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Abstract

A growing body of evidence highlights the importance of the cellular microenvironment as a

regulator of phenotypic and functional cellular responses to perturbations. We have previ-

ously developed cell patterning techniques to control population context parameters, and

here we demonstrate context-explorer (CE), a software tool to improve investigation cell

fate acquisitions through community level analyses. We demonstrate the capabilities of CE

in the analysis of human and mouse pluripotent stem cells (hPSCs, mPSCs) patterned in

colonies of defined geometries in multi-well plates. CE employs a density-based clustering

algorithm to identify cell colonies. Using this automatic colony classification methodology,

we reach accuracies comparable to manual colony counts in a fraction of the time, both in

micropatterned and unpatterned wells. Classifying cells according to their relative position

within a colony enables statistical analysis of spatial organization in protein expression

within colonies. When applied to colonies of hPSCs, our analysis reveals a radial gradient in

the expression of the transcription factors SOX2 and OCT4. We extend these analyses to

colonies of different sizes and shapes and demonstrate how the metrics derived by CE can

be used to asses the patterning fidelity of micropatterned plates. We have incorporated a

number of features to enhance the usability and utility of CE. To appeal to a broad scientific

community, all of the software’s functionality is accessible from a graphical user interface,

and convenience functions for several common data operations are included. CE is compat-

ible with existing image analysis programs such as CellProfiler and extends the analytical

capabilities already provided by these tools. Taken together, CE facilitates investigation of

spatially heterogeneous cell populations for fundamental research and drug development

validation programs.
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Author summary

Cell behavior is influenced by cues that cells receive from their surrounding environment

such as signals secreted from other cells and cell-to-cell contact. These factors are spatially

heterogeneous and cells at different positions within a colony will experience varying

degrees of influence from such environmental cues. In vitro assays often do not allow con-

trol over environmental variables and there is a lack of easy to use software to investigate

the effect of spatial variation in these factors. We have developed a software package to

address this gap and facilitate the quantification of spatially heterogeneous cell responses.

Our software accurately identifies colonies of cells within a well and individual cells can

be grouped according to their position within these colonies, which enables quantification

of cell response as a function of cellular location. To support broad scientific accessibility,

the full functionality of the software is available through a graphical user interface. Using

this software to analyze data from a screening-optimized micropatterning platform, we

show that human pluripotent stem cell-derived colonies grown either under pluripotency

maintenance or differentiation-inducing conditions exhibit cell responses that are depen-

dent on spatial organization. This technology should enable more accurate and predictive

context-dependent drug screening and cell-fate investigation.

This is a PLOS Computational Biology Software paper.

Introduction

Emerging pieces of evidence stress the importance of a cell’s local microenvironment as a regu-

lator of cellular phenotype and gene expression heterogeneity within cell populations. Micro-

environmental parameters such as mechanical forces, cell to cell contact and endogenous

signaling, all vary between cells at different positions in a well [1,2]. The spatial heterogeneity

of these factors leads to variability in efficiency of endocytosis and the vulnerability to viral

infection [3], influences epithelial tissue growth [4], impacts the expression of angiogenic fac-

tors in tumor cells [5] and influences the differentiation potential of mouse and human plurip-

otent stem cells (mPSCs, hPSCs) [2,6]. Microenvironmental heterogeneity is also a potential

confounding factor behind contradictory findings in the response of different cell types to key

signaling pathway activity [7–9] and could limit the interpretation and reproducibility of

experiments.

A comparative analysis [10] of two large scale pharmacogenomic studies, the Cancer

Genome Project [11] and Cancer Cell line Encyclopedia [12], revealed a surprisingly poor cor-

relation between cell line drug response phenotypes between laboratories, which prevented

meaningful extraction of drug-gene relationships. Correlation remained low even when using

matched protocols and cell lines with highly correlated gene expression profiles. Although the

exact source of variation in this study is unknown, a separate analysis of single cell data from

45 high-throughput (HTP) screens revealed that population context is indeed a ubiquitous

source of variation between screens, and accounting for population context can improve

experimental reproducibility between cell lines and laboratories [9]. Although it is acknowl-

edged that understanding population heterogeneity is critical in biomedical research [13,14],

the scientific community has been slow to adopt approaches to reduce heterogeneity, such as

controlling microenvironmental variables.

Context-explorer

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006384 January 2, 2019 2 / 13

https://doi.org/10.1371/journal.pcbi.1006384


The increasing affordability of high content screening instruments, emergence of core

screening facilities and technological advancements such as micropatterning in multi-well

plates [15], enable investigation of population context dependent variables with unprecedented

throughput and veracity [16]. By patterning extracellular matrix (ECM) proteins on a tissue

culture surface, cells can be restricted to adhere to an array of spots of predefined shapes and

sizes [17,18]. An advantage of such patterning is enhanced control over microenvironmental

variation within each well and improved assay robustness [19,20]. Growing cells in colonies of

defined size and shape facilitates analyses of inter- and intra-colony variation in protein

expression. For example, we observe that hPSCs growing in such patterned colonies express

varying levels of pluripotency markers, including SOX2 and OCT4, depending on colony size

[2,19]. Elucidating the impact of the population context dependent variables on cellular phe-

notype will not only add to our understanding of fundamental cell biology, but will also allow

us to optimize culture conditions and cell assays, provide possible explanations for current

seemingly conflicting research and inform in silico models. These aspects are critical to next-

generation drug development strategies and systems biology approaches.

We have previously developed an HTP platform for micropatterning of cells on ECM spots

of defined shapes in multi-well plates [19,21]. To augment this platform, we here present a

computational tool, context-explorer (CE), which facilitates colony level analyses and cell pat-

terning quality control. The CE software is meant to extend the functionality of currently avail-

able software solutions, both open source and commercial, for analyzing features of imaged

cells [22–24]. While some implementations already exist that can be used to identify arrays of

cells on glass slides [25] or to study differential gene expression of cells in different spatial loca-

tions within the same colony [26], our software aims to improve the HTP workflow for analys-

ing cells in micropatterned multi-well plates by facilitating evaluation of patterning fidelity,

enabling identification of colonies within a well, and improving spatial analyses of heteroge-

neous protein expression within colonies. As HTP technologies become more widespread, it is

increasingly important to provide user friendly data analysis software targeted towards these

platforms (Fig 1A). Here, we demonstrate the utility of CE by investigating the impact of

intra-colony location on hPSC pluripotency marker expression.

Design and implementation

Designed to complement existing imaging software, CE fits into the analysis pipeline following

the extraction of cellular features from microscope images (Fig 1B). The input to CE is a CSV-

file, which contains single cell xy-coordinates, well label, and at least one other measurement

of interest, such as protein fluorescent intensity values. These single cell coordinates can be

clustered into colonies within which spatial trends for the measurements of interest can be

visualized (Fig 1C). By leveraging existing image extraction software and processing the result-

ing text files, CE has low system requirements and runs smoothly on modern laptop comput-

ers. CE is implemented in Python, and utilizes the scientific open source ecosystem SciPy [27].

Specifically, NumPy [28] and Pandas [29] are used for array manipulations, while Matplotlib

[30] and Seaborn [31] generate the graphical visualizations. To make CE easily accessible to a

broad scientific community of various technical backgrounds, all functionality is available via

a graphical user interface designed in Qt.

To interrogate organized cell behavior within colonies, the concept of cellular colonies

must first be introduced by classifying closely positioned cells as belonging to the same colony.

Manually labeling individual cells is infeasible in HTP assays that often include millions of

cells. There are many existing algorithms for automatically identifying dense clusters of data

points [32] and CE employs the Density-Based Spatial Clustering of Applications with Noise
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Fig 1. Background schematic and CE workflow overview. A) Studying cells in isolation disregards the effects of community interactions, which are known to direct

cell fate decisions (left). Powerful micropatterning in vitro assays increase control over the cellular microenvironment and facilitate the study of context dependent cell

fate acquisitions (middle). Our analysis software enhances these assays by allowing researchers to analyze cell behavior within its population context instead of as

independent isolated events (right). B) CE fits into existing image analysis pipelines after initial measurements have been extracted from the images. C) Overview of

the CE workflow, each step is described in detail in the methods section.

https://doi.org/10.1371/journal.pcbi.1006384.g001
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(DBSCAN) algorithm [33], as implemented in the scikit-learn Python package [34], to identify

sets of points at high two dimensional density. Clustering cells into colonies based on local cell

density is similar to how these communities are defined biologically since cellular communica-

tion is restricted by the distance between cells. The DBSCAN algorithm is capable of identify-

ing colonies of any geometrical shape and performs well on any cell constellation where the

distance between neighboring cells within a colony is shorter than the distance between neigh-

boring colonies. DBSCAN scan also has the advantage that it has a notion of outliers, cells far

away from any colony, and can classify such cells as noise rather than trying to force all cells to

belong to a colony as many other cluster algorithms would do. DBSCAN performs unsuper-

vised clustering and does not require prior knowledge of the number of colonies within each

well, only specification of the neighborhood search radius (Eps) and the minimum number of

points (MinPts) within the neighborhood to start propagating a cluster. For each point found

within the Eps neighbourhood of the starting point, a search for additional points will be per-

formed. If the number of points found within a point’s Eps neighborhood is greater or equal to

MinPts, that point is considered a core point of the cluster. Points that fail to meet this criteria,

but that are density reachable from a core point, are considered border points and are classi-

fied as part of the colony. Points that fail to meet either of these two criteria are labelled as

noise and not part of any colony.

While there are implementations of DBSCAN that automate parameter optimization, these

increase time complexity [35,36]. As an alternative to automatic parameter estimation, CE

allows for the Eps and MinPts parameters to be adjusted via the graphical user interface while

viewing the resulting colony identification accuracy. The immediate visual feedback enables

intuitive and accurate colony classification and decreases the time it takes to optimize Eps and

MinPts. DBSCAN clustering is deterministic for the core cells of each cluster and only border

points which are density reachable from more than one cluster core can be assigned to differ-

ent clusters between runs. Colonies in ECM patterned wells rarely grow close enough for bor-

der cells to be density reachable from more than one colony, so for this application cells are

routinely clustered deterministically. To further increase colony identification accuracy, CE

includes filters for colony size, density and roundness, which refine the colony identification

procedure and are particularly useful to deal with imaging artefacts and overgrown colonies.

These filters are controlled via sliders in the GUI and the resulting colony identification is

immediately visualized for the selected well.

Each cluster of points returned by DBSCAN corresponds to cells growing together in a col-

ony. To define colony attributes, CE utilizes the geometric analyses package Shapely [37]. Gen-

erally, the polygonal boundary area of a colony can be defined as either the convex or concave

hull of its cells. CE uses the convex hull algorithm as it is less expensive to compute than the

concave hull and performs well with commonly used micropatterned spot shapes. By finding

the colony bounding area, additional geometric attributes such as colony diameter, circumfer-

ence, area and cell density can be calculated for each colony. Additionally, each cell can be

assigned Cartesian coordinates relative the colony’s centroid or the closest edge of the colony’s

boundary area. These relative cell coordinates can be used to group cells at similar positions

from multiple colonies into concentric bins. The process for grouping cells is initiated by

deriving an aggregated value of all the cells in a colony that are within the same location bin.

These colony values are then aggregated for multiple colonies and the error estimation

reported describes the variation between colonies rather than between cells within one colony.

The visualizations built into CE further facilitates the analyses of spatial trends within colonies.

Cells can also be grouped according to a hexagonal grid, which aggregates cells from all colo-

nies in the same bin within the grid.
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Results

Colony classification

To demonstrate the colony classification process, we patterned mouse PSCs on circular ECM

spots 500 μm in diameter in a 96-well plate using an in-house HTP UV-lithography method

[21]. To enable extraction of cellular coordinates within the well, cell nuclei were labelled with

DAPI and analysed by a primary image analysis program, such as CellProfiler. After imaging

and extraction of single cell features, the resulting CSV-file was processed by CE to classify

cells into colonies. Cells robustly adhered to the patterned regions, and were grown for 48 h in

pluripotent conditions (LIF and Serum, see Supplementary Methods for detailed culture con-

ditions). These micropatterned, well-separated clusters of cells were easily identified by CE as

separate colonies. However, cells occasionally bridge adjacent confluent colonies, effectively

merging two or more colonies together. Such colonies would still be classified as valid clusters

by DBSCAN, since all the cells are density reachable from each other. Another important

caveat is that the imaging hardware may not allow the entire well to be captured, resulting in

partial images of many of the colonies. Including either of these merged or partial colonies in

the downstream analyses could confound the interpretation of the underlying biology.

When limited to only the default DBSCAN parameters MinPts and Eps, partial and merged

colonies are difficult to discriminate from colonies of desired shape and size. We found that an

efficient way to eliminate these undesired colonies, was to apply a set of filtering criteria to the col-

onies detected by DBSCAN. Filtering on colony roundness and size were the most effective criteria

to exclude merged and partial colonies from the DBSCAN output (Fig 2A). The effect of applying

size and roundness filters was striking when comparing the number of cells per colony before and

after filtering. Prior to filtering, several clusters of colony sizes were detected, including bigger

merged colonies and smaller partial colonies cut off by the imaging limitations (Fig 2B). These col-

onies were omitted from the final analyses as they would skew the calculations of both the mean

number of cells per colony and spatial trends within the colonies. After excluding colonies of

undesirable size and shape, we observed only one cluster of colony sizes and the mean number of

cells per colonies was notably consistent between wells, indicating reproducible patterning of cells

(Fig 2C). The result of the filtering in CE was almost identical to manually identifying merged and

partial colonies (406 of 412 colonies were correctly classified, S1A Fig and S1B Fig).

Another useful metric for assessing patterning fidelity is the number of colonies per well,

which is also computed by CE. Comparing the number of filtered and unfiltered colonies iden-

tifies wells containing many fused and partial colonies that were detected by DBSCAN, but then

excluded by the filters. The filtered count was nearly identical to the counts obtained from visu-

ally inspecting the images from each well (Fig 2D), and were computed in a fraction of the time

of manual counting. CE can also accurately identify clusters of cells growing in micro-patterned

ECM spots of different sizes within the same well, cells patterned in non-circular colony shapes,

and colonies in unpatterned wells (Fig 2E). The flexibility of the parameter and filter adjust-

ments makes it possible to identify colonies within unpatterned wells with high accuracy (the

mean difference from a manual colony count was 2.6% (sd 1.3%) for ten wells with around 100

colonies in each, S1C Fig and S1C and S1D Fig). These results demonstrate the capacity for CE

to semi-automatically identify colonies of a wide array of geometries both in patterned and

unpatterned wells with an accuracy similar to that of visual image inspection.

Investigating the behavior of hPSCs in micropatterned colonies

To apply CE to hPSCs analysis, we first patterned hPSCs in 200 μm diameter colonies in

96-well plates using microcontact-printing. While most cells adhere to the ECM spots in the
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Fig 2. Classification of cells into colonies. A) mPSCs restricted to grow on micropatterned ECM spots (left) can be classified into colonies via the

DBSCAN algorithm (middle). Merged and partial colonies can be excluded by applying filters to the DBSCAN clustering results (right). Each data

point represents a cell and colonies are encircled with green lines. Scale bar = 500 μm. B) Number of cells per colony in wells from a 96-well plate

after running DBSCAN. C) Number of cells per colony in wells after excluding merged and partial colonies from the DBSCAN results. D) Number

of colonies per well after running DBSCAN with and without filters, and from a visual inspection of the images. E) Colony identification for

colonies of different sizes in the same well (left), colonies of non-circular geometries (middle), and colonies in wells without pre-patterned ECM

spots (right). Scale bar = 500 μm.

https://doi.org/10.1371/journal.pcbi.1006384.g002
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patterned plates, there is also limited non-specific cell adhesion in-between patterned ECM spots.

Compared to UV-lithography, microcontact printing has a higher proportion of cells growing in

tiny colonies and as single cells outside patterned ECM spots, which makes this technology suit-

able for comparing the behavior of cells outside and inside micropatterned colonies. To test

whether cells that adhere non-specifically display differences in protein expression compared to

cells within colonies, we assessed cellular response 42 h after treatment with serum free medium

containing BMP4 (SF+BMP4, induces trophectoderm and primitive endoderm [38,39]), or MEF

conditioned medium (CM, maintains pluripotency [40]). Expression of the pluripotency-associ-

ated transcription factors SOX2 and OCT4 was analyzed to quantify cellular differences. As

expected, in SF+BMP4 medium, pluripotency signals were repressed and no difference was

observed in SOX2 and OCT4 expression between cells inside and outside colonies (Fig 3A & S1E

Fig). In contrast, CM induces the expression of SOX2 and OCT4 in cells within colonies, while

cells outside colonies express the marker to a lesser extent (Figs 3A & S1E). This is visible both as

a change of shapes and a shift in means of the protein expression distributions. These differences

suggest that cells inside and outside colonies do not respond similarly to added factors in the

medium, further highlighting the importance of controlling for microenvironmental parameters

such as population context when assessing cellular responses to experimental conditions.

Analysis of spatial trends in protein expression within hPSC colonies

In addition to facilitating inter-colony analyses, CE allows for investigation of intra-colony

variation in protein expression. Radial gradients of protein expression have previously been

reported in non-patterned and patterned colonies of hPSCs [2,6,21,41]. Analysing these trends

through visual inspection and manual data analyses is feasible in a low throughput platform,

but becomes error-prone and time-consuming in HTP systems with hundreds or thousands of

colonies. To visualize spatially biased protein expression, CE can automatically aggregate colo-

nies within replicate wells and display a heatmap of spatial protein expression variation within

these colonies (Fig 3B). This analysis can be applied to colonies of various sizes and shapes.

When investigating colonies of hPSCs grown in either CM or SF+BMP4, we observed dis-

tinct radial gradients of SOX2 and OCT4 expression between the two conditions (Figs 3C &

S1F). To distinguish differences attributed to local spatial factors from those attributed to

exogenous factors, all intensities were normalized relative to the expression at the centroid of

the colony. In hPSCs grown in CM, SOX2-expression decreased in a linear fashion towards

the edge of the colony, with cells at the colony border only displaying half the fluorescence

intensity of cells near the colony centroid. Meanwhile, cells grown in SF+BMP4, exhibited low

SOX2 expression throughout the entire colony, which can be attributed to BMP4 inducing dif-

ferentiation and overriding any local pluripotency supporting signals. OCT4 expression fol-

lowed similar patterns in both CM and SF+BMP4.

Quantitative evaluation of protein expression levels relative to the location of a cell within a

colony was performed by aggregating cells in radial bins according to their distance from the

colony centroid rather than their relative xy-coordinates. The mean or median expression val-

ues could then be compared between ring-shaped bins across multiple colonies. This analysis

technique highlights the spatial trends of SOX2-expression for hPSCs grown in CM (Fig 3C),

where expression of SOX2 was highest in cells at the center of the colony and linearly

decreased toward the colony edge. Statistical significance at p = 0.01 can be roughly inferred

from non-overlapping pairs of 95% confidence intervals [42]. However, it should be noted that

statistical significance is easily achieved with sample sizes this large, even at small effect sizes

[43], so it is important to assess the magnitude of the differences. In hPSCs cultured in SF

+BMP4, a weak radial gradient of SOX2 expression emerged exhibiting no more than a 10%
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difference in expression level between cells at the centroid and the edge of the colony. In con-

trast, hPSCs cultured in CM exhibit more than double the level of SOX2 expression at the cen-

ter of the colony compared to the edge.

Fig 3. Quantification of radial expression trends. A) Comparison of SOX2 expression between cells growing inside and outside of colonies in microcontact-printed

wells. B) Cells from multiple colonies at similar locations within their respective colony are aggregated together in bins according to a hexagonal grid system. The

heatmap is colored by the desired measure of variation or central tendency. C) Multiple colonies of hPSCs are aggregated to reveal general tendencies in the spatial

protein expression pattern of SOX2 (left). Each bin shows the mean expression of cells from multiple colonies. Trends are visualized as line plots, where joint data

points represent the mean intensity of cells at each distance bin throughout the colony (right). Error bars represent 95% confidence intervals between cells from the

same location in different colonies. D) Hexagonally binned cells in triangular hPSC colonies (left). Cells grouped in concentric bins according to their distance from

the colony centroid (middle) or to the closest colony edge (right). The color is used for illustration purposes to distinguish bins from each other. E) Visualization of the

Sox2 expression levels in the hexagonal bins (left) and the concentric bins (middle). The number of cells per bin for the different concentric binning strategies (right).

https://doi.org/10.1371/journal.pcbi.1006384.g003
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For cells grown on ECM patterns of non-circular geometries, we evaluated how grouping

cells into bins based either on the distance from the colony border or the colony centroid

affected our interpretation of spatial trends in protein expression. To illustrate the different

biological interpretations that could arise from these two metrics, we investigated the SOX2

expression of hPSC colonies grown on triangular ECM patterns in SF+BMP4.

In addition to aggregating cells in hexagonal bins as previously described, colonies were

segmented into concentric annular or colony-shaped (in this case triangular) bins (Fig 3D).

The annular and triangular segmentations were created based on the distance from the colony

centroid or the closest colony border, respectively. When the intensity was visualized based on

the hexagonal binning strategy a clear spatial bias in SOX2 expression was reveled (Fig 3E). To

further quantify this organized expression, the average expression levels of cells grouped

according to the annular and triangular bins was compared. Importantly, the choice of binning

metric could influence the interpretation of the resulting protein expression trends. In this

example, SOX2 expression decreased more rapidly as a function of the distance from the

colony centroid compared to from the colony edge (Fig 3E). Depending on the binning strat-

egy, cells were grouped to different bins and the number of cells in each bins differed greatly

(Fig 3E).

Conclusions

There is overwhelming evidence that increased control and monitoring of population context

parameters is needed to improve assay reproducibility and to understand heterogeneous

responses between cells in the same population. However, addressing this challenge has proven

difficult in the broader biomedical community. To augment the power of HTP analysis of pop-

ulation context parameters in the cellular microenvironment, we previously developed cell pat-

terning techniques to control population context parameters, and here we demonstrate a

software tool for improved monitoring of microenvironmental variables and interrogation of

community driven cell fate acquisitions in HTP assays. In this study, CE was utilized to explore

and quantify radial spatial trends in SOX2 and OCT4 expression within micropatterned hPSC

colonies of various shapes and sizes. We observed that the protein expression levels vary as a

function of cells’ location within a colony, further highlighting the importance of understand-

ing variation in population context dependent factors.

Availability and future directions

CE is compatible with existing HTP imaging software and standard fluorescent microscopy

based assays. By developing a GUI-driven workflow and releasing it under an open source li-

cense, we provide a solution to facilitate colony-level analysis for a wide scientific community.

Members of our group regularly use CE for colony level analyses as evidenced in previously

published and ongoing studies [19–21,44]. To further broaden the utility and applications of

the software, there are built-in visualizations to assist with fluorescent intensity thresholding

and pattern fidelity assessment, and there are interface components for assigning wells to treat-

ment groups. To lower the threshold for wide adoption, CE is distributed as a Python package

through the conda and pip package managers, and runs under Linux, OS X and Windows.

The setup process does not require any use of the command line and can be done entirely

from the Anaconda Navigator GUI. The source code is distributed under the open source BSD

3-clause license, which enables incorporation of its features into existing image analysis pipe-

lines. Source code and installation instructions are available online at https://gitlab.com/
stemcellbioengineering/context-explorer, and the documentation can be found at https://
contextexplorer.readthedocs.io.
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Supporting information

S1 Text. Supplementary methods.

(DOCX)

S1 Fig. Quantification of colony count precision and OCT4 expression data. A) 412 colo-

nies from ten wells plotted according to their roundness and the number of cells in each col-

ony. Misclassified colonies are highlighted with differently shaped and colored scatter

markers. B) Quantification of the number of correctly and incorrectly classified colonies in

panel A. C) CE colony identification in an unpatterned well with clustering parameters opti-

mized for small colonies (left), large colonies (middle) or a mix of small and medium sized col-

onies (right). D) Well-wise comparison of the number of colonies identified by manual count

or automatically by CE. The mean difference in the count was 2.6% (sd 1.3%). E) Differences

in OCT4 expression level among cells inside or outside colonies. F) Hexbin and line plot aver-

ages for OCT4 expression levels in SF+BMP4 and CM.

(TIF)
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