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Abstract

Single-cell RNA sequencing (scRNA-seq) technology allows researchers to profile the tran-

scriptomes of thousands of cells simultaneously. Protocols that incorporate both designed

and random barcodes have greatly increased the throughput of scRNA-seq, but give rise to

a more complex data structure. There is a need for new tools that can handle the various

barcoding strategies used by different protocols and exploit this information for quality

assessment at the sample-level and provide effective visualization of these results in

preparation for higher-level analyses. To this end, we developed scPipe, an R/Bioconductor

package that integrates barcode demultiplexing, read alignment, UMI-aware gene-level

quantification and quality control of raw sequencing data generated by multiple protocols

that include CEL-seq, MARS-seq, Chromium 10X, Drop-seq and Smart-seq. scPipe pro-

duces a count matrix that is essential for downstream analysis along with an HTML report

that summarises data quality. These results can be used as input for downstream analyses

including normalization, visualization and statistical testing. scPipe performs this processing

in a few simple R commands, promoting reproducible analysis of single-cell data that is com-

patible with the emerging suite of open-source scRNA-seq analysis tools available in R/Bio-

conductor and beyond. The scPipe R package is available for download from https://www.

bioconductor.org/packages/scPipe.

Author summary

Biotechnologies that allow researchers to measure gene activity in individual cells are grow-

ing in popularity. This has resulted in an avalanche of custom analysis methods designed

to deal with the complex data that arises from this technology. Although hundreds of anal-

ysis methods are available, relatively few deal with raw data processing in a holistic way.

Our scPipe software has been developed to fill this gap. scPipe is the first fully integrated R

package that deals with the raw sequencing reads from single cell gene expression studies,
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processing them to the point where biologically interesting downstream analyses can take

place. By following community developed standards, scPipe is compatible with many other

software packages for single cell analysis available from the open-source Bioconductor

project, facilitating a complete beginning to end analysis of single cell gene expression data.

This allows various biological questions to be answered, ranging from the identification of

novel cell types to the discovery of new marker genes. scPipe promotes reproducibility and

makes it easier for researchers to share results and code.

This is a PLOS Computational Biology Software paper.

Introduction

Advances in single-cell transcriptomic profiling technologies allow researchers to measure

gene activity in thousands of cells simultaneously, enabling exploration of gene expression

variability [1], identification of new cell types [2] and the study of transcriptional programs

involved in cell differentiation [3]. The introduction of cellular barcodes, sequences distinct

for each cell attached to the dT-primer, has increased the throughput and substantially reduced

the cost of single-cell RNA sequencing (scRNA-seq). These barcodes allow for the demulti-

plexing of reads after cells are pooled together for sequencing. Apart from cellular barcodes,

molecular barcodes or unique molecular identifiers (UMIs), are frequently employed to

remove PCR duplicates and allow identification of unique mRNA molecules, thereby reducing

technical noise. The multiple levels of barcoding used in scRNA-seq experiments create addi-

tional challenges in data processing together with new opportunities for quality control (QC).

Different protocols use different barcode configurations, which means a flexible approach to

data preprocessing is required.

A large number of software tools have already been tailored to scRNA-seq analysis [4], the

majority of which are focused on downstream tasks such as clustering and trajectory analysis.

Methods for preprocessing tend to focus on specific tasks such as UMI-tools [5], umitools
(http://brwnj.github.io/umitools/) and umis [6] which have been developed for handling ran-

dom UMIs and correcting UMI sequencing errors. Other tools such as CellRanger [7], dropEst
[8] and dropseqPipe (https://github.com/Hoohm/dropSeqPipe) on the other hand offer a com-

plete preprocessing solution for data generated by droplet based protocols. Other packages

such as scater [9], and scran [10] work further downstream by preprocessing the counts to per-

form general QC and normalization of scRNA-seq data.

scPipe was developed to address the lack of a comprehensive R-based workflow for process-

ing sequencing data from different protocols that can accommodate both UMIs and sample

barcodes, map reads to the genome and summarise these results into gene-level counts. Addi-

tionally this pipeline collates useful metrics for QC during preprocessing that can be later used

to filter genes and samples. In the remainder of this article we provide an overview of the main

features of our scPipe software and demonstrate its use on various in-house generated and

publicly available scRNA-seq datasets.

Design and implementation

Single-cell RNA-seq datasets analysed

Mouse hematopoietic lineage dataset. Single cell expression profiling of the main

hematopoietic lineages in mouse (erythroid, myeloid, lymphoid, stem/progenitors) was
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performed using a modified CEL-seq2 [11] protocol. B lymphocytes (B220+ FSC-Alow),

erythroblasts (Ter119+ CD44+, FSC-Amid/high), granulocytes (Mac1+ Gr1+) and high-

end progenitor/stem (Lin- Kit+ Sca1+) were sorted from the bone marrow of a C57BL/6

10-13 week old female mouse. T cells (CD3+ FSC-Alow) were isolated from the thymus of

the same mouse. Bone marrow and thymus were dissociated mechanically, washed and

stained with antibodies for 1hr on ice. Single cells were deposited on a 384 well plate

using an Aria cell sorter (Beckman). Index data was collected and our adapted CEL-seq2

protocol used to generate a library for sequencing. The reads were sequenced by an Illumina

Nextseq 500 and processed by scPipe. This dataset is available under GEO accession number

GSE109999.

Human lung adenocarcinoma cell line dataset. The cell lines H2228, NCI-H1975 and

HCC827 were retrieved from ATCC (https://www.atcc.org/) and cultured in Roswell Park

Memorial Institute (RPMI) 1640 medium with 10% fetal calf serum (FCS) and 1% Penicillin-

Streptomycin. The cells were grown independently at 37˚C with 5% carbon dioxide until near

100% confluency. Cells were PI stained and 120,000 live cells were sorted for each cell line by

FACS to acquire an accurate equal mixture of live cells from the three cell lines. This mixture

was then processed by the Chromium 10X single cell platform using the manufacturer’s (10X

Genomics) protocol and sequenced with an Illumina Nextseq 500. Filtered gene expression

matrices were generated using CellRanger (10X Genomics) and scPipe independently. For Cell-
Ranger, we used the default parameters, with --expect-cells = 4000. For scPipe, we

processed the 4,000 most enriched cell barcodes. The GRCh38 human genome and ENSEMBL

v91 human gene annotation were used for both the scPipe and CellRanger analysis. In scPipe,
the number of components used in the outlier detection step was set to comp = 2 for quality

control to remove poor quality cells. This dataset is available under GEO accession number

GSE111108.

Ischaemic sensitivity of human tissue dataset. A publicly available Chromium 10X data-

set from the Human Cell Atlas project (https://preview.data.humancellatlas.org/) was also pre-

processed using scPipe and analysed with highly compatible Bioconductor packages. This

dataset of roughly 2,000 cells comes from the first spleen harvested in a project seeking to

study sensitivity to ischaemia in 3 different tissue types [12]. For this sample, scPipewas run

with quality and sequence filters turned off in sc_trim_barcode and cellular barcodes

were detected from a sample of the first 5 million reads using sc_detect_bc, which

resulted in 2,273 detected barcodes. The sequences were aligned to the GRCh38 human

genome using Rsubread and counts were assigned based on ENSEMBL v91 human gene anno-

tations using scPipe and outliers were detected with comp = 2 in the automatic outlier detec-

tion step.

scPipe implementation details

scPipe is an R [13] / Bioconductor [14] package that can handle data generated from all popular

3’ end scRNA-seq protocols and their variants, such as CEL-seq, MARS-seq, Chromium 10X

and Drop-seq. Data from non-UMI protocols generated by Smart-seq and Smart-seq2 can

also be handled. The pipeline begins with FASTQ files and outputs both a gene count matrix

and a variety of QC statistics. These are presented in a standalone HTML report generated by

rmarkdown [15] that includes various plots of QC metrics and other data summaries. The

scPipe package is written in R and C++ and uses the Rcpp package [16, 17] to wrap the C++
code into R functions and the Rhtslib package [18] for BAM input/output. The key aspects are

implemented in C++ for efficiency.
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Results

The scPipe workflow

FASTQ reformatting. The scPipe workflow (Fig 1) generally begins with paired-end

FASTQ data which is passed to the function sc_trim_barcode, which reformats the reads

by trimming the barcode and UMI from the reads and moving this information into the read

header. There are options to perform some basic filtering in this step, including removing

reads with low quality sequence in the barcode and UMI regions and filtering out low com-

plexity reads, most of which are non-informative repetitive sequences such as polyA. The out-

put FASTQ file contains transcript sequences, with barcode information merged into the read

names.

Read alignment, exon mapping and barcode demultiplexing. The next stage of prepro-

cessing involves sequence alignment. For this task, any popular RNA-seq read aligner that pro-

duces BAM formatted output can be used. By default, scPipe uses the fast and convenient R-

based Rsubread [19] aligner which is available on Linux and Mac OS operating systems. For

publicly available datasets from sources such as GEO, FASTQ files are often available per cell

and these need to be aligned first before they can be processed further using scPipe. For all dif-

ferent types of data, aligned reads in the BAM file are then assigned to exons by the sc_exon_
mapping function according to a user provided annotation. Using a similar strategy to feature-
Counts [20], we divide chromosomes into non-overlapping bins and assess the overlap of

aligned fragments with exons that fall within the bin to reduce the search complexity. This func-

tion records the mapping result, together with the UMI and cell barcodes available from the

optional fields of the BAM file with specific BAM tags. By default we use the official BAM tag

BC for cell barcode and OX for UMI sequence.

Next, the sc_demultiplex function is used to demultiplex results per cell using the sam-

ple barcode information. For CEL-seq and MARS-seq, the demultiplexing is based on the list of

designed barcode sequences that the user provides, and allows for mismatches during the cell

barcode matching step. For 10X and Drop-seq where the cell barcode sequences need to be

identified from the reads, the function sc_detect_bc can be applied to identify enriched

barcodes in the data that can then be supplied to sc_demultiplex. This function can accept

a list of possible barcodes that may be present in the dataset (if available), such as the white list

provided by 10X. Data from non-UMI protocols such as Smart-seq and Smart-seq2 can be han-

dled by setting has_UMI to FALSEwhen running sc_demultiplex. The sc_detect_
bc function summarises the sequences in the cell barcode region, collapsing reads with a small

edit distance, which are indicative of sequencing errors. It can report a given number of cell bar-

codes or keep the cell barcodes based on a read number cutoff. A relaxed threshold is generally

recommended when one specifies the number of barcodes to retain, for instance if the estimated

number of cells in the library is 1,000-5,000, a threshold of 10,000 would ensure data for all cells

is collected. The motivation behind this is that unlike CellRanger, we don’t recommend detect-

ing low quality cells or empty barcodes solely based on the number of reads or UMI counts per

cell. Instead, more robust and meaningful results can be produced using multiple QC metrics.

Hence the sc_detect_bc function should be run to allow more barcodes than cells. The

quality control function in scPipe can be used to remove erroneous cell barcodes at a later stage.

The demultiplexed data are output in a csv file for each cell, where each row corresponds to a

read that maps to a specific gene, and columns that include gene id, UMI sequence and map-

ping position. The overall barcode demultiplexing results are recorded and can be plotted as

shown in Fig 2A for the mouse blood cells generated by the CEL-seq2 protocol.

Obtaining a gene count matrix and performing quality assessment. The next stage of

preprocessing makes use of the sc_gene_counting function to remove PCR duplicates

scPipe: An R/Bioconductor preprocessing pipeline for single-cell RNA-sequencing data

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006361 August 10, 2018 4 / 15

https://doi.org/10.1371/journal.pcbi.1006361


Fig 1. The scPipe workflow. scPipe is an R/Bioconductor package that uses functionality from a number of other packages, including Rsubread to align reads to a

reference genome (although in practice any aligner that produces BAM files can be used for read alignment) and SingleCellExperiment to organise the counts and

sample annotation information. The major steps in the preprocessing pipeline of scPipe are shown along with the quality control (QC) statistics collected at each stage.

The final output of this process is a matrix of counts and QC metrics for use in downstream analysis and an HTML report that summarises the analysis. The resulting

SingleCellExperiment object can be used as input to other Bioconductor packages to perform further downstream analysis. scPipe logo created by Roberto Bonelli

published under a CC0 1.0 license (https://github.com/Bioconductor/BiocStickers/blob/master/scPipe/README.md).

https://doi.org/10.1371/journal.pcbi.1006361.g001
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Fig 2. Example QC plots that can be created using output from scPipe to assess data quality both within and between experiments. Within experiment displays

include (A) a bar plot illustrating the overall cell barcode matching results to assess sequencing accuracy across all samples and (B) a stacked bar plot showing the

mapping rate, separated into reads that map to exon, intron and ERCCs and those that are ambiguously mapped, map elsewhere in the genome and are unaligned

for each cell in an experiment (ordered by exon mapping rate). Between experiment displays include (C) a stacked bar plot showing the cell barcode matching

results from panel (A) from multiple experiments and (D) a ridgeline plot presenting the distribution of proportions of non-mitochondrial read counts for cells

across multiple experiments.

https://doi.org/10.1371/journal.pcbi.1006361.g002
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(also known as UMI deduplication) to generate a gene count matrix. scPipe uses a greedy

approach based on hamming distance to do this. The detected UMIs are compared to each

other and if two UMI sequences are found to be within a certain hamming distance apart (the

default is 1) and one UMI has more than twice the count of the other, then the two different

UMIs will be treated as instances of the same UMI. The approach is based on the fact that erro-

neous UMI sequences due to sequencing error usually just have one or two reads. PCR errors,

however, can be more problematic, and other more sophisticated network-based methods

such as the approach taken in UMI-tools have been developed to deal with such errors. When

PCR error rates are low, the approach used in scPipe should give good results. Our pipeline

outputs the raw UMI sequences that map to each gene, which can be used as input for more

sophisticated UMI correction methods when the PCR error rate is high. After UMI deduplica-

tion we get a gene count matrix that can be used for further analysis. QC information is col-

lected at each step (Fig 1) and includes the total number of mapped reads per cell, UMI

deduplication statistics, per cell barcode demultiplexing statistics, UMI correction statistics

and External RNA Controls Consortium (ERCC) spike-in control statistics (where present).

scPipe uses the S4 infrastructure provided by the SingleCellExperiment package [21] for data

storage. A SingleCellExperiment object can be constructed by the create_sce_by_
dir function using the data folder generated during preprocessing, or by manually specifying

all the required slots. Alongside the gene count matrix, this object stores QC information

obtained during preprocessing, and the type of gene id and organism name, which can both be

useful in downstream functional enrichment analysis.

Next, alignment statistics for each cell can be plotted using the plotMapping function

(Fig 2B). Data shown here is again from the mouse blood cell dataset described previously.

Monitoring these QC statistics across experiments (Fig 2C and 2D) can be particularly useful

for labs that routinely process single-cell data, allowing them to assess the impact changes in

lab processes and protocols have on data quality. Pairwise scatter plots of QC metrics such

as the total molecules per cell and the number of genes detected can be generated with the

plotQC_pair function (Fig 3).

scPipe implements a multivariate outlier detection method for discovering low quality cells

to remove from further analysis. The method uses up to 5 metrics (log-transformed number of

molecules detected, the number of genes detected, the percentage of reads mapping to ribo-

somal, or mitochondrial genes and ERCC recovery (where available)) as input (Fig 3) to a

Gaussian mixture model (GMM). There are three stages in the outlier detection process. First

the Mahalanobis distances between cells based on the quality control metrics chosen are calcu-

lated, with extreme cells removed before fitting the GMM using themclust package [22]. The

QC metrics of the remaining cells are used to capture the overall heterogeneity in the dataset.

The mixture component with systematically lower QC metrics, such as lower numbers of

genes detected and lower numbers of molecular counts are marked as outliers. In the final

stage, the Mahalanobis distance is calculated for cells from the mixture component with the

highest QC metric values with outliers automatically detected based on this distance. Outlier

detection can then be reconciled with visual inspection of the QC metrics through the afore-

mentioned QC plotting options to fine tune the sample-specific filtering thresholds chosen.

Depending on the data, the only argument that needs to be specified is the maximum number

of components in the GMM. In most cases, this is set to 1 or 2 for good quality data with only

a small proportion of poor quality cells. For data generated by droplet-based protocols where

larger proportions of poor quality cells may be expected, the number of components can be set

to 2 or 3 to model extra components that correspond to the good and poor quality cells. Apart

from the number of components, the user can also adjust the confidence interval for choosing

outliers (0.99 by default).
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Fig 3. A pairwise scatter plot of the quality control metrics collected by scPipe for the mouse blood cell dataset. Sample-specific metrics include the total read

count, the number of genes detected and the proportion of non-ERCC or non-mitocondrial reads. The good quality and outlier samples detected by scPipe’s
automatic outlier detection method are indicated in each panel by a different colour.

https://doi.org/10.1371/journal.pcbi.1006361.g003
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An HTML report generated using rmarkdown [15] that includes all run parameters used,

QC statistics and various types of dimension reduction plots of both the gene expression data

and QC metrics can be generated using the create_report function (Fig 4). As scPipe gen-

erates consistent QC measures across different protocols and experiments, these QC metrics

can be easily combined (Fig 2C and 2D) to facilitate comparisons between multiple datasets.

After QC, the data can be easily passed to downstream packages. Use of the SingleCellEx-
periment class ensures the output of scPipe is fully interoperable with a range of other Biocon-

ductor packages. For instance, packages such as scater, scran and BASiCS [23] can be used

for normalization, zinbwave [24] for dealing with zero inflation in the data and removing

unwanted variation, SC3 [25] and clusterExperiment [26] for clustering andMAST [27] and

scDD [28] for differential expression analysis.

Using scPipe. A vignette accompanying the package provides further details on imple-

mentation and an example use case on the CEL-seq2 mouse blood dataset.

This example dataset contains 100 million reads and takes under 2 hours to process on a

standard Linux server. scPipe creates a SingleCellExperiment object from the count matrix and

mapping statistics output by the pipeline which can be manipulated using other Bioconductor

packages for single cell analysis. scPipe’s outlier detection has been used to remove low quality

cells (Fig 3). For the mouse blood dataset, scPipe’s outlier removal retained 359 of 383 cells for

further analysis and in the human spleen dataset, 1,397 of the 2,273 detected cells were retained

for further analysis. We applied scran to compute size factors for normalization. Differential

expression analysis was performed between the a priori defined B-lymphocyte and T-lympho-

cyte cells (based on FACS sorting information available for the cells in each well) using a gen-

eralised linear model from edgeR [29] after performing conversion to a DGEList using scater
(Fig 5A). From this analysis 636 differentially expressed genes were discovered based on likeli-

hood-ratio testing (LRT) at a 0.05 false-discovery-rate (FDR) threshold.

A second example uses data from the pilot Human Cell Atlas ischaemic sensitivity dataset,

which was again preprocessed by scPipe, with automatic outlier detection leaving 1,397 cells,

which were then normalized using scran. Next, we performed cell clustering with SC3, where the

number of clusters produced was optimised by SC3’sestimate_k function to give 10 clusters.

To annotate these clusters, the mean normalized expression of each cluster was correlated with a

microarray dataset of 12 immunological lineages [30]. The lineage with the highest correlation

was considered the most likely cell type candidate for each cluster. Using this method, the 10

clusters identified by SC3were assigned to 5 of the 12 potential candidate lineages (Fig 5B).

A third example of running scPipe on the Chromium 10X cell line data is, which has 400

million reads from around 1,000 cells takes about 10 hours on a standard Linux server. We

also provide examples of using scPipewith an alternate aligner (STAR [31]). Code for each of

these example analyses is provided as Supplementary Information from http://bioinf.wehi.edu.

au/scPipe/.

scPipe is a fully modular pipeline, with each step generating independent results. It is also

flexible with its inputs, accepting FASTQ as outlined above, or BAM files produced by Cell-
Ranger and Dropseq tools (http://mccarrolllab.com/dropseq/) from which a gene count matrix

can be generated. This approach ensures interoperability with tools both inside and outside of

Bioconductor to give the data analyst maximum flexibility when configuring their scRNA-seq

analysis pipelines.

Comparing scPipe with other pipelines. We reviewed the tools currently available for

scRNA-seq data preprocessing identified through the ‘Alignment’ and ‘UMIs’ categories pro-

vided by the https://www.scrna-tools.org/ website [4]. The search revealed 9 tools that have

overlapping functionality with scPipe, summarised in Table 1. Our software is the only Biocon-

ductor package that spans all major single cell platforms (both plate and droplet-based) and
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Fig 4. Screenshot of an HTML report created by scPipe for the mouse blood cell dataset. This report organises the output of scPipe, including run parameters

and QC metrics and also generates basic dimension reduction plots of the data. Such reports provide a convenient format for communicating basic QC

information to collaborators to help them evaluate the overall quality of an experiment.

https://doi.org/10.1371/journal.pcbi.1006361.g004
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the full range of preprocessing tasks (alignment, UMI handling and QC). The shell program

zUMIs [32] is another program that covers the breadth of platforms and preprocessing tasks.

Other software tools, such as dropSeqPipe, CellRanger and dropEst [8] only deal with data from

droplet-based protocols, Sharq [33] is suitable for plate-based approaches, and the remaining

handle the UMI processing step only. CellRanger is the only tool that also offers downstream

analysis, with clustering and differential expression testing included in its default output.

In order to highlight the differences between scPipe and the popular CellRanger pipeline

that processes raw data from the Chromium 10X platform, we performed a benchmark experi-

ment that included 3 human lung adenocarcinoma cell lines (see Materials and methods) and

processed the raw data using both scPipe and CellRanger (Fig 6A). The dataset contains about

1,000 cells. CellRanger returns 1,027 cells and scPipe 981 cells after QC (Fig 6B). The t-SNE plot

[34] generated from the CellRanger output shows that the 48 cells that appear in the CellRanger
results but not in scPipe tend to cluster together (Fig 6C). Inspection of their QC metrics (Fig

6D) shows that these cells have higher proportions of mitochondrial gene counts, suggesting

Fig 5. Analysis results produced with SingleCellExperiment-compatible packages from Bioconductor. (A) Differential gene expression results from comparing B-

lymphocytes and T-lymphocytes known a priori in the CEL-seq2 mouse blood dataset. Highlighted points are genes determined to be significantly differentially

expressed from LRT with 0.05 FDR cutoff. (B) tSNE coloured by cell type predictions obtained for SC3 clusters for the first spleen sample from the Human Cell Atlas

ischaemic sensitivity dataset. The 10 clusters from SC3were assigned to 5 distinct cell types from the reference set of 12 lineages.

https://doi.org/10.1371/journal.pcbi.1006361.g005

Table 1. Summary of the data preprocessing software currently available for scRNA-seq analysis and the particular tasks covered by each package.

Software Language Input Multiple technologies Analysis task

Alignment UMI handling QC metrics Downstream analysis

scPipe R FASTQ ✓ ✓ ✓ ✓ ×
zUMIs Shell FASTQ ✓ ✓ ✓ ✓ ×

dropSeqPipe Snakemake FASTQ × ✓ ✓ ✓ ×
Sharq Python/Perl/R FASTQ × ✓ ✓ ✓ ×

CellRanger Python/R BCL/FASTQ × ✓ ✓ ✓ ✓

dropEst C++/R FASTQ × ✓ ✓ ✓ ×
UMI-tools Python FASTQ ✓ × ✓ × ×

umis Python FASTQ ✓ × ✓ × ×
sircel Python FASTQ ✓ × ✓ × ×

TRUmiCount R/Shell BAM ✓ × ✓ × ×

https://doi.org/10.1371/journal.pcbi.1006361.t001
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they may be dead cells that should be excluded from downstream analysis. Since CellRanger
only uses the UMI counts per cell as a QC cutoff, the results generated by CellRangermay con-

tain dead cells and benefit from a further round of QC. The scPipe analysis on the other hand

uses multiple QC metrics by default (Fig 3) to achieve a robust measure of cell quality to ensure

low quality cells are discarded. This comparison shows the benefit of scPipe’s built-in QC step.

Availability and future directions

The scPipe package is available from https://www.bioconductor.org/packages/scPipe. Code for

each of the example analyses described in the ‘Using scPipe’ section above is available from

Fig 6. Comparing scPipe and CellRanger. (A) The workflow for the comparison. An equal mixture of cells from three cell lines are sequenced using the Chromium 10X

platform (see Materials and methods). Data were processed by scPipe and CellRanger. (B) The pie chart shows the overlap of cell barcode detected by scPipe and

CellRanger. (C) The t-SNE plot generated using CellRanger output. Cell barcodes that only exist in CellRanger are highlighted. (D) Box plots showing the percentage of

mitochondrial gene counts in cells that overlap with scPipe or only exist in the CellRanger results.

https://doi.org/10.1371/journal.pcbi.1006361.g006
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http://bioinf.wehi.edu.au/scPipe/. Bug reports and questions about using scPipe should be

posted on the Bioconductor support site (https://support.bioconductor.org/).

With the growing popularity of scRNA-seq technology, many tools have been developed

for normalization, dimensionality reduction and clustering. There are relatively few packages

designed to handle the raw data obtained from the various 3’ end sequencing protocols with

their associated UMIs and cell-specific barcodes from beginning to end and collect detailed

quality control information. The scPipe package bridges this gap between the raw FASTQ files

with mixed barcode types and transcript sequences and the gene count matrix that is the entry

point for all downstream analyses. scPipe outputs numerous QC metrics obtained at each pre-

processing step and displays these results in an HTML report to assist end users in QC evalua-

tions. Future improvements that are planned for scPipe include support for new scRNA-seq

protocols as they emerge and parallelization of the various preprocessing steps to enable scal-

ability to larger datasets. We also plan to generate a more comprehensive scRNA-seq bench-

mark dataset to ensure the default UMI correction and quality control methods used in scPipe
are optimal that will also allow for a more detailed comparison of scPipe with other relevant

analysis pipelines, such as zUMIs.
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