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Abstract

Diving behaviour of narwhals is still largely unknown. We use Hidden Markov models

(HMMs) to describe the diving behaviour of a narwhal and fit the models to a three-dimen-

sional response vector of maximum dive depth, duration of dives and post-dive surface time

of 8,609 dives measured in East Greenland over 83 days, an extraordinarily long and rich

data set. Narwhal diving patterns have not been analysed like this before, but in studies of

other whale species, response variables have been assumed independent. We extend the

existing models to allow for dependence between state distributions, and show that the

dependence has an impact on the conclusions drawn about the diving behaviour. We try

several HMMs with 2, 3 or 4 states, and with independent and dependent log-normal and

gamma distributions, respectively, and different covariates to characterize dive patterns. In

particular, diurnal patterns in diving behaviour is inferred, by using periodic B-splines with

boundary knots in 0 and 24 hours.

Author summary

Narwhals live in pristine environments. However, the increase in average temperatures in

the Arctic and the concomitant loss of summer sea ice, as well as increased human activi-

ties, such as ship traffic and mineral exploration leading to increased noise pollution, are

changing the environment, and therefore probably also the behavior and well-being of

the narwhal. Here, we use probabilistic models to unravel the diving and feeding behavior

of a male narwhal, tagged in East Greenland in 2013, and followed for more than two

months. The goal is to gain knowledge of the whales’ normal behavior, to be able to later

detect possible changes in behavior due to climatic changes and human influences. We

find that the narwhal uses around two thirds of its time searching for food, it typically

feeds during deep dives (more than 350m), and it can have extended periods, up to 3 days,

without feeding activity.
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Introduction

The narwhal (Monodon monoceros) primarily inhabit cold waters of the Atlantic sector of the

Arctic, with the largest abundances found in East and West Greenland and in the Canadian

High Arctic [1]. The narwhal is one of the deepest diving cetaceans with the maximum exceed-

ing 1800m [2], and it comes third only to Cuvier’s beaked whale (Ziphius cavirostris) (2992m)

[3] and sperm whale (Physeter macrocephalus) (2035m) [4]. Narwhals dive to forage, and their

diet consists of few prey species including Greenland halibut (Reinhardtius hippoglossoides),
polar cod (Boreogadus saida), capelin (Ammodytes villosus) and squids (Gonatus sp.) [5, 6].

Narwhals depend on acoustics for sensing their environment, navigating and capturing prey at

depth [7]. Anthropogenic factors like underwater noise are a concern for a species that, with

decreasing sea ice coverage, is increasingly exposed to underwater noise from shipping and

seismic exploration [8]. It is therefore important to understand and quantitatively describe the

diving activities of narwhals, by robust statistical methods, to ensure the long-term conserva-

tion of one of the most specialized species in the North Atlantic.

The first step is to understand the diving patterns of narwhals under natural conditions,

which we address in this study. Diving behaviour is however cryptic since it includes both

physiological constraints, energetic demands and habitat and environmental regimes. Model-

ling of the observed diving behaviour is one way of gaining insight to the overall diving pat-

terns, and changes in model parameters is a way to compare and estimate quantitatively

changes in diving behavior or differences between individuals.

We apply multivariate Hidden Markov Models (HMMs) with covariates [9], to describe the

diving dynamics in the vertical dimension of an individual narwhal. These types of models for

similar diving data of Blainville’s beaked whales (Mesoplodon densirostris) were first intro-

duced in [10]. A HMM assumes an underlying unobserved process, which governs the dynam-

ics of the observed variables. The assumption is that the observed behaviour in a dive will

depend on the present state, and introduces autocorrelation in the model [9]. These HMMs

have been used for modelling animal movement by taking into account the correlation over

time between different movement patterns, mainly in two horizontal dimensions (see, e.g.,

[11–13]), and recently, in one vertical dimension [10, 14], possibly including further informa-

tion on vertical movements. In this study, we use vertical depth data, and the three response

variables are the maximum depth reached in a dive, the duration of a dive, and the post-dive

surface time before initiating a new dive.

In all previous studies, contemporaneous conditional independence was assumed, meaning

that the state dependent processes are independent given the underlying state. This is a

strong and often also an unrealistic assumption, since deeper dives will typically take longer.

Even when conditioning the dive to be either shallow, medium or deep, a positive correlation

is still expected, beyond the correlation implied by the hidden states. DeRuiter et al. [14]

argued for the assumption of conditional independence because unless a multivariate normal

distribution can be assumed, there is usually no simple candidate multivariate distribution to

specify the correlation structure. This is partly due to some of their response variables being

discrete. In this study, we will relax the assumption of conditional independence, taking

advantage of the continuity of the response variables. They are all restricted to be positive

and with right skewed distributions. Previous studies have therefore used conditionally inde-

pendent gamma distributions for these variables. Here, we will assume dependent log-nor-

mal distributions, such that their log-transforms follow a multivariate normal distribution.

We also do the analysis with the standard choice of the gamma distributions with both

dependence and independence, as well as the independent log-normal distributions, and

compare the results.
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Covariates were included in [10, 13, 14], appearing in the transition probabilities between

hidden states, whereas no covariates were included in [15]. Here we include covariates in all

elements of the transition matrix, trying out different covariate process models and select the

optimal model by the Akaike Information Criterion (AIC). We consider two covariates related

to the recent deep dives performed by the narwhal. Dives can reach> 1800m, and deeper

dives are assumed to be related to feeding [2]. We define a deep dive as a dive to a depth of at

least 350m. One covariate is the time passed since the last deep dive, which was also used in

[10]. The hypothesis is that the longer the time passed since last deep dive, the higher the nar-

whal’s propensity for initiating a deep dive will be. Another covariate counts the number of

consecutive deep dives that the narwhal has performed. The hypothesis is that the more dives

in a row and more time spent at great depths, the higher the narwhal’s propensity for changing

diving pattern to shallower depth or near-surface travelling. By introducing such history

dependent covariates, the model allows a longer dependence structure than the one implied by

the Markov property. These models with dependencies between observables caused by the

underlying state, as well as including feedback from the observed process, were introduced in

[10] to model Blainville’s beaked whale. The last covariate is time of day at initiation of the

dive, modelled by a periodic B-spline with boundary knots in 0 and 24 hours. Diurnal effects

on marine mammal diving patterns are difficult to estimate in this type of models because the

time series are typically too short. Here, we analyse a data set of a tagged narwhal that is

extraordinarily long, nearly three months, making this inference possible. Normally, such time

series are on the order of hours or days. However, we only have data from a single whale, and

results might not generalize.

Materials and methods

Ethics statement

Permission for capturing, handling, and tagging of narwhals was provided by the Government

of Greenland (Case ID 2010–035453, document number 429 926).

Data

We analyse the time series of depth measurements of a mature male narwhal (420 cm, esti-

mated mass 950 kg) tagged in East Greenland from August 13th until November 6th 2013. The

tag (a satellite linked time depth recorder, the Mk10 time-depth recorder from Wildlife Com-

puters, Redmond, WA, USA) was attached to the whale and retrieved one year later with

1994.83 hours of dive data (approximately 83 days and 2 hours), see [16]. In this time interval

the narwhal performed 8,609 dives to depths of at least 20m. Depth was measured every second

at a resolution of 0.5m, and preprocessed before analysis by summarizing in three variables

within each dive to describe the behaviour: maximum depth (MD), dive duration (DT), and

post-dive surface time (PD), as also used in [14]. A dive was scored every time the depth record

went deeper than 20m (i.e., about four to six body lengths) to exclude brief shallow submer-

sions between respirations, otherwise it is considered time spent at the surface, summarized in

the variable PD. This threshold was chosen in order to avoid creating too many shallow dives

near the surface, see [17]. We use a custom-written procedure in C++ combining with R [18]

via Rcpp [19]. The dives are found by locating all zero depth measurements. If there is at least

one depth measurement of at least 20m between two consecutive measurements of 0m, this is

classified as a dive. Otherwise an interval between two 0m measurements is classified as part of

the post-dive time after the last dive. For each identified dive, the largest depth measurement is

defined as the maximum depth of the dive, and the dive duration is the time difference
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between the two 0m measurements. The surface and dive durations also enter in the model as

part of the covariate counting the time since last deep dive.

In this study, the observed response variable, denoted by Xt, is three-dimensional, describ-

ing the diving behaviour related to each dive, where t indicates the dive number, t = 1, 2, . . ., T.

The first response variable, X1,t, is MD reached in dive number t. The second response

variable, X2,t, is DT of dive number t. The third response variable, X3,t, is PD after dive t. We

assume that the diving behaviour depends on an underlying unobserved process, which we

denote by Ct, t = 1, 2, . . ., with a number m of unobserved behavioural states, Ct 2 {1, . . .,m},

which govern the dynamics of the observed variables. The assumption is that the distributions

of the observed MD, DT and PD of dive number t depend on the state.

Hidden Markov Model

Anm-dimensional hidden Markov model assumes that the distribution of the p-dimensional

response vector Xt depends on a hidden state Ct, where {Ct: t = 1, 2, . . .} is an unobserved

underlying process satisfying the Markov property:

PðCt ¼ j j Ct� 1 ¼ i; . . . ;C1 ¼ lÞ ¼ PðCt ¼ j j Ct� 1 ¼ iÞ;

where Ct 2 {1, . . ., m} for t = 2, 3, . . .. Denote the state transition probabilities at time t by

ωij(t), i, j = 1, . . .,m, where ωij(t) = P(Ct+1 = jjCt = i). The transition probability matrix O(t) is

then

OðtÞ ¼

o11ðtÞ � � � o1mðtÞ

..

. . .
. ..

.

om1ðtÞ � � � ommðtÞ

2

6
6
6
6
4

3

7
7
7
7
5

ð1Þ

where ωij(t)� 0 and
Pm

j¼1
oijðtÞ ¼ 1. Here, we let ωij(t) depend on t to allow time varying

covariates to affect the transition probabilities, see Section Covariates. The distribution of Xt is

conditionally independent of everything else given Ct:

f ðXtjXt� 1; . . . ;X1;Ct;Ct� 1; . . . ;C1Þ ¼ f ðXtjCtÞ; t ¼ 1; 2; . . . ð2Þ

where f denotes a probability density function, i.e., the distribution of Xt depends only on the

current state Ct and not on previous states or observations. The model is illustrated in Fig 1.

Fig 1. Hidden Markov Model. The hidden states Ct represent behavioural states that influence the distribution of the observed variables Xt.

https://doi.org/10.1371/journal.pcbi.1006425.g001
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State dependent distributions

The state-dependent distributions are the probability density functions of Xt associated with

state i. Under the contemporaneous conditional independence assumption, the p different com-

ponents of the response vector Xt are assumed independent given the hidden state, and the

probability density can be decomposed as

f ðXt j Ct ¼ iÞ ¼ fiðXtÞ ¼
Yp

k¼1

fi;kðXk;tÞ; ð3Þ

where Xk,t is the kth observed component of Xt. Here we have p = 3, the components being

MD, DT and PD. Thus, Xt = (XMD,t, XDT,t, XPD,t)
T, where T denotes transposition. Contempora-

neous conditional independence implies that the state dependent processes XMD,t, XDT,t and

XPD,t are independent given the underlying state Ct. This assumption has been used in [14]

and [15] because in general, there is no simple way to address the correlation between variables

within states, and the dependence induced by the Markov chain is often sufficient to fit the

data. However, in this paper, we will relax this assumption, and let fi be a joint distribution

function, allowing for dependent coordinates, which for our data turn out to improve the fit

considerably.

All three response variables are positive right-skewed variables, so natural candidates for fi,k
are gamma distributions, as used in [14] and [15], or log-normal distributions, i.e., the loga-

rithm of the response variables follow a 3-dimensional normal distribution. Here, we will try

four different distributions. The first candidate is independent gamma distributions, to com-

pare with the usual approach. The gamma distribution is parametrized by shape parameter μ
and scale parameter σ, with mean μσ and variance μσ2, and the state dependent probability

density functions are given by

fiðXtÞ ¼
Y

k2fMD;DT;PTg

fi;k Xk;t

� �
¼

Y

k2fMD;DT;PTg

Gðmki Þ
� 1
ðski Þ

� mki Xmki � 1

k;t e
�
Xk;t
ski ; ð4Þ

for i = 1, . . .,m.

We will also assume dependent gamma distributions [20] and both independent and corre-

lated log-normal distributions, such that log Xt is multivariate normal, where log Xt = (log XMD,t,

log XDT,t, log XPT,t)
T, taking advantage of the computational convenience of the normal distribu-

tion. The log-normal distribution is parametrized by log-mean μ and log-variance σ2. Thus,

given Ct = i and k, the mean and variance of log Xk,t is mki and ðski Þ
2
, and the mean and variance

of Xk,t is expðmki þ ðs
k
i Þ

2
=2Þ and ðexpððski Þ

2
Þ � 1Þexpð2mki þ ðs

k
i Þ

2
Þ. The log-correlation between

responses k1 and k2, for k1, k2 2 {MD,DT, PT} is denoted by r
k1 ;k2
i . The correlation between

components k1 and k2 is ðexpðris
k1
i s

k2
i Þ � 1Þ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðexpððsk1
i Þ

2
Þ � 1Þðexpððsk2

i Þ
2
Þ � 1Þ

q

, where

ðs
k1
i Þ

2
and ðs

k2
i Þ

2
are the log-variances of k1 and k2, respectively. The correlation is approxi-

mately equal to the log-correlation r
k1 ;k2
i when ðs

k1
i Þ

2
and ðs

k2
i Þ

2
are small. Thus, the state depen-

dent probability density functions are given by

fiðXtÞ ¼
1

ð2pÞ
3=2

ffiffiffiffiffiffiffi
jSij

p
�
Q

k2fMD;DT;PTg logXk;t

exp �
1

2
ðlogXt � miÞ

>
S� 1

i ðlogXt � miÞ

� �

; ð5Þ
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where |�| denotes the determinant of a matrix, mi ¼ ðm
MD
i ; mDTi ; m

PD
i Þ

T
,

Si ¼

ðsMDi Þ
2

r
MD;DT
i sMDi sDTi r

MD;PD
i sMDi sPDi

r
MD;DT
i sMDi sDTi ðsDTi Þ

2
r
DT;PD
i sDTi s

PD
i

r
MD;PD
i sMDi sPDi r

DT;PD
i sDTi s

PD
i ðsPDi Þ

2

2

6
6
6
6
4

3

7
7
7
7
5

and r
k1 ;k2
i ¼ 0 in the independent case.

Covariates

To allow for a longer memory in the model beyond the autocorrelation induced by the hidden

process, we incorporate feedback mechanisms by letting the state transition probabilities

depend on the history. We consider two covariates related to the recent deep dives performed

by the narwhal. One covariate is the continuous variable τt, defined as time passed since the

last deep dive before dive number t, where a deep dive is defined as a dive to a depth of at

least 350m. Maximum depths are bimodal, and the value is chosen as a lower threshold of the

deeper dives. Note that this definition is only used to define the covariates, and is not related to

the decoding of states. The other covariate is the discrete variable dt taking non-negative inte-

ger values, counting the number of consecutive deep dives that the narwhal has performed

before dive number t. Thus, covariate τt measures physical time since last deep dive, whereas

covariate dt counts number of deep dives in a row, independently of time passed. Finally, we

consider the covariate of the hour of the day at which the dive is initiated. More specifically,

we define the covariate processes Tt, the time since the last deep dive, Dt, the number of conse-

cutive deep dives up to dive number t, and Ht, the hour of initiation of dive t, and denote the

measured covariates by τt, dt and ht. Thus, the short term memory is modelled by the hidden

states, and the long term memory is modelled by modulation of the transition probabilities as

a function of past dynamics. The model is illustrated in Fig 2. Fig 3 illustrates the response var-

iables and the three covariates for 60 consecutive dives.

The covariates enter the transition probabilities ωij(t) = ωij(ηij(t)) in Eq (1) through a predic-
tor, ηij(t), see Eq (7) below. We consider several models. If there are no covariates for a given

predictor, then ηij(t) = ηij does not depend on t. In S1 Table in the Supporting Information,

all the covariate models that were fitted are listed, where αij, βij, γij, δij, θij and zij are real param-

eters. Covariates dt and τt were incorporated as natural cubic splines with three degrees of

freedom. The effect of time of day is modelled by a periodic B-spline with three degrees of free-

dom, with boundary knots in 0 and 24 hours.

The likelihood function and optimization

The likelihood LT of x1, x2, . . ., xT, where xt is the observation of Xt, assumed to be generated

by an m-state HMM, can in general be computed recursively in only O(Tm2) operations by the

forward algorithm [9]. The likelihood is expressed as

LT ¼ dPðx1ÞOðt1; d1; h1ÞPðx2Þ � � �OðtT� 1; dT� 1; hT� 1ÞPðxTÞ1; ð6Þ

where PðxtÞ ¼ diagðf1ðxtÞ; . . . ; fmðxtÞÞ is a diagonal matrix with diagonal elements fi(xt) given

in Eq (4) when the gamma distribution is used, or Eq (5) when the log-normal distribution is

used, O is given by Eq (1) and 1 2 Rm is a column vector of ones. The initial state distribution

is denoted by δ, which is anm-dimensional row vector; δi = P(C1 = i). For δ, we choose the uni-

form distribution, δi = 1/m. Alternatively, it can be estimated, but there is no need for this

extra computational effort, since our dataset is large and the influence of δ will be negligible.
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To test this hypothesis, we repeated the optimization with the optimized parameters as initial

condition, only changing the distribution of δ to the decoded distribution at time 1. This did

not change the estimates. Furthermore, δ has no particular biological relevance.

The transition parameters in Eq (1) are constrained to be between 0 and 1 with row sums

equal to 1, and thus, even if there arem2 entries, there are only m � (m − 1) free parameters. To

obtain an unconstrained optimization problem, we reparametrise to working parameters, as

also done in [13–15], see also [9], by defining

oijðtÞ ¼
expðZijðtÞÞ

Pm
j¼1

expðZijðtÞÞ
ð7Þ

where ηij(t) is the predictor for dive t for 1� i, j� 3, i 6¼ j, and ηii = 0 for i = 1, 2, 3. This assures

positive entries and that rows sum to 1.

We used the direct numerical Newton-Raphson algorithm nlm (optim in case nlm
failed) in R [18] to estimate the parameters of the model by maximizing the log-likelihood,

LT ≔ logLT , where LT is given in Eq (6). The procedure ns from the package splines (ver-

sion 3.5.0) was used to calculate the natural cubic splines. The procedure pbs from the pack-

age pbs (version 1.1) was used to calculate the periodic splines.

Using a combination of R and Rcpp [19] for calculating the log-likelihood function LT

improved the runtime considerably. To mitigate the problem of local maxima, we ran the opti-

mization algorithm up to a thousand times with different starting values for the parameters.

Fig 2. Hidden Markov Model with feedback processes. The transition probabilities between hidden states Ct depends on the observed covariate

processes T t , Dt andHt.

https://doi.org/10.1371/journal.pcbi.1006425.g002
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Fig 3. Response variables and covariate processes. Time series plot of maximum depth (MD), duration of dive (DT),

and post-dive duration (PD) from dive number 3890 to 3950 and the covariate processes counting the time since last

deep dive (τt), number of deep dives in a row (dt), and the hour at initiation of dive (ht). The symbols indicate the

decoded hidden states from a model fitted to a dependent log-normal distribution (Model 1).

https://doi.org/10.1371/journal.pcbi.1006425.g003
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The starting values were chosen as follows. For the parameters of the state-dependent distribu-

tions, an independent mixture model was fitted to the response distributions, and the esti-

mated parameters were used as initial conditions. In the correlated models, the correlation

parameter between MD and DT was initiated at the empirical correlation in the data set. The

parameters of the covariates were varied in a regular grid together with the jittering procedure

used in [14], such that they looped through 0 to ±5 in steps of 1 for αij, βij and γij. The final

result was chosen as the one giving the maximum log-likelihood.

The best model fit was evaluated by AIC. Once the optimal model was selected and parame-

ters of the model were estimated, it was of interest to decode the most likely state sequence

c�
1
; . . . ; c�T . The Viterbi algorithm [9, 21] was used to estimate the hidden states given the

observed depths and durations:

ðc�
1
; . . . ; c�TÞ ¼ argmax

ðc1 ;...;cT Þ2f1;...;mg
PrðC1 ¼ c1; . . . ;CT ¼ cT j x0; . . . ; xTÞ:

Results

The data set covers 1,995 hours (� 83 days) with T = 8, 609 dives, and is extraordinarily long,

and thus provides a unique opportunity to obtain detailed information on diving behaviour.

An example of the data is shown in Fig 4. Such data are usually only on the order of a couple

of days or less, for example, the time series of short-finned pilot whales (Globicephala macro-
rhynchus) analysed in [15] cover up to 18 hours and 64 dives, whereas the time series of blue

whales (Balaenoptera musculus) analysed in [14] cover up to 6 hours and 67 dives, and Lan-

grock et al. [12] analyses 79 hours of a single Blainville’s beaked whale. Detailed diving data of

narwhals are available for up to 33 hours [6] or up to one week [7]. However, here we only

have data from a single narwhal limiting the generalizability of the analysis.

The first week of tagging, the narwhal also had the temperature of the stomach measured,

see [22]. A temperature drop indicates that a prey has entered the stomach. The red parts in

Fig 4 indicate temperature drops. These typically happen during deep dives, and support the

assumption that deep dives are related to foraging. This is also supported by the findings in

[7], where buzzes, related to foraging, are typically produced when the whales are at 200–

600m.

The variable MD takes values between 20 and 910.5m, DT takes values between 33 seconds

and 28 minutes, and PD takes values between 1 second and 209.7 minutes. Fig 5 shows

Fig 4. Diving data. Representative part of the narwhal diving data, covering 24 hours of dives on August 15th 2013. The red parts

are where a lower temperature in the stomach has been registered, indicating that the narwhal has swallowed a prey. The blue line

indicates a depth of 350m, the threshold for a deep dive used in the definition of the covariates.

https://doi.org/10.1371/journal.pcbi.1006425.g004
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histograms of the three response variables. Maximum depths are bimodal and typically either

less than 200m or between 400 and 600m. This was used to select the threshold of 350m to

define a deep dive. The value is chosen as a lower threshold of the deeper dives. We further-

more tried different values between 250 and 450m in steps of 50m. The results only changed

very little within this range, and thus, the analysis is robust to the choice of threshold.

To choose the number of statesm, we optimized models with each of the four state distribu-

tions for m = 2, 3 and 4 states, including all covariates. Since the gamma model is computa-

tionally very expensive, and furthermore does not provide a better fit, we only ran the gamma

models for m = 2 and 3. Typical runtimes are given in Table 1. The runtimes vary over many

orders of magnitudes. For all state distributions, the 4-state model takes on the order of hours

to run, which makes it infeasible, since for each covariate model, many repetitions from differ-

ent starting conditions have to be run, and the number of needed repetitions explode as the

number of parameters increase. Moreover, the 4-state model did not improve qq-plots, as

shown later. The 3-state correlated gamma model is also very slow and not feasible to use if

many covariate models should be explored. In general, the log-normal model is much faster

than the gamma model, and the computational cost of including dependence is small. It is

not obvious if a 2 or a 3-state model should be chosen. However, the runtimes for the 3-state

model are acceptable, and based on both qq-plots and AIC values presented below, the 3-state

HMM is preferred. Thus, similar to the blue whales data analysed in [14], our narwhal data

suggest three distinct states. Pohle et al. [23] recommended against using more than four

states in biological modelling like this, in order to avoid the complexity of the correspondence

Fig 5. Model fit. Histograms of response variables MD, DT and PD. The fit of Model 1 is indicated with black curves, for dependent lognormal (DL),

independent lognormal (IL), dependent gamma (DG) and independent gamma (IG). The distribution of the fitted states are indicated with colours as

given in the legend. State 1 corresponds to near surface, state 2 medium depths, and state 3 large depths.

https://doi.org/10.1371/journal.pcbi.1006425.g005
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between states of the model and the biological phenomenon. DeRuiter et al. [14] suggested

three states for their data, even if a formal model selection procedure would point to a more

complex model, because models with more underlying states might obscure patterns in the

data and provide less insight in the underlying biological process, even if they might perform

better in terms of forecasting. Biological knowledge should guide the choice of number of

states. They also argue that model misspecifications, such as too inflexible state dependent dis-

tributions, variations over time, missing covariate information or outliers might cause model

selection criteria to favour models with more complex structures than warranted. Therefore,

we choose the 3-state HMM. The algorithm allocates labels arbitrarily, so to compare across

models we relabelled the states, such that state 1 represents the shortest and shallowest dives,

which we interpret as near-surface travelling, social activities and resting, state 2 represents

medium long and deep dives, which we identify with a feeding state for prey located at

medium depths, and state 3 represents the deepest and longest dives, which we identify with a

feeding state for prey located at deep depths.

The empirical correlations between response variables in the full data set are small for MD

and PD (0.046), and for DT and PD (0.042), only the correlation between MD and DT is sig-

nificant (0.86). If the data set is split into three subsets according to MD, namely for MD

between 20 and 50 m, for MD between 50 and 350 m, and for MD above 350 m, these results

still hold. All correlations involving PD in all groups are less than 0.11 in absolute values,

whereas the correlations between MD and DT are 0.27, 0.58 and 0.41, respectively. We there-

fore only assumed dependence between MD and DT. This improved convergence and run-

time. To check that this assumption is reasonable, covariate model 1 with 3 states was fitted to

the fully correlated log-normal model, and all estimated correlations with PD were smaller

than 0.14, except for state 2, where it was around 0.5. The other estimates did not change com-

pared to a model with only correlation between MD and DT.

We tried a total of 14 covariate models, listed in S1 Table in the Supporting Information.

Here, we only include the best model based on the AIC criteria (model 1), and 3 more models

for illustration (Table 2).

Model 1 has diurnal effects on all transition probabilities, and nonlinear effects of τt and dt
on some of the transition probabilities. The covariate dt counts number of deep dives in a row,

Table 1. Complexity of models. Runtimes and number of variables for different state distributions and for 2, 3 and 4

states for covariate model 1. Runtimes are on Intel Xeon E5-2697v2 @ 2.7 GHz.

No. of variables Range of runtime Average of runtime

Correlated log-normal

2-state 28 0.9–3 (min) 1.9 (min)

3-state 63 2.25–15 (min) 7.3 (min)

4-state 112 1–2.4 (hrs) 1.6 (hrs)

Correlated gamma

2-state 28 1.14–9.30 (min) 5.65 (min)

3-state 63 17.25–86.81 (min) 54.88 (min)

Independent log-normal

2-state 26 0.11–3.66 (min) 1.28 (min)

3-state 60 3–12.56 (min) 5.7 (min)

4-state 108 1–3 (hrs) 1.88 (hrs)

Independent Gamma

2-state 26 1.58–3.57 (min) 2.43 (min)

3-state 60 11.81–26.35 (min) 15.53 (min)

https://doi.org/10.1371/journal.pcbi.1006425.t001
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and is therefore around 0 when not in state 3. This covariate therefore carries no information

unless in state 3, and only enters in η31 and η32. Likewise, τt is expected to be around 0 when in

state 3, and therefore only enters ηij for i = 1 or 2. Model 2 only has diurnal effects. Model 3

has effects of the dive covariates, but only diurnal effects in state 3. Finally, model 4 has only

dive effects and no diurnal effects.

Table 3 lists the model selection results from the optimization. We use AIC to select the

best model, which is highlighted in bold. The correlated log-normal model is clearly preferred

above the other models, with huge AIC differences. The dependent models are clearly pre-

ferred above the independent models, and the log-normal distribution is clearly preferred

above the gamma distribution. Models with ΔAIC larger than 10 have essentially no support in

the data compared to the best model [24]. Model 1 is the best among the tested models for all

state distribution models, which balance accuracy and complexity of the model. The marginal

fit of covariate model 1 is illustrated in Fig 5 for the four state distributions, where the black

curves provide the overall distributions of the three response variables, as well as the distribu-

tions within each state. The fits look convincing for MD and DT, whereas the models capture

the bimodality of PD less well. Note that the splitting into states 1 and 2 depends on the state

distributions, whereas the distributions of state 3 are approximately the same for all state distri-

butions. Thus, the classification of behavioral states will depend on the chosen state distribu-

tion mainly for small and medium dives.

To check the fit of the model beyond what is presented in Fig 5, we calculated the pseudo-

residuals [9] and made qq-plots (Fig 6) for the correlated log-normal model with m = 2, 3 and

4 states. The other state distributions give similar qq-plots, and are therefore omitted. A slight

improvement is observed when passing from 2 to 3 states, in particular for PD. The fit does

not improve when passing from 3 to 4 states. The fit is acceptable for MD and DT, maybe

except for a too small lower tail for the MD. This is probably due to the threshold of a depth of

Table 2. Different models for covariate effects on the transition probabilities between behavioural states. The predictors ηij relate to the transition probabilities as

given in Eq (7). The spline effects of hour are denoted byHt
ij ¼

P
kd
ðkÞ
ij htk, of τt by Tt

ij ¼
P

ky
ðkÞ
ij stk, and of dt by Dt

ij ¼
P

kz
ðkÞ
ij dtk for k = 1, 2, 3 and i, j = 1, 2, 3; i 6¼ j. A list of all

explored models can be found in S1 Table in the Supporting Information.

Predictors in the transition probabilities

Model η12(t) η13(t) η21(t) η23(t) η31(t) η32(t)
1 a00 þ Tt

12
þHt

12
a01 þ Tt

13
þHt

13
b00 þ Tt

21
þHt

21 b01 þ Tt
23
þHt

23
g00 þ Dt

31
þHt

31
g01 þ Dt

32
þHt

32

2 a00 þHt
12

a01 þHt
13

b00 þHt
21

b01 þHt
23

g00 þHt
31

g01 þHt
32

3 a00 þ Tt
12

a01 þ Tt
13

b00 þ Tt
21 b01 þ Tt

23
g00 þ Dt

31
þHt

31
g01 þ Dt

32
þHt

32

4 a00 þ Tt
12

a01 þ Tt
13

b00 þ Tt
21 b01 þ Tt

23
g00 þ Dt

31
g01 þ Dt

32

https://doi.org/10.1371/journal.pcbi.1006425.t002

Table 3. Model selection results. Differences in AIC values, ΔAIC = AIC—AICmin, between the different models with

3 hidden states, where AICmin is the value of the model with the lowest AIC. The best fit is given by the minimum AIC.

For all the tested state distributions, covariate model 1 was preferred, and for all covariate models, the dependent log-

normal state distribution was preferred. Because the runtimes for the correlated gamma model are high, only Model 1

was fitted. The best model is highlighted in bold. np: number of parameters.

Independent Gamma

distribution

Independent Log-

normal distribution

Correlated Gamma

distribution

Correlated Log-

normal distribution

Model np ΔAIC np ΔAIC np ΔAIC np ΔAIC

1 60 5050.5 60 2309.1 63 1901.9 63 0

2 42 5386.9 42 2652.4 45 - 45 256.0

3 48 5096.5 48 2353.2 51 - 51 34.3

4 42 5194.4 42 2451.9 45 - 45 166.9

https://doi.org/10.1371/journal.pcbi.1006425.t003
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20m in the definition of a dive. The PD is less well fitted, especially in the lower tail, which

could also be partly due to the cut-off threshold of 20m in the definition of PD. It is acceptable

for 3 and 4 states.

Fig 7 illustrates the estimated covariate effects for the optimal model, the correlated log-nor-

mal state distributions with covariate model 1. Parameter estimates and confidence intervals

can be found in S2 and S3 Tables in the Supporting Information.

The covariate τt indicates the time passed since last deep dive. We expect that τt has impacts

on states 1 and 2, but not on state 3 (which is the case for the selected model). In the left panel

of Fig 7A the effect of τt is illustrated. The transition probabilities do not seem to depend much

on τt, except for the probability of changing from state 1 to state 3. The probability is higher

for small values of τt, and decreasing fast towards 0 for larger values. This is not what was

expected, but might reflect the following. When short time has passed since last deep dive, it

was probably also a short time since the whale was in state 3. Thus, it reflects that the whale is

still in an overall behavioral state 3, but just had a short break in state 1. This phenomenon can

be seen in Fig 8 where the state decoding is shown for 12 representative hours. It is seen that

after (at least) six dives in state 3, the whale changes to a few shallow dives for a short time, and

then continues with another three dives in state 3. When a little longer time passes, the whale

has effectively stopped diving deep, and the probability of a change to state 3 becomes smaller.

Fig 6. Quantile-quantile residual plots. QQ-plots of forecast pseudo-residuals from covariate model 1 with correlated log-normal state

distribution.

https://doi.org/10.1371/journal.pcbi.1006425.g006
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Fig 7. Covariate effects. A: Transition probabilities between behavioural states depending on covariates related to deep dives of correlated log-normal

model 1, at approximately 12 pm. B: Transition probabilities depending on diurnal effects in model 1 with correlated log-normal state distributions,

calculated for τt = 0.58 and dt = 0 (the medians).

https://doi.org/10.1371/journal.pcbi.1006425.g007

Fig 8. State decoding close-up. The estimated hidden state per dive for 12 hours of the data, starting on 22 September 2013 at 14:18:39.

https://doi.org/10.1371/journal.pcbi.1006425.g008
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Then, when long time has passed, we expect the transition probability to increase, which is not

what is estimated. However, there are few large observations of τt: 75% of the values are below

2.8 hours, and 90% are below 7.8 hours. Therefore, the estimates of covariate effects for large

values are unreliable. The effect of dt is illustrated in the right panel of Fig 7A. As expected, for

values above 20 dives in a row, the probabilities to exit state 3 increase with increasing dt. How-

ever, the data is sparse for large values of dt and estimates might not be trusted: more than half

are 0, 75% are 2 or smaller, and 90% are 8 or lower. The probability of changing to state 1 is

much higher than the probability of changing to state 2 after a period in state 3.

Fig 7B shows the diurnal effects on the transition probabilities. Changing from state 3 to 2

has highest probability around midnight, whereas changing from state 2 to 3 has highest prob-

ability around 6 am. Changing to state 1 has highest probability around noon. The transition

probabilities from state 1 do not depend much on diurnal effects.

Table 4 lists the estimated means and standard deviations of the four state distributions.

Means and standard deviations of maximum depth are estimated larger for both state 1 and

state 2 with the correlated models compared to the independent models, whereas all models

estimate mean and variances approximately the same for state 3. Thus, taking into account the

dependence between the two state variables reveals more variable diving patterns (i.e., larger

variance within states), unless the narwhal is doing deep dives in state 3, where the need for

regular breathing do not allow the whale to make detours. In general, the distributions of the

response variables within states change depending on the assumed state distributions, and

whether correlation is accounted for or not. To understand the classification of behavioural

states provided by the HMM, we also added the empirical measures from the data decomposed

into three subsets according to maximum depth: state 1 defined as dives between 20 and 50m,

state 2 defined as dives between 50 and 350m, and state 3 for dives of more than 350m. This

shows that none of the HMMs classifies the dives only according to depth, since these empiri-

cal measures differ from all the estimated distributions. Thus, the HMMs might reveal more

complex behavioural states than given by the diving depths.

The Viterbi algorithm classifies each dive to one of the three hidden states. The classifica-

tion depends on the model, but all models roughly group dives according to maximum depth.

One goal of comparing models is to access if conclusions on diving behaviour expressed

through the decoded classes of the dives differ between models. If they all classify the same, it

does not matter which model we use, maybe except for the estimation of covariate effects. If

the classification differ from model to model, it is important to choose the statistically best

model, measured from AIC, qq-plots, runtimes and biological interpretability.

Fig 9 shows the decoded hidden states for Model 1 with dependent log-normal state distri-

bution. The correlated log-normal model estimates that the narwhal spends around 43.7% of

its dives, corresponding to 28.8% of the time in State 1, which encompasses dives down to

793m of durations up to 28 minutes. This is a large value for the surface state, but it is only the

extreme tail of the distribution, and is represented by a single dive. It reflects that the log-nor-

mal distribution has heavier tails than the gamma distribution, and that the behavioural states

are more complex than what can be explained only by maximum depth. Of the time spent in

state 1, only 15.9% of the time is spent diving, the rest of the time the whale is at the surface.

The narwhal spends around 22.4% of its dives, corresponding to 19.2% of the time, in medium

depths of between 22.5m and 836m and durations between 0.8 and 21.3 minutes. Also here, a

few deep dives are decoded as belonging to state 2. Of the time spent in state 2, 10.6% of the

time is spent diving, the rest of the time the whale is at the surface. Finally, 33.9% of dives,

corresponding to 52.1% of the time, are spent in state 3 at depths between 243m and 910.5m
and durations between 7.2 and 19.5 minutes. Of the time spent in state 3, 28.9% of the time is

spent diving, the rest of the time the whale is at the surface. Fig 8 illustrates a close-up of the
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Table 4. Summary measures of Model 1 with 3 states. Means and standard deviations based on correlated Log-nor-

mal, correlated Gamma, independent Log-normal and independent Gamma distribution. MD: Maximum Depth; DT:

Diving Time; PD: Post-Dive duration. E: mean; SD: standard deviation; Corr1: Correlation between MD and and DT.

Corr2: Correlation between MD and and PD. Corr3: Correlation between DT and and PD. The empirical distribution

is the empirical measures in three subgroups of the data classified according to MD, state 1: MD between 20 and 50 m,

state 2: MD between 50 and 350 m, state 3: MD above 350 m.

State 1 State 2 State 3

Correlated Log-normal distribution

EMD 51.04 174.19 479.29

SDMD 57.54 109.09 81.36

EDT 5.05 6.54 11.79

SDDT 2.61 2.52 1.65

EPD 7.56 2.58 6.93

SDPD 14.85 1.23 7.45

Corr1 0.56 0.81 0.46

Correlated Gamma distribution

EMD 88.46 112.37 471.81

SDMD 78.60 153.96 83.03

EDT 5.50 5.95 11.60

SDDT 2.49 3.48 1.72

EPD 2.19 16.03 5.36

SDPD 0.87 20.43 2.29

Corr1 0.59 0.80 0.53

Independent Log-normal distribution

EMD 42.68 150.29 477.37

SDMD 34.53 89.87 83.50

EDT 4.37 7.00 11.81

SDDT 2.11 2.07 1.70

EPD 7.64 2.66 7.18

SDPD 14.77 1.25 8.99

Independent Gamma distribution

EMD 39.47 133.14 474.87

SDMD 25.86 87.27 85.80

EDT 4.10 6.85 11.77

SDDT 1.81 2.23 1.72

EPD 8.15 2.55 7.34

SDPD 15.13 1.12 9.65

Empirical distribution

EMD 30.87 143.52 484.67

SDMD 8.45 86.16 77.14

EDT 4.25 6.73 11.83

SDDT 2.04 2.43 1.72

EPD 7.07 4.43 7.18

SDPD 13.99 8.45 9.44

Corr1 0.27 0.58 0.41

Corr2 -0.11 0.07 0.05

Corr3 -0.01 0.08 0.06

https://doi.org/10.1371/journal.pcbi.1006425.t004
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decoding of dives for an example period of 12 hours. The correlated model thus decodes a few

of the deep dives as pertaining to states 1 and 2, probably because of these dives taking longer

time than the deep dives decoded as state 3.

Apparently the whale could stay in state 1 and 2 for long periods (> 24 hours) without tran-

siting to state 3, and it even showed a pause of almost 3 days without deep dives, see Fig 9 for

dives 1345-1894. This indicates that feeding occurs infrequently and that narwhals at least dur-

ing summer and fall may have extended periods without feeding activity (see also [6]). How-

ever, the median of these pauses without state 3 dives was 44 minutes and the mean was 2

hours.

Discussion

In this study, we investigate different multivariate HMMs with covariate effects for modelling

the diving activity of a narwhal in the vertical dimension in the water column. Although nar-

whals show relatively little behavioural plasticity [6, 7, 16], the present analysis is based on a

sample of only one individual and there is therefore obvious limits to how far reaching conclu-

sions that can be drawn from the diving behaviour of this individual. However, the value in

Fig 9. State decoding. The estimated hidden state per dive for each of the three observed variables under covariate model 1 and state distribution the

correlated log-normal. The longest pause of no deep dives starts from the 1345th dive until the 1894th dive, and it lasts approximately 2 days and 17.5

hours.

https://doi.org/10.1371/journal.pcbi.1006425.g009
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the present analysis is the extraordinarily long data set and it is therefore also useful for exam-

ining the application of HMM methods as a tool for analyzing ontogenetic diving activity. The

value of the sample includes the option for describing diurnal patterns in diving behaviour,

during the fall migration.

We extend the existing HMMs for diving behaviour of marine mammals to allow for

dependence between state distributions, and show that the dependence has some impact on

the conclusions drawn about the diving behaviour. We find that statistically the correlated

model outperforms the independent model, that the log-normal model outperforms the

gamma model, and more importantly, conclusions on the diving behaviour differ between the

models. The main differences are that the correlated models estimate more variable state dis-

tributions of MD and DT compared to the uncorrelated models. Thus, a major biological

insight from the analysis of the correlated model is that variability is larger in behavioural

states 1 and 2, but not in state 3. In the dependent log-normal model 56.3% of the dives are for

feeding, compared to 60.5% in the independent log-normal model, under the assumption that

states 2 and 3 in fact are representing feeding states in both models. Even if it is only a propor-

tion of the dives that are not for feeding, it can be assumed that it is approximately the same

proportion for the correlated and the independent models, and it is still a relatively large pro-

portion of the diving effort that is allocated to feeding activities. This provides an important

ecological insight that is useful when comparing feeding activities for whales inhabiting differ-

ent ocean parts with different prey availability. Finally, ignoring the dependence between

response variables leads to wrongly estimated standard deviations on parameter estimates, and

thus confidence intervals are no longer valid.

The correlations between the post-dive duration and diving depth and duration are found

to be vanishing. However, the post-dive response variable probably covers different behaviours

that can not be distinguished from this data, such as recovering from a deep dive, resting

between bouts of dives, social activities, travelling, etc.

Direct observations of feeding events were limited to the first week of the diving data but

the depths where feeding events were detected served as a valid proxy for the depth threshold

between behavioural state 2 and state 3. The observation that feeding events involve deep dives

(� 350m) is also supported by studies of the buzzing activity during dives to different depths

for narwhals travelling in the same area and time of the year as the whale included in this study

[7].

Transition from state 1 to presumed feeding activity is more likely to be to state 3 with deep

dives, and rarely goes to state 2 from state 1. Diving activity in state 3 usually last for a series of

dives (5-10) perhaps indicating that specific layers of prey is being detected and explored for a

series of dives before the whale needs to spend an extended period at the surface. The post dive

time is typically around 6.9 minutes after a state 3 dive, whereas it is typically only 2.6 minutes

after a state 2 dive. The whale probably needs to spend more time at the surface to recover

from nitrogen tissue tension following a longer breath-hold diving activity. Williams et al.

(2011) [25] calculated that the oxygen stores in tissues from narwhals of similar size as the one

in this study would support dives of less than 20 min and that energy saving during gliding on

descent might increase this calculated aerobic dive limit to up to 24 min. The deep dives in

state 3 in this study seem to be in good agreement with these physiological limitations.

Even though detailed dive information supplemented by data on feeding events have been

available for this analysis it may still not be adequate for describing the important drivers of

diving behaviour. Both physiological constrains and reproductive state as well as environmen-

tal conditions may influence the diving activity to an extent that cannot be fully discerned in

HMM analysis of dive series. For logistical reasons it is very difficult if not impossible to obtain

information on all factors that affect the diving behaviour. However, the analysis of dive series
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provides a minimal insight into the integrated effect of the various factors driving the diving

behaviour and the major advantage of the HMM analysis probably relies in the objective inter-

and intra-specific comparison of diving activity. This study demonstrated the usefulness of

HMMs for gaining insight to the hidden structures of dive patterns, something that is difficult

to achieve with traditional statistics. It will be important to apply HMM techniques to larger

data sets of diving activity from several whales to estimate how effective HMMs are for provid-

ing broader ecological insight to energetics and multispecies effects of whale predation.
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