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Abstract

Pathophysiological explanations of epilepsy typically focus on either the micro/mesoscale

(e.g. excitation-inhibition imbalance), or on the macroscale (e.g. network architecture). Link-

ing abnormalities across spatial scales remains difficult, partly because of technical limita-

tions in measuring neuronal signatures concurrently at the scales involved. Here we use

light sheet imaging of the larval zebrafish brain during acute epileptic seizure induced with

pentylenetetrazole. Spectral changes of spontaneous neuronal activity during the seizure

are then modelled using neural mass models, allowing Bayesian inference on changes in

effective network connectivity and their underlying synaptic dynamics. This dynamic causal

modelling of seizures in the zebrafish brain reveals concurrent changes in synaptic coupling

at macro- and mesoscale. Fluctuations of both synaptic connection strength and their tem-

poral dynamics are required to explain observed seizure patterns. These findings highlight

distinct changes in local (intrinsic) and long-range (extrinsic) synaptic transmission dynam-

ics as a possible seizure pathomechanism and illustrate how our Bayesian model inversion

approach can be used to link existing neural mass models of seizure activity and novel

experimental methods.

Author summary

We show that Bayesian inversion techniques used in electrophysiological data are applica-

ble to calcium imaging data derived from light sheet microscopy in the zebrafish brain.

Using this approach we can now make inference on the underlying large-scale connectiv-

ity changes underlying pathological states such as seizures, and translate findings from

zebrafish directly into the modelling frameworks utilised in human patients. Ultimately
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this modelling approach can be used to integrate evidence across different models of

abnormal neuronal dynamics to facilitate a mesoscale understanding of seizure dynamics.

Introduction

Epileptic seizures are transient disturbances in the brain’s electrical activity causing changes of

patients’ behaviours or perceptions. Seizures have different causes, from gene mutations to

acquired brain injuries [1]. The effects of particular pathologies on neuronal dynamics have

been studied using animal models, where different interventions (e.g. chemoconvulsant expo-

sure) can be evaluated in vivo [2–4]. Zebrafish in particular have been of recent interest for epi-

lepsy research because they (i) are a vertebrate organism, (ii) allow the introduction of genetic

mutations [5] and large-scale drug screening [6,7], and (iii) allow recording of neuronal func-

tion at high resolution across distributed brain networks [8,9]. There are now several studies

of epileptic seizures in zebrafish [10–13] and recent imaging studies have captured network-

wide changes in zebrafish brain activity during seizures [14,15]. However, a detailed mapping

of how localised activity is integrated across the brain as a functional network during seizures

is still missing.

Insights into seizure dynamics have largely been derived from computational modelling of

EEG [16–18]. Using population models of neuronal activity allows the systematic description

of the relationship between local brain circuit function and neuronal dynamics [19]. Combin-

ing novel empirical data and in silico models in this way has the potential to lead to an in-

depth understanding of how specific disruptions at the microscale lead to whole brain pheno-

types recognisable as epilepsy.

One strategy to combine computational modelling with imaging is dynamic causal model-

ling (DCM, [20]). Here, Bayesian model inversion is used to fit neuronal models to empirical

data. This approach combines (i) widely-used neural mass models, and (ii) Bayesian model

inversion algorithms. It is formally related to existing work on neural mass models in epilepsy

[21–24]; as well as Bayesian inference approaches [25,26]. DCM has been widely applied to

scalp EEG [27], invasive recordings in patients [28], and in invasive recordings from in vivo
animal models [29].

Both EEG and LFP recordings are spatially sparse samples of distributed neuronal activity.

Yet most modelling approaches assume measurable oscillations to represent homogeneous

averages of population activity. Such averages can now be accessed more directly using light

sheet microscopy, providing summaries of neuronal population activity that closely adhere to

the modelling assumptions.

In this report we model empirical recordings of epileptic seizures in zebrafish across spatial

and temporal scales using hierarchical DCM analysis: Spatial scales range from regional micro-

circuit neural mass models (mesoscale) to dynamic whole-brain networks (macroscale). Neu-

ronal states of the underlying biophysical models capture fast oscillatory neuronal dynamics

(millisecond temporal scale), whilst slowly varying model parameters capture the slow changes

in the dynamic behaviour that occur over time (seconds to minutes temporal scale).

Seizures were induced with pentylenetetrazole (PTZ) in healthy larval zebrafish and

recorded in vivo with light sheet microscopy of a single slice through the zebrafish brain cap-

turing five main bilateral brain regions. PTZ is a well-characterised chemoconvulsant and acts

as a GABA antagonist, thus disrupting inhibitory synaptic transmission. Acute seizures are

believed to be associated with changes in (i) local microcircuit dynamics that allow for a

(phase) transition between resting and seizure activity [19,30], and (ii) changes in whole-brain
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connectivity [31–33]. DCM allows concurrent testing of the following emerging hypotheses

across these different spatial scales: (1) seizures lead to a measurable reorganisation of effective

connectivity between regions [34], (2) local excitation-inhibition imbalance explains associ-

ated regional spectral changes [35], (3) in addition to changes in connection strengths, seizures

are also associated with changes in synaptic transmission dynamics [29].

Results

Simulations

In the analysis presented here, we used electromagnetic neural mass models originally

designed to explain data features observed in LFP recordings. First, we confirmed the con-

struct validity of this approach–i.e. applying DCM for local field potentials to time traces

derived from light sheet imaging–by applying the analysis to synthetic data. These were

derived from a neural mass undergoing predefined parameter changes: Using a single ‘source’

consisting of three coupled neuronal populations, we generate noisy LFP-like data. These are

then convolved with a composite exponential decay kernel modelling calcium probe dynamics

[36]. These surrogate fluorescence time traces are then downsampled to the sampling fre-

quency achieved in the single-slice light sheet imaging (20Hz). This linear convolution equates

to a simple addition of the signals in (log) frequency space. Because of the simple frequency

composition of the calcium imaging kernel, this linear transformation preserves much of the

spectral features in the underlying LFP like signal (Fig 1A).

The variations in the single neural mass model parameter introduces spectral changes in

both the surrogate LFP and fluorescence time traces (Fig 1B). We fitted a three-population

neural mass model (of the kind used to generate the LFP traces, Fig 1C) separately to each of

the fluorescence time traces. This yielded six separate dynamic causal models (DCMs), one

each fitted to the six timeseries generated using variations in a single parameter as shown in

Fig 1D. Using a hierarchical parametric empirical Bayesian model, we then identified which

parameter could best explain the differences in these DCMs (fitted to fluorescence signals).

This successfully identified variations in the correct parameter (an intrinsic connectivity

parameter H1) as the most likely cause for the differences in time series. Furthermore, the esti-

mated between-DCM differences in H1 values also capture the direction of the linear change

introduced in the original simulated LFP.

Seizure recordings

In order to elicit epileptic seizures, PTZ was infused in the bath of n = 3 zebrafish larvae. The

resultant seizure activity was recorded with light sheet imaging utilising a genetically encoded

calcium sensor (GCaMP6F). Neural activity was recorded in vivo in agarose immobilised lar-

vae capturing a single slice of the intact brain. The changes in activity within the whole imaged

slice was readily apparent in the fluorescence images (Fig 2A). We divided the slice into 5

bilateral regions of interest to extract fluorescence time series from the recording. These

showed distinctive features consistent with highly correlated epileptic seizure activity (Fig 2B).

Using a sliding window (length: 60s, step: 10s) we could estimate the time-changing frequency

content using a Fourier transform, which demonstrate a particular increase in low frequency

power after PTZ infusion (Fig 2C), with additional intermittent bursts of broadband activity

seen. Estimating correlations between the regional power-frequency distributions across dif-

ferent time windows reveals apparently distinct phases of PTZ induced seizures (Fig 2D): A

baseline that is stable over time (0–30 minutes), an initial ictal period that differs most from

the baseline state (30–70 minutes), and a late ictal period where time periods of apparent
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Fig 1. Dynamic causal modelling results of simulated calcium imaging time traces. (A) Left hand side time series show signal amplitude over time in

arbitrary units. Calcium imaging dynamics were modelled by convolving LFP-traces (top) with a calcium imaging kernel (middle), resulting in a CAI

time trace (bottom). The CAI trace follows slow LFP dynamics, whilst attenuating faster components of the original signal. Right hand side frequency
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similarity (i.e. high correlation) to the baseline are interrupted by intermittent different (i.e.

low correlation) segments (70–150 minutes).

Functional network architecture at baseline

We employed Bayesian model comparison to identify the effective connectivity network that

best explains the baseline data. In brief, baseline activity was modelled as spontaneous activity

arising from a coupled network of neuronal sources. Each source is made up of a three-popula-

tion neuronal microcircuit (excitatory and inhibitory interneuron populations, as well as a

main projection neuronal population) that is fitted to a cross-spectral density summary of the

fluorescence signal at baseline. A single fully connected network was fitted to an average of the

baseline activity by inverting a single fully connected dynamic causal model (DCM). Using

Bayesian model reduction and Bayesian model selection we compared models, where specific

sets of between-region reciprocal effective connections were either present or absent. These

sets of connections were (1) hub-like connectivity between any one region and all other

regions; and (2) short range connection between neighbouring, and homotopic brain regions

(Fig 3A). Bayesian model comparison across the reduced models in this model space provided

evidence that the baseline configuration can best be described as a network of neighbouring

connected nodes with the tectum acting as a network-wide hub (Fig 3B). Notably in this meso-

scale modelling, such directed connectivity is understood to be the average influence one

region has over another–this may be mediated monosynaptically or through additional (hid-

den) network nodes. In the model each source contains a simply parameterised steady state

noise input function that is updated as part of the model inversion–therefore synchronous

oscillations between different nodes could possibly be explained away during the inversion by

fitting identical input functions to each source. Where more complex models with specific

connectivity patterns are identified as the most parsimonious explanations for the particular

spontaneous activity, this suggests that not all aspects of the complex cross-spectral densities

(which include phase differences between sources) can be explained by common input alone.

Hierarchical dynamic model of seizure activity

Using this model architecture, individual DCMs are fitted to the sequence of sliding-window

derived cross-spectral density summaries of the original data. Spectral changes were found to

be consistent across the fish used for this study (S2 Fig). All seizure effects are subsequently

assumed to arise from variations in the model parameters that were estimated from the base-

line architecture. Thus the seizure activity may ‘switch off’ connections (through reduction of

the particular parameter), or silence a node in the network (through increases in self-inhibi-

tion), but no new connections or nodes are added to explain data features that arise during the

seizure. At this stage (i.e. first level models), each time window is modelled as an independent

DCM. The model fits show that these independently inverted models recreate the dynamic

plots show normalised log-amplitude derived from a Fourier transform of respective time series over a range of frequencies (1-50Hz). In frequency

space, the convolution differentially scales low and high frequency components, but preserves most frequency features. (B) LFP-like time series plotted

in arbitrary amplitude units over 10s. These are derived from a three-population neural mass model with increasing values of a single parameter, H1—

also shown in Fig 1C. Example CAI traces after convolution are shown in darker colours. (C) A three-population neural mass model is used for

generating LFP traces, and is subsequently fitted to the convolution-derived CAI traces. (D) Bayesian model comparison (Bayes factor 2.6) between

repeated model inversions identifies correctly that differences between simulated CAI traces were caused by the effects of variations in the H1 parameter

on the synthetic LFP traces. The parameter values included in the generative model are shown in the bar chart. (E) The DCM analysis provides

estimates of the generative model parameters (shown in the bar chart). These results correctly infer the increase of H1 across the six model inversions

from the CAI traces. Parameter estimates are shown here with a Bayesian 95% confidence interval (grey bars). Whilst the group mean parameter value

and the effect size are different, this inversion correctly identifies the linear increase in the parameter from the simulated CAI dataset. LFP–local field

potential, CAI–calcium imaging, DCM–dynamic causal model, PEB–parametric empirical Bayes.

https://doi.org/10.1371/journal.pcbi.1006375.g001
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fluctuations of spectral composition observed during a seizure very well and thus provide a

good representation of the original data features (Fig 4A). Across all complex cross spectra

(for all time window and all animals), the model fits explain 74.6% of the variance in the origi-

nal data (R2 = 0.746).

Parametric empirical Bayes (PEB) can be employed to identify parameters across individual

DCMs that vary systematically with specified experimental variables. In brief, PEB allows one

to invert hierarchical models where, in this instance, the first level of the model corresponds to

Fig 2. PTZ-iduced seizures recorded in the zebrafish larvae using light sheet imaging. (A) This image shows heat maps of fluorescence in a single slice of the intact

larval zebrafish brain in the xy plane at different time points during the experiment (time points also indicated in Fig 2B). Seizure activity (t2) is visually apparent as an

overall increase in neuronal activity compared to baseline state (t1). (B) Regionally averaged time traces of the fluorescence signal across 5 bilateral anatomically defined

regions are shown for the whole duration of the experiment in a single animal (150 minutes). Seizures are readily apparent as an inrease in generalised and apparently

synchronous high amplitude activity. (C) Average Fourier power spectra across fish and across all brain regions are plotted against time for the duration of the

experiment, using a sliding window estimator (length: 60s, step: 10s), with colours indicating log-power. The graph is a the average over n = 3 fish. PTZ causes an

increase largely in low frequencies (<2Hz), with intermittent bursts of more broadband activity. (D) A correlation matrix showing correlation indices of the power-

distribution patterns across different time points (delay-delay matrix). This reveals three distinct time periods, corresponding to baseline (<30min), ictal (30-70min)

and late ictal (>70min) phases with distinct spectral signatures and temporal dynamics. Tect—Tectum, Crbl—Cerebellum, RHbr—Rostral Hindbrain, MHbr—Mid-

Hindbrain, CHbr/RSc—Caudal Hindbrain/Rostral Spinal Cord.

https://doi.org/10.1371/journal.pcbi.1006375.g002
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a sequence of time windows. The second level of the model then uses the posterior densities

over the first level parameters to model changes (here fluctuations) in the first level parameters.

We modelled PTZ induced changes as a mixture of four effects: (1) a simple model of PTZ bio-

availability as first order pharmacokinetics with a maximum effect achieved at 30 minutes, (2)

a tonic effect switched on for the duration of PTZ exposure, (3) a monotonically increasing

effect representing the influence of prolonged seizure activity, (4) oscillatory effects at different

slow frequencies represented by a set of discrete cosine transforms [37]. This approach pro-

vides a single model at the group level (i.e. across all time windows, and all individual fish) and

Fig 3. Network model architecture during interictal background activity. (A) Two aspects of a factorial model space are shown: extrinsic

connectivity of putative network hubs (yielding 6 types of models), and short range connection between neighbouring and homotopic nodes

(yielding 4 different types of models); a total of 6 � 4 = 24 models were evaluated, where any one model is combines one of the network hub

connectivity architectures with a short-range connectivity setup. Bayesian model reduction was used to estimate the model evidence across

this model space characterised by the presence or absence of these defined sets of between-region reciprocal connections (neighbouring,

homotopic, and hub connections). (B) For each model family (corresponding to the factorial model space), the free energy difference to the

worst-performing model is shown. In DCM, the free energy difference is used to approximate model log-likelihood differences: Asterisks

indicate the winning model family identified from Bayesian model selection. These results indicate that the model with neighbouring, and

homotopic connections as well as the optic tectum with hub-like connectivity best explain the observed spontaneous activity at baseline. (C)

Mapping of the ROIs for this analysis is illustrated as overlay on a single fluorescence image taken from one of the animals included in this

study. Areas were identified based on visible neuroanatomical landmarks and correspond to the nodes of the same colour in the network

representations of the model space.

https://doi.org/10.1371/journal.pcbi.1006375.g003
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Fig 4. Group level effects of PTZ-induced seizures on synaptic coupling. (A) Here (1) an example fluorescence time trace from a single region, (2) an

example eigenmode summary of the cross-spectral density changes over time observed across all region in a single fish (this is derived from a multivariate

autoregressive model and constitutes the primary data features in DCM), and (3) the model fits of windowed DCMs to that same animal are shown. The

middle and bottom panel both plot frequency power distribution across the time of the experiment, where the log-power for any given frequency is

represented by colours corresponding to the same colourbar (range -4 to 2). DCMs fitted to these individual time windows capture the spectral changes

measured well for the duration of the experiment. (B) Free energy approximation for the model-family evidence for reduced models where PTZ-induced

Dynamic causal modelling of seizures in zebrafish
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parameter changes are modelled as a mixture of experimental and random effects. The esti-

mated mixture of parameter effects yielded consistent spectral changes across the individual

fish used for the study (S3 Fig). This type of modelling assumes that discrete oscillatory neuro-

nal states (e.g. apparently distinct states during the seizure with very different neuronal signa-

tures) arise from mostly smooth fluctuations in the underlying parameters (smooth transitions

are tracked in Fig 5; as well as S4 Fig). This indeed is a feature of the types of models at the

heart of the dynamic causal modelling (i.e. neural mass models) and their nonlinear mapping

between parameters and states. This has been exploited extensively in the past to link appar-

ently sudden transitions in neuronal dynamics to slow synaptic or neurochemical changes [19]

that could cause them. These second level inversions also provide an estimate of the model evi-

dence, so that different models can be tested against each other.

In the first instance, we compared models where only subsets of between region connec-

tions were allowed to vary between time points. Bayesian model comparison shows that only

changes in the forward connections to the network hub (i.e. bilateral tectum) are required to

explain the spectral changes during seizure activity (Fig 4B). Model comparison was also used

to test for PTZ induced changes in the intrinsic coupling parameters in individual regions.

There was strong evidence for an involvement of all measured brain regions (Fig 4C). Note

that among the models where seizure activity only affects intrinsic connections of a single

node, the tectum and rostral hind brain emerge as the most likely models–suggesting that vari-

ations in both have a particular impact on the seizure dynamics. The estimated parameter

changes induced by PTZ were varied between different brain regions, but overall showed a rel-

ative reduction in excitatory time constants (suggesting faster responses), reduction in inhibi-

tory intrinsic connections, and a reduction the influence of other regions on the optic tectum

(i.e. a reduction in forward connections; estimates of the time varying parameters shown here

summarise effects at the assumed peak PTZ effect time window early in the seizure Fig 4D).

Most of the largest effects in terms of intrinsic model parameters affect the rostral hind brain

and the optic tectum, with at times apparently opposing effects (e.g. opposing changes in excit-

atory time constant changes). Future studies may explore the differences in dynamic responses

to PTZ stimulation across these regions.

Note that each value on this plot represents a posterior density that consists of both the esti-

mated parameter value for the particular parameter, and a posterior covariance that represents

the uncertainty around that parameter estimate. In dynamic causal modelling, inferences are

made via model comparison (i.e., log evidence or odds ratios provided in Fig 4). Thus Fig 4D

provides a quantitative characterisation of the underlying effect sizes in terms of posterior den-

sities, under the best model. The values in Fig 4 shows the effects and between region

changes were restricted to a subset of coupling parameters is shown. Bayesian model comparison at this second (between time-window) level was performed

to compare reduced models with PTZ-induced changes in F forward, B backward, FB both, 0 or neither type of regional connectivity. Asterisks indicate the

winning models. Only changes in connections from other brain regions to the hub region show evidence of being modulated by the seizure activity. (C)

Similarly, free energies for model families that allow for intrinsic connectivity parameter changes in none of the brain regions, single brain regions, or all

brain regions are shown. The asterisk indicates the winning model. There was strong evidence for intrinsic connection changes in all brain regions. (D)

Estimates of the PTZ-effect on DCM model parameters are shown, corresponding to the expected change relative to baseline that was induced by PTZ. Each

dot represents a posterior density, centred around the expected value, and its size inversely correlated to the covariance (or uncertainty), i.e. the larger the

dot, the more precise the estimate. Dots are colour-coded by region as shown in the legend. Lines indicate the median of the expected values with whiskers

showing 25th and 75th centiles respectively–but note that individual parameter estimates are not random samples from an underlying distribution but

themselves represent more or less precise model parameters fitted to the observed data. Model families (extrinsic): 0 –no extrinsic connectivity changes; F–

extrinsic connectivity changes in forward connections only; B–extrinsic connectivity changes in backward connections only; FB–extrinsic connectivity

changes in both forward and backward connections. Model families (intrinsic): 0 –no intrinsic connectivity changes; Tect–intrinsic connectivity changes

only in the bilateral optic tectum; Crbl–intrinsic connectivity changes only in the bilateral cerebellum; RHbr–intrinsic connectivity changes only in the

rostral hindbrain; MHbr–intrinsic connectivity changes only in the mid-hindbrain; CHbr/RSc–intrinsic connectivity changes only in the caudal hindbrain/

rostral spinal cord; all–intrinsic connectivity changes across all areas.

https://doi.org/10.1371/journal.pcbi.1006375.g004

Dynamic causal modelling of seizures in zebrafish

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006375 August 23, 2018 9 / 23

https://doi.org/10.1371/journal.pcbi.1006375.g004
https://doi.org/10.1371/journal.pcbi.1006375


differences (the scatter of the dots reflects precise and systemic inter-regional differences, not

random effects). Whilst similar parameters are grouped in the scatter plot for visualisation

purposes, they represent different aspects of the same model inversion and thus the optimal

model fit, given the data. As such their mean or median value is only informative to provide an

intuition as to the overall direction of the effect. The intuition of how individual parameter

changes relate to spectral output is characterised in more detail for one region (the optic tec-

tum) below (Fig 5).

In a next step, we quantified the temporal evolution of the parameter changes in one exam-

ple region so as to map (smooth) parameter changes to associated changes in the spectra over

time. For this we collated all the parameters intrinsic to that region (i.e. intrinsic coupling

Fig 5. Temporal evolution of intrinsic coupling parameter changes in the optic tectum throughout the seizure. (A) A single source 3-population model is

shown, indicating the seven parameters that are fitted as part of the dynamic causal modelling: 5 intrinsic connectivity parameters (H1 –H3 excitatory

connections, to H4 –H5 inhibitory connections), and 2 time constants (TI and TE). (B) A principal component analysis was performed separately across the

posterior estimates of intrinsic connectivity, and time-constant parameters for the optic tectum across all time windows of the experiment. The coefficients for

the first principal component of intrinsic connections (left) and time constants (right) are shown here. (C) Using these two principal components, parameter

estimates of intrinsic coupling within the optic tectum for each individual time window are projected onto a two-dimensional parameter space. Each point of

this projection is colour coded according to its time in the experiment from which the estimate was derived. In order to relate location in parameter space to

spectral output at the optic tectum, for each point in this parameter space, we ran a dynamic causal model of the optic tectum in simulation mode to yield an

yield an estimate of power spectral densities at that particular parameter combination. Here we map the predicted mean log-power in the delta- (black and

white heat map) and gamma-band (purple isoclines) respectively. Thus the figure shows the temporal evolution of intrinsic coupling parameter estimates

within the optic tectum during the seizures on a map of the spectral energy for different frequency bands for the specific parameter combinations. Time points

just after PTZ injection occupy the most extreme top-right corner of this parameter space. This indicates both slower inhibitory connectivity (time constant

component) and stronger excitatory / weaker inhibitory connectivity (connectivity time constant component). These paramete changes are associated with

high powers in both the gamma and the delta band.

https://doi.org/10.1371/journal.pcbi.1006375.g005
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parameters and time constants) and simulated the associated spectral output from a single

three-population source. This was done for a range of different parameter values informed by

the empirically-derived posterior parameter estimates from the PEB analysis above (Fig 5A).

We then extracted the parameter estimates for time constants and intrinsic connectivity within

the right tectum over time across all components of the PEB model (i.e. tonic seizure effects,

monophasic PTZ effect, prolonged seizure effect, discrete cosine transforms, random

between-animal effects). In order to visualise the parameter changes over time, we derived a

low-dimensional representation of the data: We extracted the first principal component of the

posterior estimates of the intrinsic connectivity parameters, and the time constants over time

(Fig 5B). The first principal component of the time constant changes explains 70.9% of their

variance; the first principal component of the intrinsic connection changes explains 49.2% of

their variance.

Plotting each time window onto this reduced parameter space containing most of the vari-

ance in the coupling parameters represents the seizures as a spiral path through parameter

space. We can apply the parameter combinations at each point in the parameter space to a

microcircuit model and predict the spectral output. Here we show log delta band power as a

heat map, with log gamma band power superimposed as isoclines (Fig 5C). This forward

modelling approach shows that during the seizure, the model enters a section of parameter

space characterised by both high delta and gamma power components, which is also seen in

LFP recordings during seizures in zebrafish reported in previous studies [6]. In S4 Fig, we

added an additional component for the intrinsic connection as a third dimension, with the

two combined now explaining 80.0% of the intrinsic connectivity variance, and revealing a

separation of the distinct seizure phases identified from the spectral analysis alone (Fig 2).

Discussion

Even well studied pharmacological interventions, such as PTZ show multi-scale effects across

the nervous system [33,38–40]. Thus, linking membrane-level changes with the whole-brain

seizure phenotype remains challenging. Here, we combine zebrafish light-sheet imaging dur-

ing PTZ-induced seizures with dynamic causal modelling in order to identify network-wide

connectivity changes.

Validity of DCM for calcium imaging traces of seizure activity

Calcium imaging time series are highly correlated with concurrent LFP recordings [41]. Whilst

LFP generally allows measuring of neuronal population activity at a higher temporal resolution

(including activity >100Hz), calcium imaging is more limited due to both the sampling fre-

quency [42], and the fluorescence decay dynamics of the calcium-sensitive probe [36].

The predominant frequency components of both resting brain activity and seizure activity

in the larval zebrafish brain are in the delta (<4Hz) and theta (4-8Hz) band [10]. Neuronal

fluctuations in these frequency bands are largely preserved in calcium imaging, and apparent

even at sampling frequencies as low as 20Hz. Our simulations illustrate the construct validity

of using neural mass models that generate electrophysiological responses to explain calcium

imaging data: DCM allows correct causal inference from calcium fluorescence time series to

underlying coupling parameters. This approach provides deeper neurobiological insights than

functional connectivity approaches alone. Furthermore, our hierarchical modelling allows

tracking of slowly varying model parameters [29], offering explanations for qualitatively very

sudden changes in oscillatory behaviour (represented by the output of individual DCM mod-

els) emerging from gradual changes in model parameters (represented across-DCM parameter

changes estimated in the PEB approach).
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The DCM analysis of simulated data here only recovered the trend of the activity (not the

actual value). We use a convolution kernel to simulate the effects of calcium imaging on time

series, but we inverted the models with a DCM without a kernel, hence some difference is

anticipated. However, in the time-resolved analysis of connectivity changes during a seizure,

we are interested in the relative change of model parameters over time more than the back-

ground setup (which we account for as an additional group-mean effect in the hierarchical

modelling with PEB-DCM).

This analysis harnesses specific advantages of regionally averaged calcium imaging: Light-

sheet microscopy samples in a spatially unbiased fashion, thus providing a closer approxima-

tion to the assumptions underlying neural mass models [43]. Heuristically, this spatial averag-

ing suppresses local fluctuations in the same way that averaging over time in event related

potential studies (in electrophysiology) reveals dynamics that are conserved over multiple real-

isations. Furthermore epileptic seizures are an emergent property at the level of neuronal pop-

ulations, and computational models specifically addressing this ‘mesoscale’ may yield

important insights about emergent population-wide features less readily apparent from micro-

scale modelling of individual neurons [44]. Furthermore, our analysis allows inferences to be

linked back to established knowledge about the anatomical regions included in the study.

However, we do not fully exploit the spatial resolution offered by the calcium imaging data,

which will need to be addressed in the future with scalable custom approaches to modelling of

individual neurons [45,46]. One strategy to exploit the resolution of light sheet images is

through definition of ‘regions’ based on microscale neuronal properties (e.g. correlated activ-

ity, distribution of neurotransmitter receptors [47])–whilst the same model inversion technol-

ogy illustrated here remains applicable, the data features selected for DCM would be informed

by the neuroanatomical and neurophysiological information in the light-sheet imaging data

and thus exploit the spatial resolution.

Network organisation in the larval zebrafish brain

DCM allows for the estimation of network coupling parameters underlying neurophysiological

recordings, within the constraints of the available data and the hypothesised model space. The

first step of our analysis thus aims to explain the pre-ictal baseline fluctuations in 5 bilateral

brain regions of the zebrafish brain through any one of the proposed model architectures.

Both changes in the data used for further analysis (e.g. changes in the regional divisions, or

extension beyond a single imaging plane) and changes in model space (e.g. inclusion of

another possible hypothesis) may therefore impact on the inference drawn. However, both the

data included in this study and the model space explored reflect the types of hypotheses we

sought to explore.

Early during zebrafish development, retino-tectal connections develop, and stereotyped but

effective visuomotor behaviour is established [48–51]. This is associated with distributed net-

work activity involving information flow from the optic tectum to other brain areas. This visu-

ally-dominated early network activity is also apparent in the DCM analysis, where the tectum

has been identified as a hub with widespread connectivity to the rest of the larval zebrafish

brain from resting state light sheet recordings at baseline.

This network organisation is modulated during seizure activity, where our modelling iden-

tifies a reduction of the effective forward connections from other brain areas to the optic tec-

tum. This asymmetric shift in connectivity (with only forward, but not backward connections

affected), may be indicative of a key role of the optic tectum—as a central network hub at base-

line—in driving network-wide synchronisations during an epileptic seizure. The selective

reduction in effective connectivity corresponds to previously reported seizure-related changes
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in functional connectivity estimated from human EEG recordings, where increased clustering

during a seizure has been described [52].

Fluctuations in effective connectivity between regions is usually thought of as resulting

from changes in direct synaptic connectivity [53]. Where all connections towards a single

brain region are involved, this may be due to (i) specific synaptic mechanisms affecting synap-

tic receptors at this particular region, or (ii) changes in local excitability. However, the asym-

metric involvement of a single brain region–where only effective connectivity to (and not

from) the optic tectum is reduced–suggests that local microcircuitry changes may underlie the

macroscale changes. The relationship between local and macroscale network changes in epi-

lepsy in the context of hierarchically coupled brain areas is discussed elsewhere [31]. This phe-

nomenon has been formally described in other modelling work through a slow local

permittivity variable that governs synchronisation between different brain regions and repre-

sents different slowly unfolding changes in local energy and metabolic milieu [54].

Intrinsic coupling changes disrupt excitation-inhibition balance in the

temporal domain

PTZ acts as an acute chemoconvulsant in a range of different model organisms, likely due to

allosteric inhibition of GABA-A receptors [38]. Previous work on a PTZ rat model showed

dose-dependent regionally specific cellular activation [33], suggesting differential susceptibility

of different brain regions to PTZ effects. Bayesian model comparison of seizures recorded

from the zebrafish in this report indicate that PTZ-induced changes of intrinsic neuronal pop-

ulation coupling were required in each of the brain regions. From the free energy distribution

across models with different single regions affected by seizure changes, we found relatively

high model evidence for models comprising seizure-related parameter changes in the optic

tectum, or in the rostral hindbrain, suggesting that there is heterogeneity in the contribution

of individual brain regions to the evidence for the winning model.

PTZ-related seizure effects here are modelled under the assumption that they arise from

changes in the existing extrinsic (between-region) connections and intrinsic coupling parame-

ters. We expected most of the interesting effects to occur on the coupling parameters within

regions (as most of the PTZ effect will affect local inhibitory interneuron connectivity [55]).

Whilst epileptogenesis in the brain (i.e. developing the propensity for recurrent seizures) may

require the establishment of novel, pathological connectivity, acute seizure activity most likely

will not. Thus, our modelling approach has the ability to account for most neurobiologically

plausible mechanisms underlying acute seizures.

However, these effects varied widely between regions. This in part reflects different baseline

configurations of the regional source models, which in turn require different shifts in coupling

parameters. Yet, overall the PTZ-related changes are broadly consistent with our current

understanding of its effects at the neuronal membrane. Specifically, PTZ is expected to cause a

relative decrease of inhibitory connectivity compared to excitatory connectivity; and preferen-

tial blockade of fast GABA-A (and not GABA-B) mediated transmission would be expected to

cause an increase in the relative inhibitory transmission time constants (i.e. slowing down),

compared to excitatory synaptic dynamics–both of these effects are observed in the parameters

estimated across the whole brain slice here (noting that population-level time constants are

likely a product of several convergent synaptic effects [38,56,57]. Left-right asymmetries in the

intrinsic estimated connectivity in the optic tectum is most likely secondary to differences in

light stimulation received by either eye.

Further exploration of individual parameter effects at a single brain region supports the

notion that seizure dynamics in this recording are largely caused by two main effects: a relative
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disturbance in excitation / inhibition balance with increased excitation and decreased inhibi-

tion, and a reciprocal disturbance in the dynamics of excitatory and inhibitory connectivity

with slower inhibition and faster excitation. Because we have fitted fully generative neural

mass models, we can make predictions about the spectral output caused by particular parame-

ter combinations beyond the measured�10Hz frequency range. This approach reveals that

particularly the time points where both connectivity and time constant effects changes reach

their respective extremes, the typical seizure spectral output containing high amplitudes in

both low (i.e. delta) and high (i.e. gamma) frequency components emerges. The addition of

PTZ causes an increase in broadband activity, with particularly high predicted power in the

gamma band early after PTZ administration, and more pronounced increases in slow fre-

quency power as the seizures evolve. This is consistent with previous studies that have sepa-

rately recorded LFP traces during seizures in zebrafish [6,14].

Recurrent neuronal loops with a close balance of overall excitation and inhibition underlie

spontaneous brain activity. The brain is believed to operate near a transitional state from

which both subcritical, random dynamics and supercritical, ordered dynamics can emerge (i.e.

self-organised criticality, cf. [58]). Blocking of the largely GABA-A mediated local recurrent

inhibition shifts this balance and allows ordered, seizure-like activity to occur [59]. In our

model the emergence of seizure dynamics requires changes in both connection strengths and

their temporal dynamics. Future research will address how different pathologies may converge

on the mechanisms that underlie observable seizure dynamics.

Conclusion

The analysis presented here illustrates the use of computational modelling to explain neuronal

dynamics in the larval zebrafish brain during acutely induced seizures. This approach exploits

the spatial independence of single plane in vivo light-sheet recordings of brain regions and

uses dynamic causal modelling to identify the mechanisms underlying seizure dynamics. Our

Bayesian model inversion scheme allows translating observations from whole-network novel

light sheet imaging to the concepts and models used to explain electrophysiological abnormali-

ties observed during seizures.

Seizures in this model are associated with an asymmetric decoupling of the network hub,

and changes in excitation/inhibition balance that crucially also involve the temporal dynamics

of excitatory and inhibitory synaptic transmission. Mapping the expected spectral changes

along both the connection strength and time constant domains of the model within the patho-

physiological range estimated from acute seizures allows us to delineate the independent con-

tribution of changes in either type of parameter to the overall dynamics. This is the first step to

establishing network-wide mechanisms that underlie seizures and may be targeted with novel

treatments for epilepsy.

Limitations

Like all Bayesian modelling approaches, DCM only provides estimates of the likelihood of

individual models in direct comparison to a larger model space. As the model space evolves,

and other plausible hypotheses are being tested, a new model may offer an overall better solu-

tion to the inverse problem. Furthermore, as our understanding about the underlying neuro-

physiology progresses, prior knowledge can be incorporated into the model inversion

(quantitatively in terms of changes in the prior parameter expectations) and thereby nuance

Bayesian model comparison.

It is also worth noting, that the DCM results are ‘true’ in that they represent the mathemati-

cally simplest approximation of a given dataset under specific assumption–a more complex
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model may be biologically implemented but not emerge as the winning model because the

added complexity is not required to explain the particular data features at hand.

The approach presented here illustrates how light-sheet imaging in zebrafish larvae can

offer an insight into the kind of mesoscale dynamics that are also observable (and of interest to

the modelling communities) in electrophysiological recordings. The type of modelling and

inversion scheme used here is flexible enough to ultimately accommodate data that contain

some of the microscale information about the neuronal ensemble (e.g. by defining ‘regions’

through molecular markers present on individual neurons rather than gross anatomy), how-

ever this was beyond the scope of the current–proof of concept–paper. Furthermore, our imag-

ing protocol was optimised to capture widespread activity changes at high sampling

frequencies (e.g. by only imaging a single plane), assuming that activity in this plane reflects

the dynamics of the whole region, whilst excluding non-imaged regions (that are situated

above or below to the plane) from the analysis.

Whilst only a small number of fish were included in this analysis, the effects at the level of

the recordings are large and consistent between fish. For future studies on more subtle effects

and observations (e.g. the topological organisation of spontaneous seizures), a higher number

of fish is likely to be required.

Materials and methods

Ethics statement

This work was approved by the local Animal Care and Use Committee (King’s College Lon-

don) and was performed in accordance with the Animals (Scientific Procedures) Act, 1986,

under license from the United Kingdom Home Office.

Experimental model and subject details

Zebrafish Maintenance. Zebrafish were maintained at 28.5˚C on a 14 h ON/10 h OFF

light cycle. Transgenic line used: Tg(elavl3b:GCaMP6F) [60]. Sex of individual animals not

known.

Method details

Construction of Light-sheet microscope. The light-sheet design was based on that

described in [61]. Briefly, excitation was provided by a 488nm laser (488 OBIS, Coherent)

which was scanned over 800μm in the Y direction of the illumination plane by a galvanometer

mirror (6215H/8315K, Cambridge Technology) creating an illumination sheet in the XY-

plane. The sheet was associated with two pairs of scan and tube lenses, scanned along the z-

axis using a second galvanometer mirror (6215H/8315K, Cambridge Technology) and focused

onto the specimen via a low NA illumination objective (5 x 0.16NA, Zeiss EC Plan-Neofluar).

The detection arm consisted of a water-immersion objective (20 x 1 NA, XLUMPlanFL, Olym-

pus) mounted vertically onto a piezo nanopositioner (Piezosystem Jena MIPOS 500) allowing

alignment of the focus plane with the light sheet. The fluorescence light was collected by a tube

lens (150 mm focal length, Thorlabs AC254-150-A) and passed through a notch filter (NF488-

15, Thorlabs) to eliminate 488 nm photons. The image was formed on a sCMOS sensor (PCO.

edge 4.2, PCO). The 20x magnification yielded a field of view of 0.8 x 0.8 mm2 with a pixel

dimension of 0.39μm2. The detection arm and specimen chamber were mounted on two inde-

pendent XY translation stages to allow precise alignment of the specimen, detection axis and

light sheet.

Dynamic causal modelling of seizures in zebrafish

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006375 August 23, 2018 15 / 23

https://doi.org/10.1371/journal.pcbi.1006375


Imaging. Nonanesthetized Tg(elavl3b:GCaMP6F) larvae, 5 days post fertilisation, were

immobilized at in 2.5% low melting point agarose (Sigma-Aldrich) prepared in Danieau solu-

tion and mounted dorsal side up on a raised glass platform that was placed in a custom-made

Danieau-filled chamber. Pentylenetetrazole (Sigma-Aldrich) was added to the Danieau-filled

chamber after 30 minutes of baseline imaging to a final concentration of 20 mM. Functional

time-series were acquired at a rate of 20 Hz, 4x4 pixel binning (1.6 μm x 1.6 μm resolution). In

order to achieve the maximum temporal resolution in these recordings, we have restricted

imaging to the single plane, allowing a sampling frequency of 20Hz. The light sheet displays a

hyperbolic profile along the light propagation axis. The diffraction-limited minimum (z-

dimension) thickness of the light sheet (characterized by imaging 100 nm diameter fluorescent

beads) was ~2.5 μm at the focal plane of the illumination objective. This value to increases to

~9 μm at a distance of 80 μm from the waist. This yields single neuron resolution over a field

of view of’160 × 1000 μm centred on the midline of the larval fish- a region which contains

the majority of neuronal cell bodies. At the extreme lateral margins of the fish the illumination

sheet spans >1 neuron cell body dimeter and therefore does not provide single neuron resolu-

tion in these regions.

Time-series were aligned to a mean image of the functional imaging data for each fish

(rigid body transformation as implemented in: SPM12, http://www.fil.ion.ucl.ac.uk/spm/

software/spm12). Mean fluorescence traces were then extracted from ten anatomically defined

regions of interest for further analyses. Analogous to other calcium-based connectivity in

model organisms [62] anatomical regions were selected according to well-defined landmarks

corresponding to the following regions in a publicly available standard zebrafish atlas (Z Brain

Atlas, https://engertlab.fas.harvard.edu/Z-Brain [63], Cross-sectional images from the atlas

corresponding to the structures included below are provided in S1 Fig):

• Tectum: Tectum Stratum Periventriculare, Tectum Neuropil

• Cerebellum: Cerebellum

• Rostral Hindbrain: Rhombomere 2, Rhombomere 3

• Mid Hindbrain: Rhombomere 4, Rhombomere 5, Rhombomere 6

• Caudal Hindbrain / Rostral Spinal Cord: Rhombomere 7, Spinal Cord

Quantification and statistical analysis

Estimation of spectral data features. Mean fluorescence traces from the regions of

interest were treated as multichannel time series for subsequent analysis. Short segments

derived from a sliding window (length: 60s, step size: 10s) were used to estimate time-vary-

ing changes in the spectral composition of the time series: For each step of the sliding win-

dow the real component of the Fourier spectrum was calculated. A correlation matrix of

region-specific mean Fourier amplitude across all time point was used to visualise slow fluc-

tuations in distributed activity [64,65]. For the correlation, we calculated a vector contain-

ing the average power over the 0-10Hz frequency band of all channels, separately for each

time window. We then calculate the full correlation matrix of each power-distribution vec-

tors with the vectors at each other time point, yielding a k×k correlation matrix, where k is

the total number of time steps.

Averages of the windowed Fourier spectra and the power correlation matrix across the

studied animals are shown.

Simulated calcium imaging traces. To test the construct validity of the inversion

approach, we used a neural mass model with known parameterisation to generate an LFP
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output, convolved this output with a calcium-imaging kernel, and inverted a DCM on those

synthetic calcium-imaging traces to test whether the original parameterisation can be

reconstructed.

The model was a standard prior three-source neural mass model implemented as ‘LFP’

model in the SPM12 model library [43]. We generated 6 segments of LFP-like model output

with linear variation of a single parameter (H1) from -1 to +1. The convolution kernel was con-

structed from a fast, inverted quadratic rise lasting tup = 250ms of the form: y(t) = 2t � tup − t2.

This is followed by an exponential decay function of the form: y tð Þ ¼ e� 1
1000

t . Both functions

were normalised so that y(tup) = 1. Parameters of these functions were chosen to approximate

the reported dynamics of GCaMP6F [36].

Inversion of simulated calcium imaging traces. Each individual synthetic calcium imag-

ing trace was inverted using a DCM for cross spectral densities approach with a single three-

population neural mass model [66]. The DCM analysis relies on spectral features, which are

estimated using a multivariate autoregressive model that provides (complex) cross-spectral

densities for each time window and each fish separately. Each of these full cross spectra is then

approximated during the Bayesian model inversion. We show an example of the spectral data

features (here for a single spectral eigenmode in a single fish), and the corresponding model

fits (Fig 4A)

Using a parametric empirical Bayes approach, we then compared the evidence for models,

where changes in a single one of the parameter explain the difference between segments

[67,68]. Parameter estimates for the winning parameter are then compared to the ‘ground

truth’ parameter changes originally introduced into the generative model, therefore providing

evidence for which parameter is changed, and how that parameter is changed to achieve the

spectral changes contained in the time series.

Dynamic causal modelling of empirical calcium imaging traces. Baseline architecture:

To characterise functional network architecture at rest, in an initial step only baseline data

were analysed using a DCM approach. Specifically, 4-minute segments prior to PTZ were

inverted using a single fully connected DCM containing 10 standard prior ‘LFP’ type sources

[43]. DCM estimated parameter values for each of the directed, extrinsic (between region) cou-

pling parameters, each of the intrinsic (within region) coupling parameters, regionally-specific

time constants, as well as free energy approximations for the model evidence for the full model

in each individual fish. Based on the full model inversion, smaller subsets of models were then

compared with computational efficiency using Bayesian model reduction, which allows Bayes-

ian model selection for the network architecture that best explains the baseline data [68]. The

model space was designed as a full factorial design around three main features: the presence or

absence of hierarchical connections between neighbouring brain regions (2 model families);

the presence or absence of homologous connections between bilateral brain regions (2 model

families); and the presence or absence of hub-like connections from one set of brain regions to

all other regions (6 model families). Thus, the model evidence was estimated across 2�2�6 = 24

model types, and evaluated using family-wise Bayesian model comparison across sections of

this full model space to yield inference about hub-type connections (comparing 6 model fami-

lies), and short-range connections (comparing 2 � 2 = 4 model families). The null model

(Model 0) is a model where no between-region (i.e., extrinsic connectivity) exists and is

included for completeness. In this model, each node is equipped with its own steady state

input (a parameterised pink noise function), simulating background local activity, and has sev-

eral free intrinsic connectivity parameters (local connection strengths H1-5 and time constants

of local connectivity TE and TI) (Fig 3). This model space was chosen to emulate some basic

features of brain connectivity found across many species and systems, specifically rich-club
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organisation (modelled as hub-like connectivity), hierarchical message passing (modelled as

forward/backward connections along neighbouring nodes), and typically seen homotopic con-

nections between symmetrical structures.

Seizure data inversion: Based on the dynamic network architecture identified in the step

above, an additional DCM analysis was performed to identify slow fluctuations of synaptic

parameters within this architecture that could explain seizure activity. For this, data were again

divided into segments using a sliding window approach (60s, 50s steps) for each animal sepa-

rately. DCMs with the architecture derived from the step above were inverted separately for

each individual time window.

We then constructed a second level model to estimate between-time window variations in

parameters using a parametric empirical Bayesian approach [29,68]. This contained several

temporal basis functions that in combination can explain a majority of possible parameter tra-

jectories: (1) an ‘on/off’ tonic seizure effect step function with onset at PTZ injection; (2) a

monophasic seizure effect function with onset at PTZ injection; (3) a linear increase with onset

at PTZ injection; (4) a set of three discrete cosine basis functions to model; (5) a set of three

regressors modelling random between-fish effects.

This approach provides estimates for how between-time window parameter changes can be

modelled as a linear combination of the basis sets provided, as well as a free energy estimate

for the model evidence. We can thus perform Bayesian model reduction and selection at this

second level, comparing competing model families where only subsets of parameters are free

to vary between time windows, and thus select a subset of parameters that best explain the

observed changes over time. We broadly divided the model space of these between time-win-

dow (i.e. between individual DCM) effects into (a) models with variations in hierarchical cou-

pling, (b) models with variations in hub coupling, and (c) models with variations in intrinsic

synaptic coupling parameters as outlined in Fig 4. Family-wise Bayesian model selection was

used to select relevant parameters, which were freed in a single model to provide parameter

estimates at time window with the estimated maximum PTZ effect.

Forward modelling: To further explore the effects of specific parameter changes, the

optic tectum with its hub-like position in the network was analysed further. Posterior

parameter estimates for each time windows derived from the PEB-DCM analysis above

were grouped into time constant and connection strength changes. In order to allow a low

dimensional projection of the multiple parameters of interest we performed a principal

component analysis separately on the intrinsic connectivity parameters (H1-5); and the time

constant parameters (TE, TI). The first principal component of each of these categories was

then used to project the parameter changes into a two-dimensional plane. Because the

DCM provides a fully generative model, we can not only plot the parameter estimates, but

also generate a predicted spectral output for each point across this plane, by adding the

respective principal component values to the baseline parameterisation of the model and

simulating its output. We plotted the resultant low frequency (delta-range), and high fre-

quency (gamma-range) power across the parameter space, to indicate how movement in

parameter space affects the spectral output.

Data and software availability

Software. Analysis in this study was built on tools available as part of the academic free-

ware package ‘Statistical Parametric Mapping 12’ (www.fil.ion.ucl.ac.uk/spm). This

toolbox and all custom code runs on Mathworks Matlab (https://uk.mathworks.com/

products/matlab.html). Custom code is freely available as a github repository (http://github.

com/roschkoenig/Zebrafish_Seizure).
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Data resources. All data used in this analysis are available online in an Open Science

Framework repository (http://doi.org/10.17605/OSF.IO/Q7KTH). This contains full length

recordings (as time series), as well as windowed data used for DCM analysis.

Supporting information

S1 Fig. Atlas regions corresponding to the anatomical segmentation used in our analysis

(all images at z = -90. (A) ‘Tectum’ corresponds to Z Brain regions Tectum Stratum Periven-

triculare and Tectum Neuropil. (B) ‘Cerebellum’ corresponds to Z Brain region Cerebellum.

(C) ‘Rostral Hindbrain’ corresponds to Z Brain regions Rhombomere 2 and Rhombomere 3.

(D) ‘Mid Hindbrain’ corresponds to Z Brain region Rhombomere 4, Rhombomere 5, and

Rhombomere 6. (E) ‘Caudal Hindbrain / Rostral Spinal Cord’ corresponds to Z Brain regions

Rhombomere 7, and Spinal Cord. Images are taken from https://engertlab.fas.harvard.edu/

Z-Brain [accessed 18/05/2018].

(DOCX)

S2 Fig. (A) Fourier spectra are shown for light sheet recordings of individual animal record-

ings sessions. Using a sliding window (size 60s, step 10s), windowed estimates are made of the

frequency composition of the mean time fluorescence time series across all regions and plotted

over time with colour-coding indicating the power at particular frequencies. Seizure onset is

associated with increase in low frequency activty. The early ictal period is characterised by fre-

quent broadband frequency bursts, which become less frequent in the late ictal state. (B) Fre-

quency power plots are shown for individual regions at preictal, early ictal and late ictal

intervals for each fish. Colours indicate the brain region as indicated by the key. Individual fish

show reproducible patterns of localised frequency power distribution changes at seizure

onset–in the preictal state the caudal hindbrain / rostral spinal cord (CHbr/RSc) show highest

overall activity; during early and late seizure activity in the rostral hindbrain (RHbr) has the

highest broadband power.

(DOCX)

S3 Fig. Graphs show the full cross-spectral density spectra predicted from the dynamic

causal models derived from the hierarchical model inversion across all time windows and

fish. Each graph shows time-windowed power spectral density estimates for the optic tectum,

with colours indicating the time of the experiment. Each fish shows recognisable frequency

peaks at approximately 20Hz, and 90Hz, which differ quantitatively. Note that the high fre-

quency peak is predicted to achieve its maximum just after PTZ injection for each of the fish.

(DOCX)

S4 Fig. Analogous to Fig 5 in the main text, this figure shows a low dimensional projection

of the parameter values for each individual time window as estimated for the optic tectum.

Here we plot an additional third dimension (the second component of the PCA over the con-

nectivity strengths), revealing a clearer separation of the different seizure phases, indicating

the transition from pre-ictal, to early seizure, to late seizure phases. [The colormap corre-

sponds to main Fig 5].

(DOCX)
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