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Abstract

Artificial Intelligence is exponentially increasing its impact on healthcare. As deep learning is

mastering computer vision tasks, its application to digital pathology is natural, with the prom-

ise of aiding in routine reporting and standardizing results across trials. Deep learning fea-

tures inferred from digital pathology scans can improve validity and robustness of current

clinico-pathological features, up to identifying novel histological patterns, e.g., from tumor

infiltrating lymphocytes. In this study, we examine the issue of evaluating accuracy of predic-

tive models from deep learning features in digital pathology, as an hallmark of reproducibil-

ity. We introduce the DAPPER framework for validation based on a rigorous Data Analysis

Plan derived from the FDA’s MAQC project, designed to analyze causes of variability in pre-

dictive biomarkers. We apply the framework on models that identify tissue of origin on 787

Whole Slide Images from the Genotype-Tissue Expression (GTEx) project. We test three

different deep learning architectures (VGG, ResNet, Inception) as feature extractors and

three classifiers (a fully connected multilayer, Support Vector Machine and Random For-

ests) and work with four datasets (5, 10, 20 or 30 classes), for a total of 53, 000 tiles at 512 ×
512 resolution. We analyze accuracy and feature stability of the machine learning classifi-

ers, also demonstrating the need for diagnostic tests (e.g., random labels) to identify selec-

tion bias and risks for reproducibility. Further, we use the deep features from the VGG

model from GTEx on the KIMIA24 dataset for identification of slide of origin (24 classes) to

train a classifier on 1, 060 annotated tiles and validated on 265 unseen ones. The DAPPER

software, including its deep learning pipeline and the Histological Imaging—Newsy Tiles

(HINT) benchmark dataset derived from GTEx, is released as a basis for standardization

and validation initiatives in AI for digital pathology.

Author summary

In this study, we examine the issue of evaluating accuracy of predictive models from deep

learning features in digital pathology, as an hallmark of reproducibility. It is indeed a top

priority that reproducibility-by-design gets adopted as standard practice in building and
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validating AI methods in the healthcare domain. Here we introduce DAPPER, a first

framework to evaluate deep features and classifiers in digital pathology, based on a rigor-

ous data analysis plan originally developed in the FDA’s MAQC initiative for predictive

biomarkers from massive omics data. We apply DAPPER on models trained to identify

tissue of origin from the HINT benchmark dataset of 53, 000 tiles from 787 Whole Slide

Images in the Genotype-Tissue Expression (GTEx) project, available at the web address

https://gtexportal.org. We analyze accuracy and feature stability of different deep learning

architectures (VGG, ResNet and Inception) as feature extractors and classifiers (a fully

connected multilayer, Support Vector Machine and Random Forests) on up to 20 classes.

Further, we use the deep features from the VGG model (trained on HINT) on the 1, 300

annotated tiles of the KIMIA24 dataset for identification of slide of origin (24 classes).

The DAPPER software is available together with the scripts to generate the HINT bench-

mark dataset.

Introduction

Artificial Intelligence (AI) methods for health data hold great promise but still have to deal

with disease complexity: patient cohorts are most frequently an heterogeneous group of sub-

types diverse for disease trajectories, with highly variable characteristics in terms of phenotypes

(e.g. bioimages in radiology or pathology), response to therapy, clinical course, thus a challenge

for machine-learning based prognoses. Nevertheless, the increased availability of massive

annotated medical data from health systems and a rapid progress of machine learning frame-

works has led to high expectations about the impact of AI on challenging biomedical problems

[1]. In particular, Deep Learning (DL) is now surpassing pattern recognition methods in the

most complex medical images challenges such as those proposed by the Medical Image Com-

puting & Computer Assisted Intervention conferences (MICCAI, https://www.miccai2018.

org/en/WORKSHOP---CHALLENGE---TUTORIAL.html), and it is comparable to expert

accuracy in the diagnosis of skin lesions [2], classification of colon polyps [3, 4], ophthalmol-

ogy [5], radiomics [6] and other areas [7]. However, the reliable comparison of DL with other

baseline ML models and human experts is not a diffuse practice yet [8], and also the reproduc-

ibility and interpretation of the challenges’ outcome have been recently criticized [9, 10].

DL refers to a class of machine learning methods that model high-level abstractions in data

through the use of modular architectures, typically composed by multiple nonlinear transfor-

mations estimated by training procedures. Notably, deep learning architectures based on

Convolutional Neural Networks (CNNs) hold state-of-the-art accuracy in numerous image

classification tasks without prior feature selection. Further, intermediate steps in the pipeline

of transformations implemented by CNNs or other deep learning architectures can provide

a mapping (embedding) from the original feature space into a deep feature space. Of interest

for medical diagnosis, deep features can be used for interpretation of the model and can be

directly employed as inputs to other machine learning models.

Deep learning methods have been applied to analysis of histological images for diagnosis

and prognosis. Mobadersany and colleagues [11] combine in the Survival Convolutional Neu-

ral Network (SCNN) architecture a CNN with traditional survival models to learn survival-

related patterns from histology images, predicting overall survival of patients diagnosed with

gliomas. Predictive accuracy of SCNN is comparable with manual histologic grading by neuro-

pathologists. Further, by incorporation of genomic variables for gliomas in the model, the

extended model significantly outperforms the WHO paradigm based on genomic subtype and
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histologic grading. Similarly, deep learning models have been successfully applied to histology

for colorectal cancer [12], gastric cancer [13], breast cancer [14] and lung cancer [15, 16].

As human assessments of histology are subjective and hard to repeat, computational analy-

sis of histology imaging within the information environment generated from a digital slide

(digital pathology) and advances in scanning microscopes have already allowed pathologists to

gain a much more effective diagnosis capability and dramatically reduce time for information

sharing. Starting from the principle that underlying differences in the molecular expressions of

the disease may manifest as tissue architecture and nuclear morphological alterations [17], it is

clear that automatic evaluation of disease aggressiveness level and patient subtyping has a key

role aiding therapy in cancer and other diseases. Digital pathology is in particular a key tool

for the immunotherapy approach, which stands on the characterization of tumor-infiltrating

lymphocytes (TILs) [18]. Indeed, quantitative analysis of the immune microenvironment by

histology is crucial for personalized treatment of cancer [19, 20], with high clinical utility of

TILs assessment for risk prediction models, adjuvant, and neoadjuvant chemotherapy deci-

sions, and for developing the potential of immunotherapy [21, 22]. Digital pathology is thus a

natural application domain for machine learning, with the promise of accelerating routine

reporting and standardizing results across trials. Notably, deep learning features learned from

digital pathology scans can improve validity and robustness of current clinico-pathological fea-

tures, up to identifying novel histological patterns, e.g. from TILs.

On the technical side, usually deep learning models for digital pathology are built upon

imaging architectures originally aimed at tasks in other domains and trained on non-medical

datasets. This is a foundational approach in machine learning, known as transfer learning.

Given domain data and a network pretrained to classify on huge generic databases (e.g. Ima-

geNet, with over 14 million items and 20 thousand categories [23]), there are three basic

options for transfer learning, i.e. to adapt the classifier to the new domain: a) train a new

machine learning model on the features preprocessed by the pretrained network from the

domain data; b) retrain only the deeper final layers (the domain layers) of the pretrained net-

work; c) retrain the whole network starting from the pretrained state. A consensus about the

best strategy to use for medical images is still missing [24, 25].

In this study we aim to address the issue of reproducibility and validation of machine

learning models for digital pathology. Reproducibility is a paramount concern in biomarker

research [26], and in science in general [27], with scientific communities, institutions, indus-

try, and publishers struggling to foster adoption of best practices, with initiatives ranging from

enhancing reproducibility of high-throughput technologies [28] to improving the overall reuse

of scholarly data and analytics solutions (e.g. the FAIR Data Principles [29]). As an example,

the MAQC initiatives [30, 31], led by the US FDA, investigate best practices and causes of vari-

ability in the development of biomarkers and predictive classifiers from massive omics data

(e.g. microarrays, RNA-Seq or DNA-Seq data) for precision medicine. The MAQC projects

adopt a Data Analysis Plan (DAP) that forces bioinformatics teams to submit classification

models, top features ranked for importance and performance estimates all built on training

data only, before testing on unseen external validation data. The DAP approach is methodo-

logically more robust than a simple cross validation (CV) [30] as the internal CV and model

selection phase is replicated multiple times (e.g., 10 times) to smooth the impact of a single

training/test split; the performance metrics is thus evaluated on a much larger statistics. Also,

features are analyzed and ranked multiple times, averaging the impact of a small round of par-

titions. The ranked feature lists are fused in a single ranked list using the Borda method [32]

and the bootstrap method is applied to compute the confidence intervals. This approach helps

mitigating the risk of selection bias in complex learning pipelines [33], where the bias can stem

in one of many preprocessing steps as well as in the downstream machine learning model.
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Further, it clarifies that increasing task difficulty is often linked to a decrease not only in accu-

racy measures but also of stability of the biomarker lists [32], i.e. the consistency in the selec-

tion of the top discriminating features across all repeated cross validation runs.

Although openness in sharing algorithms and benchmark data is a solid attitude of the

machine learning community, the reliable estimation on a given training dataset of predictive

accuracy and stability of deep learning models (in terms of performance range as a function of

variations of training data) and the stability of deep features used by external models (as the

limited difference of top ranking variables selected by different models) is still a gray area. The

underlying risk is that of overfitting the training data, or worse to overfit the validation data if

the labels are visible, which is typical when datasets are fully released at the end of a data sci-

ence challenge on medical image data. As the number of DL-based studies in digital pathology

is exponentially growing, we suggest that the progress of this field needs environments (e.g.,

DAPs) to prevent such pitfalls, especially if features distilled by the network are used as radio-

mics biomarkers to inform medical decision. Further, given an appropriate DAP, alternative

model choices should be benchmarked on publicly available datasets, as usual in the general

computer vision domain (e.g., ImageNet [23] or COCO [34]).

This study provides three main practical contributions to controlling for algorithmic bias

and improving reproducibility of machine learning algorithms for digital pathology:

1. A Data Analysis Plan (DAP) specialized for digital pathology, tuned on the predictive evalu-

ation of deep features, extracted by a network and used by alternative classification heads.

To the best of our knowledge, this is the first study where a robust model validation method

(the DAP) is applied in combination with the deep learning approach. We highlight that

the approach can be adopted in other medical/biology domains in which Artificial Intelli-

gence is rapidly emerging, e.g., in the analysis of radiological images.

2. A benchmark dataset (HINT) of 53, 727 tiles of histological images from 30 tissue types,

derived from GTEx [35] for the recognition of tissue of origin of up to 30 classes. The

HINT dataset can be used by other researchers to pretrain the weights of DL architectures

that shall be applied on digital pathology tasks (e.g., detection of TILs) thus accelerating the

training of application-specific models. In the past 5 years, having a shared image dataset (e.
g., the ImageNet) allowed the development of a number of deep learning models for general

image classification (e.g. VGG, ResNet, AlexNet). Such pretrained networks have then been

effectively applied on a variety of different tasks. With the HINT dataset we aim at favour-

ing a similar boost on digital pathology.

3. An end-to-end machine learning framework (DAPPER) as a baseline environment for pre-

dictive models in digital pathology, where end-to-end indicates that the DAPPER frame-

work is directly applied to the digital pathology images, with the deep learning component

producing features for the machine learning head, without an external procedure (e.g., a

handcrafted feature extraction) to preprocess the features. To the best of our knowledge,

this is the first example of a DL approach for the classification of up to 30 different tissues,

all with the same staining, which represents, per se, a valuable contribution to the digital

pathology community.

We first apply DAPPER to a set of classification experiments on 787 Whole Slide Images

(WSIs) from GTEx. The framework (see Fig 1) is composed by (A) a preprocessing component

to derive patches from WSIs; (B) a 3-step machine learning pipeline with a data augmentation

preprocessor, a backend deep learning model, and an adapter extracting the deep features; (C)

a downstream machine learning/deep learning head, i.e. the task specific predictor. In our

experiments, we evaluate the accuracy and the feature stability in a multiclass setting for the

Evaluating reproducibility of AI algorithms in digital pathology with DAPPER
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Fig 1. The DAPPER environment. Components: A) The WSI preprocessing pipeline; B) the deep learning backend to extract

deep features; C) the Data Analysis Plan (DAP) for the machine learning models; and D) the UMAP module and other modules

for unsupervised analysis.

https://doi.org/10.1371/journal.pcbi.1006269.g001
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combination of three different deep learning architectures, namely VGG, ResNet and Incep-

tion, used as feature extractors, and three classifiers, a fully connected multilayer network, Sup-

port Vector Machine (SVM) [36] and Random Forest (RF) [37]. This component is endowed

with the DAP, i.e., a 10 × 5 CV (5-fold cross validation iterated 10 times). The 50 internal vali-

dation sets are used to estimate a vector of metrics (with confidence intervals) that are then

used for model selection. In the fourth component (D) we finally provide an unsupervised

data analysis based on the UMAP projection method, and methods for feature exploration.

The DAPPER software is available together with the Python scripts and the instructions to

generate the HINT benchmark dataset as a collection of Jupyter notebooks at gitlab.fbk.
eu/mpba-histology/dapper, released under the GNU General Public License v3.

Notably, the DAP estimates are provided in this paper only for the downstream machine learn-

ing/deep learning head in component (C); whenever computational resources are available,

the DAP can be expanded also to component (B). Here we kept as a separate problem the

model selection exercise on the backend deep learning architecture in order to clarify the

change of perspective with respect to optimization of machine learning models in the usual

training-validation setting.

As a second experiment, in order to study the DAPPER framework in a transfer learning

condition, we use the deep features from the VGG model trained on a subset of HINT on the

1, 300 annotated tiles of the KIMIA Path24 dataset [38] to identify in this case the slide of ori-

gin (24 classes).

Previous work on classifying WSIs by means of neural networks was introduced by

[38, 39], also with the purpose of distributing the two original datasets KIMIA Path960

(KIMIA960) and KIMIA Path24 (KIMIA24). KIMIA24 consists of 24 WSIs chosen on purely

visual distinctions. Babaie and coauthors [38] manually selected a total of 1, 325 binary patches

with 40% overlap. On this dataset, in addition to two models based on Local Binary Patterns

(LBP) and Bag-of-Visual-Words (BoVW), they applied two shallow CNNs, achieving at most

41.8% accuracy. On the other hand, KIMIA960 contains 960 histopathological images belong-

ing to 20 different WSIs that, again on visual clues, were used to represent different texture/

pattern/staining types. The very same experimental settings as the one for KIMIA24, i.e., LBP,

BoVW and CNN, has been replicated on this dataset by Kumar and coauthors [39]. In particu-

lar, the authors applied AlexNet or VGG16, both pretrained on ImageNet, to extract deep

features; instead of a classifier, accuracy was established by computing similarity distances

between the 4, 096 features extracted. Also, Kieffer and coauthors in [25] explored the use of

deep features from several pretrained structures on KIMIA24, controlling for the impact of

transfer learning and finding an advantage of pretrained networks against training from

scratch. Conversely, Alhindi and coworkers [40] analyzed KIMIA960 for slide of origin (20

slides preselected by visual inspection), and similarly to our study they compared alternative

classifiers as well as feature extraction models in a 3-fold CV setup. Considering the impor-

tance of clinical validation of predictive results [8], we finally compared the performance of

the DAPPER framework with an expert pathologist. DAPPER outperforms the pathologist in

classifying tissues at tile level, while at WSI level performance are similar.

DAPPER represents an advancement over previous studies, due to the DAP structure and

its application to the large HINT dataset free of any visual preselection.

Materials and methods

Dataset

The images used to train the models were derived from the Genotype-Tissue Expression

(GTEx) Study [35]. The study collects gene expression profiles and whole-slide images (WSIs)

Evaluating reproducibility of AI algorithms in digital pathology with DAPPER
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of 53 human tissues histologies used to investigate the relationship between genetic variation

and tissue-specific gene expression in healthy individuals. To ensure that the collected tissues

meet prescribed standard criteria, a Pathology Resource Center validated each sample origin,

content, integrity and target tissue (https://biospecimens.cancer.gov/resources/sops/). After

sectioning and Haemotoxylin and Eosin staining (H&E), tissue samples were scanned using a

digital whole slide imaging system (Aperio) and stored in .svs format [41].

A custom Python script was used to download 787 WSIs through the Biospecimen Research

Database (total size: 192 GB, average 22 WSIs for each tissue). The list of the downloaded

WSIs is available in S1 Table.

A data preprocessing pipeline was developed to prepare the WSIs as training data (see Fig

2). The WSIs have a resolution of 0.275 μm/pixel (Magnification 40X) and variable dimen-

sions. Further, the region interested by the tissue is only a portion of the WSI and it varies

across the samples. Hence first we identified the region of the tissue in the image (see Fig 2),

then we extracted at most 100 tiles (512 × 512 pixel) from the WSIs, by randomly sampling the

tissue region. We applied the algorithm for the detection of the tissue region (see Fig 2) on

each tile and rejected those where the portion of the tissue was below 85%. A total number of

53, 727 tiles was extracted, with a number of tiles per tissue varying between 59 (for Adipose—

Visceral (Omentum)) and 2, 689 (for Heart—Left Ventricle). Four datasets (HINT5, HINT10,

HINT20, HINT30) have been derived with increasing number of tissues for a total of 52, 991

tiles; the full number of tiles per anatomical zone, for each dataset, is available in S2 Table and

summarized in Table 1. We refer to the four sets as the HINT collection, or the HINT dataset

in brief. We choose the five tissues composing HINT5 based on exploratory experiments,

while the other three datasets were composed including the tissues with higher number of

tiles. The class imbalance is accounted for by weighting the error on predictions. In detail, the

weight w of the class i used in the cross entropy function is computed as: wi = nmax/ni, where

nmax is the number of tiles in the class with more tiles and ni is the number of tiles in the

class i.
Since image orientation should not be relevant for the tissue recognition, the tiles are ran-

domly flipped (horizontally and vertically) and scaled, following a common practice in deep

learning known as data augmentation. Data augmentation consists of different techniques

Fig 2. The tissue detection pipeline. The identification of the tissue bounding box is performed on the WSI thumbnail in three

steps: a) Binarization of the grayscale image by applying Otsu’s thresholding; b) Binary dilation and filling of the holes; c) Selection of

the biggest connected region as tissue region and computation of the vertex of the containing rectangle.

https://doi.org/10.1371/journal.pcbi.1006269.g002

Table 1. Summary of the HINT datasets. Total: total number of tiles composing the dataset; Min: number of tiles in the class with less samples; Max: number of tiles in

the class with more samples; Average; average number of tiles for each class.

Name # tissues Total Min Max Average

HINT5 5 8, 218 1, 009 2, 424 1, 643.6

HINT10 10 22, 885 1, 890 2, 689 2, 288.5

HINT20 20 40, 516 1, 574 2, 689 2, 025.8

HINT30 30 52, 991 957 2, 689 1, 766.4

https://doi.org/10.1371/journal.pcbi.1006269.t001
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(such as cropping, flipping, rotating images) performed each time a sample is loaded, so that

the resulting input image is different at each epoch. Augmentation has proven effective in mul-

tiple problems, increasing the generalization capabilities of the network, preventing overfitting

and improving models performance [42–44].

Such randomized transformations were found to provide more comparable performance

between the prognostic accuracy of the deep learning SCNN architecture and that of standard

models (i.e., Support Vector Machine, Random Forest) based on combined molecular subtype

and histologic grade [11]. In addition, each tile is cropped to a fixed size, which is dependent

on the type of network used to extract the deep features.

Deep learning architectures and training strategies

We exploited three backend architectures commonly used in computer vision tasks:

1. VGG, Net-E version (19 layers) with Batch Normalization (BN) layers [45];

2. ResNet, 152-layer model [46];

3. Inception, version 3 [47].

These architectures have reached highest accuracy in multiclass classification problems

over the last 4 years [48] and differ in resource utilization (see Table 2). The feature extraction

layer of each backend network is obtained as the output of an end-to-end pipeline composed

of the following main blocks (see panel B in Fig 1):

1. Data augmentation: the input tiles are processed and assembled into batches of size 32;

2. Feature Extractor: series of convolutional layers (Conv2d: with different number of chan-

nels and kernel size), normalization layers (Batch Norm) and pooling layers (MaxPool2d:

with different kernel size) designed to fit with the considered backend architecture (VGG,

ResNet, Inception). The number of output features of the Feature Extractor depends on the

structure of the backend architecture used;

3. Adapter: as the backend networks have output features of different sizes, we add a linear

layer at the end of the Feature Extractor, in order to make the pipeline uniform. The

Adapter takes the features of the backend network as input and output a fixed number of

features (1, 000).

The 1, 000 Adapter features are then used as input for a classifier providing predicted tissue

labels as output. As predictive models, we used a linear SVM with regularization parameter C
set to 1, a RF classifier with 500 trees (both implemented in scikit-learn, v0.19.1) and a

fully connected head (FCH), namely a series of fully connected layers (see panel C in Fig 1).

Inspired by [11] and [49], our FCH consists of four dense layers with 1, 000, 1, 000, 256 and

number of tissue classes nodes, respectively. The feature extraction block was initialized with

the weights already trained on the ImageNet dataset [23], provided by PyTorch (v0.4.0) and

frozen. The Adapter block is trained together with the FCH as a one network. Training also

Table 2. Backend architectures statistics.

Name Output features #Parameters Layers

VGG 25, 088 155 × 106 19

ResNet 2, 048 95 × 106 152

Inception 2, 048 35 × 106 42

https://doi.org/10.1371/journal.pcbi.1006269.t002
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the weights of the feature extraction block improves accuracy (see S3 Table). However, these

results were not validated rigorously within the DAP and therefore they not are not claimed as

generalized in this study.

For the optimization of the other weights (Adapter and FCH) we used the Adam algorithm

[50] with the learning rate set to 10−5 and fixed for the whole training. We used the cross

entropy as the loss function, which is appropriate for multiclass models.

The strategy to optimize the learning rate was selected based on results of a preparatory

study with the VGG network and HINT5. The strategy approach with fixed learning rate

achieved the best results (see S4 Table) and was therefore adopted in the rest of the study.

Data analysis plan

Following the rigorous model validation techniques proposed by the MAQC projects [30, 31],

we adopted a DAP to assess the validity of the features extracted by the networks, namely a

10 × 5-fold cross validation (CV) schema. The input dataset is first partitioned in two separate

datasets, the training set and the test set, also referred as external validation set as reported in

[30, 31]. The external validation set will be kept completely unseen to the model, and it will be

only used in the very last step of the DAP for the final model evaluation. In our experimental

settings, we used 80% of the total samples for the training set, and the remaining 20% for the

external validation set. A stratification strategy upon the classes of tiles, i.e., 5, 10, or 20, has

been adopted in the partitioning. The training set further undergoes a 5-fold CV iterated 10

times, resulting in 50 separated internal validation sets used for model evaluation within the

DAP. The same stratification strategy is used in the creation of the folds.

At each CV iteration, features are ranked by KBest, with ANOVA F-score as the scoring func-

tion [51], and four separate models are trained on sets of increasing number of ranked features

(namely: 10%, 25%, 50%, 100% of the total number of features). A list of top-ranked features is

obtained by Borda aggregation of the ranked lists, for which we also compute the Canberra sta-

bility with a computational framework designed for sets of ranked biomarker lists [32].

As for model evaluation, we considered the accuracy (ACC), and the Matthews Correlation

Coefficient (MCC) in their multiclass generalization [52–54]:

ACC ¼

XN
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where N is the number of classes and Cst is the number of elements of true class s that have

been predicted as class t.
MCC is widely used in Machine Learning as a performance metric, especially for unbal-

anced sets, for which ACC can be misleading [55]. In particular, MCC gives an indication of

prediction robustness among classes: MCC = 1 is perfect classification, MCC = −1 is extreme

misclassification, and MCC = 0 corresponds to random prediction.
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Finally, the overall performance of the model is evaluated across all the iterations (i.e., inter-

nal validation sets), in terms of average MCC and ACC with 95% Studentized bootstrap confi-

dence intervals (CI) [56], and then on the external validation set.

As a sanity check to avoid unwanted selection bias effects, the DAP is repeated stochasti-

cally scrambling the training set labels (random labels mode) or by randomly ranking

features before building models (random ranking mode: in presence of pools of highly corre-

lated variables, top features can be interchanged with others, possibly of higher biological

interest). In both modes, a procedure unaffected by selection bias should achieve an average

MCC close to 0.

Experiments on HINT

We designed a set of experiments reported in Table 3 to provide indications about the optimal

architecture for deep feature extraction, while keeping fixed the other hyper-parameters. In

particular we set batch size (32) and number of epochs (50), large enough to let the network

converge: we explored increasing numbers of epochs (10, 30, 50, 100) and, since the loss stabi-

lizes after about 35 epochs, we set the number of epochs to 50. First, we compared the three

backend architectures on the smallest dataset HINT5, with fixed learning rate. Both VGG and

ResNet architectures achieved good results, outperforming Inception as shown in Tables 4 and

5. In successive analyses we thus restricted to use VGG and ResNet as feature extractors and

validated performance and features with the DAP. The same process was adopted on HINT10

and HINT20. An experiment with 30 tissues has also been performed. Results are listed in S5

Table.

Experiments on KIMIA24

In the second experiment, we used VGG on the KIMIA24 dataset with the deep features

extracted by VGG on GTEx; the task is the identification of the slide of origin (24 classes). In

the DAPPER framework, classifiers were trained on 1, 060 annotated tiles and validated on

265 unseen ones.

UMAP analysis

In order to perform an unsupervised exploration of the features extracted by the Feature

Extractor module, we projected the deep features onto a bi-dimensional space by using the

Uniform Manifold Approximation and Projection (UMAP) multidimensional projection

method. This dimension reduction technique, which relies on topological descriptors, has

proven competitive with state-of-the-art visualization algorithms such as t-SNE [57], preserv-

ing both global and local structure of the data [58, 59]. We used the R umap package with

Table 3. Summary of experiments with the backend architectures.

Experiment Dataset Feature extractor Version/Model

VGG-5 HINT5 VGG Net-E+BN

ResNet-5 HINT5 ResNet 152-layer

Inception-5 HINT5 Inception 3

VGG-10 HINT10 VGG Net-E+BN

ResNet-10 HINT10 ResNet 152-layer

VGG-20 HINT20 VGG Net-E+BN

ResNet-20 HINT20 ResNet 152-layer

https://doi.org/10.1371/journal.pcbi.1006269.t003
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following parameters: n_neighbors = 40, min_dist = 0.01, n_components = 2, and

Euclidean metric.

Implementation

All the code of the DAPPER framework is written in Python (v3.6) and R (v3.4.4). In

addition to the general scientific libraries for Python, the scripts for the creation and training

of the networks are based on PyTorch; the backend networks are implemented in torchvision.

The library for processing histological images (available at gitlab.fbk.eu/mpba-
histology/histolib) is based on OpenSlide and scikit-image.

The computations were performed on Microsoft Azure Virtual Machines with 4 NVIDIA

K80 GPUs, 24 Intel Xeon E5-2690 cores and 256 GB RAM.

Results

Results of the tissue classification tasks in the DAPPER framework are listed in Table 4 for

Matthews Correlation Coefficient (MCC) and Table 5 for Accuracy (ACC), respectively. See

also Fig 3 for a comparison of MCC in internal cross validation with external validation.

All backend network-head pairs on HINT have MCC> 0.7 with narrow CIs, with estimates

from internal validation close to performance on the external validation set (Fig 3). Agreement

of internal estimates with values on external validation set is a good indicator of generalization

and potential for reproducibility. All models reached their top MCC accuracy with 1, 000 fea-

tures. On HINT5 and HINT10, the FCH neural network performs better than SVMs and RF.

Table 4. Matthew correlation coefficient values for each experiment, and classifier head pairs on HINT dataset. The average cross validation MCC with 95% CI

(H-MCCt), and MCC on the external validation set (H-MCCv) are reported. Best-performing backend network, and classifier head combination on each dataset are

reported in bold.

FCH SVM RF

Experiment H-MCCt H-MCCv H-MCCt H-MCCv H-MCCt H-MCCv

VGG-5 0.841 (0.838, 0.843) 0.820 0.786 (0.783, 0.789) 0.777 0.750 (0.748, 0.753) 0.747

ResNet-5 0.879 (0.877, 0.881) 0.883 0.852 (0.850, 0.854) 0.840 0.829 (0.827, 0.832) 0.849

Inception-5 0.747 (0.744, 0.750) 0.734 0.703 (0.699, 0.706) 0.701

VGG-10 0.896 (0.894, 0.897) 0.894 0.861 (0.859, 0.862) 0.866 0.889 (0.888, 0.891) 0.886

ResNet-10 0.857 (0.856, 0.859) 0.860 0.825 (0.824, 0.827) 0.832 0.845 (0.843, 0.847) 0.850

VGG-20 0.771 (0.770, 0.772) 0.774 0.729 (0.727, 0.730) 0.731 0.761 (0.760, 0.762) 0.766

ResNet-20 0.756 (0.754, 0.757) 0.757 0.788 (0.787, 0.789) 0.792 0.738 (0.737, 0.739) 0.738

https://doi.org/10.1371/journal.pcbi.1006269.t004

Table 5. Accuracy values for each experiment, and classifier head pairs on HINT dataset. The average cross validation ACC with 95% CI and ACC on the external vali-

dation set are reported. Best-performing backend network, and classifier head combination on each dataset are reported in bold.

FCH SVM RF

Experiment H-ACCt H-ACCv H-ACCt H-ACCv H-ACCt H-ACCv

VGG-5 87.2 (87.0, 87.5) 85.6 82.9 (82.7, 83.1) 82.1 79.9 (79.7, 80.1) 79.7

ResNet-5 90.3 (90.1, 90.5) 90.7 88.1 (88.0, 88.3) 87.2 86.3 (86.1, 86.5) 87.9

Inception-5 79.8 (79.5, 80.0) 78.7 76.2 (75.9, 76.4) 75.9

VGG-10 90.6 (90.5, 90.7) 90.5 87.5 (87.3, 87.6) 88.0 90.0 (89.9, 90.2) 89.7

ResNet-10 87.2 (87.0, 87.3) 87.4 84.3 (84.1, 84.4) 84.9 86.1 (85.9, 86.2) 86.5

VGG-20 78.2 (78.1, 78.4) 78.5 74.1 (74.0, 74.2) 74.4 77.3 (77.2, 77.4) 77.7

ResNet-20 76.7 (76.6, 76.9) 76.9 79.9 (79.8, 80.0) 80.3 75.1 (75.0, 75.2) 75.2

https://doi.org/10.1371/journal.pcbi.1006269.t005
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As expected, MCC ranged close to 0 for random labels; random ranking for increasing feature

set sizes reached top MCC only for all features (tested for SVMs).

The most accurate models both for internal and external validation estimates were the

ResNet+FCH model with MCC = 0.883 on HINT5, the VGG+FCH model on HINT10, and

the ResNet+SVM model on HINT20. In S6 Table we show the results with a lower number of

dense layers in the FCH, which are comparable with the FCH with 4 dense layers. Results on

HINT30 are detailed in S5 Table; on external validation set, the VGG model reaches accuracy

ACC = 61.8% and MCC = 0.61. Performance decreases for more complex multiclass problems.

Notably the difficulty of the task is also complicated by tissue classes that are likely to have sim-

ilar histological patterns, such as misclassification of Esophagus-Muscularis (ACC: 72.1%)

with Esophagus-Mucosa (ACC: 53.2%), or the two Heart tissue subtypes or the 58 Ovary

(ACC: 68.3%) tiles predicted as Uterus (ACC: 72.8%). The full confusion matrix for ResNet

with SVMs on HINT20 is reported in Fig 4. In this paper we establish a methodology to evalu-

ate reproducibility and predictive accuracy of machine learning models, in particular of the

model selection phase. This is obtained by moving from single training-test split procedure to

an evaluation environment that uses data replicates and averaged statistical indicators, thus

enabling to select a model on the basis of statistical indicators derived from the internal valida-

tion loop. In this framework, we can honestly evaluate model performance differences along a

set of experiments on a group of tasks. The DAPPER framework cannot by itself identify the

reason of such difference, and indeed the emergence of optimal architectures for a specific task

may be due to different factors, as revealed by appropriate experimental design. In terms of the

experimental design described in this paper, for any model type we expect and find a decrease

in accuracy for increasing number of classes, which requires learning more decision surfaces

with less data per class. Notably, the best model in the internal DAPPER validation is con-

firmed to be the best also on the unseen test data, with a value within the confidence interval

or immediately close.

Results on KIMIA24

Regardless of difference in image types, VGG-KIMIA24 with both RF and SVM heads with

ACC = 43.4% (see Table 6), improving on published results (ACC = 41.8% [38]).

It is worth noting that transfer learning from ImageNet to HINT restricts training to the

Adapter and Fully Connected Head blocks. In one-shot experiments, MCC further improves

when the whole feature extraction block is retrained (see S3 Table). However, the result still

needs to be consolidated by extending the DAP also to the training or retraining of the deep

Fig 3. Comparison of DAPPER cross validation MCC (H-MCCt), vs MCC on external validation (H-MCCv) performance for

each classifier. (a) FCH; (b) SVM; (c) RF.

https://doi.org/10.1371/journal.pcbi.1006269.g003
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learning backend networks to check for actual generalization. The Canberra stability indicator

was also computed for all the experiments, with minimal median stability for ResNet-20 (Fig 5).

Results at WSI-level

We evaluated the performance of DAPPER at WSI-level on the HINT20 external validation

set, with the ResNet+SVM model. In particular, all the predictions for the tiles are aggregated

Fig 4. Confusion matrix for ResNet+SVM model on HINT20. Red shaded cells indicate the most confused classes.

https://doi.org/10.1371/journal.pcbi.1006269.g004

Table 6. Performance of DAPPER framework for VGG backend network, and classifier heads (FCH, SVM, RF) on KIMIA24 dataset. The average cross validation

MCC (K24-MCCt), and ACC (K24-ACCt) with 95% CI, as well as MCC (K24-MCCv), and ACC (K24-ACCv) on external validation set are reported.

Model K24-MCCt K24-MCCv K24-ACCt K24-ACCv

VGG+FCH 0.317 (0.306, 0.327) 0.207 34.4 (33.2, 35.2) 23.8

VGG+SVM 0.446 (0.439, 0.454) 0.409 47.1 (46.4, 47.8) 43.4

VGG+RF 0.457 (0.449, 0.465) 0.409 48.0 (47.3, 48.8) 43.4

https://doi.org/10.1371/journal.pcbi.1006269.t006

Evaluating reproducibility of AI algorithms in digital pathology with DAPPER

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006269 March 27, 2019 13 / 24

https://doi.org/10.1371/journal.pcbi.1006269.g004
https://doi.org/10.1371/journal.pcbi.1006269.t006
https://doi.org/10.1371/journal.pcbi.1006269


by WSI, and the resulting tissue will be the most common one among those predicted on

the corresponding tiles. However, it is worth noting that the number of tiles per WSI in the

HINT20 external validation set varies (min 1, max 31) due to a stratification strategy only con-

sidering the tissues-per-sample distribution (see Section Data Analysis Plan). Therefore, we

restricted our evaluation to a subset of 15 WSI per class (300 WSI in total), each of which

associated to 10 tiles randomly selected. This value represents a reasonable number of Regions

of Interest (ROIs) a human pathologist would likely consider in his/her evaluations. In this

regard, we further investigate how the DAPPER framework performs on an increasing number

of tiles per WSI, namely 3, 5, 7, and 10. As expected, the overall accuracy improves as the num-

ber of tiles per WSI increases, reaching 98.3% when considering all 10 tiles per WSI. Notably,

the accuracy is high even when reducing to 3 tiles per WSI (see Table 7).

Comparison with pathologist

We tested the performance of DAPPER against an expert pathologist on about 25% of the

HINT20 external validation set, 2, 000 tiles out of 8, 103, with 100 randomly selected tiles for

each class. We asked the pathologist to classify each tile by choosing among the 20 classes of

the HINT20 dataset, without imposing any time constraint. The confusion matrix resulting

from the evaluation of tiles as produced by the pathologist is shown in Fig 6. Predictions pro-

duced by the DAPPER framework for comparative results are then collected on the same data.

The best-performing model on the HINT20 dataset, namely the ResNet+SVM model, has

Fig 5. Canberra stability indicator on HINT and KIMIA datasets. For each architecture, a set of deep feature lists is generated, one list for each

internal run of training in the nested cross validation schema, each ranked with KBest. Canberra stability is computed as in [32]: lower stability is better.

https://doi.org/10.1371/journal.pcbi.1006269.g005

Table 7. Metrics at WSI-level for increasing number of tiles per WSI. Metrics are computed on a subset of HINT20

external validation set, consisting of 15 WSI per class (300 WSI in total). The WSI class is determined by the most fre-

quent predicted class by the ResNet+SVM model for the considered tiles.

# Tiles per WSI MCC ACC (%)

3 0.86 86.3

5 0.93 93.7

7 0.96 96.0

10 0.98 98.3

https://doi.org/10.1371/journal.pcbi.1006269.t007
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been considered for this experiment. As reported in Table 8, DAPPER outperforms the pathol-

ogist in the prediction of tissues at a tile-level.

To provide an unbiased estimation of the performance of DAPPER, we repeated the same

evaluation on 10 other randomly generated subsets of 2, 000 tiles extracted from the HINT20

external validation set. The obtained average MCC and ACC with 95% CI are 0.786 (0.783,

0.789), and 79.6 (79.3, 79.9), respectively.

Fig 6. Confusion matrix for pathologist classification on a subset of HINT20 external validation set. Red shaded cells indicate

the most confused classes.

https://doi.org/10.1371/journal.pcbi.1006269.g006

Table 8. Tissue classification performance of DAPPER vs pathologist. DAPPER with ResNet+SVM model outper-

forms the pathologist at tile-level. Metrics are computed on a subset of HINT20 external validation set (2, 000 tiles).

Classifier MCC ACC (%)

Pathologist 0.542 56.3

DAPPER 0.786 79.6

https://doi.org/10.1371/journal.pcbi.1006269.t008
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Finally, since the classification at tile-level is an unusual task for a pathologist, who is

instead trained on examining the whole context of a tissue scan, as a second task we asked the

pathologist to classify 200 randomly chosen WSIs (10 for each class of HINT20). As expected,

the results in this case are better than those at tile-level, i.e., MCC = 0.788, and ACC = 79.5%,

to be compared with the DAPPER performances reported in Table 7.

The HINT benchmark dataset

As a second contribution of this study, we are making available the HINT dataset, generated

by the first component of tools in the DAPPER framework, as a benchmark dataset for

Fig 7. UMAP projection of external validation set for VGG-20 experiment.

https://doi.org/10.1371/journal.pcbi.1006269.g007
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validating machine learning models in digital pathology. The HINT dataset is currently com-

posed of 53, 727 tiles at 512 × 512 resolution, based on histology from GTEx. HINT can be eas-

ily expanded to over 78, 000 tiles, as for this study we used a fraction of the GTEx images and

at most 100 tiles from each WSI were extracted. Digital pathology still misses a universally

adopted dataset to compare deep learning models as already established in vision (e.g., Ima-

geNet for image classification, COCO for image and instance segmentation). Several initiatives

for a “BioImageNet” will eventually improve this scenario. Histology data are available in the

generalist repository Image Data Resource (IDR) [60, 61]. Further, the International Immuno-

Oncology Biomarker Working Group in Breast Cancer and the MAQC Society have launched

a collaborative project to develop data resources and quality control schemes on Machine

Learning algorithms to assess TILs in Breast Cancer.

HINT is conceptually similar to KIMIA24. However, HINT inherits from GTEx more vari-

ability in terms of sample characteristics, validation of donors and additional access to molecu-

lar data. Further, we used a random sampling approach to process tiles excluding background

and minimize human intervention in the choice and preparation of the images.

Deep features

We applied an unsupervised projection on all the features extracted by VGG and ResNet net-

works on all tissues tasks. In the following, we discuss an example for features extracted by

VGG on the HINT20 task, displayed as UMAP projection (Fig 7), points are coloured for 20

tissue labels. The UMAP displays for the other tasks are available in S1–S4 Figs. The UMAP

display is in agreement with the count distributions in the confusion matrix (Fig 4). The deep

learning embedding separates well a set of histology types, including Muscle-Skeletal, Spleen,

Pancreas, Brain-Cortex and Cerebellum, Heart-Left Ventricle and Atrial Appendage which

group into distinct clusters (See Fig 7 and Table 9). The distributions of the activations for the

top-3 deep features of the VGG backend network on the HINT10 dataset are displayed in S5

Fig; the top ranked deep feature (#668) is clearly selective for Spleen. The UMAP projection

also shows an overlapping for tissues such as Ovary and Uterus, or Vagina and Esophagus-

Mucosa, or the two Esophagus histotypes, consistently with the confusion matrix (Fig 4).

Examples of five tiles from two well separated clusters, Muscle-Skeletal (ACC: 93.4%) and

Spleen (ACC: 94.6%), are displayed in panel A of Fig 8. Tiles from three clusters partially over-

lapping in the neural embedding and mislabeled in both the VGG-20 and ResNet-20 embed-

dings with SVM (Esophagus- Mucosa ACC = 53.2%, Esophagus-Muscularis ACC = 72.1%,

Vagina ACC = 59.0%) are similarly visualized in Fig 8B. While the aim of this paper is

to introduce a framework for honest comparison of models that will be used for clinical pur-

poses rather than fine-tuning accuracy in this experiment, it is evident that these tiles have

Table 9. Histology types well separated by SVM+ResNet model for HINT20. Accuracy is computed with respect to

the confusion matrix in Fig 4 and expressed in percentage, together with the total number of samples for each class.

Histology type ACC(%) #samples

Spleen 94.6 446

Brain—Cortex 94.3 333

Muscle—Skeletal 93.4 347

Brain—Cerebellum 93.4 376

Heart—Left Ventricle 90.1 565

Pancreas 87.9 463

Heart—Atrial Appendage 84.7 317

https://doi.org/10.1371/journal.pcbi.1006269.t009

Evaluating reproducibility of AI algorithms in digital pathology with DAPPER

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006269 March 27, 2019 17 / 24

https://doi.org/10.1371/journal.pcbi.1006269.t009
https://doi.org/10.1371/journal.pcbi.1006269


Fig 8. Representative tiles predicted from VGG-20 experiment. A) Examples from two well-separated clusters observed in the UMAP

embedding. B) Samples of mislabeled tiles from tissues partially overlapping in the UMAP embedding.

https://doi.org/10.1371/journal.pcbi.1006269.g008
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morphologies that are hard to classify. This challenge requires more complex models (e.g.

ensembles) and a structured output labeling, already applied in dermatology [2]. Further, we

are exploring the combination of DAPPER with image analysis packages, such as HistomicsTK

(https://digitalslidearchive.github.io/HistomicsTK/) or CellProfiler [62], to extract features

useful for interpretation and feedback from pathologists.

Discussion

Digital pathology would greatly benefit from the adoption of machine learning, shifting

human assessment of histology to higher quality, non-repetitive tasks. Unfortunately, there

is no fast, easy route to improve reproducibility of automated analysis. The adoption of the

DAP clearly sets in a computational aggravation not usually considered for image processing

exercises. However, this is an established practice with massive omics data [28], and reproduc-

ibility by design can handle secondary results useful for diagnostics and for interpretation.

We designed the DAPPER framework as a tool for evaluating accuracy and stability of deep

learning models, currently only backend elements in a sequence of processing steps, and possi-

bly in the future end-to-end solutions. We choose as test domain H&E stained WSIs for pre-

diction of tissue of origin, which is not a primary task for trained pathologists, but a reasonable

benchmark for machine learning methods. Also, we are aware that tissue classification is only

a step in real digital pathology applications. Mobadersany and colleagues [11] used a deep

learning classifier to score and visualize risk on the WSIs. Similarly, deep learning tile classifi-

cation may be applied to quantify histological differences in association to a genomic pattern,

e.g., a specific mutation or a high-dimensional protein expression signature. In this vision,

the attention to model selection supported by our framework is a prerequisite for developing

novel AI algorithms for digital pathology, e.g., for analytics over TILs.

Although we are building on deep learning architectures known for applications on generic

images, they adapted well to WSIs in combination with established machine learning models

(SVM, RF); we expect that large scale bioimaging resources will give the chance of improving

the characterization of deep features, as already emerged with the HINT dataset that we are

providing as public resource. In this direction, we plan to release the network weights of the

backend DAPPER models that are optimized for histopathology as alternative pretrained

weights for digital pathology, similarly to those for the ImageNet dataset and available in

torchvision.

Supporting information

S1 Table. Summary of available samples, downloaded WSIs and extracted tiles.

(PDF)

S2 Table. Summary of the datasets.

(PDF)

S3 Table. Impact of retraining the backend network. Accuracy and Matthews Correlation

Coefficient improve when retraining also the feature extraction block (VGG backend network,

not in DAP). We observe an improvement of the accuracy from 5.5% to 24.8% for the four

chosen experiments. Possibly the neural network benefits from adjusting also the initial

weights because the layers learn characteristics of the images diverse from the ImageNet data-

set.

(PDF)

S4 Table. Comparison of the three optimization methods to set the learning rate. The best

method for setting the learning rate was assessed using the VGG as backend network on the 5
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tissues dataset HINT5. Three methods were tested: Fixed (FIX): the learning rate is set to 10−5

for the whole training; Step-wise (STEP): the learning rate is initialized at λinit = 10−3 and

updated every 10 epochs with the following rule: λnew = λold/10; Polynomial (POLY): the

learning rate is initialized at 10−3 and updated every 10 iterations with a polynomial law:

lnew ¼ linit 1 � i
Imax

� �0:9

, where i is the index of the iteration and Imax is the total number of iter-

ations.

(PDF)

S5 Table. Impact of task complexity (VGG backend network). Performance decreases when

the number of tissues increases. Adding more classes to the task is possibly complicated by the

introduction of tissues with similar histological patterns.

(PDF)

S6 Table. Impact (MCC) of number of internal layers on FCH (< 4 dense layers) on HINT

dataset. FCH3: three dense layers with 1000, 256 and # tissue classes nodes, respectively;

FCH2: two dense layers with 256 and # tissue classes nodes, respectively. The average cross val-

idation MCC with 95% CI (H-MCCt), and MCC on the external validation set (H-MCCv) are

reported. In bold: MCC (bold) values of Table 4 of the main text.

(PDF)

S1 Fig. UMAP projection on training (circles) and external validation (crosses) set for

VGG-5 experiment.

(PNG)

S2 Fig. UMAP projection on training (circles) and external validation (crosses) set for

ResNet-5 experiment.

(PNG)

S3 Fig. UMAP projection on training (circles) and external validation (crosses) set for

VGG-10 experiment.

(PNG)

S4 Fig. UMAP projection on training (circles) and external validation (crosses) set for

ResNet-10 experiment.

(PNG)

S5 Fig. Deep features and tissue of origin. Distributions of the values of the top-3 deep fea-

tures computed with the VGG backend architecture for the 10 classes of the HINT10 dataset.

(PDF)
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