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Abstract

In bacterial cells, gene expression, metabolism, and growth are highly interdependent and

tightly coordinated. As a result, stochastic fluctuations in expression levels and instanta-

neous growth rate show intricate cross-correlations. These correlations are shaped by feed-

back loops, trade-offs and constraints acting at the cellular level; therefore a quantitative

understanding requires an integrated approach. To that end, we here present a mathemati-

cal model describing a cell that contains multiple proteins that are each expressed stochasti-

cally and jointly limit the growth rate. Conversely, metabolism and growth affect protein

synthesis and dilution. Thus, expression noise originating in one gene propagates to metab-

olism, growth, and the expression of all other genes. Nevertheless, under a small-noise

approximation many statistical quantities can be calculated analytically. We identify several

routes of noise propagation, illustrate their origins and scaling, and establish important con-

nections between noise propagation and the field of metabolic control analysis. We then

present a many-protein model containing >1000 proteins parameterized by previously mea-

sured abundance data and demonstrate that the predicted cross-correlations between gene

expression and growth rate are in broad agreement with published measurements.

Author summary

Small as they are, bacterial cells are influenced by random fluctuations in their macromo-

lecular copy numbers. Single-cell experiments have shown a complex interplay between

this compositional “noise” and fluctuations in the cellular growth rate. While it is clear

that this interplay originates from the tight interdependence of gene expression, metabo-

lism, and growth, the underlying mechanisms are poorly understood. In this paper, we

present a mathematical framework that describes compositional noise reverberating

through the cell. We identify multiple routes by which noise in the expression of individ-

ual genes can propagate through the cell and demonstrate which factors affect each route.

In doing so, we establish fundamental connections between the field of metabolic control

analysis and the transmission of gene-expression noise. We then present a model tailored

to Escherichia coli that includes >1000 genes with expression parameters set by previously

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006386 October 5, 2018 1 / 18

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPENACCESS

Citation: Kleijn IT, Krah LHJ, Hermsen R (2018)

Noise propagation in an integrated model of

bacterial gene expression and growth. PLoS

Comput Biol 14(10): e1006386. https://doi.org/

10.1371/journal.pcbi.1006386

Editor: Alexandre V. Morozov, Rutgers University,

UNITED STATES

Received: January 30, 2018

Accepted: July 20, 2018

Published: October 5, 2018

Copyright: © 2018 Kleijn et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: The expression data

of Taniguchi et al [51] and Arike et al [53], used to

parameterize the models of Fig 4 and S3 Fig., were

published as supplementary datasets with the

respective publications and can be accessed as

such. The cross-correlation dataset of Kiviet et al

[5], replotted in the top panels of Fig 4D–4F and S3

Fig. B-D, is available upon request from the

corresponding author of that article (tans@amolf.

nl).

Funding: LHJK was supported by the NWO

(Nederlandse Organisatie voor Wetenschappelijk

http://orcid.org/0000-0001-9466-9167
http://orcid.org/0000-0002-6879-3962
http://orcid.org/0000-0003-4633-4877
https://doi.org/10.1371/journal.pcbi.1006386
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1006386&domain=pdf&date_stamp=2018-10-17
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1006386&domain=pdf&date_stamp=2018-10-17
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1006386&domain=pdf&date_stamp=2018-10-17
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1006386&domain=pdf&date_stamp=2018-10-17
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1006386&domain=pdf&date_stamp=2018-10-17
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1006386&domain=pdf&date_stamp=2018-10-17
https://doi.org/10.1371/journal.pcbi.1006386
https://doi.org/10.1371/journal.pcbi.1006386
http://creativecommons.org/licenses/by/4.0/
mailto:tans@amolf.nl
mailto:tans@amolf.nl


measured protein abundances and show that it can reproduce the main features of mea-

sured cross-correlation functions between gene expression levels and growth rate.

Introduction

Few processes are more fundamental to life than the growth and proliferation of cells. Bacterial

cells in particular are highly adapted to grow rapidly and reliably in diverse habitats [1]. Yet,

the composition of individual bacteria grown in a constant environment is known to fluctuate

vigorously, in part due to the stochastic nature of gene expression [2–5]. Many experimental

and theoretical studies have shed light on the origins, characteristics and consequences of this

“noisy” expression [2–17]. Still, it remains unknown to what extent, and by what routes, noise

in gene expression propagates through the cell and affects the rate of growth [5, 18, 19], which

is often considered a proxy for its fitness [18, 20].

Recently, important progress towards understanding noise propagation in single cells has

been made through experiments in which the instantaneous growth of individual Escherichia
coli cells was monitored in real time under fixed growth conditions [5, 21]. Such experiments

have revealed large fluctuations in the growth rate, with coefficients of variation of the order of

25%, which in part result from noise in the concentrations of metabolic enzymes [5]. Con-

versely, growth-rate fluctuations affect the concentrations of individual enzymes, because the

cell’s constituents are diluted whenever the cell grows [22]. Such results emphasize that a clear

understanding of these processes is complicated by the fact that gene expression, metabolism,

and growth are highly interdependent, involving multiple layers of feedback and cellular

constraints.

This interdependence is also central to a series of recent studies that characterize the aver-
age composition and growth rate of Escherichia coli cultures in balanced exponential growth

under variation of the growth medium [23–29]. In particular, these experiments have revealed

striking linear relations between their mean proteomic composition and their mean growth

rate [26–31]. Phenomenological models have demonstrated how such “growth laws” can be

understood as near-optimal solutions to constrained allocation problems [20, 32–34]. These

results also stress that global physiological variables and constraints strongly affect the expres-

sion of individual genes. As such, both these experiments and the single-cell experiments men-

tioned above suggest a “holistic” perspective: the behavior of individual components cannot be

understood without some knowledge of the cell’s global physiological state [35, 36].

Here, we present a model of bacterial cells growing under fixed external growth conditions,

in which gene expression, metabolism and growth are fully integrated. We offer a highly sim-

plified description that nevertheless imposes several essential global cellular constraints. Both

gene expression and growth rate fluctuate due to the stochastic synthesis of many protein spe-

cies that together control the rates of metabolism and growth. Conversely, the rate of metabo-

lism constrains the protein synthesis rates and the growth rate sets the dilution rate of all

proteins. As a result, noise in the expression of each gene propagates and affects the expression

of every other gene as well as the growth rate—and vice versa.

Below, we first introduce the generic modeling framework and its assumptions. We then

make an excursion to the theory of growth control, in order to define growth-control coeffi-

cients and establish connections between the propagation of noise and the field of Metabolic

Control Analysis. Next, we discuss how the concentration of each protein is affected by the

synthesis noise in all other proteins; this exposes a hidden assumption in a standard opera-

tional definition of intrinsic and extrinsic expression noise. We subsequently explain the noise

Noise propagation in bacterial gene expression and growth
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modes that characterize the noise propagation between gene expression and growth in the

context of a toy model with just two proteins. Lastly, we present a many-protein model that

includes 1021 protein species with experimentally measured parameters. We demonstrate that

the cross-correlations functions between expression and growth rate predicted by this model

capture the main features of published measurements.

Results

Modeling framework

We here discuss the key assumptions of the modeling framework (Fig 1); see S1 Text, pp. 1–6

for details. We consider a culture of bacterial cells that has reached steady-state exponential

growth under fixed external growth conditions. We study fluctuations of gene expression

within individual cells in this steady state, and in particular how these fluctuations reverberate

through the growing cell. Similar assumptions connecting the increase in biomass, the cellular

growth rate, protein synthesis, and growth-mediated dilution were explored in a recent review

article [37].

The mass density of E. coli cells is dominated by protein content [38] and under tight

homeostatic control [39]. We assume that this homeostasis also eliminates long-lived protein-

density fluctuations in single cells. Then, the volume of a cell is proportional to its protein

massM :¼ ∑i ni, where ni is the abundance (copy number) of protein i. (We ignore that differ-

ent proteins have different molecular weights.) The instantaneous growth rate is then defined

by μ :¼ _M=M, and the proteome fraction ϕi :¼ ni/M of enzyme imeasures its concentration.

Differentiation of ϕi with respect to time then yields

_ϕi ¼ πi � μϕi; ð1Þ

where πi is the synthesis rate per protein mass. (Here we neglect active protein degradation,

which on average amounts to about 2% of the dilution rate [40].) By definition, proteome frac-

tions obey the constraint ∑i ϕi = 1. Combined with Eq (1) this results in

μ ¼
X

i

πi: ð2Þ

That is, the growth rate equals the total rate of protein synthesis.

Another key assumption of our model is that the cellular growth rate is an intensive quan-

tity. That is: given fixed mass fractions, the growth rate does not depend on the cell size, as sug-

gested by the observation that individual E. coli cells grow approximately exponentially within

their cell cycle [5, 41]. Based on this, we express the synthesis rate of protein i as:

πi ¼ fi μdðϕÞ þ Ni; ð3Þ

in which

μdðϕÞ :¼ J=M: ð4Þ

The first term in Eq (3) is an intensive function; it captures the deterministic effect of the cellu-

lar composition ϕ = (ϕ1, ϕ2, . . .) on the metabolic flux J that quantifies the rate of biomass pro-

duction, normalized by the protein massM. (Note that, here and below, we use the term

metabolism in a broad sense; it is intended to encompass all catabolic and anabolic processes

required for biomass production and cell growth, including protein synthesis.) The coefficients

fi specify which fraction of this flux is allocated towards the synthesis of protein species i.
Because the fi are fractions, ∑i fi = 1.

Noise propagation in bacterial gene expression and growth
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The second term of Eq (3) couples each synthesis rate πi to a zero-mean Ornstein–Uhlen-

beck noise source Ni that represents the stochasticity of both transcription and translation

[42]. Each noise source is characterized by an amplitude θi and a rate of reversion to the mean

βi; the latter’s inverse β� 1

i characterizes the time scale of intrinsic fluctuations in πi. The vari-

ance of Ni is given by VarðNiÞ ¼ y
2

i =ð2βiÞ. All noise sources are mutually independent, and we

neglect other sources of noise, such as the unequal distribution of molecules over daughter

cells during cell division (see Discussion).

Combining Eqs (2) and (3) reveals that

μ ¼ μdðϕÞ þ
X

i

Ni; ð5Þ

which identifies μd(ϕ) as the growth rate afforded by a given proteome composition ϕ in the

zero-noise limit. Given a function μd(ϕ), Eqs (1)–(3) fully define the dynamics of the cell.

Below, we focus on the simplest case where, under given environmental conditions, the

allocation coefficients fi are constant. This means that the cell does not dynamically adjusts its

allocation in response to fluctuations in expression levels. We note, however, that such dynam-

ical effects of gene regulation could be included by allowing the fi to depend on intra- and

extra-cellular conditions, and in particular on the cellular composition ϕ. (See S1 Text, p. 4.)

We also stress that the allocation coefficients may differ strongly between growth conditions,

as demonstrated by the growth laws mentioned above. For example, the fi’s of ribosomal pro-

teins must be considerably larger in media that support a fast growth rate than in media with

strong nutrient limitation, because the mean mass fraction of ribosomal proteins increases

with the growth rate [30]. Here, however, we describe stochastic cell growth under fixed envi-

ronmental conditions, so that the (mean) allocation of resources is well-defined and knowable

in principle—for example through proteomics data.

Fig 1 is an illustration of the modeling framework. Noise in the synthesis of a protein spe-

cies induces fluctuations in its mass fraction (Eq (1)). Through their effect on metabolism,

Fig 1. Integrated model of stochastic gene expression and cell growth. The cell contains many protein species, with

proteome mass fractions ϕi that sum to 1. Mass fractions are increased by protein synthesis but diluted by growth. The

synthesis rate πi of each species i is modulated by a noise sourceNi. The instantaneous growth rate μ reflects the total

rate of protein synthesis. Proteins affect metabolism and thus the deterministic growth rate μd(ϕ), as quantified by

growth-control coefficients Cμi . A fraction fi of the total metabolic flux is allotted to the synthesis of protein i. The

inherent noise in the expression of each gene reverberates through the cell, affecting cell growth and the expression of

every other gene.

https://doi.org/10.1371/journal.pcbi.1006386.g001
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these fluctuations propagate to the deterministic growth rate μd, which modulates the synthesis

of all protein species (Eq (3)). In parallel, all noise sources directly impact the growth rate μ
(Eq (5)) and thus the dilution of all proteins (Eq (1)).

Linearization under a small-noise approximation. The results below rely on the

assumption that Eqs (1)–(5) may be linearized around the time-averaged composition ϕ0. This

transforms Eq (5) to

δμ
μ

0

¼
X

i
Cμi
δϕi
ϕ

0;i

þ
X

i

Ni

μ
0

; ð6Þ

where δϕi is the deviation of ϕi from its time average ϕ0,i and δμ the deviation of μ from

μ0 :¼ μd(ϕ0). (See S1 Text, p. 3 for derivations.) The coefficients Cμi are defined as

Cμi :¼
ϕi
μd

@μd
@ϕi

� �

ϕ0

: ð7Þ

In the terminology of linear noise models, the Cμi are transfer coefficients: they quantify to

what extent fluctuations in ϕi transmit to μd. Eq (6) demonstrates that the growth rate is

affected by all noise sources, both directly (second term on the right-hand side) and indirectly

through fluctuations in the protein mass fractions.

Transfer coefficients are growth-control coefficients

The transfer coefficients Cμi are reminiscent of the logarithmic gains defined in biochemical

systems theory, which relate enzyme abundances to the metabolic flux in a given pathway [43].

It has previously been shown that these gains are relevant in the context of noise propagation

[44]. Here, however, we consider the growth rate of the cell rather than the flux through a dis-

tinct pathway. In this section, we connect the transfer coefficients Cμi to the control of cellular

growth and the field of Metabolic Control Analysis (MCA) [45, 46].

In MCA, flux-control coefficients (FCCs) CJi are defined that quantify to what extent an

enzyme concentration ϕi limits (controls) a metabolic flux J [45, 46]:

CJi :¼
ϕi
J
@J
@ϕi

� �

ϕ0

: ð8Þ

In direct analogy to this definition of FCCs, the transfer coefficients of Eq (7) can be inter-

preted as growth-control coefficients (GCCs) that quantify each enzyme’s control of the

growth rate. From Eq (4) a direct link between FCCs and GCCs can be derived (see also [47],

p. 7 of S1 Text, and S1 Fig):

Cμi ¼ CJi � ϕi: ð9Þ

The GCCs are specified by the sensitivity of the growth rate μd(ϕ) to changes in the prote-

ome composition ϕ, evaluated in the steady-state mean, ϕ0. Both the mean composition ϕ0

and the function μd clearly differ between growth conditions; therefore, the GCCs depend on

the growth conditions as well.

As mentioned, studies on the resource allocation of cells grown under different growth con-

ditions have revealed striking empirical relations between the mean proteome composition

and the mean cellular growth rate [26, 28–30]. Even though these growth laws describe rela-

tions between growth rate and composition, they should not be confused with μd. The growth

laws describe correlations between the mean composition and the mean growth rate under

variation of the growth conditions, whereas μd describes the deterministic effect of the

Noise propagation in bacterial gene expression and growth
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instantaneous composition on the instantaneous growth rate under a particular, fixed growth

condition. There is no direct relation between the two. By extension, the growth laws do not

directly translate into knowledge on the GCCs.

Growth-control coefficients and their sum rule. An important difference between meta-

bolic flux and cellular growth rate lies in their behavior under a scaling of the system size. It is

routinely assumed that metabolic fluxes scale linearly with the system size, meaning that an

increase in the abundances of all enzymes by a factor α increases the metabolic flux J by the

same factor α. That is, fluxes are extensive variables. Based on this assumption, a famous sum

rule has been derived for FCCs [45, 46]:

X

i

CJi ¼ 1: ð10Þ

In contrast, we assumed the growth rate to be invariant under scaling of the system size, i.e,
that the growth rate is an intensive variable. (Indeed, as Eq (4) directly shows, if J is extensive,

μd must be intensive, and vice versa.) Under this assumption, GCCs obey a markedly different

sum rule:

X

i

Cμi ¼ 0: ð11Þ

This sum rules articulate a delicate trade-off: the excess of one protein implies the lack of

another.

Both sum rules are special cases of Euler’s homogeneous function theorem. Specific deriva-

tions are presented in S1 Text on p. 7. In general, for an arbitrary function f with a scaling rela-

tion f(αϕ) = αk f(ϕ), a sum rule can be derived by differentiating this equation with respect to α
and evaluating the result in α = 1. The particular cases k = 1 (for the flux J), and k = 0 (for the

growth rate μd) lead to Eqs (10) and (11).

In theory, all expression levels could be regulated such that Cμi ¼ 0 for all protein species i.
In reality, however, many protein species do not have a function within metabolism or bio-

mass growth. By definition, the metabolic flux J does not depend on the expression levels of

these proteins; therefore, their FCCs are zero. The GCC of such a protein, with mass fraction

ϕh, then follows from Eq (9):

Cμh ¼ � ϕh: ð12Þ

That is, the control of all non-metabolic enzymes on the growth rate is negative. The sum rule

then implies that the sum of GCCs of all proteins that do contribute to biomass growth must

be positive and equal to

X

i=2H

Cμi ¼ �
X

h2H

Cμh ¼
X

h2H

ϕh ¼ ϕH: ð13Þ

where H denotes the set of non-metabolic proteins. This goes to show that any system that

bears the cost of producing non-metabolic proteins must contain other proteins that have pos-

itive growth control.

This conclusion has implications for the propagation of noise. We saw that the the noise

transfer coefficients appearing in the linear noise model are in fact GCCs. The analysis in the

previous paragraph demonstrates that these GCCs cannot all vanish; it then follows that there

must be linear-order noise transfer from protein levels to the growth rate in all cells that main-

tain non-metabolic proteins.

Non-metabolic proteins are common, both in wild-type cells and in engineered constructs.

In wild-type E. coli, the expression level of proteins that do not contribute to biomass growth

were estimated recently in a study that combined a genome-scale allocation model with

Noise propagation in bacterial gene expression and growth

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006386 October 5, 2018 6 / 18

https://doi.org/10.1371/journal.pcbi.1006386


proteomics data sets [48]. Direct estimates of ϕH ranged from 25% to 40%, depending on the

precise growth conditions. Although not directly beneficial to the growth of the cell in constant

environments, the non-contributing proteome fraction is thought to provide fitness benefits to

cells that encounter frequent changes in growth conditions [48]. Furthermore, synthetic biolo-

gists commonly study systems with a large expression burden [49].

Separating in- and extrinsic noise components

Within the above framework, many statistical properties can be calculated analytically [5, 42].

In particular, the noise level of the concentration of protein i, quantified by the coefficient of

variation ηi, can be expressed as:

Z2
i ¼

ð1 � ϕ
0;iÞ

2

ϕ2

0;i

VarðNiÞ

μ
0
ðμ

0
þ βiÞ

þ
X

j6¼i

VarðNjÞ

μ
0
ðμ

0
þ βjÞ

: ð14Þ

The derivation is provided in S1 Text, pp. 4–6. Eq (14) shows that the coefficient of variation

has two components: the first term results from the noise in the synthesis of the protein itself,

the second from the noise in the synthesis of all other proteins. Each term is proportional to

the variance of the corresponding noise source, but weighted by a factor that decreases with

the mean growth rate μ0 and the reversion rate βi of that noise source. This analysis confirms

that the inherent noise in the synthesis of one protein affects all other proteins.

A fundamental distinction is commonly made between intrinsic and extrinsic noise in gene

expression [44]. Intrinsic noise results from the inherently stochastic behavior of the molecular

machinery involved in gene expression; extrinsic noise from fluctuations in the intra- and

extracellular environment of this machinery. In this sense, the two terms in Eq (14) can be

identified as intrinsic and extrinsic contributions.

Complications arise, however, if the standard operational definition of these terms is

applied [4, 6]. This definition considers two identical reporter constructs R and G expressed in

the same cell (Fig 2A). Noise sources extrinsic to both reporters affect both reporters identi-

cally, inducing positively correlated fluctuations in the concentrations of the reporter proteins.

Intrinsic noise sources instead produce independent fluctuations in each concentration.

Extrinsic noise is therefore measured by the covariance between both expression levels; intrin-

sic noise by their expected squared difference. This operationalization, however, implicitly

assumes that intrinsic noise does not propagate between the reporters. This assumption is vio-

lated in our model because the synthesis of reporter R directly contributes to the dilution of

protein G (Fig 2B). Consequently, the covariance between the expression levels has two contri-

butions:

CovðϕR; ϕGÞ
ϕ2

0;b

¼ [�
2ð1 � ϕ

0;bÞ

ϕ
0;b

VarðNbÞ

μ
0
ðμ

0
þ βbÞ

transmission between R and G

þ [X

j6¼R;G

VarðNjÞ

μ
0
ðμ

0
þ βjÞ

other sources

; ð15Þ

where the label “b” indicates quantities that are by definition identical for both expression sys-

tems. The second term on the right-hand side is positive and stems from noise sources that

affect both reporters identically. The first term, however, is negative; it reflects the transmission

of noise between reporters R and G. It would be misleading to identify Eq (15) as the extrinsic

component of the noise—it is not even guaranteed to be positive. We conclude that the opera-

tional definition is not suitable when noise propagates between arbitrary genes.

Noise propagation in bacterial gene expression and growth
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Expression–growth correlations in a two-protein toy model

The circulation of noise in the cell can be studied by measuring cross-correlations between

expression and growth rate in single-cell experiments [5]. Interpreting measured cross-corre-

lations, however, is non-trivial. To dissect them, we now discuss a toy version of the model

with just two protein species, X and Y. Despite its simplicity, it displays many features seen in

more realistic models.

Within the linear noise framework, ϕY–μ and πY–μ cross-correlations, respectively denoted

RϕY μ(τ) and RπY μ(τ), can be calculated analytically [42]. Up to a normalization, the results can

be written as:

RϕYμðtÞ / C
μ
YSYðtÞ[

Control

þ ϕ
0;YAYðtÞ[

Autogenic

�
X

j¼X;Y

ϕ
0;j½C

μ
j SjðtÞ þ ϕ0;jAjðtÞ�[

Dilution

;
ð16Þ

RπYμðtÞ / C
μ
YAYð� tÞ[

Control

þ ϕ
0;YBYðtÞ[

Autogenic

þ
X

j¼X;Y

� Cμj ½C
μ
j SjðtÞ þ ϕ0;jAjðtÞ�[
Transmission

: ð17Þ

(For a full derivation, not limited to the two-protein case, see S1 Text, pp. 5–6. The two-protein

case is discussed further in S1 Text, pp. 8–9.) These equations are plotted in Fig 3A and 3B (see

caption for parameters). As the equations show, the cross-correlation functions are linear com-

binations of three functions Si(τ), Ai(τ), and Bi(τ), which are also illustrated in the figure.

To aid interpretation, the cross-correlations can be decomposed into four noise modes, as

indicated in Eqs (16) and (17).

The control mode (Fig 3C) reflects the control of enzyme Y on the growth rate. Noise NY

in the synthesis of Y causes fluctuations in ϕY, which transfer to the growth rate in proportion

with the GCC CμY. Because the effect of ϕY on μ is instantaneous, the contribution to the ϕY–μ
cross-correlation is proportional to the symmetric function SY(τ). In contrast, the effect of πY

on μ involves a delay; hence the contribution to the πY–μ cross-correlation is proportional to

the asymmetric function AY(τ). In both cases, the amplitude scales with CμY.

The autogenic mode (Fig 3D) is a consequence of Eq (2). Because the growth rate matches

the total rate of protein synthesis, noise in the synthesis of Y instantly affects the growth rate,

resulting in a noise mode in the πY–μ cross-correlation that is proportional to the symmetric

Fig 2. Limitations of the operational definition of in- and extrinsic expression noise. (A) Extrinsic noise is

measured by the covariance between the expression levels of two identical reporter systems R and G. This presupposes

that the intrinsic noise NR of system R affects concentration ϕR but not ϕG (orange outline), so that the covariance

between ϕR and ϕG quantifies the contribution of extrinsic sourcesNext,i. (B) But in our model,NR affects the growth

rate and thus the dilution of ϕG. This adds a negative term to the covariance, which no longer measures just the

extrinsic noise.

https://doi.org/10.1371/journal.pcbi.1006386.g002
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function BY(τ). With a delay, this noise also affects ϕY, adding an asymmetric mode to the ϕY–

μ cross-correlation. This mode does not depend on the control of Y; instead, its amplitude is

proportional to the mean concentration ϕ0,Y.

The dilution mode (Fig 3E) pertains only to the ϕY–μ cross-correlation. It reflects that the

growth rate of the cell is also the dilution rate of protein Y (Eq (1)). With a delay, upward fluc-

tuations in μ therefore cause downward fluctuations in ϕY. A subtle complication is that noise

in the synthesis rate of both proteins reaches μ via two routes: through the immediate effect of

πY on μ, and through the delayed effect of πY on ϕY, which in turn affects μ in proportion with

CμY (see in Eq (6)). Together, these routes result in a mode towards which each protein contrib-

utes both a symmetric and an asymmetric function.

Lastly, the transmission mode (Fig 3F) is unique to the πY–μ cross-correlation. It reflects

that all noise sources affect the cell’s composition ϕ and therefore μd; this in turn induces fluc-

tuations in the synthesis rate πY. The noise sources again affect the growth rate via the two

routes explained above, causing a symmetric and an asymmetric component to the πY–μ
cross-correlation for each protein.

The above analysis shows that, even in a highly simplified linear model, the cross-correla-

tions are superpositions of several non-trivial contributions. The intuitions gained from this

exercise will be used below when we present the results of a more complex model.

The effects of gene regulation. Above, we assumed that the cell allocates a fixed fraction

fi of its metabolic flux towards the synthesis of protein i. Within this two-protein model all

cross-correlations can still be computed if the fi are linear(ized) functions of the concentrations

ϕ (see S1 Text, pp. 8–9, and S2 Fig). The resulting feedback regulation affects the decay of fluc-

tuations: a negative feedback shortens the correlation time scales and reduces variance,

whereas positive feedback lengthens them and increases variance (cf. [3, 10, 50]).

Fig 3. Noise modes in a toy model containing only two protein species, X and Y. (A) Analytical solution for the cross-correlation

between protein Y’s proteome fraction ϕY and growth rate μ (gray curve), verified by simulations (gray diamonds, details in S1 Text,

p. 9). The contributing noise modes are indicated (colored curves). (B) Same as (A), but for the synthesis rate πY. The cross-

correlation functions are linear combinations of three classes of functions, called Ai(τ), Bi(τ), and Si(τ) (see S1 Text, equations (47)–

(49) for their definitions). In panels (A) and (B), noise modes that are proportional to just one of these functions are annotated

accordingly. (C)–(F) Noise propagation routes underlying the noise modes. The control mode and the autogenic mode arise from

noise sourceNY alone. Both noise sourcesNX and NY contribute to the dilution and transmission modes, but only the contribution

of NX is illustrated in Fig (D) and (F). Parameters for (A) and (B): CμY ¼ 0:25; ϕ0,Y = 0.33; mean growth rate μ0 = 1 h−1; noise sources

of NY and NX have amplitudes θY = 0.5 and θX = 0.5 and reversion rates βY = βX = 4μ0.

https://doi.org/10.1371/journal.pcbi.1006386.g003
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Expression–growth correlations in a many-protein model

In single E. coli cells, the cross-correlations between gene expression and growth rate have

been measured by Kiviet et al. [5]. To test whether the above framework can reproduce their

results, we constructed a model that includes 1021 protein species with realistic parameters,

based on an experimental data set [51].

In the experiments, micro-colonies of cells were grown on lactulose (a chemical analog of

lactose) and expression of the lac operon was monitored using a green fluorescent protein

(GFP) reporter inserted in the operon. Because intrinsic fluctuations in GFP expression affect

the cross-correlations directly as well as indirectly, through their impact on the growth rate

and the expression of other genes, we modeled this reporter construct explicitly (see Fig 4A,

and S1 Text, pp. 9–11). Specifically, the lac operon O was represented as a collection of three

proteins Y, Z, and G (for LacY, LacZ, and GFP) affected by a shared noise source NO in addi-

tion to their private sources NY, NZ, and NG. The GCC of the operon as a whole is the sum of

the GCCs of its genes.

By varying the mean expression of the lac operon with a synthetic inducer, Kiviet et almea-

sured cross-correlations in three growth states with different macroscopic growth rates:

“slow”, “intermediate”, and “fast” [5]. Empirically, the macroscopic growth rate obeyed a

Monod law [52] as a function of the mean lac expression. We therefore mimicked the three

growth states by choosing their mean lac expression levels and growth rates according to three

points on a Monod curve that approximates the empirical one (Fig 4B, labels D, E, and F). Via

Eq (7), the same curve also is also used to estimate the GCC of the lac operon in each condi-

tion. Under “slow” growth conditions, the lac enzymes limit growth considerably (large GCC);

under “fast” conditions, lac activity is almost saturated (small GCC).

To choose realistic parameter values for all other proteins, we used a published dataset of

measured means and variances of E. coli protein abundances [51]. For each of the 1018 pro-

teins in the dataset, the model included a protein with the exact same mean and variance (see

Fig 4C). This uniquely fixed the amplitudes of all noise sources. The GCCs of all proteins were

randomly sampled from a probability distribution that obeyed the sum rule of Eq (11). (See

Materials and methods, and S1 Text, p. 10–11).

Comparison with measured cross-correlations. The experimental results on the cross-

correlations between GFP synthesis πG, GFP expression ϕG, and growth rate μ [5] are repro-

duced in Fig 4D–4F (top panels), together with the model predictions (middle and bottom

panels).

The predicted cross-correlations are linear superpositions of the same noise modes as

described for the two-protein model. However, the dilution and transmission modes are now

driven by all 1022 noise sources, and there are two instances of the control and autogenic

modes: one associated with the expression and GCC of the operon as a whole, and one with

the expression and GCC of GFP separately. (See Equations (89)–(94) in S1 Text, p. 10.)

At slow growth, the ϕG − μ cross-correlation is almost symmetrical (Fig 4D, middle panel).

Here the control mode of the operon dominates due to its large GCC. At higher growth rates,

the autogenic modes become more prominent because their amplitudes are proportional to

the expression level of the lac genes; at the same time, the amplitudes of the control modes

decrease with the GCCs (Fig 4E and 4F, middle panels). As a result, the cross-correlation

becomes weaker and more positively skewed.

At slow growth, the πG–μ cross-correlation is negatively skewed because the operon control

mode is dominant (Fig 4D, bottom panel). It also shows a notable transmission mode. With

increasing growth rate, the autogenic modes increase in importance, which narrows the peak,

increases its height, and reduces its asymmetry (Fig 4E and 4F, bottom panels). The patterns
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seen in both cross-correlations are in good qualitative agreement with the experimental data

(Fig 4D, 4E and 4F, top panels).

Alternative dataset, similar results. In the dataset that we used to parameterize protein

expression, the abundances are consistently low compared with other studies [29, 53]. How-

ever, an alternative analysis based on different abundance data [53] and sampled variances

[16] yielded similar results (S1 Text p. 11, and S3 Fig). We conclude that the qualitative trends

are insensitive to the precise dataset used.

Discussion

We have presented a model of stochastic cell growth in which the growth rate and the expres-

sion of all genes mutually affect each other. Systems in which all variables communicate to cre-

ate interlocked feedback loops are generally hard to analyze. Analytical results were obtained

by virtue of stark simplifying assumptions. Nevertheless, the predicted and measured cross-

correlations have similar shapes and show similar trends under variation of the growth rate.

That said, a few differences are observed. Chiefly, at slow and intermediate growth rates the

model consistently underestimates the decorrelation timescales (peak widths). In the model,

the longest timescale is the doubling time; this timescale is exceeded in the experimental data.

This suggests a positive feedback that is not included in the model, possibly as a result of gene

regulation (also see S2 Fig), or else a noise source with a very long auto-correlation time.

Alongside their measurements, Kiviet et al. published their own linear noise model, which

fits their data well. In fact, the shapes of the noise modes emerging in that model are mathe-

matically identical to those presented above [42]. Yet, the models differ strongly in their setup

Fig 4. Expression–growth cross-correlations in the many-protein model. (A) Cartoon of the noise propagation network. (B)

Monod curve describing the mean growth rate as a function of lac expression. Black dots indicate the operon mass fractions and

growth rate used to calculate the cross-correlations in (D)-(F). (C) Noise distribution of the proteome (gray cloud) taken from

Ref. [51], and the values chosen for proteins on the lac operon (black dots). Green dashed lines are guides for the eye. (D)–(F)

Experimental [5] (top panels) and theoretical (middle and bottom panels) cross-correlations for three growth conditions. Proteome

fraction–growth and production–growth cross-correlations are plotted as solid and dashed black lines, respectively. As in Fig 3A and

3B, colored lines show the contributing noise modes.

https://doi.org/10.1371/journal.pcbi.1006386.g004
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and interpretation. Kiviet et al. model a single enzyme E that is produced and diluted by

growth. It features only three noise sources: one directly affects the production of E (“produc-

tion noise”), one the growth rate μ (“growth noise”), and one affects both simultaneously

(“common noise”). While these ingredients are sufficient to fit the data, the interpretation and

molecular origins of the common and growth noise are left unspecified. In our model, which

includes many proteins, similar noise modes emerge without explicit growth or common

noise sources. Each enzyme perceives fluctuations in the expression of all genes as noise in the

growth rate; this results in a dilution mode similar to that of Kiviet et al. Furthermore, noise

in the synthesis of each enzyme instantaneously affects the growth rate (Eq (2)) due to the

assumed homeostatic control of protein density. Hence, this noise behaves as a common noise

source, which explains why the autogenic mode is mathematically identical to the common-

noise mode of Kiviet et al. We conclude that noise in the expression of many enzymes, com-

bined with homeostatic control of protein density, can contribute to the observed but unex-

plained common- and growth-noise modes.

Control coefficients are routinely used in metabolic control analysis [45, 46, 54, 55] and

have also been studied in the context of evolutionary optimization [47, 56]. In our linearized

model, GCCs emerged as transfer coefficients, indicating that these quantities also affect the

propagation of noise. Conversely, this suggests that GCCs could be inferred from noise-propa-

gation measurements. For example, the Pearson correlation coefficient (cross-correlation at

zero delay) between ϕi and μmight be used as an indication of control. However, we have seen

in Fig 3 that the ϕi–μ correlation involves several noise modes that are independent of the

GCC. As a result, the signs of the Pearson correlation and the GCC do not necessarily agree

(see Fig 5A). In addition, the intrinsic noise and GCC of the reporter protein can result in a

negative cross-correlation even if the operon’s control is positive (Fig 5B). Alternatively, the

asymmetry of the control mode in the πi–μ cross-correlation could perhaps be exploited [5]

(S4 Fig). Unfortunately, this asymmetry is also affected by other modes, such as the transmis-

sion mode, which can mask the effect (S4 Fig, panel C). We conclude that, in any case, such

results have to be interpreted with great caution, ideally guided by a quantitative model.

Future theoretical work should aim to relax assumptions and remove limitations. The

assumed strict control of protein density can be relaxed by allowing density fluctuations. If

these are long-lived, they will likely weaken the autogenic mode and introduce new modes of

their own. Also, additional noise sources can be included that do not stem directly from pro-

tein synthesis. In particular, we ignored noise originating from cell division despite its impor-

tance [8, 57, 58]. In addition, gene regulation will affect some noise modes; this can be studied

by allowing the fi to depend on ϕ. It will also be interesting to include non-protein components

of the cell, such as RNAs.

A further caveat is that the linear approximation used here is only reasonable if the noise is

sufficiently weak. In fact, in the presence of strong non-linearities, the approach may even

break down completely. For instance, it has been shown that cellular growth can be stochasti-

cally arrested when an enzyme whose product is toxic to the cell is expressed close to a thresh-

old beyond which toxic metabolites build up to lethal doses [59]. In such circumstances,

expression level noise in those enzymes can have a highly nonlinear effect on the cellular

growth rate, resulting in subpopulations of growth-arrested cells [59]. That said, under more

ordinary conditions linear models that describe noise in cellular networks have previously

been used to great success [5, 42].

Throughout this document we have considered noise sources that act on each production

rate independently. Alternatively, one could hypothesize that the observed fluctuations in pro-

tein concentrations might instead originate from noise in the allocation of the flux—that is,

from fluctuations in the allocation coefficients fi. This would be expected under the
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supposition that ribosomes are always fully occupied and translating at a constant, maximal

rate, so that the relative rates of protein synthesis are determined solely by competition

between different mRNAs based on their relative abundances and their translation initiation

rates. Protein synthesis rates then become intrinsically correlated: an increase in the synthesis

rate of one protein requires an simultaneous decrease in the synthesis rates of other proteins.

In future work, such alternative models could be explored in detail. Preliminary simulations,

however, show a striking symmetry in the ϕi–μ cross-correlation and a consistent asymmetry

in the πi–μ cross-correlation (for details see S1 Text pp. 12–13, and S5 Fig). This can be under-

stood as follows. If an increase in a particular synthesis rate is always compensated by a

decrease in other production rates, the noise does not affect the sum of all production rates

nor the growth rate instantaneously. Therefore, no autogenic mode should be present. Nota-

bly, in our model it is the autogenic mode that explains the asymmetry in the measured ϕi–μ
cross-correlations as well as the dominant symmetric mode in the πi–μ cross-correlations

under the fast growth condition. We conclude that noise on flux allocation alone cannot read-

ily explain these experimental findings and additional noise sources would have to be included,

such as the common noise as defined by Kiviet et al. [5].

Lastly, we hope that this work will inspire new experiments that can confirm or falsify the

assumptions and results presented above. In particular, single-cell measurements of mass-den-

sity of protein-density fluctuations [60, 61] could establish whether our assumption of density

homeostasis is warranted. Also, additional single-cell measurements could determine whether

expression noise indeed propagates between reporter proteins, adding to their covariance, and

whether the amplitude of the various noise modes scales with the GCCs and mass fractions as

predicted.

Materials and methods

We here specify the parameters used for the many-protein model; also see S1 Text, pp. 10–11.

Growth rates and protein abundances

The Monod curve (Fig 4B) is given by μ0 = μmax ϕ0,O/(ϕhalf+ ϕ0,O), with μ0 the mean growth

rate, ϕ0,O the mass fraction of the lac-operon proteins, μmax = 0.8 h−1, and ϕhalf = 0.005. The

three growth states correspond to three points on this curve, with ϕ0,O/ϕhalf = {0.3, 1.3, 15}; this

Fig 5. Deceptive concentration–growth cross-correlations. (A) Positive Pearson correlation despite a negative

operon GCC, due to a dominant autogenic mode. Same parameters as Fig 4F, but with CμO ¼ � 0:035. (B)Negative

Pearson correlation despite a positive operon GCC, due to noisy GFP expression. Same parameters as Fig 4F, but with

operon noise much smaller than GFP noise (see Materials and methods).

https://doi.org/10.1371/journal.pcbi.1006386.g005
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mass is shared equally among proteins Y, Z, and G. The mass fractions of the remaining pro-

teins matched the proportions of the dataset [51].

Ornstein–Uhlenbeck noise sources

The amplitudes of all noise sources were uniquely fixed by the constraints that (i) the CV of

each Lac protein was 0.15, (ii) the amplitude of NO was 1.5 times that of NG [4], and (iii) all

other CVs agreed with the dataset [51]. All noise reversion rates were set to β = 4μmax.

GCCs

To select the GCCs, we first randomly assigned proteins (� 25% of the total mass) to the non-

metabolic sector H. After the lac reporter construct was added, the GCC of each protein h 2H

was set by Eq (12). In each growth state, the GCC of the lac operon was calculated from the

Monod curve, which yielded CμO ¼ f0:77; 0:43; 0:063g. Assuming GFP is non-metabolic and

the GCCs of Y and Z are equal, we set CμG ¼ � ϕ0;G and CμY ¼ C
μ
Z ¼ ðC

μ
O � C

μ
GÞ=2. The GCCs of

all other proteins were sampled from a probability distribution that respects Eq (11) and

assumes that proteins with a larger abundance tend to have a larger GCC (see S1 Text, p. 11).

Supporting information

S1 Text. Details of derivations and analyses. Presented in this text are a full derivation of the

linear noise model, calculations of statistical properties using Fourier transforms, complete

derivations of the results on growth control, detailed calculations of the two-protein an many-

protein models, and an analysis of a model where noise is added to ribosomal allocation rather

than protein production.

(PDF)

S1 Fig. Illustration of Eq (9). Pictured is the relation between flux-control coefficients CJi ,
growth-control coefficients Cμi , and proteomic mass fractions ϕi for a cell containing just three

protein species T, R, and H. Proteins H do not contribute to the global metabolic flux, so that

CJH ¼ 0. Purple arrows indicates the effect of a reduction in ϕT in favor of ϕR, which increases

the growth control possessed by T.

(PDF)

S2 Fig. The effects of regulation on noise parameters in the two-protein model. (A)Cross-

correlations between the expression level ϕY of protein Y and growth rate μ in the two-protein

model, for varying levels of positive (green) and negative (red) auto-regulation, as quantified

by the regulatory control coefficient CfYY . The curve plotted in gray is based on CfYY ¼ 0 (no

auto-regulation), and all other parameters are chosen as in Fig 3A; therefore the gray curve

corresponds to the gray curve of Fig 3A. (B)Analytical solution of the coefficient of variation

of the concentration of protein Y in the two-protein model, under varying levels of auto-regu-

lation. The intrinsic and extrinsic noise components are indicated by the two shades of gray.

The colored circles indicate the parameter choices belonging to the corresponding curves of

panel A.

(PDF)

S3 Fig. Expression–growth cross-correlations in a many-protein model based on sampled

variances. Analysis of the model with protein abundances taken from Arike et al. [53], and

variances sampled from a phenomenological noise model (see [16] and S1 Text, Eq. (100) on

p. 11). This figure is equivalent to Fig 4, except that it is based on different protein abun-

dances and variances. (A)Distribution of protein abundances and variances. Each gray dot
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represents a protein; the black points indicate the abundance and variance of the GFP

reporter under the three growth condition (equivalent to Fig 4C). (B)–(D)Growth rate cross-

correlations between GFP concentration and growth rate (top panels) and GFP synthesis

rate and growth rate (bottom panels), for the three growth conditions (equivalent to Fig 4D,

4E and 4F).

(PDF)

S4 Fig. Production–growth cross-correlations corresponding to Fig 5. This figure shows the

cross-correlations between GFP abundance and growth rate for the same parameters whose

concentration–growth cross-correlations were studied in Fig 5. (A) The operon has a negative

growth-control coefficient (cf. Fig 5A). (B) Fluctuations in GFP are dominated by its private

noise source NG, and are therefore largely decoupled from the fluctuations in the rest of the lac
operon (cf. Fig 5B). (C)Highly symmetrical πG–μ cross-correlation despite a (slightly) positive

control of the operon, which is masked by the negative control carried by the reporter protein

as well as by the asymmetrical transmission mode.

(PDF)

S5 Fig. Comparison of noisy-allocation and noisy-production models. (A) Simulations of

an alternative model in which the noise sources act on the allocation of the flux rather than on

each protein synthesis rate independently. Shown are the ϕ1–μ (solid line) and π1–μ (dashed

line) cross-correlations of protein 1 in a cell containing 40 protein species with arbitrary

parameters (see S1 Text pp. 12–13 for more details about the simulation). Here, ϕ0,1 = 0.027

and Cμ1 ¼ 0:022. (B)Analytical results for the ϕ1–μ (solid line) and π1–μ (dashed line) cross-

correlations of the same cell, but where noise again acts on each protein synthesis rate inde-

pendently. The amplitudes of the noise sources were adjusted such that the variances of all

protein species were identical to those in panel (A). (C) The asymmetry of the ϕ1–μ cross-cor-

relations R(ϕ1, μ)(τ) shown in panels A (solid line) and B (dashed line), quantified as Rϕ1 μ(−τ)
− Rϕ1 μ(τ). In order to estimate error bars, we repeated the “noisy allocation” simulation of the

exact same cell 10 times; error bars indicate the standard error of the mean. Note that, for the

“noisy allocation” model, zero lies within the narrow error bars, showing that the cross-corre-

lation is highly symmetric and therefore shows no evidence for an asymmetric mode akin to

the autogenic or common-noise mode.

(PDF)

Acknowledgments

We thank Daan Kiviet and Philippe Nghe for sharing the cross-correlation data that was used

to generate Fig 4D, 4E and 4F, top panels.

Author Contributions

Conceptualization: Istvan T. Kleijn, Laurens H. J. Krah, Rutger Hermsen.

Formal analysis: Istvan T. Kleijn, Laurens H. J. Krah, Rutger Hermsen.

Supervision: Rutger Hermsen.

Visualization: Istvan T. Kleijn, Laurens H. J. Krah.

Writing – original draft: Istvan T. Kleijn, Rutger Hermsen.

Writing – review & editing: Istvan T. Kleijn, Laurens H. J. Krah, Rutger Hermsen.

Noise propagation in bacterial gene expression and growth

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006386 October 5, 2018 15 / 18

http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1006386.s005
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1006386.s006
https://doi.org/10.1371/journal.pcbi.1006386


References
1. Ingraham JL, Maaløe O, Neidhardt FC. Growth of the Bacterial Cell. Sunderland MA: Sinauer Associ-

ates; 1983.

2. McAdams HH, Arkin A. Stochastic mechanisms in gene expression. Proc Natl Acad Sci USA. 1997; 94

(3):814–819. https://doi.org/10.1073/pnas.94.3.814 PMID: 9023339

3. Thattai M, van Oudenaarden A. Intrinsic noise in gene regulatory networks. Proc Natl Acad Sci USA.

2001; 98(15):8614–8619. https://doi.org/10.1073/pnas.151588598 PMID: 11438714

4. Elowitz MB, Levine AJ, Siggia ED, Swain PS. Stochastic gene expression in a single cell. Science.

2002; 297(5584):1183–1186. https://doi.org/10.1126/science.1070919 PMID: 12183631

5. Kiviet DJ, Nghe P, Walker N, Boulineau S, Sunderlikova V, Tans SJ. Stochasticity of metabolism and

growth at the single-cell level. Nature. 2014; 514(7522):376–379. https://doi.org/10.1038/nature13582

PMID: 25186725

6. Swain PS, Elowitz MB, Siggia ED. Intrinsic and extrinsic contributions to stochasticity in gene expres-

sion. Proc Natl Acad Sci USA. 2002; 99(20):12795–12800. https://doi.org/10.1073/pnas.162041399

PMID: 12237400

7. Pedraza JM, van Oudenaarden A. Noise propagation in gene networks. Science. 2005; 307

(5717):1965–1969. https://doi.org/10.1126/science.1109090 PMID: 15790857

8. Rosenfeld N, Young JW, Alon U, Swain PS, Elowitz MB. Gene regulation at the single-cell level. Sci-

ence. 2005; 307(5717):1962–1965. https://doi.org/10.1126/science.1106914 PMID: 15790856

9. Cai L, Friedman N, Xie XS. Stochastic protein expression in individual cells at the single molecule level.

Nature. 2006; 440(7082):358–362. https://doi.org/10.1038/nature04599 PMID: 16541077

10. Friedman N, Cai L, Xie X. Linking stochastic dynamics to population distribution: An analytical frame-

work of gene expression. Phys Rev Lett. 2006; 97(16):168302. https://doi.org/10.1103/PhysRevLett.

97.168302 PMID: 17155441

11. Yu J, Xiao J, Ren X, Lao K, Xie XS. Probing gene expression in live cells, one protein molecule at a

time. Science. 2006; 311(5767):1600–1603. https://doi.org/10.1126/science.1119623 PMID: 16543458

12. Levine E, Hwa T. Stochastic fluctuations in metabolic pathways. Proc Natl Acad Sci USA. 2007; 104

(22):9224–9229. https://doi.org/10.1073/pnas.0610987104 PMID: 17517669

13. Shahrezaei V, Swain PS. Analytical distributions for stochastic gene expression. Proc Natl Acad Sci

USA. 2008; 105(45):17256–17261. https://doi.org/10.1073/pnas.0803850105 PMID: 18988743
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50. Dublanche Y, Michalodimitrakis K, Kümmerer N, Foglierini M, Serrano L. Noise in transcription negative

feedback loops: Simulation and experimental analysis. Mol Syst Biol. 2006; 2:41. https://doi.org/10.

1038/msb4100081 PMID: 16883354

51. Taniguchi Y, Choi PJ, Li GW, Chen H, Babu M, Hearn J, et al. Quantifying E. coli proteome and tran-

scriptome with single-molecule sensitivity in single cells. Science. 2010; 329(5991):533–538. https://

doi.org/10.1126/science.1188308 PMID: 20671182

52. Monod J. The growth of bacterial cultures. Annu Rev Microbiol. 1949; 3(1):371–394. https://doi.org/10.

1146/annurev.mi.03.100149.002103

53. Arike L, Valgepea K, Peil L, Nahku R, Adamberg K, Vilu R. Comparison and applications of label-free

absolute proteome quantification methods on Escherichia coli. J Proteomics. 2012; 75(17):5437–5448.

https://doi.org/10.1016/j.jprot.2012.06.020 PMID: 22771841

54. Fell DA. Metabolic control analysis: a survey of its theoretical and experimental development. Biochem

J. 1992; 286(Pt 2):313–330. https://doi.org/10.1042/bj2860313 PMID: 1530563

55. Moreno-Sánchez R, Saavedra E, Rodrı́guez-Enrı́quez S, Olı́n-Sandoval V. Metabolic control analysis:

a tool for designing strategies to manipulate metabolic pathways. J Biomed Biotechnol. 2008;

2008:597913. https://doi.org/10.1155/2008/597913 PMID: 18629230

56. Berkhout J, Bosdriesz E, Nikerel E, Molenaar D, Ridder Dd, Teusink B, et al. How biochemical con-

straints of cellular growth shape evolutionary adaptations in metabolism. Genetics. 2013; 194(2):505–

512. https://doi.org/10.1534/genetics.113.150631 PMID: 23535382

57. Golding I, Paulsson J, Zawilski SM, Cox EC. Real-time kinetics of gene activity in individual bacteria.

Cell. 2005; 123(6):1025–1036. https://doi.org/10.1016/j.cell.2005.09.031 PMID: 16360033

58. Walker N, Nghe P, Tans SJ. Generation and filtering of gene expression noise by the bacterial cell

cycle. BMC Biol. 2016; 14:11. https://doi.org/10.1186/s12915-016-0231-z PMID: 26867568

59. Ray JCJ, Wickersheim ML, Jalihal AP, Adeshina YO, Cooper TF, Balázsi G. Cellular growth arrest and

persistence from enzyme saturation. PLoS Comput Biol. 2016; 12(3):e1004825. https://doi.org/10.

1371/journal.pcbi.1004825 PMID: 27010473

60. Grover WH, Bryan AK, Diez-Silva M, Suresh S, Higgins JM, Manalis SR. Measuring single-cell density.

Proc Natl Acad Sci USA. 2011; 108(27):10992–10996. https://doi.org/10.1073/pnas.1104651108

PMID: 21690360
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