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Abstract

Metagenomic sequencing of patient samples is a very promising method for the diagnosis of

human infections. Sequencing has the ability to capture all the DNA or RNA from pathogenic

organisms in a human sample. However, complete and accurate characterization of the

sequence, including identification of any pathogens, depends on the availability and quality

of genomes for comparison. Thousands of genomes are now available, and as these num-

bers grow, the power of metagenomic sequencing for diagnosis should increase. However,

recent studies have exposed the presence of contamination in published genomes, which

when used for diagnosis increases the risk of falsely identifying the wrong pathogen. To

address this problem, we have developed a bioinformatics system for eliminating contami-

nation as well as low-complexity genomic sequences in the draft genomes of eukaryotic

pathogens. We applied this software to identify and remove human, bacterial, archaeal, and

viral sequences present in a comprehensive database of all sequenced eukaryotic pathogen

genomes. We also removed low-complexity genomic sequences, another source of false

positives. Using this pipeline, we have produced a database of “clean” eukaryotic pathogen

genomes for use with bioinformatics classification and analysis tools. We demonstrate that

when attempting to find eukaryotic pathogens in metagenomic samples, the new database

provides better sensitivity than one using the original genomes while offering a dramatic

reduction in false positives.

Author summary

Infectious diseases afflict a majority of the human population around the world, from the

common cold to the devastating malaria parasite. As technology has evolved, DNA

sequencing emerged as a revolutionary and rapid method for diagnosing human infec-

tions. As part of our efforts to boost the ability of scientists to identify the source of an

infection by sequencing, we present here a computational method for removing erroneous

or misleading sequences from existing DNA databases. When we applied this method to a

database of more than 200 eukaryotic pathogens, we were able to successfully and accu-

rately identify the true pathogens infecting real human samples.
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Introduction

Next-generation sequencing in pathogen discovery/diagnosis

Next-generation sequencing (NGS) over the last few years has emerged as a valuable tool for

human pathogen discovery and diagnosis. In the case of human pathogen detection, tradi-

tional histological, immunological, or molecular techniques are limited and often yield an

incorrect or incomplete diagnosis [1]. As sequencing has grown faster and cheaper, clinicians

have begun to explore the possibility of replacing older methods with NGS, which provides a

fast, specific, and relatively unbiased method of capturing the full spectrum of macro- and

microorganisms in any sample.

A growing number of case studies illustrate the potential for NGS in diagnosis. For example,

in 2013 Loman et al. conducted a retrospective investigation into the 2011 German outbreak of

Shiga-toxigenic Escherichia coli (STEC) [2]. In this study, sequencing led to rapid and accurate

identification of the bacterial infection in fecal specimens of the infected patients. In 2014, Has-

man et al. analyzed 35 urine samples from patients with suspected urinary tract infections, con-

firming cultured bacterial infections using sequencing of isolated and cultured bacteria [3].

They also successfully identified polymicrobial bacterial infections by directly sequencing the

urine samples. Later in 2014, Wilson et al. used next-generation sequencing of cerebrospinal

fluid (CSF) to identify and treat a bacterial Leptospira infection in a 14-year old patient [4]. In

2016, Salzberg et al. tested the possibilities of detecting pathogens by sequencing brain or spinal

cord biopsies from 10 patients presenting with neurologic symptoms with previously unidenti-

fied infections [5]. In that study, NGS identified both bacterial and viral infections in selected

patients, diagnoses that were confirmed by traditional immunologic techniques.

Pathogen discovery bioinformatics pipelines. A critical step in using NGS for diagnosis is

in the bioinformatics analysis of the millions (or billions) of genomic reads that result from a

sequencing experiment. The identification of the sequenced DNA provides the information about

the potential pathogenic organisms causing the infection. Because the source of the sample is

human tissue, all the studies mentioned above first filtered out human DNA, which is uninforma-

tive for pathogen discovery [2–5]. Following this step, the remaining sequencing reads are com-

pared to reference genomic databases, such as RefSeq or the NCBI nt database, using a variety of

alignment and classification tools, including BLAST, Bowtie2, MetaPhlAn, and Kraken [6–9].

Challenges in relying on reference databases

Although databases of sequenced pathogens have grown dramatically larger over the past

decade, the dependence on reference databases still presents challenges when used for diagno-

sis, for at least two reasons: (1) no database contains the full spectrum of all potential human

pathogens, and (2) existing reference databases have been found to contain contamination.

Over the past two decades, microbial genome projects have predominantly focused on bac-

teria and viruses. The GenBank repository [10] contains the majority of genome sequence data

submitted by laboratories around the world. As of January 2018, GenBank contained genome

entries representing over 54,000 bacterial organisms but only 1,791 fungi and 389 protozoa.

The NCBI RefSeq project analyzes and filters the Genbank genome sequences to create a more

curated database, which is also widely used [11]. This database also reflects the focus on bacte-

rial and viral genomes, with more than 37,000 bacterial organisms and more than 7,500 viral
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organisms represented. In contrast, RefSeq contains genomes for only 251 fungi and 82 proto-

zoa (Table 1).

The composition of the reference databases is not representative of the species composition

of the natural world, but rather reflects a focus on human pathogens, other species of interest

to humans, and the challenges of isolating and sequencing DNA from various species [12]. In

many cases, microorganisms are difficult to isolate from their surrounding environments, liv-

ing among thousands of other species in complex ecosystems [13, 14]. Some microorganisms

live in extreme conditions and have gone undiscovered until recently [15]. Other microorgan-

isms are difficult to grow in culture to provide sufficient DNA from which to derive a reference

genome. As a result of these constraints, most early research into microorganisms focused on

a few easily culturable bacteria [16]. However, studies over the last two decades suggest that

culturable bacteria represent only a small fraction of the microorganisms on earth [12, 16–18].

Eukaryotic pathogens comprise an underrepresented group of microorganisms in genomic

databases, although they are critically important for the diagnosis of human infections. This

group includes a diverse group of species that infect multiple areas in the body; e.g., apicom-

plexans such as Plasmodium falciparum, which causes most cases of human malaria [19], and

Toxoplasma gondii [20], which may cause neurological defects. Other examples include multi-

ple fungal species belonging to the Fusarium, Aspergillus, Curvularia, and Candida genera, and

amoebae species belonging to the Acanthamoeba genus, the latter of which causes a majority

of human corneal infections [21, 22]. These are only a small sample of the hundreds of known

eukaryotic pathogens of humans.

EuPathDB is a database representing more than 250 eukaryotic microorganisms [23],

including both known pathogens and other closely related non-infectious eukaryotic species.

Because no eukaryotic pathogen has yet been completely sequenced, this resource comprises

primarily draft genomes at varying degrees of completeness, some of which have had little

curation since their initial sequencing. However, EuPathDB is more comprehensive than the

RefSeq database, containing more than 150 genomes that are absent from the RefSeq protozoa

and fungi databases (see Table 2).

In recent years, multiple studies revealed contamination in the public genome sequences of

many organisms, particularly for draft genomes. In 2011, Longo et al. identified 492 non-pri-

mate public databases from NCBI, UCSC, and Ensembl containing human genome sequences

[24]. A 2014 study found that portions of the complete genome for Neisseria gonorrhoeae
TCDC-NG08107 belonged to the cow and sheep genomes [25]. Another study in 2015 identi-

fied over 18,000 microbial isolate genome sequences that were contaminated with PhiX174, a

bacteriophage used as a control in Illumina sequencing runs [26]. 10% of those 18,000 genomes

Table 1. Organisms in Genbank and RefSeq as of January 2018. Total genome counts are based on summaries found at ftp://ftp.ncbi.nlm.nih.gov/genomes/refseq/ and

ftp://ftp.ncbi.nlm.nih.gov/genomes/genbank/.

Draft and Complete genomes Complete genomes

Genbank RefSeq Genbank RefSeq

Bacterial 54,153 37,399 5,372 5,121

Viral 10,412 7,509 10,339 7,484

Archaea 1,861 533 272 235

Fungi 1,791 251 26 8

Protozoa 389 82 3 2

Vertebrates 376 238 71a 55a

Plants 320 102 3 3

a No complete vertebrate genome exists. The number shown here is the number of organisms with chromosome-level assemblies.

https://doi.org/10.1371/journal.pcbi.1006277.t001
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were published in the literature. In 2016, Kryukov et al. identified 154 non-human genome

assemblies containing human sequence fragments that were at least 100bp long [27]. As one

example, they discovered that more than 330,000 bp in the reference genome of Plasmodium
gaboni, a relative of Plasmodium falciparum, appears to be contaminating human sequence.

Contamination and incompleteness in reference databases causes bioinformatics analysis of

sequencing reads to yield both false positive and false negative results, thereby decreasing the

overall reliability of NGS in pathogen diagnostics. False positives, where the wrong pathogen is

identified, might in turn lead to inaccurate treatments, with the potential to harm rather than

help patients.

In this study, we present a new method for eliminating genomic contamination that can be

used on both complete and draft reference genomes. We test our method on a large set of

eukaryotic pathogen genomes, yielding a cleaned and filtered eukaryotic pathogen database

ready for use in bioinformatics pipelines, including those intended for NGS diagnostics, with

decreased false positive and false negative rates.

Methods

The eukaryotic pathogen genomes underwent a multi-step cleaning process to remove both

contaminating and non-informative sequences (see Fig 1). Each genome was first split into

100bp overlapping pseudo-reads, with each pseudo-read beginning every 50bp along the

genome. The pseudo-reads were then compared to three unique databases, using the Kraken

[7] and Bowtie2 [8] classification and alignment programs.

Kraken labels reads only if they contain an exact 31 base-pair (31-mer) match to any

31-mer in the database sequences [7]. For this process, pseudo-reads were classified with Kra-

ken against two unique Kraken databases. The first Kraken database contains 15,000 genomic

sequences from the human, human CHM1, mouse, bacteria, archaea, viral, and plant RefSeq

databases as of November 30th, 2017. We also included contaminating sequences such as the

UniVec database, EmVec database, and phiX174 vector in the first Kraken database. The sec-

ond Kraken database contains all complete and chromosomal-level assemblies of non-human

and non-mouse vertebrate sequences (representing 56 vertebrate species). Kraken requires

that the selected database is first loaded into RAM prior to classification. We used two data-

bases in order to reduce RAM usage at a single time, allowing sequential classification of the

pseudo-reads to each database. S1 Table lists the accession numbers, taxonomy IDs, and

organisms for all genomic sequences included in both Kraken databases used for masking.

Bowtie2 aligns sequencing reads against any reference sequence, allowing for gaps or mis-

matches [8]. We created a bowtie2 index of GRCh38.p11 and aligned the pseudo-reads against

it. Note that even though we include GRCh38.p11 in the Kraken database, which enables Kra-

ken to find human reads, Bowtie2’s more sensitive alignment algorithm can align some

sequences that Kraken will miss.

Table 2. EuPathDB genome representation in RefSeq. This table shows the number of genomes from the eukaryotic

pathogen database that also exist in the Genbank and/or RefSeq databases along with the breakdown of their assembly

status within those databases.

Assembly Status RefSeq

Complete Genome 3

Chromosome 41

Scaffold 46

Contig 5

Not Represented 150
Total 245

https://doi.org/10.1371/journal.pcbi.1006277.t002

Improving pathogen identification for NGS Diagnostics

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006277 June 25, 2018 4 / 13

https://doi.org/10.1371/journal.pcbi.1006277.t002
https://doi.org/10.1371/journal.pcbi.1006277


Any pseudo-read that was classified in these steps represents either a contaminating

sequence in the pathogen genome or a low-complexity sequence that matches a distant species

only by chance. In either case, these sequences could lead to false positive identifications if

they are used for metagenomics analysis. Therefore, we masked any portion of a database

genome that corresponded to pseudo-read that was classified or aligned in the previous steps.

(Masking can be done in a variety of ways; we simply replaced the sequence with Ns to keep

the overall genome length the same.) If, after this initial masking step, we created non-masked

sequences that were<100 bp in length, we masked those sequences as well. We then used

Dustmasker [28] to mask additional low-complexity sequences (Fig 1).

Results and discussion

We tested our method for eliminating contamination on the draft genomes contained in

EuPathDB release 28 [23], which contains 245 genomes categorized into the following sub-

databases: AmoebaDB (29 genomes), CryptoDB (11), FungiDB (87), GiardiaDB (6), Micro-

sporidiaDB (25), PiroplasmaDB (8), PlasmoDB (9), ToxoDB (30), TrichDB (1), and Tri-

TrypDB (39). S2 Table lists all genomes included in EuPathDB, detailing each genome’s

filename, sub-database category, genus, species, and full scientific name. Fig 2 shows how

much of each of the 245 genomes was masked in each step of the cleaning procedure and the

final lengths of the cleaned pathogen genomes. Full details of the amount of masked sequence

for all genomes are listed in S2 Table.

Fig 1. Masking procedure. A) The original genome is split into 100bp overlapping pseudo-reads. B) The pseudo-reads

are then classified using Kraken first against the common contaminating vector sequences and the plant, viral,

bacterial, archaeal, human, and mouse RefSeq database. The pseudo-reads are also classified using Kraken against non-

human and non-mouse vertebrate RefSeq genomes. C) Bowtie2 is then used to align all pseudo-reads against the

human genome. D) All pseudo-reads that were classified in the previous steps are masked out of the original genomes.

Any remaining non-masked sequence with less than 100p is also masked. E) Finally, Dustmasker is used to mask

additional low-complexity sequences.

https://doi.org/10.1371/journal.pcbi.1006277.g001
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Genome lengths in EuPathDB ranged from 2Mbp to 186Mbp prior to our cleaning proce-

dure. Post-cleaning genome lengths ranged from 1.7Mbp to 182Mbp, with an average of 11%

of each genome identified as contaminating or low-complexity sequences. As Fig 2 illustrates,

a few genomes were outliers with over 50% of the genome being masked, but most genomes

lost <10% of their length through this process.

In the first masking step, pseudo-reads across all EuPathDB genomes are classified against

two Kraken databases containing bacterial, archaeal, viral, human, mouse, vertebrate, and con-

taminating vector genomes (Fig 1). These classification counts are listed in S3 Table. Reads

classified as vertebrates are further broken down into sub-classifications such as fish or bird

species. Fig 3 shows the breakdown of these classifications for the 20 pathogen genomes with

the largest numbers of classified pseudo-reads. Fig 4 shows a similar breakdown focusing spe-

cifically on the 20 genomes with the most pseudo-reads labelled as mouse or human.

Most genome masking occurred after the first Kraken screen against the database of bacte-

rial, archaeal, viral, human, mouse, and vector genomes. As a result of this step, we masked on

average ~10% of each of the EuPathDB genomes. After classifying the remaining pseudo-reads

against the vertebrate database, we masked a much smaller amount of sequence, with only

0.1% of each genome matching vertebrate sequences in this step.

The most contaminated eukaryotic pathogen genomes are the three Plasmodium yoelii
genomes (strains 17XNL, YM, and 17X), with approximately 60% of the genomes identified as

human/bacterial/viral/archaeal (Figs 3 and 4). The primary sources of contamination in these

three genomes wereMethylococcus capsulatus (16,000 pseudo-reads) and the mouse genome

Fig 2. Masking results. Fig 2C provides an overview of sequence lengths for each eukaryotic pathogen genome

masked in each step and the sequence lengths of the final cleaned genomes. As low-complexity sequences and

vertebrate masked sequences are much smaller compared to the final genome length or human/bacterial/viral/plant/

vector sequences, these were additionally plotted in Fig 2A and 2B for each eukaryotic pathogen genome. Low-

complexity sequences were masked as a final step as well. Masked sequence lengths are also presented as percentages of

the original genome length to show the percent of each genome remaining and the percent masked in each step (Fig

2D). Exact numbers are listed in S2 Table.

https://doi.org/10.1371/journal.pcbi.1006277.g002
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(12,000 pseudo-reads). The genome for Plasmodium vivax Sal-1, which causes malaria in

humans, contained the greatest amount of human contamination, with more than 4,000

pseudo-reads classified asHomo sapiens. Entamoeba histolytica Rahman, a human intestinal

parasite, is also notably contaminated, with nearly 50% of its genome identified as either

human or bacteria (Figs 3 and 4)

Other eukaryotic pathogens that underwent significant masking due to contamination

include Plasmodium gallinaceum 8A (62% masked), Plasmodium falciparum IT (57% masked),

Plasmodium reichenowi CDC (55% masked). Each of these pathogens contained significant

contamination likely due to host DNA, as the masked pseudo-reads were identified as match-

ing their original host. For example, Plasmodium gallinaceum causes malaria in poultry and

11,700 pseudo-reads were identified as chicken DNA (see S3 Table) [29]. Although

Fig 3. Pseudo-read Kraken classifications. The above plot shows the 20 eukaryotic pathogen genomes with the

greatest numbers of pseudo-reads that Kraken identified as matching foreign species when searching against database

containing bacteria, viruses, archaea, and a limited set of vertebrate genomes. Vertebrate classifications are grouped by

common categories, such as fish, birds, rodents, or primates. Primate and rodent numbers do not include human and

mouse, which are counted and shown separately. S3 Table contains pseudo-read classifications for all eukaryotic

pathogen genomes.

https://doi.org/10.1371/journal.pcbi.1006277.g003

Fig 4. Human/Mouse classified pseudo-reads. This plot shows the 20 genomes with the most number of pseudo-

reads classified as either human or mouse. Perhaps not surprisingly, the mouse strain of malaria, P. yoelii, contains a

substantial number of contaminant reads from mouse. S3 Table contains pseudo-read human and mouse

classifications for all eukaryotic pathogen genomes.

https://doi.org/10.1371/journal.pcbi.1006277.g004
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Plasmodium falciparum is a human malarial parasite, it originated from the gorilla malarial

parasite [30]. More than 450 pseudo-reads for Plasmodium falciparum were identified as

gorilla. Similarly, Plasmodium reichenowi is a malarial parasite in chimpanzees and was one of

only two Plasmodium genomes to have chimpanzee pseudo-reads [30]. Interestingly, Edhazar-
dia aedis had 55% of its genome length masked, but had very few classified pseudo-reads.

Instead, the majority of its non-masked sequences to begin with were stretches of DNA less

than 100bp. Over 358,000 individual sequences were very small contigs, shorter than 100bp

which are masked due to length.

Testing the pathogen database against a set of human cornea samples

To measure the effectiveness of our database cleaning method for NGS diagnosis of human

infections, we evaluated a set of 20 human cornea samples recently described by Li et. al 2018

[31] against our EuPathDB-clean. The 20 corneal samples include 4 bacterial infections, 9

eukaryotic pathogen infections, 3 herpes virus infections, and 4 controls. Details about these

samples and the true positive pathogens in each sample are listed in Table 3, with additional

clinical information listed in S4 Table.

For testing, we used 4 Kraken databases: the original EuPathDB, EuPathDB-clean, RefSeq

EuPathDB, and a general Microbe Database. The RefSeq EuPathDB contains all protozoal and

fungal genomes from the RefSeq database as of December 2017. The Microbe database con-

tains all RefSeq complete bacterial, archaeal, and viral genomes as of December 2017, and it

also includes EuPathDB-clean. Genomes contained in each of the above databases are listed in

S5 Table.

We first used Bowtie2 to align all corneal sample reads against the human genome refer-

ence, GRCh38.p7, and extracted any unaligned reads for each sample (Table 3). The non-

Table 3. Cornea sample true positives. This table summarizes the pathogens present in each of the corneal samples. Metagenomic shotgun sequencing was performed

on all samples as described in [31] generating from 20–46 million pairs of 75-bp reads per sample. Sequencing was done in two batches of 10 samples each, where the 10

samples were multiplexed.

Case # True Positives Total 75-bp Paired Reads Non-Human Aligned Reads

Case 1 Staphyloccoccus aureus 35,947,243 8,166,922

Case 2 Streptococcus agalactiae 42,281,022 2,354,821

Case 3 Mycobacterium 32,321,057 1,440,343

Case 4 Mycobacterium chelonae 31,259,428 2,927,088

Case 5 Candida parapsilosis 22,572,576 3,615,840

Case 6 Fusarium solani 43,187,311 3,048,256

Case 7 Candida albicans/dubliensis 45,410,366 1,993,853

Case 8 Curvularia 42,359,755 3,181,901

Case 9 Aspergillus flavus 46,033,752 2,875,199

Case 10 Anncaliia algerae 20,060,037 2,756,229

Case 11 Acanthamoeba 43,742,352 2,880,293

Case 12 Acanthamoeba 46,648,496 3,602,638

Case 13 Acanthamoeba 44,554,101 3,472,961

Case 14 Herpes simplex type 1 22,460,961 1,470,059

Case 15 Herpes simplex type 1 25,512,845 1,411,580

Case 16 Herpes simplex type 1 23,749,398 3,874,558

Case 17 None 43,643,461 2,637,693

Case 18 None 45,824,224 2,341,716

Case 19 None 25,623,975 1,071,939

Case 20 None 25,202,226 1,823,615

https://doi.org/10.1371/journal.pcbi.1006277.t003
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human reads from each sample were then classified against each database using Kraken. S6

Table lists the read counts for each species and genus identified in the corneal samples when

classified against each database. S7 Table details the reads per megabase for the same species

classifications identified in the corneal samples for each database.

Fig 5 summarizes the results when using each of the four databases to identify the patho-

gens in these samples. The classifications differed greatly depending on the database used,

demonstrating the importance of database selection prior to the computational analysis of any

NGS sample. However, in the case of diagnostics, the contamination in the raw (unprocessed)

genome databases creates false positive signals that overwhelm the true pathogen of the sam-

ples. Classification with the RefSeq EuPathDB yields a similar distribution of microbes for

every corneal sample (Fig 5B). The resulting read counts suggest that each cornea has a signifi-

cant presence ofMagnaporthe oryzae, a pathogen that infects rice plants, and Toxoplasma gon-
dii [32]. Similarly, classification against the original EuPathDB presents Toxoplasma gondii as

one of the primary infections in all but one of the corneal samples (Fig 5A). None of the cornea

samples had infections by eitherMagnaporthe oryzae or Toxoplasma gondii [31],thus both of

these classifications are false positives.

The contamination removal process masked on average 5% of each Toxoplasma gondii
genome. For example, the initial Toxoplasma gondii ME49 genome is ~60 Mb long and the

final masked genome is 57 Mb. Fortunately, removing this relatively small proportion of the

genome produced a cleaned database with a far better classification profile for the corneal sam-

ples. As shown in Fig 5C, the correct eukaryotic infections for Cases 7, 9, 10, 11, and 12 are

immediately evident with the new database. Instead of thousands of reads per megabase identi-

fied as Toxoplasma gondii, the new database shows very high (and correct) reads per megabase

counts for Anncaliia algerae in Case 10, Candida albicans in Case 7, Aspergillus in Case 9, and

Acanthamoeba in Cases 11 and 12, all true positive infections. With EuPathDB-clean, the max-

imum number of reads per megabase labeled as Toxoplasma gondii in any single sample was

0.35.

Fig 5. Top 10 species identified in corneal samples per database. The non-human reads from the 20 corneal samples

were classified against four different Kraken databases: the original EuPathDB (A), EuPathDB-clean (B), RefSeq

EuPathDB (C), and the final MicrobeDB (D). The plot above shows the 10 species with the most classified reads per

megabase in a single corneal sample.

https://doi.org/10.1371/journal.pcbi.1006277.g005

Improving pathogen identification for NGS Diagnostics

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006277 June 25, 2018 9 / 13

https://doi.org/10.1371/journal.pcbi.1006277.g005
https://doi.org/10.1371/journal.pcbi.1006277


After combining EuPathDB-clean with the RefSeq prokaryotes to create MicrobeDB (Fig

5D), we still found a strong signal for the eukaryotic pathogens in their corresponding true

positive samples; e.g., the signal from Anncaliia algerae in Case 10 in Fig 5D. We note that

other microbial contamination appears evident when using this database: in particular,

Kocuria rhizophila appears in every sample, often at high levels. This does not appear to be a

database error, as the K. rhizophila genome shows no sign of contamination. Instead, the reads

from K. rhizophila are likely a consequence of physical contamination of the samples at some

point in the process.

Another way to look at the data is to examine the reads per megabase counts for the true

positive species only, as shown in Fig 6. Here we show the number of reads per megabase in

each sample that were assigned to the 5 eukaryotic pathogens known to be present in at least

one of the samples. With the original EuPathDB, the non-infected samples, alongside the truly

infected samples, each appear to have numerous reads classified as both Acanthamoeba (Fig

6A) and Aspergillus flavus (Fig 6B) The RefSeq EuPathDB performed much better than the

original EuPathDB, identifying the correct pathogen in the infected cases for Fusarium, Can-

dida, and Acanthamoeba. However, RefSeq EuPathDB missed the Anncaliia algerae infection

because that genome is missing from that database. Although RefSeq EuPathDB and

EuPathDB both had a strong signal for Aspergillus flavus in the infected Case 9, the databases

also identified hundreds to thousands of Aspergillus flavus reads in all of the non-infected sam-

ples. By comparison, EuPathDB-clean identified less than 10 Aspergillus flavus reads in all

non-Aspergillus-infected samples while maintaining a strong signal for Aspergillus flavus in

Case 9. MicrobeDB had near identical results to EuPathDB-clean for the true positive species/

genera, identifying the infections in the infected samples.

Fig 6. Number of classified reads per megabase for five true species/genera compared among four databases across all corneal

samples. The above plot compares the reads per megabase for the true pathogens in the infected samples and also shows the reads per

megabase from those pathogens in the remaining corneal samples. The five true species/genera are Acanthamoeba (A), Aspergillus flavus
(B), Anncaliia algerae (C), Candida albicans/dubliensis (D), and Fusarium (E) S7 Table lists classified reads per megabase for each

species for each database.

https://doi.org/10.1371/journal.pcbi.1006277.g006
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Conclusion

In principle, next-generation sequencing can identify all microbial organisms within any sam-

ple, making it a potentially a revolutionary method for the diagnosis of human infections.

However, this method relies heavily on the computational analysis that compares sequencing

reads against reference databases, such as RefSeq and GenBank. Although new genomes are

being sequenced daily, the reference databases remain incomplete and, because most new

genomes are in draft form, inaccurate. Recent studies have identified contamination in many

published genomes, hindering our ability to use them for accurate diagnosis.

We therefore developed a comprehensive contamination removal process, identifying

human, vertebrate, bacterial, viral, archaeal, and vector contamination in 245 eukaryotic path-

ogen draft genomes. By removing contamination and low-complexity sequences, we have cre-

ated a much cleaner database that minimizes false positives and provides better identification

of true positive pathogens in NGS diagnostic samples.
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