
RESEARCH ARTICLE

OptMDFpathway: Identification of metabolic

pathways with maximal thermodynamic

driving force and its application for analyzing

the endogenous CO2 fixation potential of

Escherichia coli
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Abstract

Constraint-based modeling techniques have become a standard tool for the in silico analysis

of metabolic networks. To further improve their accuracy, recent methodological develop-

ments focused on integration of thermodynamic information in metabolic models to assess

the feasibility of flux distributions by thermodynamic driving forces. Here we present

OptMDFpathway, a method that extends the recently proposed framework of Max-min Driv-

ing Force (MDF) for thermodynamic pathway analysis. Given a metabolic network model,

OptMDFpathway identifies both the optimal MDF for a desired phenotypic behavior as well

as the respective pathway itself that supports the optimal driving force. OptMDFpathway is

formulated as a mixed-integer linear program and is applicable to genome-scale metabolic

networks. As an important theoretical result, we also show that there exists always at least

one elementary mode in the network that reaches the maximal MDF. We employed our new

approach to systematically identify all substrate-product combinations in Escherichia coli

where product synthesis allows for concomitant net CO2 assimilation via thermodynamically

feasible pathways. Although biomass synthesis cannot be coupled to net CO2 fixation in E.

coli we found that as many as 145 of the 949 cytosolic carbon metabolites contained in the

genome-scale model iJO1366 enable net CO2 incorporation along thermodynamically feasi-

ble pathways with glycerol as substrate and 34 with glucose. The most promising products

in terms of carbon assimilation yield and thermodynamic driving forces are orotate, aspar-

tate and the C4-metabolites of the tricarboxylic acid cycle. We also identified thermody-

namic bottlenecks frequently limiting the maximal driving force of the CO2-fixing pathways.

Our results indicate that heterotrophic organisms like E. coli hold a possibly underestimated

potential for CO2 assimilation which may complement existing biotechnological approaches

for capturing CO2. Furthermore, we envision that the developed OptMDFpathway approach

can be used for many other applications within the framework of constrained-based model-

ing and for rational design of metabolic networks.
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Author summary

When analyzing metabolic networks, one often searches for metabolic pathways with cer-

tain (desired) properties, for example, conversion routes that maximize the yield of a

product from a given substrate. While those problems can be solved with established

methods of constraint-based modeling, no algorithm is currently available for genome-

scale models to identify the pathway that has the highest possible thermodynamic driving

force among all solutions with predefined stoichiometric properties. This gap is closed

with our new approach OptMDFpathway which is based on the recently introduced con-

cept of Max-min Driving Force (MDF). OptMDFpathway offers various applications,

especially in the context of metabolic design of cell factories. To demonstrate the power

and usefulness of OptMDFpathway, we employed it to analyze the endogenous CO2 fixa-

tion potential of Escherichia coli. While E. coli cannot assimilate CO2 into biomass, net

CO2 fixation can take place along linear pathways from substrate to product and we show

that thermodynamically feasible pathways with net CO2 assimilation exist for 145 (34)

products when choosing glycerol (glucose) as substrate. Our results indicate that hetero-

trophic organisms like E. coli hold a possibly underestimated potential for CO2 assimila-

tion which may complement existing biotechnological approaches for capturing CO2.

Introduction

The reconstruction of organism-specific genome-scale metabolic models and their in silico
analysis by techniques of constraint-based modeling has become a key to understand structure,

function, and capabilities of metabolic networks [1–3]. Applications include the calculation of

optimal flux distributions, e.g., with respect to growth or production of certain compounds

(flux balance analysis (FBA), [1,4,5]), exploration of the space of feasible flux phenotypes by

means of pathway vectors (e.g., via elementary flux modes [6–8] or elementary flux vectors

[9]), prediction of reaction/gene essentialities, integration of different types of omics data, and

the identification of optimal intervention targets for rational strain design [10].

Recently, more and more efforts have been made to integrate thermodynamic information

into constraint-based analysis methods [11–30], especially into FBA-based approaches [12,17–

21,25–27] and pathway-based techniques [13,15,16,28]. Two particular methods that have

received much attention are thermodynamic FBA [17,26] and the Max-min driving force

approach [29]. For thermodynamic FBA, additional variables for the Gibbs free energy change

of the reactions together with constraints on metabolite concentrations are included in the

optimization problem to identify optimal flux vectors (and a corresponding metabolite con-

centration vector) where all reactions proceed in the thermodynamically feasible direction. In

contrast, the Max-min Driving Force (MDF) approach was proposed to determine optimal

(maximal) thermodynamic driving forces for a given metabolic pathway [29]. If a pathway has

a high MDF, then a metabolite concentration vector can be found where all participating reac-

tions of the pathway have simultaneously high driving forces facilitating a high flux and/or a

low enzyme requirement. Conversely, pathways with low MDF values will either have low

flux or must be catalyzed by highly abundant enzymes to enable a significant flux. The MDF

method was used to thoroughly analyze the thermodynamic efficiency of different pathways of

the central metabolism [29] and to evaluate the potential of pathway designs for synthetic

photo-electro-autotrophy [30]. Recently, the MDF method together with a pathway identifica-

tion procedure was used to identify thermodynamically feasible synthetic pathways that were

assembled with enzymes from different organisms [11]. However, the latter as well as the
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original approach for MDF computation presented in [29] necessitate that a specific pathway

is given a priori. So far, no method exists that can directly identify pathways in a metabolic net-

work with maximal MDF. One approach could be to enumerate the complete set of elementary

modes (or other pathway vectors) followed by a subsequent computation of their respective

MDF values. However, this approach is limited to medium-size network and can thus not be

used for genome-scale models.

For this reason we formulate herein a mixed integer linear program (MILP) problem that

optimizes the MDF with respect to different constraints (e.g. concentration ranges, ratio con-

straints, yield constraints, etc.) without the prerequisite to define a specific reaction sequence a
priori. This MILP identifies the optimal MDF value together with a corresponding pathway

(represented as a steady-state flux distribution). Hence, the result of OptMDFpathway is not

only the optimal MDF value but also the associated pathway enabling the optimal driving force.

In the second part of this work, we employ our new OptMDFpathway approach to assess

the endogenous potential of Escherichia coli to fix CO2 via thermodynamically feasible path-

ways. The development of sustainable bioprocesses using CO2 as feedstock to produce valuable

chemicals and fuels from CO2 is highly desirable as they have several advantages compared to

chemical CO2 reduction [31]. For example, only mild reaction conditions are required or low-

purity reactants can be used. Many autotrophic microorganisms are capable of catalyzing the

reduction of CO2 at ambient conditions. They incorporate CO2 into valuable organic com-

pounds via six naturally occurring carbon fixation pathways [32]. Many of these organisms

exhibit a phototrophic lifestyle where the Calvin-Benson-Bassham cycle [33] is the most abun-

dant CO2 assimilation pathway. However, volumetric productivities and CO2 capturing rates

are relatively small for phototrophic conditions since the maximal rate of the carboxylating

enzyme Rubisco is an order of magnitude lower than the average of central metabolism

enzymes [34] and efforts to improve Rubisco’s kinetic parameters were not sufficiently suc-

cessful so far [35,36]. Also the necessary provision of suitable photobioreactors increases the

costs of large-scale bioprocesses based on phototrophic organisms. Hence, there is still a need

for faster and more efficient bioprocesses for the conversion of CO2 into valuable products.

Recent research with respect to biotechnological potential for CO2 fixation includes the design

of synthetic CO2 capturing cycles like the CETCH-cycle [37]. Studies on CO2 fixation in het-

erotrophic organisms have also been reported recently. For example, the Calvin-Benson-Bas-

sham cycle has been incorporated to Escherichia coli to enable the synthesis of biomass

components from CO2 [38], Generally, heterotrophic organisms have the advantage that

growth and production rates are usually superior compared to the autotrophic life style.

Although wild-type E. coli cannot capture CO2 for pure biomass synthesis due to limited

energy and redox supply by typical carbon substrates, a net assimilation of CO2 can take place

when certain products are synthesized from a given substrate. For example, yield-optimal pro-

duction of succinate with E. coli using glucose as substrate could result in synthesis of 1.71 mol

succinate for each mol of glucose consumed. This corresponds to a conversion of 6 mol carbon

from glucose and 0.86 mol carbon from CO2 into 6.86 mol carbon of succinate. In fact, for any

succinate yield higher than 1.5 mol succinate per mol glucose, a net assimilation of CO2 takes

place.

In the present study we will systematically analyze the endogenous potential of E. coli to

assimilate CO2 heterotrophically with two common substrates, glucose and glycerol. In con-

trast to classical cycles and pathways of CO2 fixation in autotrophic organisms, these pathways

will typically represent linear pathways from the substrate to the respective product involving

carboxylating reaction steps (Fig 1). We analyze both a core model for the central metabolism

(EColiCore2 [39]) as well as a genome-scale model (iJO1366, [40]) and identify all substrate-

product combinations with CO2 capturing potential in these models. Since CO2 fixation often
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requires overcoming high thermodynamic barriers, this kind of analysis essentially needs a

method to search for pathways that are not only stoichiometrically but also thermodynamically

feasible. The new OptMDFpathway method will enable us to identify genome-scale CO2 fixa-

tion pathways with reasonable driving force.

Methods

Max-min Driving Force (MDF)

For assessing the thermodynamic feasibility of a metabolic pathway Noor et al. introduced the

concept of the Max-min driving force (MDF) [29]. The MDF provides an upper bound for the

maximal thermodynamic driving force of a given pathway. The MDF approach requires as

inputs a reaction sequence (the pathway) together with ranges for metabolite concentrations,

the standard change in Gibbs energy ΔrG0o for the participating reactions and (optionally)

ratio constraints for some metabolite concentrations. The driving force of a single reaction is

defined as the negative Gibbs free energy change of this reaction (−ΔrG0) and a reaction is

thermodynamically feasible if this value is positive. The driving force of a pathway can in turn

be defined as the minimum of all driving forces of the involved reactions (and a pathway is fea-

sible if this minimum is positive). Hence, to maximize the driving force of a pathway, an opti-

mization problem is formulated to identify a metabolite concentration profile that maximizes

the minimum of all single reaction driving forces. In mathematical terms, this can be stated as

a linear optimization problem [29]:

Maximize
x;B

B

Subject to � ðDrG
0o þ RT � NTxÞ � B

lnðCminÞ � x � lnðCmaxÞ

ð1Þ

Fig 1. Autotrophic and heterotrophic CO2 fixation. a) Example of a typical autotrophic CO2 assimilation cycle (e.g.

the Calvin-Benson-Bassham or reductive tricarboxylic acid cycle). ATP and reduction equivalents are provided by

photo- or chemosynthesis. b) Heterotrophic CO2 assimilation can occur via linear pathways from a carbon substrate to

certain products. If needed, ATP and/or reduction equivalents are generated from the substrate itself. Depending on

the particular substrate-product combination, different amounts of CO2 can be assimilated.

https://doi.org/10.1371/journal.pcbi.1006492.g001
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B represents the lower bound for the driving force of all reactions participating in a given

pathway which is maximized thus eventually yielding the MDF (in kJ/mol). ΔrG0o is a vector

containing the standard change in Gibbs energy of the involved reactions, N is the stoichio-

metric matrix (which includes the external metabolites), Cmin and Cmax are the vectors of

metabolite concentration limits, x is the vector of logarithmized metabolite concentrations

and RT is the product of the universal gas constant with temperature in Kelvin.

Identification of MDF-optimal pathways via elementary modes

The original MDF approach presented in [29] requires a predefined pathway (or set of active

reactions) as input. In this work we deal with finding pathways (for a given metabolic func-

tion) with maximal MDF. Hence, the optimal pathway is not known beforehand and needs to

be identified together with its (optimal) MDF value. In core or medium-scale networks, this

can be done as follows: one enumerates all elementary (flux) modes (EMs) [6–8], computes for

each relevant EM (e.g., exceeding a given minimum product yield) its MDF and finally ranks

these EMs with respect to their MDF value thus yielding the pathway with maximum driving

force at the top of this list. This approach is exhaustive and using EMs as pathways brings the

advantage that all pathways are balanced with respect to their intermediate metabolites.

OptMDFpathway: Identification of MDF-optimal pathways in genome-

scale networks

Complete EM enumeration is normally not possible in genome-scale metabolic networks due

to the combinatorial explosion of possible pathways. Again, we cannot simply use the entire

network as input for finding a thermodynamically feasible pathway with maximum MDF

since in problem (1) it is demanded that all reactions of the network are thermodynamically

feasible whereas only a subset of all reactions in the network will be active in the optimal path-

way. What is needed here is a method that identifies, for a desired phenotypic behavior, both

the optimal MDF and a pathway that enables this MDF.

Therefore, we formulate OptMDFpathway, a mixed-integer linear program (MILP) that is

applicable to genome-scale networks and identifies, for a specified (desired) phenotype, bal-

anced (steady-state) flux distributions that are optimal with respect to their MDF. This MILP

combines the original MDF optimization problem (1) with standard constraints used in flux

balance analysis (FBA, [5]) and ensures that the reactions which are active in the solution

(non-zero reaction rate) are all thermodynamically feasible (i.e., their driving force is greater

than zero for the direction in which it operates).

The basis of the MILP is formed by the following equations:

N̂ r ¼ 0 ð2Þ

ai � ri � bi ð3Þ

Dr � d ð4Þ

The vector r contains the (net) reaction rates. In contrast to the stoichiometric matrix N
used in Eq (1), the matrix N̂ comprises the internal metabolites only and can be obtained by

removing the rows corresponding to external metabolites from N. Constraints (2) and (3) are

the same as in standard FBA problems (steady-state assumptions, flux bounds αi and βi which

include non-negativity constraints for irreversible reactions) while (4) can optionally be used

to add other inequality constraints (like yield constraints) to specify (desired) phenotypes. We
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again quantify the driving forces of reactions as their negative change of Gibbs free energy (cf.

Eq (1)) and collect them in vector f:

fi ¼ � DrG
0

i ¼ � ðDrG
0o
i þ RT � NT

�;i � xÞ: ð5Þ

where NT
�;i is the transposed i-th column (reaction) of the (full) stoichiometric matrix N (as in

Eq (1), N includes the external metabolites). Again, the logarithmized metabolite concentra-

tions in x must thereby comply with the given concentration ranges:

lnðCminÞ � x � lnðCmaxÞ: ð6Þ

In a preprocessing step we determine the minimum (fi,min) and maximum (fi,max) values for

each driving force fi subject to the concentration ranges (6).

Each reaction is associated with a binary variable zi that must be 1 when a flux flows

through this reaction. This is achieved by the constraint

ri � zi � bi ð7Þ

In order for this to work it is necessary to split the reversible reactions into the forward and

reverse directions and to adjust the flux bounds (3) of the separate directions accordingly. The

opposite directions of a given reversible reaction always have the same absolute driving force

value but with opposite signs. For a given concentration vector x, the direction with driving

force greater than zero is the direction in which the net flux through that reaction flows.

In order to maximize the minimal driving force of all active reactions (the driving force of

inactive reactions with zero flux is not taken into account) the following constraints are added

to the optimization problem:

fi þ ð1 � ziÞ �Mi � B ð8Þ

With K = max(fi,max), we set Mi = K − fi,min and because B� K these constraints are always

fulfilled for all reactions with ri = zi = 0. For all reactions with zi = 1 it must hold that fi� B.

Using the same objective function as in (1)

Maximize
x;r;B

B ð9Þ

but this time subject to Eqs (2)–(8) (Eqs (3), (5), (7) and (8) for each reaction i), results in a

mixed-integer linear program (MILP). Its solution (x, r, B) will deliver a (not necessarily

unique) flux distribution r where, given the calculated concentration vector x, each active reac-

tion has a driving force of at least B and there is no other steady-state flux distribution in the

network with a higher B (MDF) with this property. In other words, the flux vector r found by

the MILP represents a pathway with maximum MDF.

If concentration ratios of certain metabolites are assumed to be fixed (ci/cj = h) then con-

straints of the form

xi � xj ¼ lnðhÞ ð10Þ

can be added to the MILP.

Metabolic models

For analyzing the endogenous CO2 fixation potential of E. coli we analyzed both a core as well

as a genome-scale metabolic model. To get a comprehensive overview of all possible CO2 fix-

ing pathways we used the iJO1366 model [40] which comprises 1805 metabolites and 2583

reactions. We studied in parallel a smaller core model of E. coli’s metabolism because it allows
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us (1) to fully enumerate and then assess all pathways (EMs) for net CO2 fixation and thereby

to highlight the differences between the EM-based and OptMDFpathway-based approach for

determining thermodynamically favorable pathways and (2) to focus only on well-known

(major) pathways of the central metabolism thus excluding possibly unrealistic results due to

pathways with low capacity in the genome-scale model. As core model of the central metabo-

lism we used EColiCore2 (ECC2) which is a sub-network of iJO1366 comprising 499 reactions

and 486 metabolites [39,40]. ECC2 conserves major properties of iJO1366 but its moderate

size allows for the complete enumeration of EMs.

As substrates we considered glucose and glycerol. Substrate uptake fluxes were normalized

to 1 mmol/gCDW/h in both models and no further flux bounds were used. To avoid that suc-

cinate is a mandatory byproduct under anaerobic conditions (which is in conflict with experi-

mental findings) we allowed reaction R_nadh16tpp (NADH dehydrogenase) to be reversible

(as in ECC2, see [39]). Whenever we consider an internal metabolite as a potential product an

auxiliary excretion reaction was temporarily added before the respective calculations for this

product were performed.

Calculation of ΔrG0o and assumed metabolite concentration limits

Standard Gibbs free energy changes ΔrG0o were determined for all cytosolic reactions where

either a mapping for model reaction names to KEGG-IDs [41] was available in the BIGG data-

base [42] or where a mapping for all metabolite names to KEGG compound IDs was possible.

The ΔrG0o were calculated via the component contribution method [43,44] for pH 7.0 and

ionic strength of 0.1 by means of the eQuilibrator database and related script files [45]. ΔrG0o

(with associated uncertainties) could be determined for 298 and 691 out of the 397 and 1272

cytosolic reactions contained in ECC2 and iJO1366, respectively. Generally, ΔrG0o was not

considered for transport reactions in both ECC2 and iJO1366 because these values depend

strongly on environmental conditions in the compartments like pH, membrane potential,

ionic strength and concentration ranges of external metabolites.

The concentration limits for all metabolites were set to 1 μM as lower limit and 20 mM as

upper limit. The concentration of CO2 was more strictly bounded to be in the range from 100

nM to 100 μM. The concentration ratios for ATP:ADP, ADP:AMP, NAD:NADH, NADPH:

NADP and HCO�
3

:CO2 were fixed to 10:1, 1:1, 10:1, 10:1 and 2:1, respectively.

Implementation and network calculations

The OptMDFpathway algorithm was implemented as a new function in the MATLAB

toolbox CellNetAnalyzer [46] and all calculations (including EMs as well as flux balance

and flux variability analyses) were performed with MATLAB scripts using API functions of

CellNetAnalyzer [47,48].

Results

Reactions using CO2 or bicarbonate as substrates

In a first step we identified all CO2 or bicarbonate (HCO�
3

) capturing reactions in both the

core and the genome-scale model (Table 1). We found nine such reactions in iJO1366

(Table 1). Carbonic anhydrase is listed as one of those, but in the following we will not con-

sider this reaction as a carbon capturing reaction as it only supports the conversion of CO2

into bicarbonate. From their stoichiometry and reversibility, the other eight reactions hold the

potential to truly fix CO2 or HCO�
3

in iJO1366; six of them are irreversible reactions while the

OptMDFpathway: Computing metabolic pathways with maximal thermodynamic driving force
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backward flux of two reversible reactions (isocitrate dehydrogenase (R_ICDHy) and pyruvate

synthase (R_POR5)) by definition allows for carbon incorporation (Table 1).

By minimizing and maximizing the thermodynamic driving force separately for each of

these reactions (with the metabolite concentration ranges given in the Methods), we found

that, in isolation, all of the above reactions except the carbamate kinase reaction (R_CBMKr)

hold the thermodynamic potential to proceed in direction of carboxylation since the upper

(lower) limits of the driving forces for the irreversible (reversible) reactions are positive (nega-

tive). The carbamate kinase reaction (R_CBMKr), which catalyses the first step in the urea

cycle, is defined in iJO1366 such that it consumes only one mol of ATP and ammonia for syn-

thesis of carbamoyl phosphate. However, the overall reaction is known to proceed via three

separate chemical reactions where two moles of ATP for the synthesis of one molecule of car-

bamoyl phosphate are utilized and the relevant nitrogen substrate under physiological condi-

tions is glutamine [49–51]. Because of the questionable stoichiometry and the thermodynamic

infeasibility we neglected R_CBMKr form further analyses with iJO1366, however, carbamoyl

phosphate can still be produced by the reaction of the carbamate kinase (R_CBPS, Table 1). In

ECC2, which contained originally only reaction R_CBMKr, we replaced the latter by R_CBPS.

Further, although the backward flux of the endogenous pyruvate synthase (R_POR5) reac-

tion in the genome-scale model of E. coli is thermodynamically feasible, it remains question-

able under relevant physiological conditions. It has been shown in other microorganisms that

this reaction can proceed in direction of carboxylation [52,53], however, the corresponding

cofactor for this functionality is normally ferredoxin [52]. Given that the cofactor of pyruvate

synthase in E. coli is flavodoxin and not ferredoxin [54], the feasibility of a carboxylation func-

tion under physiological conditions remains highly unlikely as the redox potential of flavo-

doxin seems not sufficient to support CO2 reduction. Therefore, to avoid an unrealistic

assumption, we set this reaction initially to irreversible and discuss the sensitivity of the results

with respect to this modification afterwards. Hence, at this point, from the nine reactions

Table 1. CO2 and HCO�
3

capturing reactions in the genome-scale model iJO1366. The last column indicates which of these reactions are contained in ECC2.

Reaction

name

Enzyme Stoichiometry Driving force

range

ECC2

R_PPC PEP carboxylase M_co2_c + M_h2o_c + M_pep_c) [-34.1–71.9] ✓

M_h_c + M_oaa_c + M_pi_c

R_CBPS Carbamoyl phosphate synthase 2 M_atp_c+ M_gln_L_c + M_h2o_c + M_hco3_c) 2 M_adp_c + M_cbp_c

+ M_glu_L_c + 2 M_h_c + M_pi_c

[-26.7–95.0] X (✓)

R_AIRC2 Phosphoribosylamino-imidazole

carboxylase

M_air_c + M_atp_c + M_hco3_c) [7.1–117.1] ✓

M_5caiz_c + M_adp_c + M_h_c + M_pi_c

R_ACCOAC Acetyl-CoA carboxylase M_accoa_c + M_atp_c + M_hco3_c) [-41.7–49.1] X

M_adp_c + M_h_c + M_malcoa_c + M_pi_c

R_DBTS Dethiobiotin synthase M_atp_c + M_co2_c + M_dann_c) [-73.3–32.5] X

M_adp_c + M_dtbt_c + 3 M_h_c + M_pi_c

R_HCO3E Carbonic anhydrase M_co2_c + M_h2o_c) [-6.9–9.9] ✓

M_h_c + M_hco3_c

R_CBMKr Carbamate kinase 1 M_atp_c + 1 M_co2_c + 1 M_nh4_c) [-89.0– -11.2] ✓ (X)

1 M_adp_c + 1 M_cbp_c + 2 M_h_c

R_POR5 Pyruvate synthase M_coa_c + 2 M_flxso_c + M_pyr_c, [-74.6–147.8] X

M_accoa_c + M_co2_c + 2 M_flxr_c + M_h_c

R_ICDHyr Isocitrate dehydrogenase M_icit_c + M_nadp_c, [-13.0–64.5] ✓

M_akg_c + M_co2_c + M_nadph_c

https://doi.org/10.1371/journal.pcbi.1006492.t001
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shown in Table 1, only six reactions do contribute to the CO2 assimilation capabilities in E.

coli. The core model ECC2 contains four of these six CO2 assimilating reactions (Table 1).

Next, we used flux variability analysis to check for each of the above reactions whether

there exist stationary flux distributions with a positive flux of the respective reaction in direc-

tion of carboxylation. We could find such a flux distribution for all of these reactions except

for the isocitrate dehydrogenase reaction (R_ICDHyr). Although the latter is thermodynami-

cally feasible in both directions, there is no balanced flux distribution in either of the two mod-

els that carries a negative flux for this reaction and it can thus not be used for CO2 fixation.

At this point we can thus conclude that CO2 (or HCO�
3
Þ incorporation in E. coli is facili-

tated by one of the first five reactions given in Table 1. Metabolites whose synthesis enables

CO2 assimilation should either be products of these reactions or be transformed into different

compounds by subsequent reactions. However, it is still not clear whether and for which

metabolites balanced flux distributions exist in the network that lead to net CO2 consumption.

Stoichiometric carbon fixation potential

In a next step we therefore used classical flux balance analysis [1,5] (without thermodynamic

constraints except reaction reversibility) to identify substrate-product combinations which

allow net CO2 consumption. Since we are mainly interested in identifying intracellular path-

ways that allow for CO2 incorporation, we restrict our analyses of potential products to the set

of cytosolic carbon metabolites. Periplasmic and extracellular metabolites (which occur in

almost all cases also as cytosolic species in the model) were not considered as possible products

because analyses of the thermodynamic properties for the corresponding pathways would

strongly rely on assumed environmental conditions in the specific compartments like pH,

membrane potential, ionic strength or feasible concentration ranges. In total, 380 cytosolic car-

bon metabolites of ECC2 and 949 metabolites of iJO1366 were considered as potential (end)

products for CO2 assimilation.

For each considered potential product an auxiliary excretion reaction was temporarily

added and a flux optimization (flux balance analysis; FBA) problem formulated with maximi-

zation of the respective excretion reaction as its objective. Since the substrate uptake rate is the

only applied constraint, the resulting maximized excretion rates (normalized to the substrate

uptake rate) coincide with optimal product yields [55]. We defined the CO2 assimilation yield
YCO2=CS

(normalized to molar carbon content of the substrate) as

YCO2=CS
¼

CP�YP=S � CS

CS
ð11Þ

with CP and CS representing the molar carbon content of the product and substrate and YP/S as

the molar product yield. Substrate-product combinations with net CO2 assimilation were

identified by selecting all products for which the CO2 assimilation yield is equal or greater

than 0.01 which guarantees that at least 1% CO2 (with respect to molar carbon uptake) is

assimilated in the particular product of interest. Equivalent measures for CO2 fixation in terms

of yield are, for example, (i) the fixed CO2 per mol substrate YCO2=S ¼ YCO2=CS
� CS or (ii) the

carbon-normalized product yield YC� norm
P=S ¼

CP
CS
� YP=S ¼ YCO2=CS

þ 1.

In the core model ECC2, we found that synthesis of 62 of the 380 cytosolic carbon metabo-

lites (16.1%) allows for concomitant CO2 assimilation when using glycerol as substrate (see

Table 2 (top-ranked products) and S1 Table (all products)). Thereof, 18 can also be synthesized

from glucose (Tables 2 and S2). The higher number of possible products when using glycerol

as substrate can be explained by its higher degree of reduction (5.3) compared to glucose (4.0).

Also, the carbon-normalized CO2 assimilation yields YCO2=CS
are always higher when using

OptMDFpathway: Computing metabolic pathways with maximal thermodynamic driving force
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glycerol compared to those based on glucose (except for oxaloacetate where identical yields are

observed). Well-known products with net CO2 fixation are the C4-metabolites of the reductive

TCA cycle branch oxaloacetate, malate, fumarate and succinate as they are part of a linear reac-

tion sequence following phosphoenolpyruvate carboxylase. These metabolites can be produced

either with glucose or glycerol as substrate and allow for the assimilation of up to 0.33 mol

CO2 per C-mol substrate metabolized (e.g. for oxaloacetate, Table 2). However, the best nor-

malized CO2 fixation yield is possible with orotate produced from glycerol (Table 2). Its maxi-

mal product yield is 0.93 mol orotate per mol glycerol which corresponds to a molar carbon

assimilation yield of 0.55 mol CO2 per C-mol glycerol. In other words, for each supplied mol

of glycerol another 1.65 mol of CO2 are assimilated at yield-optimal conditions. In this case,

CO2 accounts for 35.5% of all carbon atoms of the synthesized orotate. Less obvious products

Table 2. Maximal CO2 assimilation yields and thermodynamic properties for the top 15 products in the core model ECC2 with glucose or glycerol as substrate.

#C-atoms: number of carbon atoms per product. Ymax
CO2=S

: maximal yield of fixed CO2 per mol substrate consumed; Ymax
CO2=CS

: maximal (carbon-normalized) CO2 assimilation

yield; Ymax
P=S ðMDFÞ: maximal product yield (corresponding optimal MDF in parentheses). Ymax

P=S at MDF � 3:0: maximal product yield if a minimal MDF of 3.0 is demanded

(minimal pathway length with MDF� 3.0 in parentheses). MDFmax (Ymax
CO2=CS

): maximal MDF (corresponding maximal CO2 assimilation yield in parentheses).

Product #C-atoms Ymax
CO2=S = Ymax

CO2=CS
= Ymax

P=S (MDF) Ymax
P=S at MDF � 3:0 (pathway length) MDFmax (Ymax

CO2=CS
Þ

Glucose

Oxaloacetate 4 1.98 / 0.33 / 2.00 (7.1) 2.00 (12) 8.6 (0.17)

Orotate 5 1.92 / 0.32 / 1.59 (0.3) 1.57 (26) 8.6 (0.08)

Iminoaspartate 4 1.80 / 0.30 / 1.95 (3.3) 1.95 (19) 8.6 (0.07)

Fumarate 4 1.62 / 0.27 / 1.90 (3.3) 1.90 (16) 8.6 (0.04)

L-Malate 4 1.62 / 0.27 / 1.90 (3.3) 1.90 (15) 8.6 (0.04)

(S)-Dihydroorotate 5 1.44 / 0.24 / 1.49 (0.3) 1.46 (29) 8.6 (0.01)

L-Aspartate 4 1.38 / 0.23 / 1.84 (3.3) 1.84 (17) 8.6 (0.01)

N-Carb-L-aspartate 5 1.32 / 0.22 / 1.47 (0.3) 1.44 (28) 7.1 (0.15)

4-P-L-Aspartate 4 0.90 / 0.15 / 1.73 (3.3) 1.73 (24) 7.1 (0.08)

L-Asparagine 4 0.90 / 0.15 / 1.73 (-3.0) -- -1.0 (0.08)

Succinate 4 0.84 / 0.14 / 1.71 (3.3) 1.71 (21) 7.1 (0.10)

Carbamoyl phosphate 1 0.72 / 0.12 / 6.71 (0.3) 6.07 (27) 3.3 (0.01)

Quinolinate 7 0.60 / 0.10 / 0.95 (7.1) 0.95 (22) 8.6 (0.01)

Dihydrodipicolinate 7 0.60 / 0.10 / 0.94 (3.3) 0.94 (25) 7.1 (0.07)

Orotidine-5-P 10 0.42 / 0.07 / 0.64 (-3.0) -- -1.0 (0.03)

Glycerol

Orotate 5 1.65 / 0.55 / 0.93 (-7.8) 0.87 (23) 8.6 (0.15)

(S)-Dihydroorotate 5 1.35 / 0.45 / 0.87 (-7.8) 0.82 (23) 8.6 (0.08)

N-Carb-L-aspartate 5 1.29 / 0.43 / 0.86 (-7.8) 0.80 (22) 8.6 (0.06)

L-Aspartate 4 0.99 / 0.33 / 1.00 (4.5) 1.00 (12) 8.6 (0.08)

Fumarate 4 1.00 / 0.33 / 1.00 (4.5) 1.00 (11) 8.6 (0.10)

Iminoaspartate 4 1.00 / 0.33 / 1.00 (5.2) 1.00 (14) 8.6 (0.14)

L-Malate 4 1.00 / 0.33 / 1.00 (4.5) 1.00 (10) 8.6 (0.10)

Oxaloacetate 4 1.00 / 0.33 / 1.00 (7.5) 1.00 (10) 8.6 (0.24)

Succinate 4 1.00 / 0.33 / 1.00 (2.6) 0.96 (16) 8.6 (0.03)

4-P-L-Aspartate 4 1.00 / 0.33 / 1.00 (-7.8) 0.94 (17) 7.5 (0.02)

L-Asparagine 4 1.00 / 0.33 / 1.00 (-9.7) 0.88 (21) 7.5 (0.02)

Carbamoyl phosphate 1 0.87 / 0.29 / 3.86 (0.3) 3.50 (18) 5.2 (0.17)

Orotidine-5-P 10 0.72 / 0.24 / 0.37 (-9.7) 0.33 (31) 7.7 (0.03)

Oxoheptanedioate 7 0.66 / 0.22 / 0.33 (-7.8) 0.31 (27) 5.2 (0.10)

L-Asp-semialdehyde 4 0.60 / 0.20 / 0.90 (-7.8) 0.84 (24) 5.2 (0.05)

https://doi.org/10.1371/journal.pcbi.1006492.t002
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that can be synthesized with high CO2 assimilation yields with both substrates are e.g. aspartate

and asparagine. One metabolite that allows CO2 fixation on glycerol but not on glucose is, for

instance, homoserine.

In iJO1366, as many as 253 metabolites (26.7% of all 949 cytosolic carbon metabolites) can

be synthesized with net CO2 fixation with glycerol as substrate (Tables 3 and S3). Thereof, 41

can also be synthesized from glucose with concomitant CO2 fixation (Tables 3 and S4). Despite

the much larger number of metabolites whose synthesis allows in principle for CO2 assimila-

tion, the ranking of top candidates in iJO1366 is very similar to ECC2 (Table 3). The

C4-metabolites oxaloacetate, orotate, and aspartate of the reductive TCA cycle branch are

again the products with highest carbon assimilation yields. However, for some products, the

maximum carbon assimilation yields are up to 10% higher compared to ECC2 indicating that

Table 3. Maximal CO2 assimilation yields and thermodynamic properties for the top 15 products in the genome-scale model iJO1366 with glucose or glycerol as

substrate. #C-atoms: number carbon atoms per product. Ymax
CO2=S

: maximal yield of fixed CO2 per mol substrate; Ymax
CO2=CS

: maximal (carbon-normalized) CO2 assimilation

yield; Ymax
P=S ðMDFÞ: maximal product yield (corresponding maximal MDF in parentheses). Ymax

P=S at MDF� 3.0: maximal product yield if a minimal MDF of 3.0 is

demanded (minimal pathway length with MDF� 3.0 in parentheses). MDFmax (Ymax
CO2=CS

): maximal MDF (with maximal CO2 assimilation yield in parentheses).

Product #C-atoms Y max
CO2=S = Ymax

CO2=CS
= Ymax

P=S (MDF) Ymax
P=S at MDF � 3:0 (pathway length) MDFmax (Ymax

CO2=CS
Þ

Glucose

Oxaloacetate 4 2.22 / 0.37 / 2.062 (0.3) 2.057 (12) 8.6 (0.17)

Iminoaspartate 4 2.10 / 0.35 / 2.02 (-37.9) 1.95 (16) 8.6 (0.07)

Orotate 5 1.92 / 0.32 / 1.59 (0.3) 1.58 (25) 8.6 (0.08)

Fumarate 4 1.62 / 0.27 / 1.90 (4.5) 1.90 (14) 8.6 (0.04)

L-Malate 4 1.62 / 0.27 / 1.90 (4.5) 1.90 (13) 8.6 (0.04)

(S)-Dihydroorotate 4 1.44 / 0.24 / 1.49 (0.3) 1.47 (28) 8.6 (0.01)

L-Aspartate 4 1.38 / 0.23 / 1.84 (4.5) 1.84 (17) 8.6 (0.01)

Aconitate/Citrate/IsoCitrate 6 1.08 / 0.18 / 1.185 (2.2) 1.182 (28) 8.6 (0.05)

Methylaconitate 7 1.02 / 0.17 / 1.00 (4.5) 1.00 (15) 8.6 (0.02)

4-P-L-aspartate 4 0.90 / 0.15 / 1.73 (4.5) 1.73 (22) 7.1 (0.08)

L-Asparagine 4 0.90 / 0.15 / 1.73 (-2.2) 1.60 (26) 7.1 (0.01)

Succinate 4 0.84 / 0.14 / 1.71 (4.5) 1.71 (20) 7.1 (0.10)

Quinolinate 7 0.78 / 0.13 / 0.97 (-37.9) 0.95 (21) 8.6 (0.01)

Carbamoyl phosphate 1 0.72 / 0.12 / 6.71 (0.3) 6.29 (25) 7.1 (0.02)

Glyoxylate 2 0.66 / 0.11 / 3.34 (0.3) 3.11 (37) 7.1 (0.01)

Glycerol

Orotate 5 1.65 / 0.55 / 0.93 (-7.8) 0.91 (21) 8.6 (0.15)

Oxaloacetate 4 1.38 / 0.46 / 1.10 (-7.8) 1.08 (10) 8.6 (0.24)

(S)-Dihydroorotate 4 1.35 / 0.45 / 0.87 (-7.8) 0.86 (22) 8.6 (0.08)

Iminoaspartate 4 1.29 / 0.43 / 1.07 (-37.9) 1.04 (13) 8.6 (0.14)

Fumarate 4 1.17 / 0.39 / 1.04 (-7.8) 1.03 (11) 8.6 (0.10)

L-Malate 4 1.17 / 0.39 / 1.04 (-7.8) 1.03 (10) 8.6 (0.10)

L-Aspartate 4 1.14 / 0.38 / 1.03 (-7.8) 1.02 (12) 8.6 (0.08)

4-P-L-aspartate 4 1.02 / 0.34 / 1.01 (-7.8) 0.98 (16) 7.5 (0.07)

L-Asparagine 4 1.02 / 0.34 / 1.01 (-9.7) 0.92 (21) 7.5 (0.07)

Aconitate/Citrate/IsoCitrate 6 1.02 / 0.34 / 0.67 (-7.8) 0.65 (26) 8.6 (0.10)

Succinate 4 1.00 / 0.33 / 1.00 (4.3) 1.00 (14) 8.6 (0.03)

Carbamoyl phosphate 1 0.87 / 0.29 / 3.86 (0.3) 3.64 (18) 7.5 (0.02)

Methylaconitate 7 0.78 / 0.26 / 0.54 (-7.8) 0.53 (16) 8.6 (0.08)

Glyoxylate 2 0.75 / 0.25 / 1.88 (-7.8) 1.72 (35) 8.6 (0.02)

Orotidine-5-P 10 0.72 / 0.24 / 0.37 (-9.7) 0.34 (29) 8.3 (0.03)

https://doi.org/10.1371/journal.pcbi.1006492.t003
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some pathways contained in iJO1366 but not in ECC2 allow even higher CO2 assimilation.

Also, some new products show up as promising candidates, for example, (iso)citrate.

We then used flux variability analysis in both models to determine which of the carbon

assimilation reactions are essential for the identified substrate-product combinations

(Table 4). The PEP carboxylase reaction (R_PPC) is most often essential followed by the reac-

tions of the phosphoribosylamino-imidazole carboxylase (R_AIRC2) and carbamoyl phos-

phate synthase (R_CBPS) which are essential for a smaller number of products. The two

reactions of the acetyl-CoA carboxylase (R_ACCOAC) and dethiobiotin synthase (R_DBTS)

(exclusively) contained in iJO1366 are not essential for any substrate-product combination.

These two reactions fix only minor amounts of CO2 when biomass components are produced

and they cannot contribute to net CO2 fixation in any product. This implies that from the five

reactions in iJO1366 (three reactions in ECC2) where CO2 or HCO�
3

is defined as consumable

reactant (Table 1), eventually only three reactions are accountable for E. coli’s carbon (net) fix-

ation abilities.

We furthermore found that the production of each metabolite requires at least one spe-

cific essential carbon assimilation reaction(s) meaning that all alternative production path-

ways for each metabolite share the same essential carboxylation reaction(s) (Table 4). In the

core model ECC2, for 22 of the 62 metabolites whose synthesis from glycerol allows for con-

comitant CO2 assimilation, the simultaneous activity of two carboxylation reactions in ECC2

is required whereas the remaining 40 require only one carboxylation reaction. With glucose

as substrate, there are four products (N-carbamoyl-L-aspartate, (S)-dihydroorotate, orotate,

orotidine-5-P) that require two carboxylation reactions. In iJO1366 with glucose, only one

metabolite (orotidine-5-P) essentially requires two carboxylation reactions and 51 metabo-

lites with glycerol, respectively. At yield optimality, the number of metabolites in iJO1366

with two mandatory CO2 assimilation reactions increases to five and 91 with glucose and

glycerol as substrate.

Thermodynamic feasibility of CO2-fixing pathways in ECC2

The results presented so far considered exclusively stoichiometric constraints and did not yet

account for thermodynamics. Therefore, in the following we will use the concept of Max-min

Driving Force (MDF; see Methods) to identify synthesis routes that are feasible with respect to

both stoichiometric and thermodynamic constraints. For a given pathway, the MDF quantifies

the maximal (best-case) thermodynamic driving force based on standard Gibbs free energy

changes and metabolite concentration ranges. In our application, the goal was to find pathways

with CO2 net fixation for substrate-product combinations where the MDF is greater than zero

thus indicating principle feasibility of the respective pathway.

Table 4. Number of products with net CO2 fixation for which a carboxylation reaction is essential and number of products requiring one or two essential carboxyla-

tion reactions.

Reaction Glucose Glycerol

ECC2 iJO1366 ECC2 iJO1366

R_PPC 17 35 40 191

R_CBPS 5 5 16 49

R_AIRC2 0 2 28 64

R_ACCOAC X 0 X 0

R_DBTS X 0 X 0

One / two essential carboxylation reactions 14 / 4 40 / 1 40 / 22 202 / 51

Total number of products with net CO2 fixation 18 41 62 253

https://doi.org/10.1371/journal.pcbi.1006492.t004
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As described in the Methods section, in the core model ECC2 we computed for each sub-

strate-product combination the set of elementary modes (EMs) and identified from this set all

(stoichiometrically feasible) pathways with CO2 net fixation (CO2 assimilation yield YCO2=CS

larger than 0.01). By definition, for each product, the maximum CO2 net fixation previously

calculated with FBA (Table 2) is achieved by at least one EM. For each EM with CO2 net fixa-

tion we calculated its respective MDF to test for thermodynamic feasibility (MDF> 0). Having

the complete set of EMs at hand, we can also easily identify the EM(s) with the maximal MDF.

For glucose, 16 of the 18 identified products with stoichiometric CO2 assimilation in ECC2

are, in principle, thermodynamically feasible because there exists at least one EM for these

metabolites with a positive driving force (Tables 2, 5, S1 and S2). In fact, we found a positive

MDF for all EMs of all of these 16 products. In contrast, the previously identified metabolites

asparagine and oritidine-5-phosphate must be excluded as products since the highest MDF

values of their EMs for these two products are negative (-1.0, cf. Table 2). With glycerol as sub-

strate, MDF analysis of the EMs revealed that 29 from the set of 62 products (47%) with stoi-

chiometric CO2 assimilation are also thermodynamically feasible, while for 33 (53%) no EM

with positive MDF could be found. For the 29 feasible products, on average about the half

(48.2%) of the corresponding EMs have positive MDF values (ranging from 4.1% for succinate

to 98.7% for uracil) while others are thermodynamically infeasible. The complete list of all pos-

sible substrate-product combinations together with their stoichiometric and thermodynamic

properties is given in S1 and S2 Tables.

The largest MDF for any product with CO2 fixation on both substrates is given by 8.6 kJ/

mol (Table 2). It can be achieved with different products (e.g., orotate and the C4-metabolites

of the TCA cycle) using either glucose or glycerol as substrate. Optimal MDF values were

always observed at suboptimal product yields for all substrate product combinations. With

glycerol as substrate, only nine of the 26 in principle thermodynamically feasible products are

also feasible with maximal stoichiometric CO2 assimilation yield. As already indicated above,

with glucose as substrate, all yield-optimal pathways to the 16 products are also thermodynam-

ically feasible, however, always with reduced MDF compared to the maximal MDF achievable

with some minimum CO2 fixation (Table 2). It has been suggested that an MDF of 3.0 kJ/mol

would allow for large (net) fluxes [29] and we found that such an MDF can be achieved for all

substrate-product combinations that are in principle thermodynamically feasible. For the

majority of products this threshold can be reached either at yield-optimality or at least with

only slightly reduced product yields (Table 2).

For six promising substrate-product combinations in ECC2 we investigated the relation-

ship between MDF and CO2 assimilation yields in more detail (Fig 2). Although maximal

MDF values usually occur at suboptimal product yields, no clear functional relationship or

trend between product or CO2 assimilation yield and pathway MDF can be described. For spe-

cific yields there may exist broad ranges for the MDF values of the corresponding EMs. The

opposite also holds true, a specific MDF value relates to many EMs that may span a wide range

of possible CO2 assimilation yields. The most outstanding metabolites are oxaloacetate and

Table 5. Number of products in the ECC2 and iJO1366 model with thermodynamically feasible net CO2 assimila-

tion with glucose and glycerol as substrate. For each model and substrate, the number of stoichiometrically and

thermodynamically feasible substrate-product combinations with net CO2 fixation is given and compared with the

number of all stoichiometrically feasible substrate-product combinations (in parentheses: relative proportion of

thermodynamically feasible substrate-product combinations).

Model Glucose Glycerol

ECC2 16 of 18 (89%) 29 of 62 (47%)

iJO1366 34 of 41 (83%) 145 of 253 (57%)

https://doi.org/10.1371/journal.pcbi.1006492.t005
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orotate. Oxaloacetate allows for the highest carbon assimilation yield at MDF optimal condi-

tions with both substrates. Even at maximal CO2 assimilation the corresponding maximal

MDF values are as high as 7.5 kJ/mol and 7.1 kJ/mol, respectively. Orotate is another metabo-

lite showing not only a high maximal MDF value but also a high carbon assimilation yield at

MDF optimality.

We finally analyzed also the number of required reaction steps for synthesizing the respec-

tive products with net CO2 fixation (pathway lengths in Table 2) and found that the minimal

number of cytosolic enzyme-catalyzed reactions of the feasible pathways within the top

candidates is relatively low ranging from ten for producing oxaloacetate with glycerol to 29 for

synthesizing dihydroorotate from glucose. On average, for 84.7% of these reactions thermody-

namic information was available. Therefore, only a minor fraction of the involved reactions

may further reduce the corresponding MDF.

Thermodynamic feasibility of CO2-fixing pathways in the genome-scale

model

Since MDF analysis via exhaustive enumeration and analysis of EMs as performed in ECC2 is

not possible in this large-scale model, we used our new OptMDFpathway algorithm (Methods)

to identify, for a desired phenotypic behavior (here: CO2 net fixation with a certain minimum

yield for a given substrate-product combination), both the optimal MDF and a pathway that

enables this MDF.

In iJO1366, 34 of the 41 stoichiometrically identified products with glucose as substrate still

allow for carbon fixation if the thermodynamic constraints are taken into account. With glyc-

erol 145 out of 253 are thermodynamically feasible (Tables 3, 5, S3 and S4). As in ECC2, maxi-

mal MDF values can always be observed at suboptimal product yields for all substrate-product

combinations and the largest MDF for any product on both substrates is given by 8.6 kJ/mol

which can be achieved with different products using either glucose or glycerol as substrate

(Table 3). Oxaloacetate and orotate can again be identified as the most promising candidate

products for both substrates (the pathway from glycerol to orotate is exemplarily shown in

Fig 2. MDF and CO2 assimilation yield YCO2=CS
of EMs for selected substrate-product combinations. EMs with the

same color share the same MDF. The black solid line indicates the optimal MDF for a given CO2 assimilation yield.

https://doi.org/10.1371/journal.pcbi.1006492.g002

OptMDFpathway: Computing metabolic pathways with maximal thermodynamic driving force

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006492 September 24, 2018 14 / 24

https://doi.org/10.1371/journal.pcbi.1006492.g002
https://doi.org/10.1371/journal.pcbi.1006492


S10 Table). However, compared to ECC2, the increased maximal CO2 assimilation yields

observed for some products are often accompanied with smaller corresponding MDF values

resulting in even negative MDF (thermodynamically infeasible) when glycerol is applied as

substrate (Table 3). However, the majority of products can at least be produced with nearly

optimal product yields via pathways supporting a MDF of 3.0 kJ/mol or higher (Table 3).

As for ECC2, we analyzed the relationships between product yields and the corresponding

maximal MDF in more detail for the three promising candidates, orotate, oxaloacetate, and

aspartate (Fig 3). For each of the six considered substrate-product combinations we iteratively

increased the minimal carbon assimilation yield YCO2=CS
in discrete steps from 0 up to its corre-

sponding maximum and computed the respective maximal MDF at each step. Since the space

of flux distributions is reduced with higher CO2 assimilation yields, the MDF may either

remain constant or will decrease with increasing product yields. As already mentioned above,

in case of glycerol the very high product yields are not supported by thermodynamically feasi-

ble pathways. However, with slightly suboptimal yields considerably large driving forces are

possible. In general, the behavior of the optimal MDF with respect to the CO2-assimialtion

yield is similar to ECC2 (Figs 2 and 3) except for the higher maximal yield for oxaloacetate.

Compared to ECC2, we see that the minimal pathway lengths for the respective products

are slightly shorter (Table 3). There were 13 substrate-product combinations within the set of

top candidates that require less than 17 cytosolic enzyme-catalyzed reactions, the number of

enzymes required for the cell-free CETCH cycle [37]. Even if we account for potential trans-

port and exchange reactions, these numbers appear still realistic for biotechnological applica-

tions with a cell-free approach. Again, within the identified shortest pathways, for the vast

majority (87.6%) of all reactions thermodynamic information was available.

In the work [29], Noor et al. pointed out that the MDF can be sensitive against the pH val-

ues used for the calculation of the standard Gibbs free energy change. We therefore repeated

the calculations for pH-values ranging from 6 to 8 (with a step size of 0.5). We found that the

results are fairly robust (see Fig 4 and S6–S9 Tables). For example the number of thermody-

namically feasible products in iJO1366 with CO2 net fixation (Fig 4a) changes only slightly as

there are only four metabolites (three for glycerol and one for glucose) that are feasible at pH 7

Fig 3. Optimal MDF depending on CO2 assimilation yield YCO2=CS
for selected substrate-product combinations in

the genome-scale model iJO1366.

https://doi.org/10.1371/journal.pcbi.1006492.g003
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but become infeasible at other pH conditions. The opposite holds true for 13 metabolites (five

for glucose and eight for glycerol) for which no thermodynamically feasible pathway exists at

pH 7 but at least for one alternative considered pH condition (see S6–S9 Tables). The average

maximal MDF values (for all products feasible over the whole pH range) slightly decrease for

acidic pH values and increase for basic conditions (Fig 4b). However, this relationship is not

generally valid for all metabolites as there are products for which the corresponding average

maximal MDF decreases with increasing pH values (e.g. aspartate or oxaloacetate) or is maxi-

mal at pH 7 (e.g. orotate).

Thermodynamic bottlenecks

The distribution of MDF values over all EMs in ECC2 shows that there are only few distinct

MDF values (Fig 2). Likewise, only a limited number of different optimal MDF-values were

identified in iJO1366 (Fig 3). This suggests that there exist a finite number of distinct thermo-

dynamic bottlenecks (TBs) which set upper bounds for the maximal possible thermodynamic

driving force. The notion of thermodynamic bottlenecks was originally introduced in [23] to

mark single reactions (localized TBs) or groups of reactions (distributed TBs) that render a flux

along a given pathway thermodynamically infeasible, i.e., where, from a given range of possible

metabolite concentrations, no concentration vector can be found such that the driving force of

each reaction i is positive (� DrG
0

i > 0). In our application we demand instead � DrG
0

i > B but

the notion of localized and distributed TBs can be directly adopted. Accordingly, a localized

TB occurs if a single reaction is limiting the maximal pathway MDF because it is hitting the

upper boundary value for its driving force (for reversible reactions in the respective forward or

backward direction). For a localized TB, the concentrations of all reactants of the respective

reaction reach their maximum value and all products their minimum value (since otherwise

the MDF could be further improved). In contrast, in a distributed TB, several reactions con-

strain the pathway MDF simultaneously and the driving force of one involved reaction cannot

be increased without lowering the driving force of another because the reactions share some

metabolites. The concentration of these metabolites must be balanced such that the minimal

driving force for all participating reactions is optimized.

In [29], thermodynamic bottlenecks hindering a higher MDF in a given pathway were iden-

tified by shadow prices of the linear MDF optimization problem. However, since OptMDF-
pathway is a MILP problem (operating on a network with possibly multiple optimal pathways

with maximal MDF) this shadow price approach cannot be applied here. We therefore proceed

as follows. The value of the MDF-variable B in Eq (8) is fixed to the previously calculated

Fig 4. Robustness of thermodynamic feasibility of CO2 net fixation with respect to varying pH values. (a) Number

of thermodynamically feasible products in iJO1366 with CO2 net assimilation. (b) Average maximal MDF for their

synthesis. Black lines and diamonds: substrate glycerol; red line: substrate glucose.

https://doi.org/10.1371/journal.pcbi.1006492.g004

OptMDFpathway: Computing metabolic pathways with maximal thermodynamic driving force

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006492 September 24, 2018 16 / 24

https://doi.org/10.1371/journal.pcbi.1006492.g004
https://doi.org/10.1371/journal.pcbi.1006492


maximal MDF. With this background each driving force (fi) is separately maximized as objec-

tive in Eq (9) (instead of B). The reaction(s) whose determined maximal fi equal the maximal

MDF value previously determined for the pathway are the limiting reaction(s) forming the

localized or distributed TB.

One example of a localized TB occurring in the core as well as in the genome-scale model

is given by the adenylate kinase reaction (R_ADK1) which sets an upper MDF limit of 8.6 kJ/

mol. Hence, the maximal MDF of all EMs in ECC2 or pathways in iJO1366 that comprise

adenylate kinase in forward direction is given by this limit (unless an even more stringent

constraint further reduces the pathway MDF). The upper limit for the driving force of ade-

nylate kinase is hit at maximal concentrations for AMP and ATP and minimal concentration

for ADP (thereby accounting for the used concentration ratio constraint of 10:1 for [ATP]:

[ADP]). Another localized TB occurring in many MDF-optimal pathways with glycerol as

substrate is given by the glycerol dehydrogenase reaction (R_GLYCDx) with its driving force

upper limit of 7.5 kJ/mol. This limit is reached if the concentrations of cytosolic glycerol and

NAD are at their respective maximal values and the concentrations of dihydroxyacetone and

NADH at their minimal values. Finally, the localized TB with the smallest positive MDF is

given by the malate dehydrogenase reaction (R_MDH) confirming that this reaction is a

potential bottleneck for biomass or, as in our application, for product synthesis (cf. with

[29]).

An example of a distributed TB in ECC2 for products with CO2 fixation with glucose as sub-

strate is composed of the three glycolytic reactions R_TPI, R_GAPD, and R_FBA catalyzed by

triose-phosphate isomerase, glyceraldehyde-3-phosphate dehydrogenase, and fructose-bispho-

sphate aldolase. If these three reactions, which were also identified in [29] as a thermodynamic

bottleneck for glycolysis, are simultaneously used in a pathway, then the MDF is limited by 3.3

kJ/mol (again, occurrence of other bottlenecks in the same pathway may further reduce the

maximal MDF). This limit is caused by the shared metabolite glyeraldehyde-3-phosphate

(M_g3p_c) which is a product of reactions R_TPI and R_FBA but a substrate of reaction

R_GAPD. To achieve high driving forces for R_TPI and R_FBA, low concentrations of glyeral-

dehyde-3-phosphate are beneficial. Contrary, sufficient driving forces for R_GAPD can only

be achieved with high concentrations of glyeraldehyde-3-phosphate. Therefore, the concentra-

tion of glyeraldehyde-3-phosphate needs to be carefully balanced to enable high driving forces

for all three reactions simultaneously. Altering the (optimal) concentration of M_g3p_c would

increase the driving force of (at least) one reaction but lower the driving force of another

thereby reducing the overall pathway driving force.

The optimal MDF values of all 62 substrate-product combinations of ECC2 are limited by

only 17 different bottlenecks where the largest distributed TB limit was composed of nine reac-

tions (S1 and S2 Tables). Over all EMs of all substrate product combinations, there were only

27 different MDF values, thereof 9 with glucose and 23 with glycerol as substrate, respectively.

The most abundant distributed TB with two reactions in iJO1366 is given by the simulta-

neous operation of triose-phosphate isomerase (R_TPI) together with glyceraldehyde-3-phos-

phate dehydrogenase (R_GAPD). If both reactions occur together in a pathway, the MDF of

all routes comprising these reactions cannot be higher than 4.5 kJ/mol because glyeraldehyde-

3-phosphate is a substrate of R_TPI but a product of R_GAPD. Therefore, its concentration

needs to be balanced such that both reactions simultaneously achieve the highest possible driv-

ing force. Notably, this distributed TB allows for a higher driving force compared to the three-

reaction TB discussed above for ECC2 which contained additionally R_FBA and caused a

lower MDF limit of 3.3 kJ/mol. In iJO1366 alternative reactions with favorable thermodynamic

properties can substitute for R_FBA making it dispensable and allowing the higher MDF

value.
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Role of pyruvate synthase in iJO1366

Setting the reaction of the pyruvate synthase (R_POR5) reversible in iJO1366 (thus allowing

activity in direction of carboxylation) increases the number of products with CO2 assimilation

only slightly. However, for some products the maximal CO2 assimilation yield increases signif-

icantly. Formate is one such example: with R_POR5 being reversible, significantly higher

product yields of 10.5 mol/mol glucose and 6.1 mol/mol glycerol (compared to 6.14 and 3.38

in iJO1366 with R_POR5 being irreversible) with accompanying molar carbon assimilation

yields (YCO2=CS
) of 0.75 and even 1.03 (compared to 0.02 and 0.13), respectively. However, as

the reversibility of the endogenous R_POR5 reaction remains highly suspicious, a heterolo-

gous expression from an organism where this enzyme has been demonstrated to be fully func-

tional in direction of carboxylation seems to be more promising. Desulfovibrio africanus is one

possible organism whose respective enzyme showed high stability even under aerobic condi-

tions. However, the corresponding cofactor ferrodoxin possibly needs to be transferred as well

since E. coli does not possess cofactors whose redox potentials are sufficiently low.

Biomass synthesis of E. coli with CO2 net fixation

Not surprisingly, both metabolic models used herein predict that biomass synthesis with net

CO2 fixation. is not possible in E. coli. However, a much less intuitive result found in the

genome-scale is the following: if an electron source is provided that can permanently reduce

NAD+ to NADH (e.g., via bioelectrochemical approaches [56]), then E. coli could grow with

CO2 as the only carbon source. Clearly, under these assumptions, ATP can be produced via

respiration with NADH as electron donor but this also implies that the genome-scale model

must contain a cycle with net CO2 fixation. A closer look revealed that such a cycle indeed

exists in the model which involves reactions of the PEP carboxylase, the TCA cycle and glyoxy-

late shunt as well as reactions in the serine and threonine metabolism. This cycle can produce

pyruvate from CO2 and NADH (from which then biomass can be synthesized). It has an MDF

of 8.6 kJ/mol and is thus theoretically thermodynamically feasible, however, whether it would

really have sufficient capacities to allow growth of E. coli solely from CO2 and a source of

reduction equivalents remains to be shown.

There is always an EM with maximal MDF

We finally note here an interesting theoretical result highlighting the relationship between the

steady-state flux vectors with maximal MDF and the EMs (which are steady-state flux vectors

with minimal (irreducible) sets of active reactions). In the smaller network ECC2, where the

EMs could be enumerated, we implicitly assumed that MDF-optimal pathways with desired

properties can be directly identified from the set of computed EMs. Indeed, also for genome-

scale networks, it can be shown that there exists always at least one EM with maximum MDF

value. The reasoning is as follows: Consider we know all EMs; this allows us to select the one

with optimal MDF value. Adding further (active) reactions to this EM would impose further

thermodynamic constraints, hence, the MDF either reduces or, in the best case, remains con-

stant. Since removing a reaction from an EM implies that only the zero vector remains as feasi-

ble steady-state flux distribution, no flux vector in the network can exist with higher MDF.

This implies that a solution found by OptMDFpathway is either an EM or it uses a superset of

reactions active in an MDF-optimal EM. In the latter case, the reaction set being active in the

found optimal flux vector can always be reduced to the pathway represented by the optimal

EM (where the active reversible reactions in the EM are used in the same direction as in the

flux vector). This is a direct consequence of the fact that every flux vector can be written as a
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conformal sum (sum without cancellations) of EMs [57]. If inhomogeneous constraints are

used in the model definition, the same reasoning implies that there is always an elementary

flux vector (a generalization of EMs [9]) with optimal MDF. These findings complement other

theoretical results regarding the role of EMs for the identification of optimal pathways with

respect to different objectives, for example, yield-optimal pathways [55] and pathways with

maximal specific rates in kinetic models [58,59].

Discussion

It is usually assumed that heterotrophic organisms like E. coli cannot be applied to assimilate

significant amounts of CO2. We argue that the potential of CO2 assimilation by endogenous

pathways of heterotrophic organisms may have been a so far overlooked component for sus-

tainable bioprocesses consuming CO2. To verify this hypothesis, we systematically identified,

for the first time, all combinations of two industrially important substrates and cytosolic car-

bon metabolites (products) in E. coli which lead to net CO2 fixation. By using a new optimiza-

tion approach, OptMDFpathway, we ensured not only stoichiometric but also thermodynamic

feasibility of the identified pathways.

Our analyses complement autotrophic approaches for biotechnological CO2 assimilation

by investigating CO2 fixation routes that require the constant supply of carbon substrates to

which CO2 can be attached. We demonstrated that E. coli can assimilate CO2 into many differ-

ent metabolites: in principle, 15.3% of all cytosolic carbon metabolites in the E. coli genome-

scale model can be synthesized with concomitant CO2 fixation from the considered substrates

via thermodynamically feasible pathways. The potential products include the expected metab-

olites of the left branch of the TCA cycle but also less obvious candidates. We found that 40%

(150 of 374 cases; Table 5) of all substrate-product combinations with stoichiometric net CO2

assimilation in the two networks are thermodynamically infeasible emphasizing the need of

a method such as OptMDFpathway to filter the high percentage of thermodynamically infeasi-

ble pathways. If glucose is used as substrate, fewer products allow for net-carbon assimilation

but the relative proportion of thermodynamically feasible substrate-product combinations is

higher compared to glycerol (Table 5). Although the ordering and maximal carbon assimila-

tion yields of the top-candidates remained largely unchanged, the number of possible products

more than tripled when the genome-scale model iJO1366 instead of the core model ECC2 is

used and some of the maximal product yields increase more than 10%.

The best substrate-product combination showing a high CO2 assimilation yield together

with sufficient driving force and a small number of participating reactions was determined to

be the synthesis of oxaloacetate from glycerol via glycolysis and PEP carboxylase. The optimal

corresponding pathway converts one mol of glycerol into one mol of oxaloacetate, fixes one

mol of CO2 and enables thus a molar carbon fixation yield of 0.33. The found pathway requires

only one carboxylation reaction (PEP carboxylase) and supports a high MDF of 7.5 kJ/mol.

Further, the pathway comprises only 13 enzyme catalyzed reactions whereof four are needed

for NADH regeneration. Opposed to the proposed cell-free CETCH-cycle [37], this pathway

(as all pathways identified herein) is even balanced with respect to ATP and redox cofactors

such that no additional redox/energy sources must be provided. In a cell-free setup, redox

cofactor regeneration could be facilitated by a bioelectrochemical transfer (by means of suit-

able mediators) of the electrons to an electrode. The proposed process would on the one hand

further reduce the number of required enzymes (to nine) and on the other hand generate an

electron flow that can be harvested to improve the overall process performance. Another inter-

esting compound not mentioned so far which can be synthesized with a relatively high CO2

assimilation yield and with the highest molar product yield of all candidates is carbamoyl
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phosphate (Table 3). Carbamoyl phosphate is an industrially relevant product as it can be

further processed to synthesize, for example, different cyanates from which insecticides or

polyurethanes can be derived. In E. coli it is produced by the carbamoyl phosphate synthase

(Table 1) and functions as an intermediary metabolite for nitrogen disposal through the urea

cycle and for the synthesis of pyrimidines. However, when considering it as potential sink for

CO2, a nitrogen source needs to be supplied.

Clearly, the predicted thermodynamic feasibility of the identified pathways represent best-

case scenarios. Whether the upper limits of the corresponding pathway driving forces can be

experimentally established in vivo remains to be shown. Since we restricted the MDF maximi-

zation on the set of reactions that proceed exclusively in the cytosol, it is not per se guaranteed

that the here identified pathways can be readily applied in vivo. For experimental validation of

particular substrate product combinations membrane transportation costs should be carefully

analyzed with respect to the specific envisioned environmental conditions. Herein we did not

explicitly consider introduction of heterologous enzymes and pathways in E. coli but identified

the pyruvate synthase as one target for improved CO2 assimilation capabilities. Furthermore,

apart from monetary values of substrates and products, the economic viability and overall CO2

sequestration yield of a process where E. coli synthesizes one of the identified products with

net CO2 assimilation will require a more detailed analysis. For example, the CO2 sequestration

during (photo)synthesis of the respective carbon feedstock as well as the possible CO2 release

for growth of E. coli must then be taken into account.

The assessment of the thermodynamic feasibility of pathways with net CO2 fixation in the

genome-scale model of E. coli was only possible with the development of the new OptMDF-
pathway method. This MILP-based algorithm determines, for a given (e.g., desired) phenotype

both the optimal MDF and a supporting pathway. Herein we used this approach to assess the

thermodynamic feasibility of pathways in E. coli that allow for CO2 net fixation but we envision

that it can as well be applied to many more general problems in metabolic network modeling

and design. In particular, it can be used as a generic method to identify, in large-scale net-

works, pathways with desired properties (e.g., synthesis of a chemical with some minimum

yield) and with maximal possible driving forces.
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