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Abstract

Many collective phenomena in Nature emerge from the -partial- synchronisation of the units

comprising a system. In the case of the brain, this self-organised process allows groups of

neurons to fire in highly intricate partially synchronised patterns and eventually lead to high

level cognitive outputs and control over the human body. However, when the synchronisa-

tion patterns are altered and hypersynchronisation occurs, undesirable effects can occur.

This is particularly striking and well documented in the case of epileptic seizures and tremors

in neurodegenerative diseases such as Parkinson’s disease. In this paper, we propose an

innovative, minimally invasive, control method that can effectively desynchronise misfiring

brain regions and thus mitigate and even eliminate the symptoms of the diseases. The con-

trol strategy, grounded in the Hamiltonian control theory, is applied to ensembles of neurons

modelled via the Kuramoto or the Stuart-Landau models and allows for heterogeneous cou-

pling among the interacting unities. The theory has been complemented with dedicated

numerical simulations performed using the small-world Newman-Watts network and the

random Erdős-Rényi network. Finally the method has been compared with the gold-stan-

dard Proportional-Differential Feedback control technique. Our method is shown to achieve

equivalent levels of desynchronisation using lesser control strength and/or fewer controllers,

being thus minimally invasive.

Author summary

Synchronisation plays an important role in most of the neuronal activities and in particu-

lar in the control of the motor system. However, due to biochemical dysfunction in the

brain activity, an abnormal and excessive synchronisation may occur being responsible

for severe symptoms of several neurological diseases. For the case of Parkinson’s disease,

for instance, an insufficient dopamine production in the basal ganglia causes rigidity or

continuous tremors. In the case of epilepsy instead, imbalance between excitation and

inhibition causes strong unpredictable seizures. Several neurostimulation techniques have

been developed with the aim to control and relieve the symptoms as alternatives to oral
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medication. In this line of research, we propose a new method which has the property of

being as little invasive as possible, in the number of electrodes needed and the strength of

the current applied, while still controlling the symptoms. It is based on the consideration

that neuronal patches resemble a set of phase-coupled oscillators which dynamics can be

described by the celebrated Kuramoto model. The control technique we employ is

inspired by a Hamiltonian formulation of the Kuramoto model. To verify the effectiveness

of our method, we test it in a more realistic model of coupled neuronal patches described

by the Stuart-Landau equations. Numerical simulations validate our approach.

Introduction

Synchronisation is one of the key mechanisms responsible for self-organisation and emergence

in living organisms [1–3]. Regular and periodic activity emerging from the collective behav-

iour of a set of interacting agents, has been noted to be crucial for the operation of many pro-

cesses in living organisms [4, 5]. A prime example are the firing patterns of neuronal

populations that form the basis of brain activity [6, 7] and their coordination among distrib-

uted mesoscopic neuronal populations [8] that ultimately controls our behaviour with an

impressive and somehow mysterious accuracy [9]. It is therefore not surprising that defects or

hypersynchronisation in neural firing patterns can lead to a host of neurological and psychiat-

ric pathologies such as schizophrenia, Alzheimer’s disease, Parkinson’s disease and epilepsy

[10–12].

One of the most conspicuous manifestation of neural hypersynchronisation are perturba-

tion in the motor control systems. For example, a lack of dopamine in the basal ganglia is

responsible for the uncontrolled and continuous tremors, rigidity and abnormal gait found in

Parkinson’s disease (PD) [13]. Epilepsy is an even more striking example where strong and

violent seizures occur unpredictably [14] and can be caused by an imbalance in neuronal exci-

tation and inhibition [15]. While the exact causes of these diseases have yet to be elucidated

[16], they share a common mechanism: a dysfunction of neuronal firing patterns. Being able

to control and restore normal synchronisation patterns could alleviate or even eliminate the

symptoms [17]. Long term drug treatments are the reality for most patients suffering from PD

or epilepsy, with only partially satisfying results [13, 18–20] and the potential associated long

term and side effects. An alternative to chemical treatments is neurostimulation, which

induces a modulation of the neuronal activity in order to desynchronise the phase dynamics

of neurons [21–24]. Our methods is to be applied in the framework of standard neurostimula-

tion techniques [25–27] e.g. Deep Brain Stimulation (DBS) and is designed to render it as

little invasive as possible, both by reducing the number of implanted electrodes and by using

weaker applied currents. Although our methods may find clinical application in a number of

diseases [28], we will focus on the control of focal epileptic seizure as an example. Our work is

computational in spirit and aims at validating a control strategy using simple but effective

computational models already in use in computational neuroscience. The usefullness of such

approaches to investigate epilepsy to complement and guide experiments has recently been

reviewed [29–31].

In this paper, we will focus on the theoretical description of a novel, minimally invasive,

brain neurostimulation method. It is minimally invasive in the sense that with a similar num-

ber of electrodes as existing set ups, e.g. the Proportional-Differential feedback method [24]

the strength signal needed to control the hypersynchronisation is set at the minimum enough

level to desynchronise the neuronal patches (see Discussion at page 10 and Supplementary
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Material (SM)). This work lays the foundations of an applicable desynchronisation technique

specifically aimed to control focal seizures, hypersynchronisation events in localised portion of

the brain. We will first use the paradigmatic Kuramoto model [32, 33] (KM) to describe syn-

chronisation in networks of small patches neurons that can be targeted by microelectrodes,

and then extend our results to the more general Stuart-Landau model (SLM).

Neurons are commonly modelled using leak and fire model (LIF), and it has been shown

that coherent synchronous behaviour can be obtained from very small patches of neurons

[34]. The signal emerging from small neuronal patches can then be considered as phases of

non-linearly coupled Kuramoto oscillators and their behaviour is indistinguishable from the

more detailed LIF models. Networks of Kuramoto oscillators are particularly adapted to

describe synchronisation pattern in neuronal patches: neuronal patches are connected with

axonal tracts, forming a network of cells and they can synchronise easily their activation; i.e.,

neurons are able to synchronise even when operating in a weakly coupled regime. Indeed the

parameter responsible for the interaction among neurons can, without any loss of generality,

be considered small.

The method presented here simplifies the theoretical control term introduced in [35] to

make it operational and show the potential for implementation. With this method, we can

reduce the system wide phase synchronisation, or phase-locking, of nonlinearly coupled Kura-

moto oscillators. The core mechanism brings the coupling between neurons patches below a

certain critical value where partial synchronisation remains, but the system does not hypersyn-

chronise. The magnitude of the control term, even when activated, is much smaller than the

interaction among the patches and so minimally affects their activity. Once the coupling

among the neurons is strong enough and the system is hypersynchronised, the control term

naturally kicks in and induces a desynchronisation of the neuronal dynamics with the conse-

quent suppression of the hypersynchronised behaviour. Keeping the control parameter at its

lowest possible value both in the phase-unlocked and in phase-locked regime is important to

avoid any side effects such as hallucinations or hypersexuality, commonly observed in other

neurostimulation methods due to the stimuli being too strong [36]. For this reason, the pro-

posed procedure for controlling the onset of the symptoms, as in the case of epilepsy, is opti-

mised to get the right balance between managing the seizures and being as little invasive as

possible.

The basis of the control framework proposed in this work [35] is grounded in the well

established Hamiltonian control theory [37–40], which relies on the Hamiltonian formulation

of the synchronisation process proposed in [41]. However, this theoretical control procedure

[41] assumes a complete knowledge of the observables of the system: the network topology,

phase variable and, more importantly, all the interacting nodes must be directly controlled.

This is clearly not directly applicable to the brain where in the best case we can only measure

the local dynamics and control only with a very limited number of patches of neurons com-

pared with the whole number of neurons involved. To tackle this problem, we hereby adapt

the theoretical control in order to limit the number of necessary microelectrodes to achieve

the desired level of control and at the same time reduce the amount of information required

on the signal measured from the electrodes. In the following section, we will introduce the

mathematical formalism which describes the synchronisation phenomenon and give a short

presentation of the Hamiltonian control theory, we invite the interested reader to consult [35]

for a detailed discussion. Then, we illustrate our method with neuronal desynchronisation in

the framework of the Kuramoto model. Let us observe that the method developed in [35] has

been proposed in the framework of unweighted networks, where all the oscillators interact

with the same strength, given by the Kuramoto parameter K. However, our method can be

straightforwardly extended to the wider class of weighted networks (see SM). We finish by
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extending our results to the more complex and realistic Stuart-Landau model, which has been

used to reproduce brain activity in different settings describing various diseases [42]. Control-

ling abnormal synchronisation patterns in this model makes a strong point for the applicability

of our method in real situations. We then conclude by summing up our results.

Methods

Neuronal patches modelled as nonlinear oscillators

Abnormal synchronisation of the neural activity is responsible for the symptoms of many neu-

rological diseases. Despite the very different nature of various systems exhibiting synchronisa-

tion, the main features are quite universal and can thus be described using the paradigmatic

Kuramoto model [32, 33, 43–45] of nonlinearly coupled oscillators. Interestingly, as we show

now, the KM is the limit of the more general Stuart-Landau model [24, 46]. This model is well

adapted to describe the normal form of a supercritical Andropov-Hopf bifurcation, which

describes the switch from a stationary state to a periodic one—limit cycle—(and vice versa)

according to a single bifurcation parameter:

_zk ¼ ð1þ iok � jzkj
2
Þzk þ Zk; where Zk ¼

K
N

XN

j¼1

Akjzj : ð1Þ

Here the complex variable zk ¼ rkei�k encodes the information about the amplitude ρk and the

phase ϕk of the coupled oscillators and i ¼
ffiffiffiffiffiffiffi
� 1
p

is the imaginary unity. The others terms are:

the natural frequencies of the oscillators ωk, and are drawn from a symmetric, unimodal distri-

bution g(ω), the coupling strength K and the symmetric adjacency matrix Akj encoding the

connections among the N oscillator (Akj = Ajk = 1 if oscillators k and j are coupled and zero

otherwise). Considering the real part of Eq (1) and assuming the amplitudes to be almost

equal, i.e. ρk� ρj for all k and j (this statement is true in a weakly coupled regime as the case of

neuronal patches ensemble), we obtain that the angles ϕk evolve according to the Kuramoto

model

_�k ¼ ok þ
K
N

XN

j¼1

Akj sinð�j � �kÞ : ð2Þ

We remind the reader that the original Kuramoto model corresponds to an all-to-all cou-

pling [32], Akj = Ajk = 1, for all k 6¼ j, Akk = 0. The model can be rewritten using the order

parameter [33]

ReiC ¼
1

N

XN

j¼1

ei�j ; ð3Þ

a macroscopic quantity that measures the strength of the synchronisation; if R� 0, the oscilla-

tors are almost independent each other while if R� 1 they are close to be phase-locked. Substi-

tuting the above definition in the original model we get the mean-field equation

_�k ¼ ok þ KRsinðC � �kÞ : ð4Þ

Thus the oscillators are no longer directly coupled to each other, but to the mean field oscil-

lator with phase C.

Neurostimulation and abnormal synchronization
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Hamiltonian control and the synchronisation problem

The KM is a dissipative system, however an N dimensional Hamiltonian system H(ϕ, I) writ-

ten in angles variables ϕ = (ϕ1, . . . ϕN) and actions variables I = (I1, . . ., IN), has been proposed

recently [41] and embeds as particular orbits the ones of the KM

Hðϕ; IÞ ¼
X

i

oiIi �
K
N

X

i;j

Aij

ffiffiffiffiffiffi
IiIj

q
ðIj � IiÞ sinð�j � �iÞ

� H0ðIÞ þ Vðϕ; IÞ ;

where H0 and V are defined by the rightmost equality. The previous model represents a class

of systems able to describe the Lipkin-Meshkov-Glick (LMG) model in the thermodynamic

limit [47] and of the Bose-Einstein condensate in a tilted optical lattice [48]. The temporal evo-

lution of the angle-action variables is obtained from the Hamilton equations:

_I i ¼ �
@H
@�i
¼ � 2

K
N

XN

j¼1

Aij

ffiffiffiffiffiffi
IiIj

q
Ij � Ii

� �
cosð�j � �iÞ ð5Þ

_� i ¼
@H
@Ii
¼ oi þ

K
N

XN

j¼1

Aij 2
ffiffiffiffiffiffi
IiIj

q
sin ð�j � �iÞ �

ffiffiffiffiffiffiffiffi
Ij=Ii

q
Ij � Ii

� �
sinð�j � �iÞ

h i
ð6Þ

for i = 1, . . ., N. More precisely, one can define the invariant Kuramoto torus

T :¼ fðI; ϕÞ 2 RN
þ
� TN : Ii ¼ 1=2 8ig and prove, to have a more detailed description of

the model and of its properties. that the restriction of time evolution of the angles variables

(ϕ1, . . . ϕN) to this torus coincides with Eq (2). We refer the interested reader to [35, 41] for

further details.

In [41], the authors have analytically proved and confirmed numerically that when the Kur-

amoto oscillators enter in a synchronised state, the dynamics of the actions close to the Kura-

moto torus become unstable and exhibit a chaotic behaviour. Based on this result, our aim is

to reduce the synchronisation in the KM (2) by controlling the Hamiltonian system H(ϕ, I) by

adding a small control term able to increase the stability of the invariant torus T . Based on the

previous remark this implies a reduction of the chaotic behaviour close to said torus, and thus

impedes the phase-locking of the coupled oscillators. Let us rewrite the Hamiltonian in the

form H = H0 + V, where H0 is the integrable part, i.e. the uncoupled harmonic oscillators, and

V the non-linear term, namely the KRsin(C − ϕk) function in the KM, that can be considered

as a perturbation of H0 because of the small magnitude of the parameter K. The main idea of

Vittot and coworkers [37, 39] is to add to H a small control term f � OðK2Þ, whose explicit

form depends on V, in order to reduce the impact of the perturbation V, i.e. to increase the sta-

bility of the invariant torus. The size of f implies that the controlling procedure is much less

invasive than other techniques generally used in control theory and is also able to give a rapid

response to possible abnormal dynamics and more importantly, without any need for further

measurement of the state of the system. Assuming a technical condition on the natural fre-

quencies, namely ω = (ω1, . . ., ωN) to be not resonant, i.e. for all k 2 Znf0g then k � ω 6¼ 0, one

can straightforwardly compute the required control term f(ϕ, I). Let us observe that the theory

by Vittot can also handle more general cases where such additional assumption is relaxed.

The embedding of the KM in the Hamiltonian system is based on the existence of the

invariant torus T , which is no longer invariant for the controlled Hamiltonian H0 + V + f.
Nevertheless, it is possible to provide an effective control by truncating the latter to its first

term, such that the resulting controlled Hamiltonian system preserves the Kuramoto torus.

Neurostimulation and abnormal synchronization
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One can thus transpose this information into the KM and achieve a control strategy:

_�k ¼ ok þ KRsinðC � �kÞ þ hkð�1; . . . ; �NÞ ; ð7Þ

where hk(ϕ1, . . ., ϕN) is the contribution of the control f to the angles dynamics and is explicitly

given by:

hkð�1; . . . ; �NÞ ¼ �
K2

4N2

�
X

j

Akj cos ð�j � �kÞ
X

l

Akl

ol � ok
cosð�l � �kÞ þ

þ
X

j

Akj

oj � ok
sinð�j � �kÞ

X

l

Aklsinð�l � �kÞ þ

�
X

l

Akl cosð�k � �lÞ
X

j

Ajl

oj � ol
cosð�j � �lÞ þ

Akl

ok � ol
sinð�k � �lÞ

X

j

Ajlsinð�j � �lÞ

 !�

; ð8Þ

where, with a slight abuse of notation, we used the same letter to denote the new controlled

angular variable. The truncation to the first order of the control term f is justified by the Ham-

iltonian perturbation theory. Moreover the smaller the perturbation parameter K, being

f � OðK2Þ, the better the approximation. The details of the derivation of formula (8) can be

found in [35].

To simplify the previous equation, let us introduce a second modified local order parameter

that depends on the node index:

~Rke
iCk ¼

1

N

XN

j¼1

ei�j

oj � ok
: ð9Þ

Under the hypothesis of an all-to-all coupling and a straightforward computation, the con-

trol term can be rewritten as:

hkð�1; . . . ; �NÞ ¼ �
K2

4
R~RkcosðC � CkÞ � Bk

� �
; ð10Þ

where Bk is defined by

Bk ¼
1

N

X

l

cosð�k � �lÞcosðCl � �lÞ
~Rl þ

X

l

sinð�k � �lÞ

ok � ol
sinðC � �lÞR :

Results

Effective desynchronisation of the phases of coupled neurons

Before we enter into the technical details of the proposed method, let us first comment on the

analytic result obtained above and discuss its advantage with particular attention to the control

of the onset of abnormal synchronisation. As already anticipated earlier in this paper, our prin-

cipal aim is to develop a novel method to lower the synchronisation level of the neuronal

patches situated in regions responsible for causing symptomatic behaviour. However, current

neurostimulation techniques achieving this goal are often strongly invasive in terms of its

strength. Our aim is to optimise the control strategy by letting the control to act only when

necessary and with minimal magnitude. This means that, although the control is always pres-

ent, it should dynamically “switch on”, i.e. achieve a strength comparable to the one of the

Neurostimulation and abnormal synchronization
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signal, when the seizures start and again dynamically “switch off”, i.e. become negligible with

respect to the signal) during the normal neuronal regime. This is exactly what the proposed

control term (8) does; the two main contributions to the control are the prefactor K2 and the

denominators containing the differences of natural frequencies ωj − ωk, which are of the order

of the width of the frequency distribution g(ω). Because the critical value of the coupling

strength Kc (< 1), the value for which the system exhibits a synchronised state, is of the order

� g(ω) [33], the control term becomes of order K in the critical regime, exactly when it is nec-

essary to reduce the synchronisation. On the other hand, during the normal regime the control

size is much smaller than the critical one, K2� Kc, and in consequence the method can be

considered to be minimally invasive.

Let us now come back to the theoretical control term (10) and prove that one can realise it

as an operational control strategy. The first observation is that the latter requires the control of

all neuronal patches, and this is impossible to be achieved in a realistic situation. The second

observation is that the control demands the exact knowledge of the connectivity of all the

interacting cells. From a practical point of view we a priori know that in order to control the

synchronisation we must interfere with the neuronal dynamics, by sending an electrical signal

through a microelectrode inserted into a suitable zone of the brain. For this reason the main

dilemma inherent with all neurostimulation methods is how to be as little invasive as possible

but at the same time as efficient as possible? To give a possible solution to this issue we will

simplify the formula (10) to fit our goal of having an operational control. We will show that we

can obtain a desynchronisation effect using a limited number of controlling microelectrodes,

as good as the one involving the control of all the patches. We will work under the hypothesis

that the interaction network allows easy global interactions while having a strong local connec-

tivity, i.e. a small-world type of architecture [49]. This assumption is justified by experimental

observations [50] which describe mesoscopic brain networks as small-world. Although the

control method proposed here operates at a much smaller scale than the ones considered in

[50], there are compelling evidence [51] and models [52] that a form of self-similarity of brain

circuitry and function is present, and thus what is observed at a macroscale can be inferred to

be similar at a smaller scale. For this reason we believe that the theory previously developed

under the assumption of all-to-all coupling, can be applied to a more general network topol-

ogy, without substantially modifying the resulting dynamics. In this respect, the microelec-

trodes are supposed to be positioned, for instance as best as possible in the epileptic foci and

each of them to directly control a zone which includes a certain number of neurons, optimis-

ing the efficiency of the control.

The first observation is that the second term in Eq (10), Bk, is often much smaller than the

first one; mathematically this can be understood because this term involves averages of prod-

ucts of oscillatory functions that can thus compensate each other. The second observation is

that one can hardly compute the local phase Ck using a limited number of microelectrodes

sampling few neurons, we then decide to replace the latter with the neuron phase ϕk. The last

point concerns the term ~Rk whose computation requires the knowledge of the phases and the

natural frequencies of all the neurons. In a real implementation of the control strategy this

requirement is too stringent to be achieved, we thus decided to replace it with a term, R̂k, com-

puted using information obtained only from the neuronal patches where the microelectrodes

are implanted in

8k ¼ 1; . . . ;M R̂ke
iĈk ¼

1

M

XM

j¼1

ei�j

oj � ok
: ð11Þ
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In the previous formula, we assumed the ordering the neuronal patches j to be such that the

first M are the ones upon which the microelectrodes are implanted. We are aware of the

impact of these working assumptions, nevertheless the justification of these choices is obtained

a posteriori by observing that the effective control performs very well. In conclusion the pro-

posed local control strategy is given by:

8k ¼ 1; . . . ;M ĥkð�1; . . . ; �MÞ ¼ �
g

4
K2RR̂kcosðC � �kÞ ; ð12Þ

where we stressed again the dependence of such control term only onto the M neuronal

patches upon which the microelectrodes are set in. Let us observe that we added a free parame-

ter γ to take into account the direct action on a small number of nodes, M � N, and the

imperfectly known network structure. In particular γ can be set equal to the ratio of the aver-

age connectivity with the maximum possible number of links, which is a macroscopic parame-

ter that can be known with good precision in advance. In conclusion let us observe that the

local control term is built using a cosine function which is nothing but the coupling term in

the KM (2) delayed by a quarter of its period T. We thus recover the empirical rule proposed

by [22] consisting in the re-injection in the microelectrodes used in the DBS of the measured

signal delayed by one fourth of its period. The operational control of a given neuronal patches

is the following: compute the signal from a given neuron through a microelectrode, delay the

signal by T/4, multiply it by gKR̂k=4, where R̂k is computed using a limited number of signals

from neurons where the microelectrodes are inserted, and re-inject the new signal in the initial

neuron using the same microelectrode. In this way the latter will desynchronise and break

away from the whole system acting as a single giant oscillator.

We however observe that this is not enough to desynchronise the whole system, but only

the controlled nodes where the microelectrode is placed. Because we want to limit the number

of implanted electrodes, this strategy will not be able to sufficiently reduce the symptoms. To

achieve our goal, it is thus necessary to indirectly influence the behaviour of the other neurons.

This can be done be noticing that a microelectrode controlling a given node produces an elec-

tromagnetic field potential [53, 54]. To be more specific, let us denote with Sstim
k the stimulation

signal generated on the position of the k-th neuron by the potential produced by the micro-

electrodes located in all the controlled neuronal patches, mathematically:

Sstim
k ð�1; . . . ; �MÞ ¼ cs

XM

l¼1

e� 2rkl ĥlð�1; . . . ; �MÞ ; ð13Þ

where rkl and cs are respectively the distance of node k from the origin of the electromagnetic

field l, and the strength of the potential which in our case is taken to be cs = 1, finally M� N is

the number of directly controlled nodes.

In conclusion the proposed control strategy will modify the activity of all the N neurons as

follows:

_�k ¼ ok þ KRsinðC � �kÞ þ Sstim
k ð�1; . . . ; �MÞ ; ð14Þ

let us observe that if the k–th neuronal patch has a microelectrode implanted into it, the right-

most term can be rewritten as csĥkð�1; . . . ; �MÞ þ cs

PM
l 6¼k e� 2rkl ĥlð�1; . . . ; �MÞ, namely the

direct control term plus the electromagnetic field generated by the remaining M − 1 microelec-

trodes, while if the k–th neuronal patch doesn’t have any microelectrodes it will feel the result-

ing electromagnetic field. A schematic illustration of the proposed control method is given in

Fig 1.
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In Fig 2, we report the results of a generic simulation for the Kuramoto model; an oscillator

is represented by a circle laying on the unit circle whose angular coordinate is given by the

oscillator phase. The green circle identifies the Kuramoto order parameter, its angular position

being given by C while the distance from the origin, the black segment (clearly visible on the

panel a)), represents R. Let us observe that the longer such segment is, i.e. the larger R, the

stronger the synchronisation of the oscillators is. This can be clearly appreciated on panel a)

where most of the circles are very close to the green one. On the other hand (see panel b)) one

can observe that in the case of non-synchronisation the oscillators are quite uniformly

Fig 1. A schematic description of the control strategy. An array of neuronal patches (white circles) is controlled using M = 2

microelectrodes (red-blue cones). The signals, KRsin(C − ϕi), i = 1, 2, acquired by each microelectrode are passed (red arrows) to the

controller that computes the control signals, Sstim
i ð�1; �2Þ, i = 1, 2, which are in turn (blue arrows) injected back to the neuronal

patches 1 and 2. This determines an electromagnetic field which possesses a spatial extension whose strength decays with the

distance from the injection point (large circles with shaded of blue). In this way nearby neuronal patches are also influenced but in a

weaker fashion. The mechanism is presented as a sequence of steps repeated cyclically (external grey circular arrows), however under

the assumption that the measurement and the computation of the control and the injection are very fast with respect to the natural

time scale of the underlying system, this process can be considered to be instantaneous and thus acting directly on the evolution of

the system without any delay (see Eq (14)).

https://doi.org/10.1371/journal.pcbi.1006296.g001
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distributed on the circle, resulting in R� 0. The network chosen for coupling the 100 oscilla-

tors is a Newman-Watts small-world [55].

The Newman-Watts network is a well known and widely used generating model for com-

plex networks, and exhibits the small-world property for a determined set of parameters; it dif-

fers from the other widely used model of small-world network, i.e. the Watts-Strogatz [49],

mainly because the resulting network is always connected, and thus does not have isolated

nodes. This is extremely important in our case where the neuronal patches by definition form

a connected structure. The model contains a single parameter, p 2 [0, 1], which determines the

density of the network; indeed the network generation starts from a 1D regular lattice with

coordination number 2k, i.e. each node is connected to its first k neighbours counted clockwise

and k counterclockwise, then each couple of unconnected nodes is considered and with proba-

bility p a link is added. In the limit p! 1 many links can be potentially added and the network

can become very dense; in the opposite case the network is sparse and very similar to the 1D

regular lattice backbone.

In Fig 2 we can clearly observe that in the uncontrolled KM the oscillators tend to synchro-

nise for the chosen coupling parameter. They almost all have the same phase (see panel a)), as

K = 0.5 is larger than the critical parameter, here Kc� 0.4. On the other hand, for the same

value of the coupling parameter, but applying the effective control using M = 20 oscillators and

γ/4 = 4.25, the behaviour is completely different, the oscillators are almost uniformly distrib-

uted on the unit circle (see panel b)), corresponding to a desynchronised system.

Let us emphasise that the results reported in Fig 2 are another a posteriori proof of the good-

ness of the control given by Eq (14). Indeed, despite the latter, as well as the theory presented

in [35], has been developed under the assumption of all-to-all coupling, it works perfectly on a

different underlying topology such as the Newman-Watts; in the SM we present a complete

analysis of the role of the parameter p in the desynchronisation problem. Moreover in the SM

we have improved the control strategy and extended it to handle weighted complex networks,

and so make a further step towards empirical topologies.

Fig 2. A snapshot of the Kuramoto dynamics at a generic time. N = 100 oscillators (circles) are drawn on the unitary

circle, their angular position is given by the oscillator phase. The dynamical behaviour presented in panel a)

corresponds to the uncontrolled phase-locked regime for a coupling parameter K = 0.5. In panel b) we report, for the

same coupling parameter, the controlled case obtained acting on M = 20 oscillators and γ/4 = 4.25, resulting in a

desynchronised behaviour. The underlying network is a Newman-Strogatz small-world network [55] with parameter

p = 0.85. The green circle represents the Kuramoto order parameter, its angular position is given by the angle C while

its distance from the origin is R.

https://doi.org/10.1371/journal.pcbi.1006296.g002
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The control strategy we proposed depends on two main parameters: the number of con-

trolled microelectrodes M and the strength of the injected signal γ. Intuitively large values are

associated to an efficient control for both parameters and thus to a reduction/suppression of

the abnormal synchronisation, but with the drawback of being invasive; many microelectrodes

have to be implanted and the strength of the signal could induce undesired collateral effects.

Let us observe that under the assumption of all-to-all coupling and homogeneous interaction

strengths among the oscillators, the results above are indistinguishable and thus the spatial lay-

out of the microelectrodes does not matter. The same result seems to hold in the case of more

complex coupling (see SM), for these reasons, we decided to position the microelectrodes uni-

formly at random among the oscillators.

To understand the impact of M and γ and possibly determine an optimal range of values we

performed a series of numerical simulations. In Fig 3 we report (left panel) the averaged (over

50 independent repetitions) Kuramoto order parameters, hRi, for the controlled system (12) as

a function of the parameters M and γ/4. One can observe that for large enough M ≳ 33, the

control is able to completely suppress the synchronisation, hRi � 0, for all values of γ/4. For

intermediate values, 15 ≲ M ≲ 30, there exists a non trivial relation γr(M) (see right panel)

such that if γ/4� γr(M) then the control can achieve a partial desynchronisation, hRi � r (here

r 2 (0, 1) is a parameter defining the amount of partial desynchronisation present in the sys-

tem). Finally for too small values of M ≲ 10, the proposed strategy is not able to reduce the

synchronisation for any tested values of γ.

To support the claim that our method is minimally invasive, both in terms of the number of

microelectrodes needed and the strength of the signal applied, we compared it with the Pro-

portional-Differential Feedback technique (PDF) [24], whose capability to suppress hypersyn-

chronisation has been already proved. In short, the main idea of the PDF is to split the

population of N oscillators into two groups: a first group made by N1 elements whose signal is

measured in time; and a second group, containing the remaining N2 = N − N1 oscillators, that

will receive the feedback signal which is proportional to the mean-field signal of the N1 first

oscillators, with a proportionality parameter P> 0, and to the derivative of the same signal,

with a proportionality parameter D� 0. We refer the interested reader to [24] and to the SM

for a more detailed presentation of the PDF.

Fig 3. The Kuramoto order parameter as a function of number of microelectrodes and the strength of the control. Left panel: for each

couple (M, γ/4) 2 [5, 50] × [2, 10] we numerically simulate the controlled system (12) involving N = 100 oscillators interconnected using an all-

to-all topology, with coupling parameter K = 0.5 and frequencies ωi drawn from a normal distribution N ð1; 0:1Þ. Each point is the average over

50 independent realisations (different initial conditions but same frequencies). Right panel: a different visualisation of hRi allowing to emphasise

the relation γr(M), r = 0.8 (dashed curve), r = 0.4 (dotted curve) and r = 0.1 (solid curve); let us stress that the latter curves have been draw with a

visual guide scope and have not been analytically determined.

https://doi.org/10.1371/journal.pcbi.1006296.g003
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The PDF, like our method, is thus essentially based on two parameters, the number of con-

trollers N2 and the strength of the feedback signal P + D, a comparison among the two meth-

ods is thus straightforward: N2 = M and P + D = γ/4. We have thus chosen as benchmark the

KM composed by N = 100 oscillators coupled with an unweighted all-to-all network. We have

numerically computed the asymptotic synchronisation state for several values of the parame-

ters, measured with the Kuramoto order parameter R ¼ j
P

j e
i�j j=N, and averaged the over

several independent realisations. The results presented in Fig 4 (see also Fig. D in S1 Text)

should be compared with the ones of Fig 3 (the same colour code has been used to help the

comparison). At first glance both methods exhibit the same behaviour, for a small number of

controllers one needs a large control strength, P + D or γ/4, to remove/reduce the synchronisa-

tion, and below a certain values of N2 or M desynchronisation cannot be achieved. However

looking at the values of P + D versus γ/4 we realise that the former are 5 times larger. Indeed

P + D ranges from 10 to 50 while γ/4 in the interval [2, 10]. This means that for the same num-

ber of controllers our method requires a much weaker signal strength or that for a fixed con-

trol strength we can achieve a desynchronisation level with a smaller number of implanted

microelectrodes.

Fig 4. The role of N2, P and D on the desynchronisation for the PDF-control. The average Kuramoto order

parameter hR(t)h is reported as a function of number of controlled oscillators, N2, and the control strength, P, for

D = 10. For each couple (N2, P) 2 [5, 50] × [2, 40], we numerically simulate the PDF-controlled system on the KM

involving N = 100 oscillators coupled using an all-to-all scheme; each point being the average of 25 independent

realisations. The coupling parameter is K = 0.5 and the natural frequencies are drawn from a normal distribution

N ð1;sÞ, σ = 0.01 and the initial angles uniformly randomly drawn in [0, 2π].

https://doi.org/10.1371/journal.pcbi.1006296.g004
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To mimic the onset of an epileptic seizure in the brain and the action of the proposed con-

trol strategy, we realise the following numerical experiment: using N = 100 neurons connected

using a Newman-Watts small-network, firstly without control (reference case) and then con-

trolled using M = 20 microelectrodes and γ/4 = 4.25. In both cases, during a given period of

time, [0, 5000], we numerically solve the KM with a small control parameter fluctuating in

time to mimic the physiological fluctuations one can observe in neuron; more precisely every

Δt = 100 time units, we draw a value for K from a uniform distribution with support [0.05,

0.15], and thus with average 0.1, and we follow the model dynamics during Δt time units. Let

us observe that the coupling parameter is smaller than the critical one, Kc� 0.4, and thus the

system, for both the reference case and the controlled one remains in a non-synchronised

state. This can be appreciated from Fig 5 where we plot the order parameter R as a function of

time for the uncontrolled (blue) and controlled (red) KM. Observe moreover that both systems

behave very similarly (the curves are very close), hence the control, even if present, is not

changing the dynamics when not needed.

Then we assume that the coupling parameter quickly increases and then fluctuates around

a large value, mimicking a seizure. Mathematically we assume that during the time interval

[5000, 7500] every Δt = 100 time units, we draw a value for K from a uniform distribution

whose average grows linearly in time from 0.1 at t = 5000 to reach 0.5 for t = 7500, while in the

interval [7500, 125000] the coupling parameter is drawn from a uniform distribution with sup-

port [0.55, 0.65], and thus with average 0.6. The results of the numerical simulations are strik-

ing, after a short transient time the uncontrolled system (blue curve) almost fully synchronises,

R is very close to 1, while the controlled one remains in the non-synchronised phase, with R

Fig 5. Onset of an epileptic seizure in the Kuramoto-like neuron population and the outcome of the controlled

system. We represent the order parameter R (blue curve for the KM model and red curve for the controlled version) as

a function of time for N = 100 coupled oscillators linked using a Newman-Watts small-world network [55] with

parameter p = 0.85 and M = 20 microelectrodes for the controlled case (γ/4 = 4.25). To smooth the results, each curve

is the average over 20 independent realisations. We assume K to be small in the interval [0, 5000] fluctuating around

the average value 0.1, during this period of time both systems behave similarly and do not exhibit synchronisation.

Then we assume the coupling parameter starts to increase, t 2 [5000, 7500], to eventually remain quite large, 0.5 on

average, for t 2 [7500, 125000]; we can observe that the KM falls in a synchronised state while the controlled one still

does not exhibit synchronisation. Once the coupling parameter decreases and fluctuates again around a small value,

0.1, both systems recover the same non-synchronised state.

https://doi.org/10.1371/journal.pcbi.1006296.g005
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very close to 0. Of course when the coupling parameter starts to decrease to eventually reach

again a small average value, the original reference system and the controlled one both exhibit

again a non-synchronised behaviour.

Effective desynchronisation of coupled neuronal patches

In the previous section we built an operational control scheme able to effectively reduce the

level of phase-locking in the phases of the neurons described by the Kuramoto model, even for

large values of the coupling parameter. As previously stated, the KM can be derived from the

more general Stuart-Landau model, it is then natural to try to extend the control strategy to act

directly on the Stuart-Landau system, self-consistently defined in terms of the control used for

the Kuramoto model.

Let us consider Eq (1) under the assumption of all-to-all connection with the additional

term Zctrl
k ¼ � i K

4
~RkZ, where Z ¼ K

N

PN
j¼1

zj, namely

_zk ¼ ð1þ iok � jzkj
2
Þzk þ Z þ Zctrl

k : ð15Þ

Assuming the amplitudes to be very close each other, one can easily prove that the phase of

the complex variable zk ¼ rkei�k in Eq (15) evolves according to the controlled Kuramoto sys-

tem, see Eq (7).

As before, we performed simulations to mimic the onset of an epileptic seizure to prove the

effectiveness of the control strategy applied to the Stuart-Landau model. More precisely we

consider a system of N = 100 neurons described by the Stuart-Landau model (1) and its con-

trolled version (15) (M = 20 microelectrodes and γ/4 = 4.25) using again a Newman-Watts net-

work. Initially the coupling parameter fluctuates around a small value and then becomes

larger. In Fig 6 we represent the total (real part of the) signal, ∑k<zk = ∑k ρk cos ϕk, for the orig-

inal Stuart-Landau model (blue curve) and the controlled model (red curve). In the interval

[0,� 90], K is small and neither system synchronises, as can be seen in the insets A (real part

of the signal for 10 generic neurons for the original Stuart-Landau model) and C (real part of

the signal for 10 generic neurons for the controlled Stuart-Landau model), the amplitude of

the total signal is thus quite small. On the other hand for larger times, [� 90,�170] (roughly

corresponding to the shaded central rectangular part of the figure), K assumes larger values

than in the previous period and the Stuart-Landau system enters in a synchronised state (see

inset B where we plot the real part of the signal for the same 10 generic neuronal patches of

inset A) while the controlled system remains in a non-synchronised state (see inset D where

again we plot the real part of the signal for the same 10 generic neurons of inset C). This corre-

sponds to quite a large amplitude for the total signal because now the amplitudes of each single

signal add coherently together.

Discussion

In this paper, we presented a new method to control abnormal synchronisation of neuronal

activity based on the Hamiltonian control formalism applied to the paradigmatic Kuramoto

model. We focus on the phase dynamics which prepares the foundation for most of the basic

functioning of the brain regions. As it is well-known when the coupling strength K exceeds a

critical value, the phases of the electrical currents of the neurons of interest get locked and, due

to a resonance effect, the neural signal amplifies directly affecting the behaviour. However,

sometimes this behaviour is not the desirable and can be associated to neurological diseases, as

in the case of epileptic seizures. Often drugs are not sufficient to control, i.e. reduce, the

strength of the seizures and invasive brain stimulation becomes necessary. We therefore
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propose an efficient and minimally invasive control technique aimed to prevent the phase-

locking and thus applicable to all cases where over-synchronisation is responsible for unde-

sired negative effects.

Starting from a theoretical result [35], we further develop the control term and adapt it

towards potential realistic applications where an abnormal synchronisation state is present,

including complex (weighted) network topologies. The main idea is to effectively control the

interested neuronal patches and brain regions while reducing side effects as much as possible.

In terms of control strategy, this amounts to have as few microelectrodes implanted as possi-

ble, and which signal injection is directly regulated by the magnitude of the order parameter.

The control term then becomes active only when needed. The method is very promising and

the desynchronisation level achieved is very good compared with the standard represented by

the Proportional-Differential Feedback control.

Starting from control scheme developed for the KM we are able to define a control strategy

acting directly on the Stuart-Landau model widely used to describe the interaction of coupled

neuronal patches [42] and numerically show its effectiveness in suppressing the synchronised

state and thus the neuronal disease. The latter result is in our opinion a proof-of-concept that

the presented method could be applied to deal with real cases.

Fig 6. Onset of an epileptic seizure in the Stuart-Landau-like neurons population and the outcome of the controlled system. In the main

plot, we represent the (real part of the) total signal ∑k ρk cos ϕk (blue curve for the SL model and red curve for the controlled one) as a function

of time for N = 100 coupled oscillators coupled by a Newman-Watts small-world network [55] with parameter p = 0.85 and M = 20

microelectrodes for the controlled case and γ/4 = 4.25. We assume K to be small, namely fluctuating around the average value 0.1, in the

interval [0,� 90]; during this period of time both systems behave similarly and do not exhibit synchronisation (see inset A for the SL model

and inset C for the controlled SL model). Then we assume the coupling parameter to start to increase to eventually remain quite large, on

average 0.5, in the time interval [� 90,� 170]; we can observe that the SL synchronises (see inset B) while the controlled version still exhibit a

non-synchronised regime (see inset D). Once the coupling parameter decreases and fluctuates again around a small value, 0.1, both systems

recover the same non-synchronised state (data not shown).

https://doi.org/10.1371/journal.pcbi.1006296.g006
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The control strategy presented in this paper is purely theoretical and need further validation

before envisaging a clinical implementation. First we need to carry further in silico investiga-

tions on more realistic topologies. The human connectome would be used for the large scale

interaction between brain regions, each modelled by smaller network of interacting neural

patches, would allow for an extensive investigation of how the control of neural patches within

brain regions reverberates to large scale brain dynamics. This goes along the current research

lines where brain regions activities are modelled using Stuart-Landau systems, whose bifurca-

tions parameters are used to reproduce the disease we are interested in [42, 56]. The main dif-

ference with respect to the model presented here, based on a 100-nodes networks of coupled

Stuart-Landau systems, is the size and the topology of the network and the possibility to have

negative bifurcation parameters. However, based on our positive results (see Fig 6) and on the

potential robustness of the strategy with respect to changes in the connectivity (see Fig. B in S1

Text), we are confident that this generalisation can be achieved. This first phase will also be

used to precisely benchmark the goodness of the synchronisation controllability versus the

invasiveness of the strategy, namely the number of used microelectrodes (M) and the strength

of the signal (γ) and thus yield results directly comparable with current implementation. Paral-

lel to these in silico experiments, in vitro experiments could be designed to test our control

framework. Indeed Shew and colleagues [57] have performed experiments altering the balance

between inhibition and excitation on cortical slices, and this set up could in principle be used

to directly test the potential of our control framework to restore the inhibition/excitation bal-

ance. Finally, we must point out that our method provides a theoretical framework for empiri-

cally determined control strategies proposed in the literature [22–24], adding credibility to its

applicability in real conditions.

Supporting information

S1 Text. Generalisation, role of topology and effectiveness of the control method. In the

Supplementary Text we have discussed and proposed a generalisation of our control method

to deal with weighted networks and also tested its effectiveness in network models with differ-

ent topology. Furthermore, we have compared our technique with another well-known one

already experimented in Parkinsonian patients, the Proportional-Differential Feedback (PDF)

method. In all the cases our approach results better than the PDF method and is relatively

independent on the network topology.

(PDF)
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