the aver-

age change of an entire cultured network.

The function calc_burst_distributions calculates empirical distributions for bursting features

and compares them between treatments using two independent methods (Fig 2A, see Statisti-

cal Testing and Visualization).

Density distributions are calculated for five burst features: IBIs, ISIs within bursts, number

of spikes in bursts, burst durations and spike frequencies within bursts (firing rate, Hz). For

each feature, the algorithm adjusts for variability between electrodes in a well. This is done by

calculating the histogram of a feature in each electrode separately (Fig 2A, left panel) and nor-

malizing it to values between 0–1 (Fig 2A, middle panel). Next, all normalized histograms are

grouped and averaged by treatment labels. The algorithm permits performing this step also by

grouping electrodes first by wells and then averaging well information by treatment. To later

test for differences between treatments, the package provides a function which performs distri-

bution comparison tests, permutes electrode labels and plots the results (Fig 2A, right panel,

see Statistical Testing and Visualization).
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Synchronized network bursts. We consider NBs as bursts appearing at several electrodes

simultaneously, that are longer and more intense synchronization events than NS and corre-

spond to electrode-level burst activity that is synchronized across electrodes in a well. The

underlying reason to identify NBs is that, while the NS detection algorithm identifies short net-

work synchronized activity lasting tens of milliseconds, synchronized bursting events were

shown to last tenths of seconds to seconds in MEA experiments [15, 30, 31]. To catch these

long synchronized network events, a method was constructed that investigates bursting pat-

terns within wells and also between wells clustered based on treatments.

The function calculate_network_bursts combines burst information at the electrode-level

into well-level data as the presentation of synchronized bursts across a well (Fig 2B). First,

spike time within spike trains from all electrodes is binned using a bin size of 2ms to guarantee

that at most one spike is called within each bin. Next, a Gaussian filter with user-defined win-

dow sizes (defaults are: 10, 20 and 50 ms) is applied to smooth the binned spike trains from

each electrode. The smoothed signal is then further standardized to have a maximum signal

value of 1. All smoothed signals at the electrode-level are then combined and smoothed again

Fig 2. Schemes for computing NBs and burst distributions. A) Creating burst features distributions. First, burst feature

histogram is calculated for each electrode (left panel). In this example, it is calculated for burst duration. Next, histograms are

normalized to number of values, resulting in a 0–1 value. Last, all electrodes are averaged to create a normalized distribution plot

(top right panel) and a cumulative plot (bottom right panel) for each tested treatment. B) Detecting synchronized bursts. Spike

data from a raster plot (upper panel) showing the spikes (x-axis) for each active electrode (y-axis) is binned and combined through

a weighted Gaussian kernel smoothing method to generate the fraction of active electrodes (blue lines in lower panel). The Otsu

global thresholding algorithm [32] is then applied to identify intervals above the threshold (red horizontal line) as synchronized

NBs.

https://doi.org/10.1371/journal.pcbi.1006506.g002
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using the same Gaussian filter. The final result from this step is a smoothed signal at each

given window size that measures the overall synchronization of all electrodes in a well, with

larger values indicating higher level of synchronized bursting activities. Then, the Otsu global

thresholding method is applied to the well-level signal to automatically detect burst intervals

[32]. This method was chosen for its simplicity and parameter free nature, although other

methods, such as adaptive thresholding, can be utilized. Last, based on the NB intervals

obtained from Otsu thresholding, NB information is collected at the well-level.

The algorithm extracts statistics for: the number and rate of NBs, the number and percent-

age of spikes participating in NBs and the spike intensities within NBs, which is the spike rate

within NBs. These NB statistics were previously shown to infer the biological effects of miR-

128 knockdown in cultured neuronal networks [6] and are shown in this work to successfully

identify significantly higher synchronization of bursts in a mouse epilepsy model and in the

homozygous Celf4-/- mouse seizure model.

Overall, the package provides 11 NB features for each time window to a total of 33 features

(supplementary S4 Table).

Combining multiple recordings

MEA experiments are constructed from multiple recordings of the same plate over a certain

period of time. Correctly assessing the activity and differences over time requires analyzing

several recordings as one set of information with various time points. The package provides

functions for combining several recordings and filtering wells from the combined dataset

based on inactivity measurements. All feature extraction functions store the extracted informa-

tion in the same ‘spike.list’ object. The function aggregate_features uses the information stored

in the ‘spike.list’ object to combine data from all the analyzed recordings into an aggregated

table for each feature. The aggregated tables have recording labels as columns and well-labels

as rows, and can be printed as csv files or used later for treatment comparisons. The package

also provides the function filter_wells to exclude inactive wells from these aggregated tables.

An active well is measured using a minimum number of aEs (default 4, or ¼ of the total num-

ber of electrodes). The function filter_wells considers whether a well has been active in more

than a certain percentage of recordings in the experiment (default is 50%). Inactive wells that

fail to meet this criterion are not used when comparing treatments.

Statistical testing and visualization

The combined tables from multiple recordings can next be used to compare treatments along

the experiment. The function permute_features_and_plot performs all the necessary statistical

tests between treatment labels and plots the results of all features in .pdf format in a designated

output directory. The tests are performed as follows: First, a MW test is performed to compare

distributions of each feature between treatments, and the resultant p-value is recorded. Next, a

permutation scheme is performed where the treatment labels of the active wells are randomly

shuffled X times (default 100) while the observations within each well are kept intact. This pre-

serves correlations between time points within wells while breaking any relationship with

treatment and subsequent outcome. A permutation p-value for the original MW test is com-

puted as the proportion of permuted data MW p-values that were less than or equal to the

MW p-value of the original un-permuted dataset. Last, for each feature, a graph and a table

(csv format) are printed with the mean and standard error (SEM) of the measured features for

each of the recordings.

Comparing and plotting burst distributions, is done using the function dist_perm. The algo-

rithm works as follows: For each of the five burst features, the function calc_burst_distributions

meaRtools: Software for comprehensive analysis of MEA experiments
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generates a normalized histogram per electrode (supplementary S5 Table). Next, the function

dist_perm groups all distributions by treatment labels and compares them between treatments

using two methods: 1) The Earth Mover’s Distance (EMD), using R package emdist [33] and

2) the Maximum Distance (MD) between the cumulative distributions of the normalized

histograms.

Once the test results for EMD and MD are computed for the original dataset, a permutation

scheme is performed where the treatment labels of the active wells are randomly shuffled X

times (default 100) while the distributions within each well are kept intact. A permutation p-

value for EMD is then computed as the proportion of permuted data EMD values that are

equal to or greater than the original EMD value from the un-permuted dataset. A permutation

p-value for MD is defined similarly. Last, both the normalized and cumulative histograms are

plotted with the final permuted p-value.

Performance

The performance of the package was tested by analyzing three recordings included in the pack-

age as example files recorded for 40s, 60s and 60s on a 48-well plate with 16 electrodes in each

well. We ran the full package vignette, extracting all possible features and statistics for each

recording including: spike statistics, mutual information, STTC, burst statistics and distribu-

tions, NSs and synchronized NBs. The test also included combining data statistics from all

recordings of the experiment and performing 100 default permutations for testing differences

between three available treatments for all 73 available features. The test concludes by plotting

the comparison between treatments for all the features tested. On a MacBook Pro with a 2.8

GHz Intel Core i7 CPU and 16 GB of 1600 MHz RAM, the average execution time for this test

was 3.23 min and 4.97 min, excluding or including permutation and plotting, respectively.

Increasing the number of permutations to 1000 increased the run time significantly to 16.05

minutes.

Ethics statement

All mice were housed and bred with approval of the respective Institutional Animal Care and

Use Committee (IACUC) at The Jackson Laboratory or Columbia University Medical Center

following the Association for Assessment and Accreditation of Laboratory Animal Care

guidelines.

Results

The meaRtools package can be used as an analysis pipeline on an experiment composed of

data from several recordings and with several treatments. The package is shown here to extract

novel biological insights by identifying neuronal phenotypes of a Celf4 epilepsy mouse model

[34] and was also recently utilized to assessing the effects of miRNA deficiency on neuronal

activity [6], both of which demonstrate the ability of the algorithms presented here to identify

and provide robust statistical measurements for simple and complex network-associated phe-

notypes. Below, we present various experimental examples to illustrate the diverse features and

uses of meaRtools.

General activity information

To gain a preliminary view of plate activity, the package generates graphs of activity measure-

ments for three levels of data: electrode-, well- and plate-levels. Presented here are a subset of

these graphs for a single recording in a 48-well plate (16 electrodes per well) containing
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cultured cortical neural networks from the brains of postnatal wild-type mice. The lowest reso-

lution map of the plate shows a matrix of all aEs for each well in the plate (Fig 3A). A higher

resolution graph shows electrode activity per well as the MFR of all aEs (Fig 3B). Even higher

resolution shows the MFR of each electrode in each well (Fig 3C represents a 900s recording).

The latter is plotted for each well separately.

Fig 3. General information of plate activity. A) A matrix representing a 48-well plate, where each well consists of 16 electrodes. aEs are represented by name

consisting of column+row position in each well (“11” for first electrode to “44” for the last). B) MFR (Hz) for aEs per well in a 48-well plate. Title for each well has

the genotype label of the well: +/+ (wild-type), -/- (homozygous), +/- (heterozygous), NA (Not available). C) Average MFR of all 16 electrodes of well A6, presented

for each second of a 900s recording. D) Average number of electrodes participating in NSs around the peak of a network event. The x-axis represents user-defined

time bins (default is 100 ms) before and after a NS peak (-10 equals 1s before the peak). Title for each well consists of well-name and number of identified NSs.

https://doi.org/10.1371/journal.pcbi.1006506.g003
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In order to demonstrate network behavior before and after each NS, we show the number

of electrodes participating in NS around the peak of a network event (Fig 3D). For example:

some networks present a decline in participating electrodes before the event takes place (wells

B1, C1 and D1 in Fig 3D), while others exhibit a gradually increasing number of electrodes

participating in a NS before a fast accumulation of electrodes leading to the NS peak (wells F1

and F8, Fig 3D).

The full set of graphs that can be printed by the package is available as supplementary infor-

mation and includes log ISI statistics, spike statistics within bursts and other network informa-

tion. These graphs provide an overall view of the activity of a single recording.

Longitudinal modulation of network activity by drug treatment

For every extracted feature a comparison can be made between treatments in a multiple-recording

experiment. For every activity attribute (i.e. spikes, bursts, NSs and NBs), an output folder is cre-

ated with .csv files for every feature, holding average values per well for every recording analyzed.

An example is shown here for Spike Intensity within NBs representing DIV 11–14 analysis of two

genotypes of a genetic mouse model of epilepsy; which are heterozygous (+/-) or homozygous

(-/-) for a specific mutation (Fig 4A). Also printed are graphs showing mean and standard error

for each feature. These graphs compare the treatments over all the analyzed recordings (Fig 4B–

4E). The output directories include tables and graphs for a total of 70 features: eight spike features,

19 burst features, 10 NS features and 33 NB (see supplementary S4 Table).

The comparison analysis is flexible and can be performed for subsets of recordings and

treatments. The example in Fig 4B and 4C shows a comparison of network activity between

the two genotypes (+/- and -/-). Under each graph are the results of multiple MW and permu-

tation tests performed between the genotypes. The Spike Intensity within Network Bursts fea-

ture (spikes per NB per sec) analyzed here illustrates the synchronization level of a network. A

comparison of treatments, using five recordings from an experiment comprised of 14 DIV,

shows a trend for higher spike intensities in the homozygous genotype, which is not significant

after a permutation test (Fig 4B). However, inclusion of data from three more DIV shows a sig-

nificantly increased network synchronization in the homozygous genotype (Fig 4C).

The feature comparison analysis is not limited to the number of recordings or treatments.

In Fig 4D, the number of aEs are shown for an experiment spanning 27 DIV. This experiment

had three treatments: a vehicle treated control and two concentrations (0.1nM and 1nM) of a

sodium channel blocker (Fig 4D–4E). The treatment was administered on DIV 20 and the

plate was recorded for 7 DIV following drug administration. Analysis of the number of aEs

shows no significant difference between groups before the drug was added, and a dramatic

decrease in number of aEs in the wells treated with 1nM but not those treated with 0.1nM (Fig

4D, green vs red lines, respectively). As expected, MFR analysis indicates a significant decrease

in MFR for both 0.1nM and 1nM drug treatments[35]. Moreover, the kinetics of MFR

decrease are relative to the drug concentration, as is the time it takes the MFR to return to

untreated values (Fig 4E, red and green lines).

Overall, these results present the flexibility of the functions to handle varying number of

recordings and provide true biological insights. The ability to test treatment differences over

many recordings, presented here for the first time, provides a strong and valuable tool to

assure drug, compound or genotype effect.

Discerning various culture treatments using burst feature distributions

In addition to the comprehensive examination of synchronization between electrodes, meaR-

tools provides a way to identify changes in bursting activity characteristics throughout the

meaRtools: Software for comprehensive analysis of MEA experiments
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recording through examining distributions of burst features such as duration and spike fre-

quency within bursts. Burst features distributions can account for the differing behaviors of

neuronal subtypes in a primary culture. For example, burst activity might have differing dura-

tions, fluctuating spike rates and other features that are influenced by different activity profiles

of specific cell types. While these varying activity properties might not be caught using simple

statistical measurements, they can be identified using empirical distributions of features.

Burst features distributions can be compared between treatments in single or multiple

recordings. Single recording treatment comparisons are tested using the Kolmogorov-Smirnov

test (K-S test) for comparing probability distributions. For instance, when comparing the

effects of cell density on network behavior, a significantly higher proportion of low Spike Fre-

quencies is observed at low cell density of 25,000 (25k) cells relative to higher densities (Fig 5A,

red line), suggesting that higher cell densities have higher spike frequencies within bursts. In a

separate experiment, we compared the effects of two different microbial light sensitive mem-

brane proteins: Channelrhodopsin-2 (Chr2) and Archaerhodopsin-T (ArchT) on burst

Fig 4. Comparing features between treatments. In panels A-C, treatment refers to genotype (heterozygous, +/- and homozygous, -/-). In panels D and E, treatment

refers to drug treatment. A) Output tables are printed for every feature, holding average values (in this case, Spike Intensity per aEs) per well (rows) and for every

recording analyzed (columns). B) Spike Intensity per aEs for two genotypes by DIV on a subset of five recordings. This graph corresponds to the full aggregated table

of A). C) Same as B), but for a subset of eight recordings. D) Comparing the number of aEs for wells treated with a vehicle or one of two channel blocker treatments

(0.1nM and 1nM) along a 27 DIV experiment. E) MFR for the same experiment as in D), showing differences in the effects of drug concentrations.

https://doi.org/10.1371/journal.pcbi.1006506.g004
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duration. We observed a higher ratio of long burst durations for ‘Chr2’ that is not significant

between treatments (Fig 5B, red line).

Comparisons of the distributions of burst features can be performed over multiple record-

ings. The analysis of number of spikes in a burst is presented here for an experiment with 24

Fig 5. Burst features distributions. A) Frequencies (y-axis) of spike-rate in bursts (x-axis) are calculated for four different cell density cultures in a

single recording. A user defined maximum of 300 Hz is set. B) Frequencies (y-axis) of burst durations (x-axis) are presented when introducing two

different microbial light sensitive membrane proteins vs. untreated cells in a single recording. A user defined maximum for burst duration was set to 3

seconds. C) Combining burst features distributions of number of spikes in bursts from 24 sequential same-plate recordings. Treatments were

automatically tested for difference using the EMD test and results were displayed after permutations. D) Cumulative distributions of the same data as

in C), treatments were automatically tested for difference using the MD test and results were displayed after permutations.

https://doi.org/10.1371/journal.pcbi.1006506.g005
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recordings that were combined using the methods above. The differences between treatments

are calculated using two measurements of distances (Fig 5C and 5D), and followed by permu-

tation tests. This specific analysis successfully validates that a treatment using a specific com-

pound treatment at 25μM (Fig 5C and 5D, red line) has significantly more bursts with low

number of spikes than the 100μM treatment (blue line).

Identification of excitability phenotypes in a mouse seizure model

We utilized the full capabilities of meaRtools to identify and compare complex activity pheno-

types of a Celf4-/- mouse seizure model [34, 36]. Here, we demonstrate that the MEA platform,

analyzed with meaRtools, can identify epilepsy-like phenotypes in neuronal networks from

Celf4-/- mice.

Seizures are often characterized by hypersynchronous discharges that may occur at a spe-

cific region of the cortex and spread into neighbouring brain areas. The cellular mechanism of

seizure initiation is thought to be the network hyper-synchronization and high frequency

bursts consisting of increased density of action potentials, presumably due to an excitation/

inhibition imbalance [37]. Sufficiently synchronized bursts may pass the threshold of sur-

rounding inhibition and activate neighboring neurons leading to broader recruitment, net-

work propagation and ultimately seizures. While the in vitro manifestations of seizures are not

fully understood, it is thought that both increased synchronicity of network firing and

increased bursting are analogous to the in vivo phenotype [38]. As mentioned, Celf4 deficiency

is known to cause neurological phenotypes in mice including, most prominently convulsive

seizures [34, 36]. Here, we use Celf4-/- mice as “proof of concept” for whether meaRtools syn-

chronization algorithms can identify aberrant excitability phenotypes that are often character-

istic of mouse seizure models.

We examined the various features and statistics that meaRtools computes and found that

Celf4-/- neurons consistently showed significant elevation in several features compared to wild-

type (Celf4+/+) neurons, among which were: increased frequency of spikes in bursts (permuta-

tion p value< 0.01), increased mutual information between electrodes (permutation p

value < 0.01) and an increase in various NB phenotypes (Fig 6, permutation p values< 0.01–

0.02, supplementary S6 Table). Together, these features offer a view of the change in network

synchronization of Celf4-/- mice, and point to a higher density of spikes in bursts and a higher

synchronization of bursts between neurons belonging to the same neuronal network. This

phenomenon was tested across an experiment lasting 23 DIV, where Celf4+/+ and Celf4-/- geno-

types were cultured on 12 and 11 active wells, respectively. The final statistical tests were per-

formed on recordings from DIV 15–23, starting when the networks were developed and

reached a stable MFR and ending with cell death. The results were replicated in another exper-

iment lasting 23 DIV, where each genotype was cultured in nine wells.

We have also examined the change in MFR between the genotypes, and find a slight

increase in MFR in the Celf4-/- neurons (supplementary S6 Table). However, this increase did

not survive the meaRtools permutation scheme and could not explain the significant increase

in synchronization phenotypes observed in Fig 6.

Discussion

The package presented here was constructed with the intention of providing a platform with a

wide range of MEA analysis capabilities. We made sure it incorporates commonly used algo-

rithms for spike activity analysis with new capabilities, presented in meaRtools for the first

time, such as the ability to combine MEA recordings and apply rigorous statistical tests to

compare between groups of wells with varying treatments.
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Included in meaRtools are methods for burst and activity measurements that are currently

available in commercial software packages, such as NeuroExplorer [10]. Features that are com-

mon to both tools are routinely used for network analysis and include standard spike and

burst metrics, such as firing rate, number of bursts detected, percentage of total spikes that are

contained in bursts, inter-spike and inter-burst intervals, etc. Furthermore, the maximum

interval burst detection algorithm is implemented based on the algorithm presented in Neu-

roExplorer. Activity features we report here that are unique to meaRtools include additional

synchrony measures, such as the spike train tiling coefficient (STTC), entropy and mutual

information and synchronized NBs analysis. Furthermore, meaRtools is a freely-available

open-source package that leverages the powerful statistical analysis capabilities and flexibility

of the R programming language to provide a consolidated comparison of multiple experiments

into a single, summarized statistical and graphical output. Lastly, although this paper describes

meaRtools in conjunction with in vitro MEA analysis, the algorithms presented here can be

Fig 6. Celf4-/- neurons show elevated network synchronization phenotypes. A) Spike frequency in bursts for Celf4+/+ (blue) and Celf4-/- (red) neural networks. B)

Mutual information between electrodes is increased in Celf4-/- networks (red). C) The percent of spikes participating in NBs is increased in Celf4-/- neurons (red),

suggesting that ratio of spikes that participate in synchronized network events is higher in the Celf4-/- networks. D) Raster plots show NSs (vertical green lines) and

bursts (horizontal red lines) for two adjacent wells: a Celf4-/- well (upper panel) and a Celf4+/+ well (lower panel). Celf4-/- exhibits few sporadic spikes between highly

synchronized events, while Celf4+/+ exhibits less network events and more sporadic spikes. Raster plots present 60 seconds of 900 seconds recordings.

https://doi.org/10.1371/journal.pcbi.1006506.g006
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equally applicable to in vivo MEA work, and in general to the analysis of any action potential

spike time stamp data.

In conclusion, the meaRtools package extracts a detailed report of over 70 activity pheno-

types (features), both previously existing and novel. The package provides a single platform to

handle multiple recordings of the same experiment, and the tools to perform statistical com-

parisons between treatments on these multiple recording experiments.

Availability and future directions

The meaRtools package is open-source and freely available under the General Public License

version 3.0 (GPL> = 3). The package is available on the CRAN web-server repository (https://

cran.r-project.org/web/packages/meaRtools/index.html). Updated source-code can be found

at https://github.com/igm-team/meaRtools. The package provides a step by step vignette for

running an MEA analysis pipeline using exemplary datasets in an effort to make MEA analysis

accessible to all.

Here we explain the major analyses that can be done using meaRtools and focus on several

features to perform detection of phenotypic differences. However, the current version of the

package detects 73 features and five feature distributions that can be used in the holistic evalua-

tion of an MEA experiment. Users are encouraged to explore all the features and capabilities

the package entails with the help of the package vignette.

The package is updated regularly; each version incorporates additional capabilities to detect

and test additional phenotypes. Current work focuses on adding machine learning algorithms

to distinguish between treatments, graphical representation of NBs and activity pattern recog-

nition algorithms within and between wells.
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