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Abstract

Spontaneous waves in the developing retina are essential in the formation of the retinotopic

mapping in the visual system. From experiments in rabbits, it is known that the earliest type

of retinal waves (stage I) is nucleated spontaneously, propagates at a speed of 451±91 μm/

sec and relies on gap junction coupling between ganglion cells. Because gap junctions

(electrical synapses) have short integration times, it has been argued that they cannot set

the low speed of stage I retinal waves. Here, we present a theoretical study of a two-dimen-

sional neural network of the ganglion cell layer with gap junction coupling and intrinsic noise.

We demonstrate that this model can explain observed nucleation rates as well as the com-

paratively slow propagation speed of the waves. From the interaction between two coupled

neurons, we estimate the wave speed in the model network. Furthermore, using simulations

of small networks of neurons (N�260), we estimate the nucleation rate in the form of an

Arrhenius escape rate. These results allow for informed simulations of a realistically sized

network, yielding values of the gap junction coupling and the intrinsic noise level that are in a

physiologically plausible range.

Author summary

Retinal waves are a prominent example of spontaneous activity that is observed in neu-

ronal systems of many different species during development. Spatio-temporally corre-

lated bursts travel across the retina at a few hundred μm/sec to facilitate the maturation

of the underlying neuronal circuits. Even at the earliest stage, in which the network

merely consists of ganglion cells coupled by electric synapses (gap junctions), it is

unclear which mechanisms are responsible for wave nucleation and transmission speed.

We propose a model of gap junction coupled noisy neurons, in which waves emerge

from rare stochastic fluctuations in single cells and the wave’s transmission speed is set

by the latency of the burst onset in response to gap junction currents between neighbor-

ing cells.
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Introduction

Spontaneous activity spreads through neuronal systems of many different mammal species

during development. Crucial roles are attributed to this spontaneous activity [1]. Among the

most prominent roles is the synaptic refinement in the retina, where spatio-temporally corre-

lated bursts of activity are observed, and it was found that blocking these waves disrupts eye-

specific segregation into the visual thalamus [2, 3]. Therefore, much effort has been devoted in

recent years (e.g. [4–7]) to understand the mechanisms responsible of retinal waves. The

observed patterns of spontaneous activity in the developing retina are remarkably similar

across many species [1]. These patterns have been characterized as spatially correlated bursts

of activity in the ganglion cell (GC) layer, which are followed by periods of silence [8–10].

So far, three different stages of retinal waves have been described in rodents, (for review see

e.g. [1]). These different stages are characterized by their underlying circuits, which mature

subsequently in development. In stage I, bursts of activity spread between retinal ganglion

cells. In this stage, few synapses are identifiable and waves are mediated by gap junctions (GJs)

and adenosine [11]. Stage II begins with the onset of synaptogenesis and ends with the matura-

tion of glutamatergic circuits while stage III waves end with eyeopening and the onset of vision

[12, 13]. Here, we exclusively focus on the earliest developmental stage (stage I). This stage is

prior to the emergence of functional chemical synapses in the retina. Waves show random ini-

tiation sites, no directional bias, and a propagation speed of about 450 μm/s. Via patch-clamp

recordings, stage I retinal waves were found to be initiated and propagated in the GC layer

[11].

In this work we develop a theoretical model of the retina and limit ourselves to a GC layer

of bursting neurons which are coupled by GJs. These electrical synapses are formed between

each of the major neuron types in the vertebrate retina [14–18] and play a major role in signal

processing and transmission of visual information (for a review, see [18]). GJs are formed by

two apposed hemichannels, each one formed by an hexameric array of proteins know as con-

nexins. In mammals, connexin-36 and connexin-45 were clearly identified in neurons located

in the inner retina [15, 19]. Both types of connexins follow a distinct expression pattern during

retinal development [20].

GJ coupling between neurons has been addressed in various theoretical studies (see e.g. [21,

22]) and has received particular attention in the context of large-scale brain rhythms (e.g. [23,

24]) and traveling wave dynamics (see e.g. [25, 26]). However, their involvement in the matu-

ration process of the retina is not yet fully understood [27]. GJs have been proposed as the

responsible mediator of stage I retinal waves but not yet been used in a model of such waves

[5], which is the problem that we intend to solve with this study.

From a physical perspective, GJs act with integration times of the order of milliseconds and

were thus argued not to be the mediator of stage I waves [5, 9], which are much slower com-

pared to this time-scale. In this work, we present a model of stage I retinal waves, formed by a

network of bursting cells. The cells are coupled by the Ohmic currents through GJs which cor-

responds to the discretized version of a diffusive coupling (see e.g. [28] for a recent example of

complex pattern generation with such a coupling); for recent studies of wave propagation

using the alternative spatially extended coupling by an integral kernel, see e.g. [29, 30]. For our

model, we show that under certain conditions, the wave propagation can be sufficiently slow

to be the responsible mediator for stage I retinal waves. We discuss analytical estimations of

the propagation velocities and compare them to extensive numerical simulations of networks

of up to 12,000 neurons. Our analytical work, based on diffusively coupled bursting neurons,

applies methods from nonlinear dynamics and pattern formation to differential equations

with discontinuous resettings. Furthermore, we study the repetitive nucleation of waves caused
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by noisy input currents and discuss the dependence of the nucleation rates on the noise

intensities.

Methods

Model for the single retinal ganglion cell

We use the phenomenological Izhikevich neuron model [31, 32], known for displaying biolog-

ically plausible dynamics. Due to its discontinuous fire and reset mechanism, it is a computa-

tionally efficient model of a bursting neuron. Comparable dynamics can be obtained from

two-dimensional excitable models such at the Morris-Lecar model, under incorporation of an

additional third dimension, e.g. a calcium-dependent potassium current, cf. Sec. 5.2 in [33]

The model can be regarded as a quadratic integrate-and-fire neuron for the membrane volt-

age Vi(t) of the ith neuron with an additional slow recovery variable ui(t), also referred to as

gating variable (cf. Fig 1(a) for the nullclines of the system):

tV
dVi

dt
¼ aðVi � VrestÞðVi � VcritÞ � ui þ RIi; ð1Þ

tu
dui

dt
¼ bVi � ui; ð2Þ

Fig 1. Burst mechanism of the single neuron model. (a) shows the nullclines of the Izhikevich neuron model in

phase space (V, u) without current, RI = 0. The green dashed line shows the voltage nullcline and the blue dashed line

shows the gating variable nullcline, respectively. Intersections of these two lines are fixed points of the system. The

lower fixed point, indicated in red, is stable and represents the resting state of the neuron at (V, u) = (Vr, ur) = (−64mV,

−19.4mV). The gray vertical lines indicate the peak voltage Vpeak and the reset voltage Vreset. (b) shows the path in

phase space of a neuron that is initially in the resting position, but exposed to an external current with RI = 2 mV from

t = 0. The temporal evolution of the separate components u and V is illustrated in (c).

https://doi.org/10.1371/journal.pcbi.1006355.g001
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if : Vi � Vpeak !
Vi ¼ Vreset;

ui ¼ ui þ d:

(

ð3Þ

The membrane recovery variable provides negative feedback to the voltage (cf. Fig 1(b) and

1(c) top). The parameters a, b, d as well as Vrest, Vcrit, Vreset, and Vpeak determine the spiking

regime of the neuron, with Vrest < Vcrit < Vpeak. The time-scales of the voltage and gating vari-

able are defined by τV and τu, respectively. For u(t)� 0 and I(t)� 0, Vrest and Vcrit are the sta-

ble and the unstable fixed points of the dynamics, respectively. If Vi� Vpeak, the membrane

potential is reset to Vreset, the kth spike time, ti,k, is registered, and the recovery variable is

increased by the constant value d. We choose parameters such that the burst characteristics of

our model neuron illustrated in Fig 1 roughly agree with experimental measurements from

Syed et al. [11]. Specifically, we aim at a burst duration of about 1 − 2 seconds (cf. Fig 1(c) bot-

tom) and a spike frequency during bursts of about 5 − 15 Hz. We find those characteristics rea-

sonably met for: a = 0.1, b = 0.3, d = 1.2, τV = 100 msec, τu = 0.0003−1 msec, Vrest = −76 mV,

Vcrit = −48 mV, Vpeak = 30 mV, Vreset = −50 mV. The bursting mechanism is illustrated in Fig

1. The chosen time-scale of the gating variable u is comparatively large, but not uncommon for

cortical neurons [34].

The total current RIi = R[Igap,i + Inoise,i] is a superposition of the intrinsic noise current and

GJ currents from neighboring cells (see below). The intrinsic noise originates from fluctua-

tions of the various channel populations (sodium, calcium, and different potassium channels,

see e.g. [35]) and is approximated by white Gaussian noise:

RInoise;i ¼ tV
ffiffiffiffiffiffi
2D
p

xiðtÞ; ð4Þ

with hξi(t)i = 0 and hξi(t)ξj(t0)i = δij δ(t − t0) and D is the noise intensity. We perform simula-

tions at discrete times with a time step of Δt = 0.1 msec according to an Euler-Maruyama inte-

gration scheme, see supporting information S1 Text.

Retinal network

Ganglion cells are distributed within the ganglion cell layer with a decreasing density towards

the outer regions of the retina. For instance, the density in rabbits covers a range from 5000

cells/mm2 down to 200 cells/mm2 (the mean value is 800) [36]. In a previous study of retinal

waves observed in rats, Butts et al. [4] used a ganglion cell density of * 4000 cells/mm2. In

their simulations they placed neurons in a regular triangular lattice for which the given density

translates to a lattice spacing of 17 μm. Because we focus on the rabbit retina, we assume a tri-

angular lattice with a different lattice spacing of 38 μm, reflecting the lower cell density (800

cells/mm2) for this system. The reported experimental observations on characteristics of stage

I retinal wave were obtained from retina patches of roughly 3 × 5 mm. A mean cell density of

800 cells/mm2 translates to a total cell number estimate of 12,000 cells in the studied system.

For comparability, we use a similar number of cells for simulations (i.e. 12,100 = 110 × 110).

The triangular lattice structure can be seen in Fig 2(a).

Here, we ignore for simplicity the inhomogeneous and irregular structure of the ganglion

cell layer. We place N = n × n single ganglion cells in a rectangular domain on a triangular lat-

tice such that every cell is connected with GJs to six nearest neighbors, (the lattice structure is

illustrated in Fig 2(a)). For illustrative purposes, we will also consider a one-dimensional

chain, in which each neuron has only two neighbors. Because we are interested only in stage I

waves, prior to synaptogenesis, these cells are not connected to any other cells, i.e. bipolar and

amacrine cells are not part of our model. We choose a common approach (e.g. [21]) to model

Gap junctions set the speed and nucleation rate of stage I retinal waves
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the GJ current as diffusive and instantaneous coupling by

RIgap;i ¼ G
X

n¼neighbor

ðVn � ViÞ; ð5Þ

where G is the rescaled dimensionless GJ coupling, i.e. G = R/Rgap. The membrane resistance R
of retinal ganglion cells can experimentally be measured and is in the range of 100-500 MO,

e.g. [37]. Rgap is the GJ resistance between neighboring ganglion cells in the retina, which

depends on the connexin type and the transjunctional voltage difference and is roughly

Rgap� 1GO [38, 39]. The values of R and Rgap imply a physiological range for our parameter of

G 2 [0.1, 0.5]. Because the time course of the action potential produced by our neuron model

is only a coarse approximation of the electrophysiological shape of a spike, the GJ coupling

may be stronger or weaker than assumed here. This gives additional justification for choosing

a wider range of G.

For the two-dimensional setup, we apply two different boundary conditions. For estimat-

ing the noise dependence of propagation velocities and nucleation rates, we perform small

system simulations (N*50-260) with periodic boundary conditions in both directions (sys-

tem on a torus) in order to avoid strong finite-size effects. Simulations of the full system with

N*12,000 are carried out with two additional layers of neurons on the boundary, that are not

exposed to intrinsic noise (cells on the system boundary have fewer neighbors, between 2 and

Fig 2. Wave propagation in the deterministic system (D = 0). Lattice structure of the network shown in (a) for the

one-dimensional (1D) and two-dimensional (2D) simulations. Voltage traces of five model neurons (vertically shifted

for better visibility), coupled in a one-dimensional chain with G = 0.1 (b) and G = 0.5 (c). The respective first neuron

(bottom trace) was initialized in the bursting regime, i.e. (u(t = 0), V(t = 0)) = (urest, Vreset). Snapshots of waves on a

two-dimensional triangular lattice (voltage and recovery variable in top and bottom panels, respectively) with G = 0.1

at different time instances as indicated (d).

https://doi.org/10.1371/journal.pcbi.1006355.g002
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5 instead of 6). Neurons in the two outer layers of the large simulations are discarded from all

statistical evaluations.

Single propagating waves running through the network can be captured by the population

activity [40]

AðtÞ ¼
1

NDtA

XN

i¼1

X

k

ZtþDtA

t

dt dðt � ti;kÞ; ð6Þ

where the index k runs over the spike times of the ith neuron. Hence, A(t) is the firing rate,

averaged over the network and the time bin ΔtA. We use ΔtA = 0.5 seconds, which is compara-

tively large and covers multiple spikes when the cells are bursting.

Results and discussion

Wave propagation

If we couple cells in a chain (as indicated in Fig 2(a)—1D) and initiate a burst in one of them,

we see a propagation of the burst along the chain (cf. Fig 2(b)); similar voltage traces have also

been seen in simulation of computational models of cortex slices, e.g. [41]. A higher propaga-

tion speed can be achieved by increasing the GJ conductance parameter G Fig 2(c). The picture

is similar in our two-dimensional setup, for which snapshots are shown in Fig 2(d). In this

case, the wave has been evoked by enforcing a burst in the lower left corner. It propagates as a

circularly shaped wave front, which is a consequence of the regularity and rotational symmetry

of the system. The gating variable u (lower row in Fig 2(d)) can be associated with the experi-

mentally accessible calcium dynamics and resembles calcium fluorescences images [11]. Com-

pared to the membrane potential (top row), the wavefront of the gating variable lags behind, as

it slowly builds up during the burst.

In both, one-dimensional and two-dimensional simulations in Fig 2, we have set the intrin-

sic noise intensity to zero in order to illustrate that wave propagation does not hinge on the

presence of fluctuations. We note already here, that the propagation speed in the two-dimen-

sional system matches the order of magnitude of biologically observed values. To determine

the speed of the waves from simulation such as shown in Fig 2(c), we approximate the wave’s

shape as circular with a fixed center. We define a wavefront as the group of neurons that spike

within the same time bin of Δt = 0.1 seconds (see left illustration in Fig 3(a)) and measure the

front’s mean distance from the center and its mean time instance of occurrence. From the dif-

ferences of these distances and times, we determine the mean velocity, which we find to be

weakly distance dependent, but saturating at about 350 μm from the origin of the wave, cf. Fig

3(b). In the following, all velocity values are averaged over measurements for the range of dis-

tances 350 − 650 μm (shaded area in Fig 3(b)) from the point of initiation and we refer to this

measuring method as concentric method. The velocities are shown in Fig 3(c) as a function of

the GJ parameter for the physiologically relevant range of G (see Methods). We obtain veloci-

ties that are in the range of values observed in the rabbit retina [11], cf. the shaded area in Fig

3(b). The experimental mean value of about 450 μm/sec is attained for G� 0.4.

The propagation and its speed can be theoretically understood as follows. Assuming a steep

wave profile, the speed of the wave is given by the inverse of the time it takes a bursting neuron

to excite its neighbors, times the displacement of the corresponding wave fronts. We refer to

this time as burst onset time difference (BOTD). For simplicity, we neglect noise and consider

in the following a one-dimensional setup consisting of three neurons: one initially quiescent

neuron (i) is connected to a bursting neuron (i − 1) on one side and to a quiescent neuron

(i + 1) on the other side. They are separated by the lattice spacing ℓ = 38 μm, hence the velocity

Gap junctions set the speed and nucleation rate of stage I retinal waves
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is defined as v1D = ℓ/TB. Therein, TB denotes the analytical approximation of the BOTD for

this one-dimensional case.

The approximation TB for the BOTD between neighboring neurons can be derived using

three assumptions (details in S1 Text). First, we assume a constant gating variable (u(t)� ur =

const), which is reasonable on a short time-scale, because τu� τV. Second, we replace the volt-

age variable of the bursting neuron Vi−1(t) by its temporal average �V b ¼ const, that can be ana-

lytically calculated (see S1 Text) and for our standard parameters is �V b ¼ � 34 mV. Third, we

Fig 3. Wave speed: Measurement and dependence on GJ coupling. Neural groups with simultaneous burst onset of

an exemplary simulation (time resolution Δt = 0.1 seconds) are shown in the panel (a) left, for three consecutive time

bins in different colors. At large distances from the origin, the shape of a wavefront can be approximated as planar, cf.

(a) middle. The mechanism of burst propagation can then be mimicked by a one-dimensional situation. Therefore in

our theoretical derivations, the distance and coupling strength has to be modified, cf. (a) right and details in the main

text. Squares in (b) represent the speed of the concentric wave (G = 0.4) as a function of the distance from the wave’s

origin (lower left corner of the simulation domain), measured as described in the text. Alternatively, the speed can be

assessed by measuring burst onset times along different fixed directions of the network, i.e. at blue and green sites

shown in the inset of (b). The resulting wave speeds as functions of distance (blue and green lines) agree closely with

the concentric method (squares in (b)). The speed shown in (c) is the mean value of simulation data (symbols) of the

shaded area in (a) as a function of the GJ coupling G. Simulation results are compared to v2D(G), Eq (9). The vertical

and horizontal shadings indicate the physiological range of G (see Methods) and the observed velocities in the rabbit

retina [11], respectively.

https://doi.org/10.1371/journal.pcbi.1006355.g003
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replace the voltage of the quiescent neuron that is not directly connected to the bursting neu-

ron by the resting potential, Vi+1 = Vr. Consequently, the GJ current seen by the driven neuron

reads RIgap;i ¼ GðVi� 1 þ Viþ1 � 2ViÞ � Gð�V b þ Vr � 2ViðtÞÞ, and the resulting dynamics until

the voltage Vi reaches the peak potential for the first time is effectively one-dimensional and

can be recast to the form (cf. details in S1 Text):

tV
dVi

dt
� aðVi � VrestÞðVi � VcritÞ � ur þ Gð�V b þ Vr � 2ViÞ: ð7Þ

This first order ordinary differential equation can be solved via separation of variables to find

t(V). We obtain it by first calculating the difference of the times from the voltage being at its

peak potential and its resting potential. However, the driven neuron is already exposed to the

driving GJ current while the voltage of the bursting neuron travels to its first spike time (cf.

Fig. A of S1 Text). Therefore, for simplicity we subtract the first inter-spike interval TISI from

the beforehand calculated time difference:

TBðGÞ ¼ tðVpeakÞ � tðVrÞ � TISI: ð8Þ

The explicit expression is lengthy and derived in S1 Text, resulting in Eq. O of S1 Text. Com-

paring TB to simulations of a one-dimensional chain shows a reasonable agreement (cf. Fig. A

of S1 Text), although the theory overestimates the simulated values, in particular, for larger val-

ues of G. For comparison we also discuss a corresponding result for the wave velocity in the

continuum limit in S1 Text.

In the two-dimensional setup at larger times, the wave attains a planar shape as indicated in

Fig 3(a), where red circles represent bursting neurons and blue and yellow circles represent

driven and quiescent neurons. Now, we assume that the wave front is perfectly flat and all neu-

rons shown in the same color share an identical voltage. In that case, the propagation mecha-

nism simplifies to two bursting neurons exciting one quiescent neuron, whose membrane

potential is further affected by two quiescent neurons. Hence, we can mimic the quasi one-

dimensional situation by doubling the value of G and additionally taking into account the

modification of the effective length, i.e. ℓeff = (3/4)1/2 ℓ, see Fig 3(a). Consequently, we can

approximate the velocity in the two-dimensional system as

v2DðGÞ ¼
ffiffiffiffiffiffiffiffi
3=4

p
� ‘

TBð2GÞ
: ð9Þ

Calculated velocities v2D(G) are shown in Fig 3(c) by the blue line, underestimating the true

velocity (circles) but providing a correct order-of-magnitude estimate. Note that so far we

restricted the considerations to a purely deterministic setup. Our simulations with noise indi-

cate that moderate fluctuations have only little impact on the mean velocities.

Wave nucleation

In the stochastic version of our system, we observe spontaneous waves that resemble those

found in experiments [11]. Experimentally, it was observed by Syed et al. [11] that the sponta-

neously nucleated waves appear with a mean inter-wave interval TIWI of 36 seconds. In our

model, waves are initiated by noise, since neurons are set in the excitable regime and cannot

generate periodic spiking or bursting without external input. We expect that the nucleation

rate per neuron depends strongly on the noise intensity D. To characterize this dependence,

we simulate small systems (N*50-260, see Methods) with periodic boundary conditions for

two different values of GJ coupling and different noise intensities, cf. Fig 4.

Gap junctions set the speed and nucleation rate of stage I retinal waves
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With the understanding that every neuron has the same chance to trigger a wave, the global

nucleation rate should be linear with N to a first approximation. Thus we measure the nucle-

ation rate per neuron as r = 1/(TIWI N). As demonstrated in Fig 4 by the linear dependence of

the rate’s logarithm on the inverse noise intensity, we obtain an Arrhenius rate

r ¼ r0expð� DU=DÞ: ð10Þ

The effective potential barrier ΔU depends on G and the system size N and saturates for suffi-

ciently large systems (inset) for both values of G.

The increase of the potential barrier with G can be understood to first approximation by

the effective change of the current-voltage relation in the single neuron. The GJ coupling term

Eq (5) leads to an effective increase in the leak current that stabilizes the resting potential and

makes it harder to initiate a burst. This mechanism is dominant in comparison to the influence

of other coupling effects and the stochasticity of the neighbors on the nucleation rate (sup-

ported by additional simulations, see Fig. B of S1 Text).

The more subtle dependence of ΔU on the system size can be explained as follows: Coupling

stochastic neurons in small systems with periodic boundary conditions leads to spatial correla-

tions and thus effectively to stronger noise. This effect can be neglected for large system sizes

or weak coupling, but has a measurable effect otherwise (cf. Fig 4 and Fig 4 inset).

Discussion of large-scale simulation results

Our results so far can be used to predict the mean inter-wave interval and the propagation

speed of retinal waves for a system size N = 12,100 that roughly corresponds to the experimen-

tally studied patch size in Ref. [11]. Vice versa, we can infer an approximate value of the noise

intensity D that leads to the experimentally observed value of TIWI = 36 seconds and test this in

numerical simulations of the full system.

Fig 4. Arrhenius plot. Spontaneous nucleation rate as function of the inverse noise intensity obtained from four two-

dimensional systems with different system sizes as indicated and periodic boundary conditions. From the linear fit of

these data, an effective potential barrier ΔU and a rate prefactor r0 can be estimated (dependence of ΔU on system size

shown in inset).

https://doi.org/10.1371/journal.pcbi.1006355.g004
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For our estimation of the rough value of the noise intensity in a large system, we have to

take into account that the single neuron undergoes a substantial refractory period of Tref� 14

seconds after bursting (estimated from small-system simulations investigating the minimal

mean inter-wave interval for various noise intensities). The mean inter-wave interval is then

given by TIWI = Tref + 1/[N � r(D)] and the estimated value of the noise intensity follows from

the Arrhenius law, Eq (10), as

D� ¼ DU=ln½NðTIWI � TrefÞr0� � 0:050 ð11Þ

(for G = 0.4, and r0 = 6 and ΔU = 0.71, fit parameters from Fig 4, solid line with N = 256).

The estimated parameters, G = 0.4 and D = 0.050, can now be used in a large-scale simula-

tion. In Fig 5(a), we show snapshots of the full system’s gating variable (a proxy for the experi-

mentally accessible calcium concentration). The wave front seen in the experimentally

observable area (box in Fig 5(a)) looks similar to experimental measurements, cf. Ref. [11].

From Fig 5(b), it becomes evident that the mean inter-wave interval becomes much shorter for

a slight increase in D. The mean inter-wave interval at these parameter values is not exactly 36

seconds, but somewhat larger: these statistics depend very sensitively on the value of the noise

intensity (i.e. on the second leading digit, cf. Fig 5(c) middle). This is seen in the global popula-

tion activity, that reveals a wave going through the system as a single peak vs. time.

The dependence of crucial neural statistics on the noise intensity is illustrated in Fig 5(c). In

contrast to the mean inter-wave interval, the mean velocity of the wave does not depend

Fig 5. Large-scale simulations. A network of 12,100 GJ coupled and noisy Izhikevich neurons display spontaneously

nucleated waves that propagate with velocities that are comparable to experimentally observed values. (a) Snapshots of

the gating variable (associated to a proxy for the calcium concentration) at different time instances during one wave

running through the system (G = 0.4, D = 0.05). The small rectangle indicates the dimensions of the experimentally

accessible observation area [11]. (b) Population activity A(t) (with ΔtA = 0.5 seconds, see Eq (6)) of the entire system

over a larger time window for different noise levels. One wave, as shown in (a) collapses here into a single peak; time

differences between adjacent peaks are the inter-wave intervals TIWI,i (one indicated by an arrow). (c) Mean velocity,

mean inter-wave interval and standard deviation of the subthreshold membrane voltage as a function of the noise

intensity for a small range around the estimated value Dtarget = 0.05. Dashed lines indicate experimental mean values

from Ref. [11], solid red line shows the wave speed for D = 0, extracted from the circle at G = 0.4 in Fig 3.

https://doi.org/10.1371/journal.pcbi.1006355.g005
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strongly on the noise (Fig 5(c), top) but stays close to the experimentally observed mean value

(dashed line). This is due to the fact, that the wave, once it is initiated, is largely determined

by the deterministic propagation mechanism explained above. The fine tuning of the noise

intensity shows that the experimental value of hTIWI,expi = 36 seconds is attained for a noise

level of D = 0.052, slightly larger than D� (estimated above). How realistic is this noise level?

To address this question, we show at the bottom of Fig 5(c) the standard deviation of the sub-

threshold voltage fluctuations, σV, as a function of the noise intensity D. σV increases only

slightly with D and attains values around 1.6 mV.

To our knowledge, there are no detailed investigations of intrinsic noise sources in retinal

ganglion cells at embryonic age. Because in this developmental stage there are no chemical

synapses present [42], the synaptic background fluctuations can be excluded for our system: in

the recurrent networks of the cortex, fluctuations stem mainly from the many synaptic interac-

tions among the neurons, resulting in the famous asynchronous irregular state [43] that can be

highly variable [44–46]. In our system, one likely source of variability is channel noise that typ-

ically leads to small membrane potential fluctuations with a standard deviation σV below 0.6

mV [47, 48]. The noise intensity that is required for the experimentally observed inter-wave

interval results in sub-threshold voltage fluctuations that are three times bigger, cf. Fig 5(c)

bottom, suggesting that besides ion channel noise there are additional sources of fluctuations

present. These could result from stochasticity of GJs itself but also indirectly from GJs via dif-

ferences in individual resting potentials (for the heterogeneity of the resting potential in simi-

larly sized cells, pyramidal cells in the cortex, see [49]). In any case, the apparent voltage

fluctuations of about 1.6 mV are well within the range of experimentally observed voltage

noise in embryonic ganglion cells (cf. Fig. 1 in Ref. [11]).

Summary

The investigations presented in this paper propose a GJ-based model of stage I waves in the

developing retina. Starting with a neuron model that roughly reproduces the spiking proper-

ties of a burst of one single retinal ganglion cell, we incorporated GJ coupling of physiologically

plausible strength and temporally uncorrelated fluctuations. This allowed us to reproduce the

characteristics of wave nucleation and slow wave propagation in the early retina. Earlier it was

believed that GJs can play a role in fast neural transmissions only [5, 9], since the current in

electrical synapses responds much quicker than neurotransmitters in chemical synapses. As

shown in our paper, however, it is possible to obtain a limited transmission speed in a simple

Ohmic model of the GJ coupling. Furthermore, although stochastic fluctuations are strong

enough to ignite bursts with the correct nucleation rate, they do not distort the propagating

fronts very much, i.e. the wave propagation is still a reliable process.

The reason for the slow transmission we observe can be found in the nonlinear dynamics

of the single neuron. The Izhikevich model that we use for the ganglion cell is essentially a

quadratic integrate-and-fire neuron model with a slow adaptation variable. This model is the

normal form of a saddle-node bifurcation and has a pronounced latency if close to this bifurca-

tion, i.e. the spike response to a current step (in our case provided by a neighboring bursting

cell) is considerably delayed because the system experiences the “ghost of the former fixed

point”, see Ref. [50]. The presence of weak noise modifies this picture only slightly [51].

Although our model accounts for the most important features of wave nucleation and prop-

agation for stage I retinal waves, it cannot explain the strong variability of the experimentally

measured statistics (error of velocity ±91 μm/sec [11]). This is due to a number of model sim-

plifications, which we now concludingly discuss. Firstly, the real system is much more hetero-

geneous than in our model, both with respect to the lattice structure as well as with respect to
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the local coupling between cells; secondly, GJs may couple more than next neighbors and their

conductivity may be noisy and voltage gated; thirdly, the detailed dynamics of ganglion cells is

certainly more complex than can be captured by the Izhikevich model; last but not least, the

white Gaussian noise in our model is a rather coarse approximation of the channel noise and

other fluctuations in the system.

In our model, we arranged the neurons on a highly regular lattice with a cellular spacing

according to an experimentally determined mean value of cell density, neglecting the strong

heterogeneities in the distribution [36]. On this lattice, each cell is connected to exactly six

nearest neighbors. Given the aforementioned heterogeneity, the numbers and distances

between neighbors will be more broadly distributed than in our model. Incorporating these

heterogeneous features in the simulations would likely broaden the range of observed veloci-

ties and thus better reflect the considerable variability found in experimentally measured

values.

The soma size of (rabbit) retinal ganglion cells (< 30μm, e.g. Ref [36]) is smaller than our

employed lattice spacing, implying GJ coupling between dendrites rather than soma-soma

coupling only. The size of the dendritic arbor of retinal ganglion cells is * 100 − 130μm,

thus suggesting direct communication between cells that are up to the threefold of the lattice

spacing apart. In our simulations with only next-neighbor coupling, we could reproduce the

experimentally observed velocity with a comparatively large coupling constant of G = 0.4

(physiological range was G 2 [0.1, 0.5], see Methods). It is conceivable, that this large G value

is an effective description of a system with larger effective GJ neighborhood but with a smaller

(and possibly distance-dependent) coupling value G. Put differently, we expect similar results

for the wave speed in a system with extended coupling neighborhood but reduced coupling

strength per connection (with the latter still being within the physiological range).

Regarding the neuron model and the incorporation of noise, we note that for developed ret-

inal ganglion cells detailed multi-compartment conductance-based models with stochastic ion

channels exist [35]. With more electrophysiological data available, it will certainly be possible

to develop biophysically more realistic models of the bursting ganglion cell at the early stage.

Furthermore important for our problem will be the incorporation of stochastic models of GJs

[52] with voltage-dependent kinetics [53, 54] and the heterogeneity of physiological parame-

ters such as the resting potential. Such detailed models are certainly difficult to simulate for

large networks but could be employed to estimate the total noise intensity in the system and to

identify the dominant noise source, cf. similar approaches in Refs. [35, 55, 56].
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19. Söhl G, Güldenagel M, Traub O, Willecke K. Connexin expression in the retina. Brain Res. 2000; 32

(1):138–145. https://doi.org/10.1016/S0165-0173(99)00074-0

20. Kihara AH, Mantovani de Castro L, Belmonte MA, Yan CYI, Moriscot AS, Hamassaki DE. Expression of

connexins 36, 43, and 45 during postnatal developmentof the mouse retina. J Neurobiol. 2006; 66

(13):1397–1410. https://doi.org/10.1002/neu.20299 PMID: 17029293

Gap junctions set the speed and nucleation rate of stage I retinal waves

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006355 April 29, 2019 13 / 15

https://doi.org/10.1038/nrn2759
http://www.ncbi.nlm.nih.gov/pubmed/19953103
http://www.ncbi.nlm.nih.gov/pubmed/12097474
https://doi.org/10.1038/nn1376
http://www.ncbi.nlm.nih.gov/pubmed/15608630
https://doi.org/10.1523/JNEUROSCI.19-09-03580.1999
http://www.ncbi.nlm.nih.gov/pubmed/10212317
https://doi.org/10.1039/b907213f
http://www.ncbi.nlm.nih.gov/pubmed/19763323
https://doi.org/10.1371/journal.pcbi.1003953
http://www.ncbi.nlm.nih.gov/pubmed/25474327
https://doi.org/10.1177/1073858413510044
http://www.ncbi.nlm.nih.gov/pubmed/24280071
https://doi.org/10.1126/science.3175637
http://www.ncbi.nlm.nih.gov/pubmed/3175637
https://doi.org/10.1126/science.2035024
https://doi.org/10.1126/science.2035024
http://www.ncbi.nlm.nih.gov/pubmed/2035024
https://doi.org/10.1146/annurev.neuro.22.1.29
http://www.ncbi.nlm.nih.gov/pubmed/10202531
https://doi.org/10.1113/jphysiol.2004.066597
https://doi.org/10.1113/jphysiol.2004.066597
http://www.ncbi.nlm.nih.gov/pubmed/15308679
https://doi.org/10.1113/jphysiol.2013.262840
http://www.ncbi.nlm.nih.gov/pubmed/24366261
https://doi.org/10.1016/0896-6273(93)90122-8
http://www.ncbi.nlm.nih.gov/pubmed/8240814
https://doi.org/10.1002/(SICI)1096-9861(19970714)383:4%3C512::AID-CNE8%3E3.0.CO;2-5
https://doi.org/10.1002/(SICI)1096-9861(19970714)383:4%3C512::AID-CNE8%3E3.0.CO;2-5
http://www.ncbi.nlm.nih.gov/pubmed/9208996
https://doi.org/10.1002/1096-9861(20000918)425:2%3C193::AID-CNE3%3E3.0.CO;2-N
https://doi.org/10.1002/1096-9861(20000918)425:2%3C193::AID-CNE3%3E3.0.CO;2-N
http://www.ncbi.nlm.nih.gov/pubmed/10954839
https://doi.org/10.1073/pnas.0505067102
http://www.ncbi.nlm.nih.gov/pubmed/16150718
https://doi.org/10.1002/cne.20759
https://doi.org/10.1002/cne.20759
http://www.ncbi.nlm.nih.gov/pubmed/16255034
https://doi.org/10.1038/nrn2636
http://www.ncbi.nlm.nih.gov/pubmed/19491906
https://doi.org/10.1016/S0165-0173(99)00074-0
https://doi.org/10.1002/neu.20299
http://www.ncbi.nlm.nih.gov/pubmed/17029293
https://doi.org/10.1371/journal.pcbi.1006355


21. Volman V, Perc M, Bazhenov M. Gap junctions and epileptic seizures–two sides of the same coin?

PLoS One. 2011; 6(5):e20572. https://doi.org/10.1371/journal.pone.0020572 PMID: 21655239

22. Lewis TJ, Rinzel J. Self-organized synchronous oscillations in a network of excitable cells coupled by

gap junctions. Network. 2000; 11(4):299–320. https://doi.org/10.1088/0954-898X_11_4_304 PMID:

11128169

23. Coombes S. Neuronal networks with gap junctions: A study of piecewise linear planar neuron models.

SIAM J Appl Dyn Syst 2008; 7(3):1101–1129. https://doi.org/10.1137/070707579

24. Posłuszny A. The contribution of electrical synapses to field potential oscillations in the hippocampal for-

mation. Front Neural Circuits. 2014; 8:32. https://doi.org/10.3389/fncir.2014.00032 PMID: 24772068

25. Laing CR. Exact neural fields incorporating gap junctions. SIAM J Appl Dyn Syst. 2015; 14(4):1899–

1929. https://doi.org/10.1137/15M1011287

26. Konopacki J, Bocian R, Kowalczyk T, Kłos-Wojtczak P. The electrical coupling and the hippocampal for-

mation theta rhythm in rats. Brain Res Bull. 2014; 107:1–17. https://doi.org/10.1016/j.brainresbull.2014.

04.007 PMID: 24747291

27. Blankenship AG, Hamby AM, Firl A, Vyas S, Maxeiner S, Willecke K, et al. The role of neuronal connex-

ins 36 and 45 in shaping spontaneous firing patterns in the developing retina. J Neurosci. 2011; 31

(27):9998–10008. https://doi.org/10.1523/JNEUROSCI.5640-10.2011 PMID: 21734291

28. Meier SR, Lancaster JL, Starobin JM. Bursting regimes in a reaction-diffusion system with action poten-

tial-dependent equilibrium. PloS One. 2015; 10(3):e0122401. https://doi.org/10.1371/journal.pone.

0122401 PMID: 25823018

29. Harris JD, Ermentrout B. Traveling waves in a spatially-distributed Wilson–Cowan model of cortex:

From fronts to pulses. Physica D. 2018; 369:30–46. https://doi.org/10.1016/j.physd.2017.12.011

30. Kilpatrick ZP, Bressloff PC. Spatially structured oscillations in a two-dimensional excitatory neuronal

network with synaptic depression. J Comput Neurosci. 2010; 28(2):193–209. https://doi.org/10.1007/

s10827-009-0199-6 PMID: 19866351

31. Izhikevich EM. Simple model of spiking neurons. IEEE Trans Neural Netw. 2003; 14(6):1569–1572.

https://doi.org/10.1109/TNN.2003.820440 PMID: 18244602

32. Izhikevich EM. Which model to use for cortical spiking neurons? IEEE Trans Neural Netw. 2004;

15(5):1063–1070. https://doi.org/10.1109/TNN.2004.832719 PMID: 15484883

33. Ermentrout GB, Terman DH. Mathematical foundations of neuroscience. vol. 35. Springer Science &

Business Media; 2010.

34. Benda J, Herz AV. A universal model for spike-frequency adaptation. Neural Comput. 2003; 15

(11):2523–2564. https://doi.org/10.1162/089976603322385063 PMID: 14577853

35. Van Rossum M, O’Brien BJ, Smith RG. Effects of noise on the spike timing precision of retinal ganglion

cells. J Neurophysiol. 2003; 89(5):2406–2419. https://doi.org/10.1152/jn.01106.2002 PMID: 12740401

36. Oyster CW, Takahashi ES, Hurst DC. Density, soma size, and regional distribution of rabbit retinal gan-

glion cells. J Neurosci. 1981; 1(12):1331–1346. https://doi.org/10.1523/JNEUROSCI.01-12-01331.

1981 PMID: 7320749

37. Wong RC, Cloherty SL, Ibbotson MR, O’Brien BJ. Intrinsic physiological properties of rat retinal gan-

glion cells with a comparative analysis. J Neurophysiol. 2012; 108(7):2008–2023. https://doi.org/10.

1152/jn.01091.2011 PMID: 22786958

38. Hidaka S, Akahori Y, Kurosawa Y. Dendrodendritic electrical synapses between mammalian retinal

ganglion cells. J Neurosci. 2004; 24(46):10553–10567. https://doi.org/10.1523/JNEUROSCI.3319-04.

2004 PMID: 15548670

39. Publio R, Ceballos CC, Roque AC. Dynamic range of vertebrate retina ganglion cells: importance of

active dendrites and coupling by electrical synapses. PloS One. 2012; 7(10):e48517. https://doi.org/10.

1371/journal.pone.0048517 PMID: 23144767

40. Gerstner W, Kistler WM, Naud R, Paninski L. Neuronal dynamics: From single neurons to networks and

models of cognition. Cambridge University Press; 2014.

41. Golomb D, Amitai Y. Propagating neuronal discharges in neocortical slices: computational and experi-

mental study. J Neurophysiol. 1997; 78(3):1199–1211. https://doi.org/10.1152/jn.1997.78.3.1199

PMID: 9310412

42. Greiner JV, Weidman TA. Embryogenesis of the rabbit retina. Exp Eye Res. 1982; 34(5):749–765.

https://doi.org/10.1016/S0014-4835(82)80035-3 PMID: 7084338

43. Brunel N. Dynamics of sparsely connected networks of excitatory and inhibitory spiking neurons. J

Comput Neurosci. 2000; 8(3):183–208. https://doi.org/10.1023/A:1008925309027 PMID: 10809012

44. Litwin-Kumar A, Doiron B. Slow dynamics and high variability in balanced cortical networks with clus-

tered connections. Nat Neurosci. 2012; 15(11):1498. https://doi.org/10.1038/nn.3220 PMID: 23001062

Gap junctions set the speed and nucleation rate of stage I retinal waves

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006355 April 29, 2019 14 / 15

https://doi.org/10.1371/journal.pone.0020572
http://www.ncbi.nlm.nih.gov/pubmed/21655239
https://doi.org/10.1088/0954-898X_11_4_304
http://www.ncbi.nlm.nih.gov/pubmed/11128169
https://doi.org/10.1137/070707579
https://doi.org/10.3389/fncir.2014.00032
http://www.ncbi.nlm.nih.gov/pubmed/24772068
https://doi.org/10.1137/15M1011287
https://doi.org/10.1016/j.brainresbull.2014.04.007
https://doi.org/10.1016/j.brainresbull.2014.04.007
http://www.ncbi.nlm.nih.gov/pubmed/24747291
https://doi.org/10.1523/JNEUROSCI.5640-10.2011
http://www.ncbi.nlm.nih.gov/pubmed/21734291
https://doi.org/10.1371/journal.pone.0122401
https://doi.org/10.1371/journal.pone.0122401
http://www.ncbi.nlm.nih.gov/pubmed/25823018
https://doi.org/10.1016/j.physd.2017.12.011
https://doi.org/10.1007/s10827-009-0199-6
https://doi.org/10.1007/s10827-009-0199-6
http://www.ncbi.nlm.nih.gov/pubmed/19866351
https://doi.org/10.1109/TNN.2003.820440
http://www.ncbi.nlm.nih.gov/pubmed/18244602
https://doi.org/10.1109/TNN.2004.832719
http://www.ncbi.nlm.nih.gov/pubmed/15484883
https://doi.org/10.1162/089976603322385063
http://www.ncbi.nlm.nih.gov/pubmed/14577853
https://doi.org/10.1152/jn.01106.2002
http://www.ncbi.nlm.nih.gov/pubmed/12740401
https://doi.org/10.1523/JNEUROSCI.01-12-01331.1981
https://doi.org/10.1523/JNEUROSCI.01-12-01331.1981
http://www.ncbi.nlm.nih.gov/pubmed/7320749
https://doi.org/10.1152/jn.01091.2011
https://doi.org/10.1152/jn.01091.2011
http://www.ncbi.nlm.nih.gov/pubmed/22786958
https://doi.org/10.1523/JNEUROSCI.3319-04.2004
https://doi.org/10.1523/JNEUROSCI.3319-04.2004
http://www.ncbi.nlm.nih.gov/pubmed/15548670
https://doi.org/10.1371/journal.pone.0048517
https://doi.org/10.1371/journal.pone.0048517
http://www.ncbi.nlm.nih.gov/pubmed/23144767
https://doi.org/10.1152/jn.1997.78.3.1199
http://www.ncbi.nlm.nih.gov/pubmed/9310412
https://doi.org/10.1016/S0014-4835(82)80035-3
http://www.ncbi.nlm.nih.gov/pubmed/7084338
https://doi.org/10.1023/A:1008925309027
http://www.ncbi.nlm.nih.gov/pubmed/10809012
https://doi.org/10.1038/nn.3220
http://www.ncbi.nlm.nih.gov/pubmed/23001062
https://doi.org/10.1371/journal.pcbi.1006355


45. Ostojic S. Two types of asynchronous activity in networks of excitatory and inhibitory spiking neurons.

Nat Neurosci. 2014; 17(4):594. https://doi.org/10.1038/nn.3658 PMID: 24561997

46. Wieland S, Bernardi D, Schwalger T, Lindner B. Slow fluctuations in recurrent networks of spiking neu-

rons. Phys Rev E. 2015; 92(4):040901. https://doi.org/10.1103/PhysRevE.92.040901

47. Jacobson GA, Diba K, Yaron-Jakoubovitch A, Oz Y, Koch C, Segev I, et al. Subthreshold voltage noise

of rat neocortical pyramidal neurones. J Physiol. 2005; 564(1):145–160. https://doi.org/10.1113/

jphysiol.2004.080903 PMID: 15695244

48. Diba K, Lester HA, Koch C. Intrinsic noise in cultured hippocampal neurons: experiment and modeling.

J Neurosci. 2004; 24(43):9723–9733. https://doi.org/10.1523/JNEUROSCI.1721-04.2004 PMID:

15509761

49. Harrison PM, Badel L, Wall MJ, Richardson MJ. Experimentally verified parameter sets for modelling

heterogeneous neocortical pyramidal-cell populations. PLoS Comput Biol. 2015; 11(8):e1004165.

https://doi.org/10.1371/journal.pcbi.1004165 PMID: 26291316

50. Izhikevich EM. Dynamical systems in neuroscience. MIT Press; 2007.

51. Lindner B, Longtin A, Bulsara A. Analytic expressions for rate and CV of a type I neuron driven by white

gaussian noise. Neural Comput. 2003; 15(8):1761–1788. https://doi.org/10.1162/08997660360675035

52. Bressloff PC. Diffusion in Cells with Stochastically Gated Gap Junctions. SIAM J Appl Math. 2016;

76(4):1658–1682. https://doi.org/10.1137/15M1045818

53. Qu Y, Dahl G. Function of the voltage gate of gap junction channels: selective exclusion of molecules.

Proc Natl Acad Sci. 2002; 99(2):697–702. https://doi.org/10.1073/pnas.022324499 PMID: 11805325

54. Bukauskas FF, Verselis VK. Gap junction channel gating. Biochim Biophys Acta Biomembr. 2004;

1662(1):42–60. https://doi.org/10.1016/j.bbamem.2004.01.008

55. Schwalger T, Fisch K, Benda J, Lindner B. How noisy adaptation of neurons shapes interspike interval

histograms and correlations. PLoS Comput Biol. 2010; 6(12):e1001026. https://doi.org/10.1371/journal.

pcbi.1001026 PMID: 21187900

56. Fisch K, Schwalger T, Lindner B, Herz AV, Benda J. Channel noise from both slow adaptation currents

and fast currents is required to explain spike-response variability in a sensory neuron. J Neurosci. 2012;

32(48):17332–17344. https://doi.org/10.1523/JNEUROSCI.6231-11.2012 PMID: 23197724

Gap junctions set the speed and nucleation rate of stage I retinal waves

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006355 April 29, 2019 15 / 15

https://doi.org/10.1038/nn.3658
http://www.ncbi.nlm.nih.gov/pubmed/24561997
https://doi.org/10.1103/PhysRevE.92.040901
https://doi.org/10.1113/jphysiol.2004.080903
https://doi.org/10.1113/jphysiol.2004.080903
http://www.ncbi.nlm.nih.gov/pubmed/15695244
https://doi.org/10.1523/JNEUROSCI.1721-04.2004
http://www.ncbi.nlm.nih.gov/pubmed/15509761
https://doi.org/10.1371/journal.pcbi.1004165
http://www.ncbi.nlm.nih.gov/pubmed/26291316
https://doi.org/10.1162/08997660360675035
https://doi.org/10.1137/15M1045818
https://doi.org/10.1073/pnas.022324499
http://www.ncbi.nlm.nih.gov/pubmed/11805325
https://doi.org/10.1016/j.bbamem.2004.01.008
https://doi.org/10.1371/journal.pcbi.1001026
https://doi.org/10.1371/journal.pcbi.1001026
http://www.ncbi.nlm.nih.gov/pubmed/21187900
https://doi.org/10.1523/JNEUROSCI.6231-11.2012
http://www.ncbi.nlm.nih.gov/pubmed/23197724
https://doi.org/10.1371/journal.pcbi.1006355

