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Abstract

Recently, a growing number of biological research and scientific experiments have demon-

strated that microRNA (miRNA) affects the development of human complex diseases. Dis-

covering miRNA-disease associations plays an increasingly vital role in devising diagnostic

and therapeutic tools for diseases. However, since uncovering associations via experimen-

tal methods is expensive and time-consuming, novel and effective computational methods

for association prediction are in demand. In this study, we developed a computational model

of Matrix Decomposition and Heterogeneous Graph Inference for miRNA-disease associa-

tion prediction (MDHGI) to discover new miRNA-disease associations by integrating the pre-

dicted association probability obtained from matrix decomposition through sparse learning

method, the miRNA functional similarity, the disease semantic similarity, and the Gaussian

interaction profile kernel similarity for diseases and miRNAs into a heterogeneous network.

Compared with previous computational models based on heterogeneous networks, our

model took full advantage of matrix decomposition before the construction of heterogeneous

network, thereby improving the prediction accuracy. MDHGI obtained AUCs of 0.8945 and

0.8240 in the global and the local leave-one-out cross validation, respectively. Moreover,

the AUC of 0.8794+/-0.0021 in 5-fold cross validation confirmed its stability of predictive per-

formance. In addition, to further evaluate the model’s accuracy, we applied MDHGI to four

important human cancers in three different kinds of case studies. In the first type, 98%

(Esophageal Neoplasms) and 98% (Lymphoma) of top 50 predicted miRNAs have been

confirmed by at least one of the two databases (dbDEMC and miR2Disease) or at least one

experimental literature in PubMed. In the second type of case study, what made a difference

was that we removed all known associations between the miRNAs and Lung Neoplasms

before implementing MDHGI on Lung Neoplasms. As a result, 100% (Lung Neoplasms) of

top 50 related miRNAs have been indexed by at least one of the three databases (dbDEMC,

miR2Disease and HMDD V2.0) or at least one experimental literature in PubMed. Further-

more, we also tested our prediction method on the HMDD V1.0 database to prove the appli-

cability of MDHGI to different datasets. The results showed that 50 out of top 50 miRNAs

related with the breast neoplasms were validated by at least one of the three databases

(HMDD V2.0, dbDEMC, and miR2Disease) or at least one experimental literature.
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Author summary

Identifying potential miRNA-disease associations enhances the understanding towards

molecular mechanisms and pathogenesis of diseases, which is beneficial for the develop-

ment of diagnostic/treatment tools for diseases. Compared with traditional experiment

methods, computational models can help experimenters reduce the cost of money and

time. In order to computationally predict potential miRNA-disease associations, we devel-

oped MDHGI by combining the sparse learning method with the heterogeneous graph

inference method. We performed MDHGI on different database and the experiment

results indicated that MDHGI had significant advantages over previous methods both in

leave-one-out cross validation and 5-fold cross validation. Besides, we also carried out

three different kinds of case studies on four important human complex diseases to further

demonstrate the prediction accuracy of MDHGI. In consequence, 98%, 98%, 100% and

100% out of the top 50 candidate miRNAs for the four diseases were confirmed by differ-

ent databases or experimental literatures in PubMed, respectively. Thus, it could be con-

cluded that MDHGI could make reliable predictions and should serve as an effective tool

for predicting potential miRNA-disease associations.

Introduction

MicroRNA (miRNA) are one class of important short noncoding RNA (~22nt) molecules that

mostly inhibit gene expression at the post-transcriptional level [1–4]. In 1993, lin-4 was the

first miRNA detected as a result of research on the timing of C. elegans larval development [5].

Unlike conventional protein coding genes, lin-4 coded for a 22 nucleotide regulatory RNA

rather than a protein [5,6]. Since then, thousands of miRNAs have been discovered in many

living organisms, and currently 2588 miRNAs in the human genome have been annotated [7].

Because each miRNA is probably able to control the expression of hundreds of target genes,

the whole miRNA pathway is a critical mechanism for gene expression control [2,8–13].

Recently, more and more studies have shown that miRNAs play critical roles in diverse

important biological processes. Therefore, it is no surprise that miRNA could be associated

with cancers [14,15] and other kinds of diseases [16]. As indicated by increasing evidences,

miRNAs are emerging as novel potential biomarkers or diagnostic/therapeutic tools for dis-

eases [17–22]. For example, miR-708 affects the progress of bladder carcinoma through direct

inhibition of Caspase-2 [23]. MiR-29c down-regulation results in derepression of its target

DNA methyltransferase 3a, which promotes the development of ischemic brain damage [24].

Another example is that let-7b expression has a positive correlation with patient age

(R = 0.472; p<0.001) [25]. Higher Nuclear opalescence or cataract scores for Nuclear color

(N), Cortical (C) and Posterior (P) was discovered positively associated with higher expression

of let-7b in patients with age-related cataracts (p<0.001) [25]. Identifying potential miRNA-

disease associations enhances the understanding towards molecular mechanisms and patho-

genesis of diseases. As a biomarker, miRNA can be used for disease diagnosis; and as drug tar-

gets, miRNAs can be applied to disease treatment. Since carrying out experiments is an

expensive and time-consuming process, only a small number of miRNA-disease associations

have been confirmed by traditional experimental approaches. Proposing computational mod-

els to predict disease-related miRNAs is a worthful supplement to experiments. Researchers

should spare no effort to excogitate a more accurate prediction method so that reasonable can-

didates can be provided for future biological experiments [26].

MiRNA-Disease Association prediction
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In recent years, several computational methods have been developed to predict potential

miRNA-disease associations and some of them performed well [27–33]. Based on the assump-

tion that functionally related miRNAs are more likely to be associated with diseases which have

similar phenotypes, Jiang el al. [34] proposed a network-based approach by combining miRNA

similarity network, disease similarity network with miRNA-disease association network. After

that, based on the hypergeometric distribution, a scoring system was constructed to acquire the

scores of potential miRNA-disease associations. Focusing on the functional link between

miRNA targets and disease genes, Shi et al. [35] devised a computational model by performing

random walk on a protein-protein interaction (PPI) network and focusing on the functional

links between miRNAs targets and diseases genes in PPI network. Mørk et al. [36] developed

miRNA-Protein-Disease (miRPD) association prediction model by linking miRNAs to diseases

via the underlying proteins involved. However, these methods did not exhibit a commendable

predictive performance because their performance depended largely on miRNA-target interac-

tions which have a high ratio of false-positive and false-negative samples.

Some other computational models without relying on miRNA-target interactions have

been proposed in the past few years. Xuan et al. [37] developed the method called Human Dis-

ease-related MiRNA Prediction (HDMP) to predict miRNAs associated with diseases. The

association score between a miRNA and a disease was computed by summing up the sub-

scores for the miRNA’s k neighbors, and the sub-score for a neighbor was calculated via multi-

plying the weight of the neighbor with the functional similarity between the neighbor and the

miRNA. However, HDMP could not be applied to new diseases without any known associated

miRNAs because predictions were made mainly from the information of miRNAs’ neighbors.

Based on the global similarity measures, Chen et al. [38] developed a method named Random

Walk with Restart for MiRNA-Disease Association prediction (RWRMDA) by implementing

random walk on the miRNA functional similarity network to prioritize candidate miRNAs for

disease of interest. Nonetheless, this method was unable to predict miRNAs associated with

the diseases without any known related miRNAs. Another computational model named MIR-

NAs associated with Diseases Prediction (MIDP) was developed by Xuan et al. [39] based on

random walk on a miRNA network derived from miRNA-associated diseases and semantic

similarity of their associated diseases. The model assigned higher transition weights to labeled

nodes than unlabeled nodes, which efficiently exploited the prior information of nodes and

the various ranges of topologies. Besides, since they extended the walking on a miRNA-disease

bilayer network, MIDP could also be used to prioritize candidate miRNAs for diseases without

any known associated miRNAs. Later, a method named Matrix Completion for MiRNA-Di-

sease Association prediction (MCMDA) [40] was proposed to predict potential associations by

utilizing the matrix completion algorithm to update the adjacency matrix. However, the algo-

rithm also suffered from a limitation of not being applicable to new diseases and new miRNAs.

Recently, Chen et al. [41] proposed another model called Within and Between Score for

MiRNA-Disease Association prediction (WBSMDA). After integrating similarity for miRNAs

and diseases, within-score and between-score were calculated and combined to obtain the

final score for potential miRNA-disease association inference. Later, Chen et al. [42] presented

a model of Heterogeneous Graph Inference for MiRNA-Disease Association prediction

(HGIMDA) by combining the integrated miRNA similarity network, the integrated disease

similarities network and the known miRNA-disease associations network into a heterogeneous

graph. After that, they constructed an iterative equation by summarizing all paths with the

length equal to three from which they can infer potential association between a disease and a

miRNA.

In addition, several other computational models were based on machine learning algo-

rithms. For example, based on the features which were extracted from MiRNA Target-

MiRNA-Disease Association prediction
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Dysregulated Network (MTDN) model by assessing topological properties of miRNAs and

changes in miRNA expression, Xu et al. [43] implemented a Support Vector Machine (SVM)

classifier to distinguish positive miRNA-disease associations from negative ones. However,

even till today it is still difficult to obtain negative samples, and this fact seriously decreased the

prediction accuracy of MTDN. Chen et al. [44] further presented Regularized Least Squares

for MiRNA-Disease Association prediction (RLSMDA) method based on semi-supervised

learning in the miRNA space and the disease space. What is worth mentioning is that RLSMDA

could identify related miRNAs for diseases without any known associated miRNAs. Chen et al.
[45] developed another computational model called restricted Boltzmann machine for multiple

types of miRNA-disease association prediction (RBMMMDA), the core of which was restricted

Boltzmann machine (RBM). The model built a two-layer undirected graphical model contain-

ing layers of visible and hidden units. Compared to previous models, RBMMMDA could obtain

not only new miRNA-disease associations but also the corresponding association types. The

method named Ranking-based KNN for miRNA-Disease Association prediction (RKNNMDA)

[46] was first implemented to search for k-nearest neighbors both for miRNAs and diseases by

using the K-Nearest Neighbors (KNN) algorithm. Then these k-nearest neighbors were

reranked according to the SVM ranking model. Finally, weighted voting was carried out on the

ranking results to obtain the final ranking of all potential miRNA-disease associations. The

drawback of RKNNMDA was that bias might be caused to miRNAs with more known associ-

ated diseases.

Identifying miRNAs associated with diseases is beneficial for the development of diagnos-

tic/treatment tools for diseases. Using traditional experimental methods for association detec-

tion is demanding and so computational models for miRNA-disease association prediction are

needed to complement to experiments. Because previously developed computational methods

have some aforementioned limitations, it is essential to develop a new method that exploits

more useful information and make more reliable predictions. However, there are also some

difficulties of predicting potential disease-related miRNAs, such as the rare known miRNA-

disease associations, the unavailable negative miRNA-disease associations, the relatively lim-

ited biological datasets about miRNAs, and the universality to new diseases without any

known associated miRNAs as well as new miRNAs. What’s more, considering that some of the

existing computational models are only based on one of the matrix decomposition algorithm

and network algorithm, it is of great significance to fully take advantage of these two methods

to develop a new calculation model for miRNA-disease association prediction. In this study,

we developed an effective computational model of Matrix Decomposition and Heterogeneous

Graph Inference for miRNA-disease association prediction (MDHGI). We first rebuilt a new

adjacency matrix by using Sparse Learning Method (SLM) to decompose the original adja-

cency matrix obtained from known miRNA-disease associations. Then we combined the

miRNA functional similarities network, the disease semantic similarities network, the Gauss-

ian interaction profile kernel similarities network, and the new adjacency matrix into a hetero-

geneous graph. Finally, we implemented normalization on integrated similarity for miRNAs

and diseases and iteration algorithm on the graph to obtain a predicted association score

scores for all miRNA-disease pairs. To evaluate the effectiveness of MDHGI, global and local

Leave-One-Out Cross Validation (LOOCV) as well as 5-fold cross validation were carried out.

The AUCs of global and local LOOCV were respectively 0.8945 and 0.8240, and the model

obtained an average AUC of 0.8794+/-0.0021 in 5-fold cross validation. In the case studies of

four important human cancers, 49, 49, 50, and 50 out top 50 predicted miRNAs for Esophageal

Neoplasms, Lymphoma, Lung Neoplasms, and Breast Neoplasms were respectively confirmed

by different databases or experimental literatures in PubMed. These results proved that

MDHGI was effective in predicting potential miRNA-disease associations and it had

MiRNA-Disease Association prediction
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significant advantages over previous methods. Our main contribution in this article is to per-

fect the HGIMDA model and further improve its accuracy by taking full advantage of the two

methods (matrix decomposition and network algorithm). Besides, the idea presented in this

article may have new inspiration for other researchers and the model we proposed is also a

supplement to methodological research.

Materials and methods

Human miRNA-disease associations

Actually, since the data in the databases is derived from the collected experimental literatures,

it is a common practice for researchers to utilize known miRNA-disease associations data in

HMDD as the training set. As previous studies have done [27,39,47–49], in this paper, the

known miRNA-disease associations dataset was extracted from the HMDD V2.0 database.

The dataset contained 5430 validated associations between 495 miRNAs and 383 diseases. To

facilitate subsequent calculations, we constructed an adjacency matrix A 2 Rm×n to store the

known miRNA-disease associations and other miRNA-disease pairs. In the adjacency matrix

A, m and n are respectively defined as the number of miRNAs and diseases. Besides, element A
(ri,dj) is set to be 1 if miRNA ri is associated with disease dj, otherwise 0 [42].

Aij ¼

(
1; if miRNA ri associated with disease dj
0; otherwise

ð1Þ

Disease semantic similarity model 1

In previous studies [50–54], many researchers made use of the DAG to describe a disease in

their calculation models. According to the National Library of Medicine (http://www.nlm.nih.

gov/), we can obtain the relationship of various diseases based on the disease Directed Acyclic

Graph (DAG) constructed from the MeSH descriptor of Category C. For example, for the

DAG of lung neoplasms (See Fig 1), ‘respiratory tract diseases’ points to ‘lung diseases’. All

nodes in the DAG are connected by a direct edge from a more general term, we call it parent,

to a more specific term, and we call it child [55]. Here, a disease D was described by DAG = (D,

T(D),E(D)), in which we defined all ancestor nodes of D and D itself as T(D) and the edge set

including the direct edges from parent nodes to child nodes as E(D). In DAG(D), the contribu-

tion of disease d to the semantic value of disease D was defined as:

(
D1DðdÞ ¼ 1 if d ¼ D

D1DðdÞ ¼ maxfD�D1Dðd0Þjd0 2 children of dg if d 6¼ D
ð2Þ

where Δ is the semantic contribution decay factor. Here, based on the previous literature [37],

we denoted the value of Δ to 0.5. Moreover, the semantic value of disease D was defined as:

DV1ðDÞ ¼
X

d2TðDÞ
D1DðdÞ ð3Þ

Since the larger part of DAG was shared by two diseases, the higher semantic similarity value

they would get, the semantic similarity score between disease di and dj were defined as follows:

SS1ðdi; djÞ ¼

X

t2TðdiÞ\TðdjÞ
ðD1di

ðtÞ þ D1dj
ðtÞÞ

DV1ðdiÞ þ DV1ðdjÞ
ð4Þ

MiRNA-Disease Association prediction
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Disease semantic similarity model 2

It is obvious that a disease which appears in less DAGs contributes to the semantic similarity

of disease at a high level. Considering the inexact approach in disease semantic similarity

model 1 that the contribution of diseases in the same layer of DAG (D) to the semantic value of

D were treated as the same. We defined the contribution of disease d in DAG(D) to the seman-

tic value of disease D as follows:

D2DðdÞ ¼ � log½the number of DAGs including t=the number of diseases� ð5Þ

We then defined the semantic similarity between disease di and dj in the similar way as the dis-

ease semantic similarity model 1.

SS2ðdi; djÞ ¼

X

t2TðdiÞ\TðdjÞ
ðD2di

ðtÞ þ D2dj
ðtÞÞ

DV2ðdiÞ þ DV2ðdjÞ
ð6Þ

DV2ðDÞ ¼
X

d2TðDÞ
D2DðdÞ ð7Þ

MiRNA functional similarity

Wang et al. [56] developed the MISIM method to calculate the miRNA functional similarity

between a miRNA pair (ri and rj). The whole process of MISIM can be divided into four steps.

In the first step, we need to identify the diseases set D(ri) (diseases associated with ri) and D(rj)
(diseases associated with rj) for miRNA ri and rj, respectively. Next, the semantic value of all

diseases in these two sets are computed according to the corresponding DAG. Third, the

Fig 1. The disease DAG of lung neoplasms. The addresses of its ancestors are shown in a DAG structure.

https://doi.org/10.1371/journal.pcbi.1006418.g001
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semantic similarity for each disease pairs between D(ri) and D(rj) can be calculated based on

their semantic value. Finally, the functional similarity of ri and rj is calculated based on the

semantic similarity obtained in step three. From the website http://www.cuilab.cn/files/

images/cuilab/misim.zip, we downloaded the miRNA functional similarity data. Then the

miRNA functional similarity matrix MS was constructed, in which the element MS(ri,rj) indi-

cated the similarity value between the miRNA ri and the miRNA rj.

Gaussian interaction profile kernel similarity

Based on the notion that functionally similar miRNAs are usually associated with similar dis-

eases, the Gaussian interaction profile kernel similarity can be constructed as another algo-

rithm for similarity measurement between two miRNAs/diseases [57,58]. It is obvious that the

ith row and jth column of adjacent matrix A respectively represents the information whether

the miRNA or the disease are associated with each of the diseases or the miRNAs. For conve-

nience, we denoted vector IV(ri) and IV(dj) to represent the ith row vector and jth column vec-

tor, respectively. Therefore, the Gaussian interaction profile kernel similarity of diseases and

miRNAs could be computed as follows:

GDðdi; djÞ ¼ expð� bdkIVðdiÞ � IVðdjÞk
2
Þ ð8Þ

GRðri; rjÞ ¼ expð� brkIVðriÞ � IVðrjÞk
2
Þ ð9Þ

where the adjustment coefficients βd and βr could be defined as follows:

bd ¼ b0d=
1

n

Xn

i¼1

kIVðdiÞk
2

 !

ð10Þ

br ¼ b0r=
1

m

Xm

i¼1

kIVðriÞk
2

 !

ð11Þ

where β0d and β0r are the original bandwidths and both of them were defined as 1 based on the

previous study [59].

Integrated similarity for miRNAs and diseases

The integrated disease similarity could be obtained through combining the disease semantic

similarity and the disease Gaussian interaction profile kernel similarity. What makes a differ-

ence to the integrated miRNA similarity is that if disease di and dj have their own DAG (i.e.

these two diseases have semantic similarity), then the final integrated similarity is the average

between SS and GD. Otherwise the integrated disease similarity equals to the value of Gaussian

interaction profile kernel similarity.

SSðdi; djÞ ¼
SS1ðdi; djÞ þ SS2ðdi; djÞ

2
ð12Þ

SDðdi; djÞ ¼

(
ðSSðdi; djÞ þ GDðdi; djÞÞ

2
di and dj have their own DAG

GDðdi; djÞ otherwise
ð13Þ

MiRNA-Disease Association prediction
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Furthermore, the integrated miRNA similarity could be obtained by combining the miRNA

functional similarity with miRNA Gaussian interaction profile kernel similarity:

SRðri; rjÞ ¼

(
ðMSðri; rjÞ þ GRðri; rjÞÞ

2
ri and rj has functional similarity

GRðri; rjÞ otherwise
ð14Þ

MDHGI

In this study, the proposed method, MDHGI, fully extends the advantages of matrix factoriza-

tion and network algorithm to make prediction for miRNA-disease associations. The flow

chart of the algorithm is shown in Fig 2.

Actually, the data we used to train our model are normally far from perfect. Considering

that, a portion of the miRNA-disease associations in the real data would be redundant, and

also some other miRNA-disease associations would be missing from the real data. Hence, the

adjacency matrix for miRNA-disease associations can be decomposed into two parts. The first

part is a linear combination of the original adjacency matrix and a low-rank matrix and the

second part is a sparse matrix with most entries being zeros and can be considered as the noise

or the outliers. The method is used to look for the lowest-rank matrix which is further utilized

to reconstruct a new adjacency matrix that will be used in the next calculation.

Firstly, we decomposed A as follows:

A ¼ AX þ E ð15Þ

Obviously, there were infinite many solutions for Eq (15). However, since we wished X to be of

Fig 2. Flowchart of MDHGI model to predict the potential miRNA-disease associations based on the known associations in HMDD V2.0 database.

https://doi.org/10.1371/journal.pcbi.1006418.g002
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low rank, where rank of a matrix was the maximum number of linearly independent column

(or row) vectors in the matrix, and E to be sparse, we could enforce the nuclear norm or trace

norm on X and sparse norm on E. Mathematically, Eq (15) could be thus relaxed as

min
X;E
kXk� þ akEk2;1 s:t: A ¼ AX þ E ð16Þ

where

kXk� ¼
X

i
siði:e:;si is the sigular values of XÞ ð17Þ

kEk2;1 ¼
Xn

j¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i¼1
ðEijÞ

2

q

ð18Þ

α is a positive free parameter which was used to balance the weights of low-rank matrix and

sparse matrix. Here, according to the existing method [60], the value of α was defined as 0.1.

Minimizing the trace norm of a matrix contributed to the lower-rank matrix, meanwhile the

sparse norm was capable of identifying noises and outliers.

If the matrix A in AX in the right side of Eq (16) is set as identity matrix, then the model is

degenerated to the robust PCA. Therefore, Eq (16) could also be regarded as a generalization

of the robust PCA [61,62]. Eq (16) could be rewritten into an equivalent problem as

min
X;E;J
kJk

�
þ akEk

2;1
s:t: A ¼ AX þ E;X ¼ J ð19Þ

The Eq (19) above, which is a constraint and convex optimization problem, can be solved by

off-the-shelf interior point solvers after being reformulated as a semidefinite program [63].

However, the interior point solvers are not suitable for large matrices since they rely much on

second-order information of the objective function. Thus, we should take advantage of both

the first-order information and the special properties of this class of convex optimization prob-

lems to overcome the scalability issue. The iterative thresholding (IT) algorithm, accelerated

proximal gradient (APG) algorithm, exact augmented Lagrange multipliers (EALM) algorithm

and inexact augmented Lagrange multipliers (IALM) algorithm are several methods to solve

the problem of Eq (19). However, for IT algorithm, as shown in the original literature [55], the

iteration process converges extremely slowly (about 104 iterations to converge). As for APG

algorithm, although the APG’s computing speed has improved when compared to IT algo-

rithm, it is still not as fast as IALM. Especially, the solution to Eq (19) obtained from the IALM

is much more accurate than that by APG. Moreover, even though the convergence rate of

EALM is as fast as IALM, the latter requires less number of partial SVDs. In general, the IALM

algorithm is a relatively more efficient algorithm to solve the problem of Eq (19). Thus, in this

paper, we utilized IALM [64] method by first converting Eq (19) to an unconstraint problem

and then minimizing this problem based on augmented Lagrange function such that

L ¼ kJk
�
þ akEk

2;1
þ trðYT

1
ðA � AX � EÞÞ þ trðYT

2
ðX � JÞÞ þ

m

2
ðkA � AX � Ek2

F þ kX

� Jk2

FÞ ð20Þ

where μ� 0 is a penalty parameter. The problem above could be solved by minimizing with

respect to J, X, and E, respectively. Besides, after fixing the other variables and then updating

the Lagrange multipliers Y1, Y2, Eq (20)would be settled. The detailed steps of how to solve Eq

(20) is shown in Fig 3.

We defined the solution of Eq (20) as X� and E�. If Aij represents the association between

miRNA ri and disease dj, then X� 2 Rn×n could be considered as a similarity matrix that

MiRNA-Disease Association prediction
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described the similarity between diseases. While if Aij represents the associations between dis-

ease di and miRNA rj (as the transposition of the adjacency matrix in Eq (15)), then X� 2 Rm×m

describes the similarity between miRNAs. After obtaining X�, the solution of Eq (20), we could

compute the new associations between each pair of miRNAs and diseases by projecting the

adjacency matrix onto the lower-dimensional space as

A� ¼ AX� ð21Þ

Fig 3. The illustration of the inexact ALM algorithm.

https://doi.org/10.1371/journal.pcbi.1006418.g003
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From the matrix A�, we reacquired the miRNA-disease associations information which

were further combined with the integrated similarity for miRNAs and diseases into a heteroge-

neous graph. By analyzing the heterogeneous graph, for disease d and miRNA m, we could fur-

ther define their potential association probability as follows if they had no known associations.

Pðm; dÞ ¼
Xnm

i¼1

Xnd

j¼1

SRðmi;mÞ
�A�ðmi; djÞ

�SDðdj; dÞ ð22Þ

According to the equation above, the potential association probability between miRNA m
and disease d could be calculated by summarizing all paths with the length equal to three (See

Fig 4). Moreover, considering the iteration of above process, we obtained iterative equation

through representing the equation as matrix multiplications.

Piþ1 ¼ a SR� Pi � SDþ ð1 � aÞ A� ð23Þ

Here, the decay factor a was denoted to 0.4 based on the previous study [65]. For the iteration,

we can treat this process like that every node with prior information disseminates the informa-

tion obtained in the previous iteration to its neighbors. Due to the relation between the end-

points and the probability of looking into an edge among the same end-points in a random

network with the same node degrees, the weight of an edge was normalized according to the

degrees of its end-points [66]. Based on the previous literature [65], miRNA-disease associa-

tion probability matrix P would converge when SR and SD were properly normalized utilizing

Eqs (24) and (25), respectively. Moreover, we have given the specific proof process as Theorem

1 in the S1 Text

SRðmi;mjÞ ¼
SRðmi;mjÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXnm

l¼1
SRðmi;mlÞ

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXnm

l¼1
SRðmj;mlÞ

q ð24Þ

SDðdi; djÞ ¼
SDðdi; djÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXnd

l¼1
SDðdi; dlÞ

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXnd

l¼1
SDðdj; dlÞ

q ð25Þ

Fig 4. The potential association probability between the miRNA m and the disease d which can be calculated by

summarizing all paths with the length equal to three (For example, m–m1–d1–d).

https://doi.org/10.1371/journal.pcbi.1006418.g004
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Here, we set the cutoff as 10−6. The iteration above would become stable when the change

between Pi and Pi+1 measured by L1 norm was less than the given cutoff.

In addition, for convenience, we have made a web server at http://chengroup.cumt.edu.cn/

tool/mdhgi/. After opening the website and selecting the disease name of interest in the box,

researchers will get the prediction results of potential disease-related miRNAs. For more

details, please see the website’s ‘Guide’.

Results

Performance evaluation

Here, we used two types of cross validation to evaluate the performance of MDHGI, namely,

LOOCV and 5-fold cross validation. LOOCV could be further divided into global and local

LOOCV, in which each known association was in turn considered to be the test sample and

the others were treated as the training samples. In global LOOCV, each of the known miRNA-

disease associations was in turn considered as the test sample and all unknown miRNA-disease

pairs were treated as candidate samples, while in local LOOCV, candidate samples only con-

tained those miRNAs without any known associations with the investigated disease in the test

sample. In 5-fold cross validation, we randomly divided all known miRNA-disease associa-

tions into five subsets with equal size. Then each subset was in turn considered as the test sam-

ple and the rest four subsets were treated as training samples. In the same way as LOOCV, all

unknown miRNA-disease pairs were regarded as candidate samples. Subsequently, we

obtained a predicted association score matrix by MDHGI, and ranked the score of each test

sample against the scores of the candidate samples. This partition-prediction-ranking proce-

dure was repeated 100 times to obtain a sound estimate of the mean and variance of MDHGI’s

prediction accuracy.

In each cross validation scheme, the model would be considered to successfully predict an

association if the ranking of a test sample was above a given threshold. Moreover, we drew a

receiver operating characteristics (ROC) curve through plotting the true positive rate (TPR,

sensitivity) versus the false positive rate (FPR, 1-specificity) at different thresholds. Sensitivity

referred to as the percentage of the test samples whose ranks surpassed the given threshold,

while specificity denoted the percentage of negative miRNA-disease associations whose ranks

were below the threshold. Then, we calculated the area under the ROC curve (AUC) to evalu-

ate the predictive performance of MDHGI. AUC = 1 would indicate that all test samples were

perfectly predicted, while AUC = 0.5 would mean the model only had random prediction per-

formance. As shown in Fig 5, MDHGI obtained an AUC of 0.8945 in global LOOCV and an

AUC of 0.8240 in local LOOCV. These results proved that MDHGI exhibited a sound perfor-

mance in predicting potential miRNA–disease associations. However, the AUCs for MaxFlow

[67], RKNNMDA [46], HGIMDA [42], RLSMDA [44], HDMP [68], WBSMDA [41], and

MCMDA [40] in global LOOCV were 0.8624, 0.7159, 0.8781, 0.8426, 0.8366, 0.8030, and

0.8749, respectively. In local LOOCV, these models’ AUCs were 0.7774, 0.8221, 0.8077, 0.6953,

0.7702, 0.8031, and 0.7718, respectively. In addition, the AUCs in local LOOCV for RWRMDA

[38], MIDP [39] and MiRAI [69] were 0.7891, 0.8196 and 0.6299, respectively. Both RWRMDA

and MIDP were not applicable to global LOOCV, because, based on random walk, they could

not uncover missing associations for all the diseases simultaneously. Moreover, MiRAI was also

not included in global LOOCV. In MiRAI, for a disease/miRNA associated with more miR-

NAs/diseases, the association scores between the disease/miRNA and its candidate miRNAs/

diseases tended to be higher. Therefore, the association scores obtained for different diseases

were not comparable. MiRAI had a low AUC because our training dataset was sparse. Since the

dataset only contained 5430 validated associations between 495 miRNAs and 383 diseases, the
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majority miRNAs/diseases were associated with only a few diseases/miRNAs. While in the orig-

inal literature [69], the dataset contained only 83 diseases with at least 20 known associated

miRNAs. As for 5-fold cross validation, in comparison with MaxFlow, RKNNMDA, RLSMDA,

HDMP, WBSMDA and MCMDA whose average AUCs were 0.8579+/-0.001, 0.6723+/-0.0027,

0.8569+/-0.0020, 0.8342+/-0.0010, 0.8185+/-0.0009 and 0.8767+/-0.0011, respectively, the aver-

age AUC for MDHGI was 0.8794+/-0.0021. This further confirmed the superior prediction

accuracy and the performance stability of our model.

In addition, we have supplemented seven experiments by assigning different weight param-

eters to miRNA-miRNA edges and disease-disease edges, while the weight for miRNA-disease

edges remains unchanged (See Table 1). The reason why we carried out these experiments is

Fig 5. The left graph shows the AUC of global LOOCV compared with HGIMDA, RLSMDA, HDMP, WBSMDA, and MCMDA. The right graph shows the

AUC of local LOOCV compared with HGIMDA, RLSMDA, HDMP, WBSMDA, MCMDA, RWRMDA, MIDP, and MiRAI. As a result, MDHGI achieved

AUCs of 0.8945 and 0.8240 in the global and local LOOCV, which exceed all the previous classical models.

https://doi.org/10.1371/journal.pcbi.1006418.g005

Table 1. Supplementary experiments with different weight parameters to miRNA-miRNA edges and disease-disease edges (bold fonts are original weights and

results).

The weight for miRNA-

miRNA edge

The weight for disease-

disease edge

The weight for miRNA-

disease edge

The AUC for Global

LOOCV

The AUC for Local

LOOCV

The AUC for 5-fold cross

validation

1 1 1 0.8945 0.8240 0.8794+/-0.0021

0.9 0.9 1 0.8925 0.8226 0.8774+/-0.0019

0.8 0.8 1 0.8903 0.8214 0.8751+/-0.0021

0.7 0.7 1 0.8881 0.8201 0.8724+/-0.0021

0.6 0.6 1 0.8859 0.8190 0.8708+/-0.0021

0.5 0.5 1 0.8839 0.8180 0.8681+/-0.0019

0.4 0.4 1 0.8822 0.8172 0.8666+/-0.0017

0.3 0.3 1 0.8807 0.8165 0.8650+/-0.0022

https://doi.org/10.1371/journal.pcbi.1006418.t001
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that we can make quantitative analysis for the reliability of the data (the miRNA functional

similarity and the disease semantic similarity). As shown in Table 1, with the diminution of

the weight for miRNA-miRNA edge and disease-disease edge, the values of the AUC for

Global LOOCV, Local LOOCV and 5-fold cross validation decreased. What is worth mention-

ing is that all of the three types of AUCs descended in a very slow way, which proved our mod-

el’s stability in a certain degree. From the results, we can conclude that the data of miRNA

functional similarity and disease semantic similarity we used are reliable.

Case studies

In order to further demonstrate the prediction accuracy of MDHGI, we carried out case stud-

ies on two important human complex diseases by prioritizing candidate miRNAs for the dis-

eases using our model with the training dataset from HMDD V2.0 [70]. Just like the validation

databases in some existing methods [27,39,47–49], we verified the top 50 predictions with two

other prominent miRNA-disease association databases, namely, dbDEMC [71] and miR2Di-

sease [72]. The first type of case study was implemented on Esophageal Neoplasms and Lym-

phoma. In our model, we utilized the known miRNA-disease associations in HMDD V2.0 as

the training set. After ranking all candidate miRNAs for each investigated disease based on

their predicted scores, the top 50 predicted miRNAs were picked out and verified in other two

prominent miRNA-disease association databases (i.e., dbDEMC and miR2Disease). Besides,

the results showed that 232 of the 5430 known miRNA-disease associations in HMDD V2.0

also existed in miR2Disease and 546 associations also existed in dbDEMC after comparing the

HMDD V2.0 with miR2Disease/dbDEMC. Nonetheless, since only candidate miRNAs (miR-

NAs unassociated with the investigated disease based on HMDD V2.0) for an investigated dis-

ease were ranked and verified, there was no overlap between the training samples and the

prediction lists. Hence, none of the top 50 predicted miRNAs existed in HMDD V2.0 and the

verification of miRNAs in the prediction lists was completely independent of HMDD V2.0.

Esophageal cancer is a commonly-diagnosed cancer arising from the esophagus—the food

pipe that runs between the throat and the stomach. Based on the estimates of the esophageal

cancer burden in the United States in 2017, the new cases and deaths from esophageal cancer

will be 16940 and 15690, respectively [73]. Recent research showed that the first miRNA we

predicted (hsa-mir-200b) suppresses invasiveness and modulates the cytoskeletal and adhesive

machinery in esophageal squamous cell carcinoma cells via targeting Kindlin-2 [74]. More-

over, the data provided by Chen et al. [75] offered the convincing evidence that combined

expression of hsa-mir-133a and hsa-mir-133b (2nd in the prediction list) might predict che-

mosensitivity of patients with esophageal squamous cell carcinoma (ESCC) undergoing pacli-

taxel-based chemotherapy which implied its importance in applying ‘personalized cancer

medicine’ in the clinical treatment of ESCC. Another example is that aberrant expression level

of hsa-mir-16 (3rd in the prediction list) could suppress cell apoptosis while promote growth

by regulating the reversion-inducing cysteine-rich protein with Kazal motifs (RECK) and the

ex-determining region Y-related high-mobility-group box transcription factor 6 (SOX6)

which play important roles in the pathogenesis of ESCC [76]. MDHGI was implemented to

identify potentially related miRNAs for Esophageal Neoplasms and ranked the miRNAs in

terms of their association scores. As a result, 10 out of the top 10, 18 out of the top 20, and 43

out of the top 50 predictions were manually confirmed in database dbDEMC and miR2disease

(See Table 2). Besides, to further confirmed our prediction results, we also manually verified

the top 50 predicted miRNAs in PubMed. The result showed that 49, 49 and 46 out of the top

50 predictions were respectively confirmed by at least one, two, and three experimental litera-

tures in PubMed (See S1 Table).
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Lymphoma is a group of blood cell tumors that develop from lymphocytes (a type of white

blood cell). Hodgkin lymphoma (HL) and non-Hodgkin lymphoma (NHL) are the two main

types of lymphoma [77]. Recent experimental studies showed that hsa-mir-223 (1st in the pre-

diction list) regulates cell growth and targets proto-oncogenes in mycosis fungoides/cutaneous

T-cell lymphoma [78]. Besides, it also has been verified that plasma hsa-mir-155, hsa-mir-203,

and hsa-mir-205 (2nd in the prediction list) are biomarkers for monitoring of primary cutane-

ous T-cell lymphomas (TCTL) [79]. Moreover, the study of Yang et al. suggested that hsa-mir-

10b (3rd in the prediction list) contributes to osteoblast differentiation through targeting B cell

lymphoma 6 (Bcl6) which provides a novel insight into understanding the molecular mecha-

nism underlying osteoblast differentiation and suggests a potential target for inhibiting bone

loss [80]. Taking lymphoma as the investigated disease and implementing MDHGI for poten-

tial miRNA-lymphoma association prediction, nine out of the top 10, 15 out of the top 20 and

44 out of the top 50 potential lymphoma-associated miRNAs were manually verified in data-

base dbDEMC and miR2disease (See Table 3). Furthermore, in the same way as the validation

of esophageal cancer, 49, 48 and 46 out of the top 50 predictions were respectively confirmed

by at least one, two and three experimental literatures in PubMed (See S2 Table).

To facilitate further validation and research, we have provided the complete prediction list

of potential miRNAs associated with all the 383 human diseases in HMDD V2.0, together with

the association scores predicted by MDHGI (See S3 Table).

Table 2. Prediction of the top 50 predicted miRNAs associated with Esophageal Neoplasms based on known associations in HMDD V2.0 database. The prediction

result was examined in dbDEMC and miR2Disease. The first column records top 1–25 related miRNAs. The third column records the top 26–50 related miRNAs.

miRNA Evidence miRNA Evidence

hsa-mir-200b dbDEMC hsa-mir-10a dbDEMC

hsa-mir-133b dbDEMC hsa-mir-182 dbDEMC

hsa-mir-16 dbDEMC hsa-mir-127 dbDEMC

hsa-mir-19b dbDEMC hsa-mir-320a unconfirmed

hsa-mir-429 dbDEMC hsa-mir-193b dbDEMC

hsa-mir-17 dbDEMC hsa-mir-27b dbDEMC

hsa-mir-125b dbDEMC hsa-mir-181b dbDEMC

hsa-mir-142 dbDEMC hsa-mir-29a dbDEMC

hsa-mir-1 dbDEMC hsa-mir-7 dbDEMC

hsa-mir-199b dbDEMC hsa-mir-191 dbDEMC

hsa-let-7d dbDEMC hsa-let-7f unconfirmed

hsa-mir-218 unconfirmed hsa-mir-124 dbDEMC

hsa-mir-195 dbDEMC hsa-mir-378a unconfirmed

hsa-mir-708 unconfirmed hsa-mir-125a dbDEMC

hsa-mir-10b dbDEMC hsa-mir-222 dbDEMC

hsa-mir-30c dbDEMC hsa-mir-15b dbDEMC

hsa-mir-194 dbDEMC;miR2Disease hsa-mir-197 dbDEMC

hsa-mir-18a dbDEMC hsa-mir-30a dbDEMC

hsa-mir-146b dbDEMC hsa-mir-23b dbDEMC

hsa-let-7e dbDEMC hsa-mir-221 dbDEMC

hsa-mir-151a unconfirmed hsa-mir-625 dbDEMC

hsa-mir-29b dbDEMC hsa-mir-122 Unconfirmed

hsa-mir-181a dbDEMC hsa-mir-95 dbDEMC

hsa-let-7i dbDEMC hsa-mir-424 dbDEMC

hsa-mir-224 dbDEMC hsa-mir-30d dbDEMC

https://doi.org/10.1371/journal.pcbi.1006418.t002
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In addition, to illustrate the applicability of MDHGI to new diseases, namely, diseases that

have no known associated miRNAs, we carried out another case study on Lung Neoplasms.

Known associations for this disease were removed from the training dataset, so that predic-

tions would only be made from the information of other diseases’ related miRNAs and the

similarity measures. After implementing MDHGI, we obtained the ranking of Lung Neo-

plasms’ candidate miRNAs in terms of their association scores (See Table 4). The data pro-

vided by Babu et al. suggested that increased expression of hsa-mir-20a (1st in the prediction

list) in lung cancer may decrease iron export which will lead to intracellular iron retention and

cell proliferation [81]. Besides, recent research showed that hsa-mir-17 (2nd in the prediction

list) and hsa-mir-92 families play important roles in cisplatin resistance and can be used as

potential biomarkers for better predicting the clinical response to platinum-based chemother-

apy in non-small cell lung cancer (NSCLC) [82]. Shen et al. provided the evidence that down-

regulation of hsa-mir-18a (3rd in the prediction list) sensitizes NSCLC to radiation treatment

and it may help to develop a new approach to sensitizing radioresistant lung cancer cells by

targeting hsa-mir-18a [83]. Respectively, 10, 20 and 50 out of the top 10, 20 and 50 predictions

were manually confirmed in HMDD V2.0, dbDEMC and miR2Disease. Similarly, we also

manually verified the top 50 predicted miRNAs in PubMed. The result showed that 50 out of

the top 50 predictions were confirmed by at least three experimental literatures in PubMed

(See S4 Table).

Table 3. Prediction of the top 50 predicted miRNAs associated with lymphoma based on known associations in HMDD V2.0 database. The prediction result was

examined in dbDEMC and miR2Disease. The first column records top 1–25 related miRNAs. The third column records the top 26–50 related miRNAs.

miRNA Evidence miRNA Evidence

hsa-mir-223 dbDEMC hsa-mir-182 dbDEMC

hsa-mir-205 dbDEMC hsa-mir-129 dbDEMC

hsa-mir-10b dbDEMC hsa-mir-10a dbDEMC;miR2Disease

hsa-mir-9 dbDEMC hsa-mir-106b dbDEMC

hsa-mir-145 dbDEMC;miR2Disease hsa-mir-30a dbDEMC

hsa-mir-141 dbDEMC hsa-mir-1 dbDEMC

hsa-mir-143 dbDEMC;miR2Disease hsa-mir-192 dbDEMC

hsa-mir-451a unconfirmed hsa-mir-22 dbDEMC

hsa-mir-196a dbDEMC hsa-mir-199b dbDEMC

hsa-mir-27a dbDEMC hsa-mir-183 dbDEMC

hsa-mir-106a dbDEMC;miR2Disease hsa-mir-497 dbDEMC

hsa-mir-142 unconfirmed hsa-mir-99a dbDEMC;miR2Disease

hsa-mir-34c unconfirmed hsa-mir-199a dbDEMC

hsa-mir-34a dbDEMC hsa-mir-127 dbDEMC;miR2Disease

hsa-mir-31 dbDEMC hsa-mir-27b dbDEMC

hsa-mir-195 dbDEMC hsa-mir-193a unconfirmed

hsa-mir-181b dbDEMC hsa-mir-148a dbDEMC

hsa-mir-34b dbDEMC hsa-mir-130a dbDEMC

hsa-mir-125b unconfirmed hsa-mir-224 dbDEMC

hsa-mir-429 unconfirmed hsa-let-7a dbDEMC

hsa-mir-7 dbDEMC hsa-mir-197 dbDEMC

hsa-mir-214 dbDEMC hsa-mir-137 dbDEMC

hsa-mir-29a dbDEMC hsa-mir-30d dbDEMC

hsa-mir-25 dbDEMC hsa-mir-134 dbDEMC

hsa-mir-93 dbDEMC hsa-mir-296 dbDEMC

https://doi.org/10.1371/journal.pcbi.1006418.t003
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Finally, we trained our model with the dataset from the HMDD V1.0 to demonstrate that

MDHGI would perform equally well on different datasets. Breast Neoplasms was used as the

investigated disease. As a result, there were respectively 10, 20, and 48 out of the top 10, 20 and

50 predictions manually confirmed in the three databases mentioned above (See Table 5).

Besides, 50 out of the top 50 predictions were confirmed by at least three experimental litera-

tures in PubMed (See S5 Table). Taking first-ranked hsa-let-7e as an example, research con-

firmed that umonji/Arid1 B (JARID1B) promoted breast tumor cell cycle progression through

epigenetic repression of hsa-let-7e [84]. Recent experimental studies showed that breast cancer

patients with low hsa-let-7b (2nd in the prediction list) expression had poor prognoses which

indicated that hsa-let-7b might act as cancer suppressor gene in breast cancer development

and progression by inhibiting the expression of BSG [85]. Moreover, the results of Sun et al.
suggested that hsa-mir-223 (3rd in the prediction list) increases the sensitivity of triple-nega-

tive breast cancer stem cells (TNBCSCs) to TRAIL (tumor necrosis factor-related apoptosis-

inducing ligand)-induced apoptosis by targeting HCLS1 (hematopoietic cell-specific Lyn sub-

strate 1)-associated protein X-1 (HAX-1) [86].

According to the results presented, MDHGI consistently achieved an excellent predictive

performance in each of the four case studies. With the continuous experimental research on

miRNA-disease associations, we expect that more and more miRNAs in the prediction lists

generated by our model would be verified in the future.

Table 4. Prediction of the top 50 predicted miRNAs associated with lung neoplasms based on known associations in HMDD V2.0 database. All known associations

between the miRNAs and Lung Neoplasms were removed before the prediction process. The prediction result was examined in dbDEMC, miR2Disease and HMDD V2.0.

The first column records top 1–25 related miRNAs. The third column records the top 26–50 related miRNAs.

miRNA Evidence miRNA Evidence

hsa-mir-20a dbDEMC;miR2Disease;HMDD hsa-mir-34c dbDEMC;HMDD

hsa-mir-17 miR2Disease;HMDD hsa-mir-200a dbDEMC;miR2Disease;HMDD

hsa-mir-18a dbDEMC;miR2Disease;HMDD hsa-mir-146a dbDEMC;miR2Disease;HMDD

hsa-mir-19b dbDEMC;HMDD hsa-mir-223 HMDD

hsa-mir-19a dbDEMC;miR2Disease;HMDD hsa-mir-143 dbDEMC;miR2Disease;HMDD

hsa-mir-145 dbDEMC;miR2Disease;HMDD hsa-mir-29a dbDEMC;miR2Disease;HMDD

hsa-mir-155 dbDEMC;miR2Disease;HMDD hsa-let-7g dbDEMC;miR2Disease;HMDD

hsa-let-7a dbDEMC;miR2Disease;HMDD hsa-mir-146b miR2Disease;HMDD

hsa-mir-21 dbDEMC;miR2Disease;HMDD hsa-mir-9 miR2Disease;HMDD

hsa-mir-34a dbDEMC;HMDD hsa-mir-218 dbDEMC;miR2Disease;HMDD

hsa-let-7b miR2Disease;HMDD hsa-mir-141 dbDEMC;miR2Disease

hsa-mir-92a HMDD hsa-mir-200c dbDEMC;miR2Disease;HMDD

hsa-mir-126 dbDEMC;miR2Disease;HMDD hsa-mir-106b dbDEMC

hsa-let-7d dbDEMC;miR2Disease;HMDD hsa-mir-34b dbDEMC;HMDD

hsa-let-7c dbDEMC;miR2Disease;HMDD hsa-mir-101 dbDEMC;miR2Disease;HMDD

hsa-mir-200b dbDEMC;miR2Disease;HMDD hsa-mir-15a dbDEMC

hsa-mir-221 dbDEMC;HMDD hsa-mir-214 dbDEMC;miR2Disease;HMDD

hsa-let-7e miR2Disease;HMDD hsa-mir-205 dbDEMC;miR2Disease;HMDD

hsa-mir-125b miR2Disease;HMDD hsa-mir-1 dbDEMC;miR2Disease;HMDD

hsa-let-7f miR2Disease;HMDD hsa-mir-125a dbDEMC;miR2Disease;HMDD

hsa-mir-199a dbDEMC;miR2Disease;HMDD hsa-mir-10b dbDEMC;HMDD

hsa-mir-16 dbDEMC;miR2Disease hsa-mir-25 dbDEMC;HMDD

hsa-let-7i dbDEMC;HMDD hsa-mir-181b dbDEMC;HMDD

hsa-mir-29b dbDEMC;miR2Disease;HMDD hsa-mir-210 dbDEMC;miR2Disease;HMDD

hsa-mir-222 dbDEMC;HMDD hsa-mir-93 dbDEMC;miR2Disease;HMDD

https://doi.org/10.1371/journal.pcbi.1006418.t004
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Discussion

This paper introduced the computational method called MDHGI in which we combined the

sparse learning method with the heterogeneous graph inference method to calculate potential

miRNA-disease association scores. In the process of low-rank matrix decomposition, the sparse

norm could effectively handle training datasets with a high level of noises and a low quality, which

were commonly faced by biological researchers. However, some elements with the value of 1 in

the adjacency matrix might turn into 0 after using the sparse learning method, which means the

corresponding known miRNA-disease associations information might be removed. To overcome

the disadvantage, the heterogeneous graph inference method was used by integrating the Gauss-

ian interaction profile kernel similarity, the disease semantic similarity, the miRNA functional

similarity, and miRNA-disease associations which were reacquired from the recalculated adja-

cency matrix into a heterogeneous graph. The excellent performance of MDHGI was demon-

strated by experimental results from both cross validation and case studies on Esophageal

Neoplasms, Lymphoma, Lung Neoplasms and Breast Neoplasms. It could be concluded that

MDHGI should serve as an effective tool for predicting potential miRNA-disease associations,

and would be helpful in human disease prevention, treatment, diagnosis, and prognosis.

The reliable performance of MDHGI came from the following factors. Firstly, by decom-

posing the original data into a clean (a linear combination of low-rank matrix and the adja-

cency matrix) and noise (sparse matrix) parts, we could obtain a clean data about the

Table 5. Prediction of the top 50 predicted miRNAs associated with breast neoplasms based on known associations in HMDD V1.0 database. The prediction result

was examined in dbDEMC, miR2Disease and HMDD V2.0. The first column records top 1–25 related miRNAs. The third column records the top 26–50 related miRNAs.

miRNA Evidence miRNA Evidence

hsa-let-7e dbDEMC;HMDD hsa-mir-23b dbDEMC;HMDD

hsa-let-7b dbDEMC;HMDD hsa-mir-203 dbDEMC;miR2Disease; HMDD

hsa-mir-223 dbDEMC;HMDD hsa-mir-30e Unconfirmed

hsa-mir-126 dbDEMC;miR2Disease; HMDD hsa-mir-29c dbDEMC;miR2Disease; HMDD

hsa-mir-16 dbDEMC;HMDD hsa-mir-107 dbDEMC;HMDD

hsa-let-7i dbDEMC;miR2Disease; HMDD hsa-mir-199b dbDEMC;HMDD

hsa-let-7c dbDEMC;HMDD hsa-mir-18b dbDEMC;HMDD

hsa-mir-92b dbDEMC hsa-mir-181a dbDEMC;miR2Disease; HMDD

hsa-mir-99b dbDEMC hsa-mir-532 dbDEMC

hsa-mir-100 dbDEMC;HMDD hsa-mir-27a dbDEMC;miR2Disease; HMDD

hsa-mir-130a dbDEMC hsa-mir-22 dbDEMC;miR2Disease; HMDD

hsa-mir-182 dbDEMC;miR2Disease; HMDD hsa-mir-148a dbDEMC;miR2Disease; HMDD

hsa-mir-92a HMDD hsa-mir-192 dbDEMC

hsa-let-7g dbDEMC;HMDD hsa-mir-196b dbDEMC

hsa-mir-106a dbDEMC hsa-mir-142 Unconfirmed

hsa-mir-335 dbDEMC;miR2Disease; HMDD hsa-mir-372 dbDEMC

hsa-mir-195 dbDEMC;miR2Disease; HMDD hsa-mir-135a dbDEMC;HMDD

hsa-mir-150 dbDEMC hsa-mir-224 dbDEMC;HMDD

hsa-mir-101 dbDEMC;miR2Disease; HMDD hsa-mir-424 dbDEMC

hsa-mir-191 dbDEMC;miR2Disease; HMDD hsa-mir-198 dbDEMC

hsa-mir-24 dbDEMC;HMDD hsa-mir-28 dbDEMC

hsa-mir-99a dbDEMC hsa-mir-212 dbDEMC

hsa-mir-30a miR2Disease;HMDD hsa-mir-497 dbDEMC;miR2Disease; HMDD

hsa-mir-32 dbDEMC hsa-mir-520c miR2Disease;HMDD

hsa-mir-373 dbDEMC;miR2Disease; HMDD hsa-mir-520b dbDEMC;HMDD

https://doi.org/10.1371/journal.pcbi.1006418.t005
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associations between miRNAs and diseases. Secondly, more and more disease-miRNA associa-

tion data had been discovered and confirmed. Due to the data-dependent property of sparse

learning method, the increasing number of known associations improved the prediction accu-

racy. Thirdly, MDHGI could be used to make predictions for new diseases which have no

known related miRNAs and miRNAs without any known associated diseases. Lastly, MDHGI

could effectively uncover missing miRNA-disease associations for all diseases simultaneously.

Therefore, MDHGI is a superior model over previous ones.

Limitations also exist in this method. Firstly, though current studies benefited from the

increased known data, it is never a finished work to expand data. Secondly, it is obvious that

assigning different penalization parameters for the three different types of edges (miRNA-

miRNA edges, disease-disease edges and miRNA-disease edges) would be more accurate for

the prediction performance. However, there are some difficulties that make us unable to do

this work. Firstly, for the moment, we don’t know how to properly give different weights to

vertexes and edges in the network. Secondly, since all the known miRNA-disease associations

we utilized in our model were based on databases (i.e., different experimental literatures), it is

very difficult for us to quantify the reliability of different edges. Hence, taking full account of

your suggestions, we will conduct our research in this area in the next step. In addition, the

parameter set in the algorithm is difficult to optimize, and deserves further research. Finally,

MDHGI might cause bias to miRNAs which have more associated disease records and vice

versa. Therefore, we would develop optimization strategies to improve the accuracy of this pre-

diction method in the future.
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