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Abstract

Toxicity is an important factor in failed drug development, and its efficient identification and

prediction is a major challenge in drug discovery. We have explored the potential of micros-

copy images of fluorescently labeled nuclei for the prediction of toxicity based on nucleus

pattern recognition. Deep learning algorithms obtain abstract representations of images

through an automated process, allowing them to efficiently classify complex patterns, and

have become the state-of-the art in machine learning for computer vision. Here, deep con-

volutional neural networks (CNN) were trained to predict toxicity from images of DAPI-

stained cells pre-treated with a set of drugs with differing toxicity mechanisms. Different

cropping strategies were used for training CNN models, the nuclei-cropping-based

Tox_CNN model outperformed other models classifying cells according to health status.

Tox_CNN allowed automated extraction of feature maps that clustered compounds accord-

ing to mechanism of action. Moreover, fully automated region-based CNNs (RCNN) were

implemented to detect and classify nuclei, providing per-cell toxicity prediction from raw

screening images. We validated both Tox_(R)CNN models for detection of pre-lethal toxicity

from nuclei images, which proved to be more sensitive and have broader specificity than

established toxicity readouts. These models predicted toxicity of drugs with mechanisms of

action other than those they had been trained for and were successfully transferred to other

cell assays. The Tox_(R)CNN models thus provide robust, sensitive, and cost-effective

tools for in vitro screening of drug-induced toxicity. These models can be adopted for com-

pound prioritization in drug screening campaigns, and could thereby increase the efficiency

of drug discovery.

Author summary

Visualization of nuclei using different microscopic approaches has for decades allowed

the identification of cells undergoing cell death, based on changes in morphology, nuclear

density, etc. However, this human-based visual analysis has not been translated into
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quantitative tools able to objectively measure cytotoxicity in drug-exposed cells. We asked

ourselves if it would be possible to train machines to detect cytotoxicity from microscopy

images of fluorescently stained nuclei, without using specific toxicity labeling. Deep learn-

ing is the most powerful supervised machine learning methodology available, with excep-

tional abilities to solve computer vision tasks, and was thus selected for the development

of a toxicity quantification tool. Two convolutional neural networks (CNN) were devel-

oped to classify cells based on health status: Tox_CNN, relying on prior cell segmentation

and cropping of nuclei images, and Tox_RCNN which carries out fully-automated cell

detection and classification. Both Tox_(R)CNN classification outputs provided sensitive

screening readouts that detected pre-lethal toxicity and were validated for a broad array

of toxicity pathways and cell assays. Tox_(R)CNN approaches excel in affordability and

applicability to other in vitro toxicity readouts and constitute a robust screening tool for

drug discovery.

Introduction

Toxicity is a major cause of failure in drug development and causes costly withdrawals of

drugs from the market. Drug development productivity would be greatly improved if cytotoxic

compounds were identified during early in vitro screening [1–4]. Drug-induced cytotoxic

effects lead to changes in cell and nuclear morphology which are characteristic of the specific

cell-death pathway involved, the best characterized being apoptosis, necrosis, and autophagy

[5–7]. The field has advanced with the establishment of high content screening (HCS) tech-

niques and the emergence of toxicity reporters revealing specific biochemical pathways trig-

gered during cell death programs or measuring metabolic cell function [8–10]. However,

toxicity reporters are often limited to assess the specific biochemical pathways for which

they were designed [11–13], and they are thus unlikely to capture the wide variety of toxic

effects that can be triggered by different drugs in screening campaigns. Toxicity-screening

approaches have combined multi-parametric image analysis of fluorescently labeled nuclei

with the use of toxicity reporters in advanced machine learning pipelines [14–18]. However,

toxicity reporters increase experimental complexity, thus reducing throughput and increasing

screening costs. There is therefore an urgent need to develop broad specificity, cost-effective in
vitro toxicity assays for incorporation in the primary screening phases of drug development.

Cytotoxic effects have classically been visually identified from cell and nuclear morphology [5–

7]. However, the complexity and variability of toxicity-associated morphological patterns has

so far hindered their systematic and quantitative analysis and thus prevented their use as

standalone toxicity screening endpoints. Although nuclear fluorescence staining forms the

basis of most high content cell-based assays, its use is normally limited to image segmentation

and nuclei counting to score cell-loss due to lethal toxicity [19,20], thus disregarding the

wealth of information contained in images of fluorescently labeled nuclei. In an effort to

exploit this information for the quantification of pre-lethal toxicity, we have explored state-of

the-art machine learning tools for automated pattern recognition. The success of classical

learning-based computer vision methods relies heavily on extraction and selection of a reason-

able set of relevant features that are highly discriminative of the phenotypes being studied.

Feature extraction and selection requires in-depth knowledge of the phenotype under study,

which is hindered in the current application by the complexity and great variety of drug-

induced toxicity-associated nuclei organization patterns. The most recent major advance in

machine learning is deep convolutional neural networks (CNN) which, similar to a brain, have

Deep convolutional neural networks for predicting toxicity from nuclei images
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multiple layers of interconnected artificial neurons [21,22]. Through an automated process,

deep neural networks learn abstract representations of raw images from pixel information as a

progressive hierarchy of sub-images, from which they extract features that can be used to clas-

sify complex patterns in a supervised manner. CNNs can thus automate the critical steps of

feature extraction and selection by learning to extract high-level features based on spatial rela-

tionships, which has enabled them to outperform other machine learning methods in com-

puter vision tasks, as demonstrated for several challenging biomedical applications [23–28].

Thus, deep technology seemed well suited to the analysis and prediction of drug toxicity in

images of fluorescently labeled nuclei.

Here, we present novel deep-learning approaches for in vitro cell-based toxicity assessment.

The Tox_(R)CNN approaches proved to efficiently predict a broad spectrum of toxicity mech-

anisms from different drugs, nuclear stains and cell lines. The main strength of these tools

is their unique ability to predict toxicity based exclusively on nuclei staining; this offers the

advantage of improved affordability and applicability of toxicity prediction. The attraction

of the Tox_(R)CNN tools relies on their high potential to enable sensitive and efficient com-

pound prioritization based on detection of pre-lethal toxicity in primary screening campaigns.

Results

CNN can predict cell toxicity based on images of fluorescently stained

nuclei

To test if CNNs can predict cell toxicity based exclusively on nuclear staining, we designed an

experimental assay in which HL1 cells were treated with reference compounds at different

concentrations. The included reference compounds cover a range of cytotoxic effects: the

DNA targeting genotoxic drugs cyclophosphamide (Ciclo), 5-fluorouracil (5Fluo), and doxo-

rubicin (Doxo); the apoptosis-triggering drug staurosporine (Staur); the enzyme inhibitors

acetaminophen (Aceta) and sunitinib (Sunit), which are not associated with a specific toxicity

mechanism; the uncoupler of mitochondrial oxidative metabolism FCCP; and the microtubule

stabilizer Taxol, which inhibits mitosis. To guarantee varying degrees of toxicity outcome we

used previously empirically established dose-curves by selecting concentrations of drugs rang-

ing between having no effect up to significantly reducing cell number due to moderate cell

death. Cells were labeled with the DNA-specific fluorescent probe DAPI and imaged with an

automated confocal microscope, revealing a great variety of nuclear patterns induced by the

different compounds (Fig 1A). The standard toxicity readout of nucleus count (Num Nuc)

revealed cell loss due to drug-induced lethal effects, but did not reveal the great variety of toxic

effects associated with the reference compounds assayed (Fig 1B). As reference toxicity read-

outs, we analyzed Caspase 3/7 nuclear translocation and Mitotracker cytoplasmic intensity

(Fig 1C and 1D), both of which evidenced dose-dependent toxic effects promoted by the com-

pounds tested. To assess toxicity independently of cell density and to enable detection of pre-

lethal toxicity, we implemented a deep CNN architecture for the estimation of cell health status

from microscopy images of DAPI-stained nuclei (Fig 1E). Since we are aiming at a cell-based

toxicity assessment, we used standard image analysis procedures to segment nuclei and cyto-

plasm according to the DAPI signal and used the segmentation to crop images (see Materials

and methods). Different image cropping strategies were designed based on the regions of

interest included in the resulting image crop; nuclei (Nuc), nuclei and cytoplasm (Cell), nuclei

and 3 adjacent pixels (Nuc_Ring), and nuclei, cytoplasm, and background (CNN All) (Fig 1F).

Cropped images, each one containing a mass-centered cell, were used to train independent

CNN models for making toxicity prediction (CNN Nuc, CNN Cell, CNN Nuc_Ring and CNN

All). An additional model was trained using the combination of images obtained using the

Deep convolutional neural networks for predicting toxicity from nuclei images
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Fig 1. Toxicity prediction using deep CNN strategies compared with established readouts. HL1 cells treated or not (-) with the indicated

concentrations of compounds (μM) or DMSO were processed as described in the Materials and Methods. (A) Representative fluorescence microscopy

images of DAPI-stained cells treated or not (Ctrl) with the highest concentrations of the indicated compounds in a reference experiment (Experiment

#1) used for CNN training. (B-D) Boxplots of per-well toxicity assessments from established measurements: nucleus count (Num Nuc) (B), Caspase 3/7

nucleus:cytoplasm ratio (Casp nuc/cyto) (C), and Mitotracker cytoplasmic intensity (Mito) (D). (E) CNN architecture for predicting health status from

single-cell image crops, as described in Materials and Methods. (F) Cropping strategies; representative image crops are shown of nucleus (Nuc), nucleus

+cytoplasm (Cell), nucleus+margin (Nuc_Ring), and nucleus+cytoplasm+background+neighboring cells (All). (G) Boxplot of per-well toxicity

assessment from CNN Nuc predictions (percentage of cells classified as healthy). (H) Plot displaying mean toxicity readouts of replicate wells, obtained

from the percentage of healthy cells predicted by the different CNN models (CNN Nuc, Nuc_Ring, Cell, All, 4crops) and the standard nuclei counting

(Num Nuc) for the different treatments indicated. For each well, toxicity readouts were obtained by computing Z-scores (normalizing to DMSO-treated

wells) with adjustment of the sign to display toxic effects as positive values. Points and corresponding error bars represent the mean and standard error

of the mean, respectively, of results obtained by evaluating the 5 different CNN models trained for each cropping strategy. (I) Evaluation performance

of the different CNN models for predicting toxic effects of staurosporine assessed using Caspase 3/7 fluorescent reporter as reference, as described in

the Materials and Methods. Boxplots display AUC values obtained with the 5 models trained for each cropping strategy. (J) Correlations between cell

density and CNN predictions obtained with the different models for untreated cells. Boxplots represent Pearson correlation coefficient, R, obtained

with all 5 models trained with each cropping strategy (top), and exemplary dotplots for each strategy (selecting the model with the median AUC among

the five) including regression line, R value and significance (bottom). p-value: �<0.01, ��<0.001, ���<0.0001.

https://doi.org/10.1371/journal.pcbi.1006238.g001

Deep convolutional neural networks for predicting toxicity from nuclei images

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006238 November 30, 2018 4 / 23

https://doi.org/10.1371/journal.pcbi.1006238.g001
https://doi.org/10.1371/journal.pcbi.1006238


different cropping strategies (CNN 4crops). We repeated the training of the models (CNN

Nuc, Nuc_Ring, Cell, All, and 4crops) 5 times each, in order to increase confidence in model

comparison results and evaluate reproducibility. CNN models deliver a “health status” score as

output for each cell, which determines a binary classification: healthy or toxicity affected. As a

supervised learning technique, the CNN required images labeled according to the expected

output (healthy or toxicity affected) as ground-truth images for training. However, the refer-

ence standards analyzed for this purpose, Caspase 3/7 and Mitotracker, did not qualify as gen-

eral toxicity labels because neither efficiently captured all the drug-induced cytotoxic effects

included in our experimental assay: both yielded poor resolution of Taxol-induced cytotoxicity

and of the kinetic effects produced by Doxo and Aceta. As an alternative strategy, we produced

a training dataset by labeling image crops according to the treatment exposure; cells from

untreated wells were labeled healthy, whereas those from wells treated with the highest drug

concentrations were labeled toxicity affected (S1A Fig). The percentage of cells classified as

healthy by the different CNN models served as the per-well measurement of “general” toxicity.

In spite of the high degree of uncertainty introduced into the impure training set, the CNN

healthy predictions efficiently revealed dose-response toxicity curves for all the drugs tested

in the assay (Fig 1G and S1B–S1E Fig), providing better resolution than those obtained from

Num Nuc or the Caspase or Mitotracker readouts (Fig 1B–1D). At high doses of several toxi-

cants, CNN models trained with information from nuclei only (CNN Nuc) underwent an

unexpected drop in toxicity prediction. This was not observed in CNN models trained with

cytoplasmic information (CNN Cell/Nuc_Ring/All/4crops), which displayed a steady increase

in toxicity prediction due to their enhanced ability to reveal DNA release into the cytoplasm

during necrosis induced by high drug concentrations.

As screening readout, Z-scores were obtained from the percentage of cells classified as

healthy by the CNN model for each compound-treated test well by normalizing to the DMSO-

treated control cells (DMSO). Untreated cells were not used as negative controls since these

are not commonly included as controls in screenings. To allow comparative evaluation of the

different toxicity readouts and benchmarking the different cropping strategies, readouts are

displayed so that Z-score positive values depict toxic effects. CNN readouts were more efficient

at predicting toxicity than the classical Num Nuc readout (Fig 1H), with CNN Nuc displaying

the highest Z-scores. Model performance was assessed on cells treated with the apoptosis-

inducer staurosporine, which allowed the use of Caspase readout for ground truth labelling

(i.e., Caspase-negative cells from untreated wells were labelled healthy whereas Caspase-posi-

tive cells from staurosporine-treated wells were labeled as toxicity affected). This test set was

used for computing Receiver Operating Characteristic (ROC) curves to evaluate model predic-

tion accuracies using the Area Under the ROC Curve (AUC) measurement. Results show high

performance (above 0.9AUC) for all cropping strategies (Fig 1I), being the CNN Cell the most

accurate. Importantly, CNN Nuc predictions were less correlated with the number of cells in

the field than the other cropping strategies (Fig 1J), which displayed non-negligible correla-

tions, suggesting that predictions of the health status of a single cell are influenced by sur-

rounding information, including the presence of neighboring cells. As consequence, CNN

Nuc reveals to be more independent of experimental errors due to cell density inconsistencies

and also more indicated to detect pre-lethal toxicity. Accordingly, the CNN Nuc model proved

to be the best readout for early prediction of toxicity, since it outperformed other cropping

strategies at sub-lethal drug concentrations, where there is no reduction in Num Nuc indicat-

ing significant cell loss. Consistent with this pattern, plotting treatments by Z-scores to reveal

above-threshold “toxic hits” confirmed CNN Nuc to be the most sensitive method for detect-

ing early toxicity yielding 100 toxic hits (rounded mean of results from the 5 CNN Nuc mod-

els) out of 184 treated wells (Fig 2A), thus outperforming other CNN models. CNN Cell,

Deep convolutional neural networks for predicting toxicity from nuclei images
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Fig 2. Sensitivity of CNN-based toxicity prediction compared with standard toxicity readouts. HL1 cells treated or

not (-) with DMSO or the indicated concentrations of drugs (μM) from Experiment #1 were processed as described in

the Materials and Methods. Plots display individual well toxicity readouts (top) and the 5-Fluorouracil dose-response

curve fitted from well-averages, including the EC50 (bottom). Representative model results out of the 5 independent

ones trained for each cropping strategy is shown. (A-C) CNN-based toxicity readouts: CNN Nuc (A), CNN Cell (B),

and CNN All (C). (D-F) Standard toxicity readouts: Nuclei counting by standard image segmentation (Num Nuc) (D),

mean Caspase 3/7 nucleus:cytoplasm ratio (Casp Nuc/Cyto) (E), and mean Mitotracker cytoplasmic intensity (Mito)

(F). For each well, toxicity readouts were obtained by computing Z-scores (normalizing to DMSO-treated wells) with

adjustment of the sign to display toxic effects as positive values. Z-scores> 3 represent toxic hits.

https://doi.org/10.1371/journal.pcbi.1006238.g002
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Nuc_Ring, All and 4crops readouts yielded 82, 74, 77 and 83 hits, respectively (Fig 2B and 2C

and S1A and S1B Fig). The standard toxicity readouts Num Nuc, Caspase and Mitotracker

detected 27, 81, and 6 toxic hits, respectively (Fig 2D–2F). All CNN models yielded significant

Z-scores for Taxol at 0.1μM, demonstrating broader application than established readouts;

Caspase detected toxicity effects only at 2μM Taxol, whereas Mitotracker and Num Nuc did

not detect significant Taxol toxicity. The higher sensitivity of CNN Nuc compared with the

other CNN models and established readouts was further evidenced by the lower half-maximal

toxic concentration values (EC50) obtained for the mild toxicant 5Fluo (Fig 2 and S2 Fig).

Based on these results, nuclear crops were used as inputs for CNN models in all subsequent

studies, and from here on CNN refers to these CNN Nuc models.

Region-based CNN (RCNN) for fully automated toxicity prediction

To avoid relying on external image segmentation and cropping procedures while providing a

per-cell toxicity prediction, we undertook an alternative cell-based deep-learning approach

incorporating automated object detection. An RCNN was implemented for the automated

localization and classification of individual nuclei using raw images as input, instead of crops.

The framework, based on the Faster RCNN algorithm [29], includes a region proposal network

(RPN) that uses features extracted from the last convolutional layer of a CNN to detect bound-

ing boxes around individual candidate cell, which are then classified as healthy, toxicity-
affected, or background (Fig 3A and 3B). We trained the RCNN model with cell bounding

box coordinates obtained with the standard segmentation procedure used in the CNN

approach (see Materials and methods). A set of 7 independent experiments in HL1 cells treated

with the eight reference drugs, including two experiments in which untreated cells were cul-

tured at different confluencies, was used for in-parallel training of the RCNN and CNN mixed

models for toxicity prediction using balanced datasets of healthy and toxicity affected labeled

nuclei (Tox_CNN and Tox_RCNN_balanced). Resulting CNN predictions showed that the

Tox_RCNN_balanced model, unlike Tox_CNN, erroneously predicted toxicity of untreated

cells grown at low densities (Fig 3C). To prevent the models from learning to predict toxicity

as a reduction in cell number due to drug-induced lethal effects, we trained an additional

mixed model that included extra images of untreated cells cultured at different densities (120

extra healthy training wells), hereafter referred to as Tox_RCNN. The unbalanced and bal-

anced Tox_RCNN models (Num Nuc RCNN and Num Nuc RCNN_balanced) detected a

similar number of objects (nuclei); moreover, the number was consistent with the number

obtained by the standard segmentation procedure (Num Nuc) at regular cell densities (Fig

3C–3E), demonstrating the efficiency of automated detection by RCNN. Tox_RCNN slightly

overestimated cell number at low confluencies, probably due to the recognition of cellular

debris that are discarded by the image processing procedure. Both Tox_CNN and Tox_RCNN

mixed models successfully classified untreated cells at very low densities as healthy and effi-

ciently predicted the toxic effects of drugs and high DMSO concentrations (Fig 3C), further

demonstrating their independence from cell-density fluctuations. Tox_(R)CNN models per-

formed efficiently in the test wells from an experiment used for training (Fig 3D) and in one

independent experiment with HL1 cells at higher confluency (S3A Fig). Overall, Tox_(R)CNN

models were consistently more sensitive than Num Nuc at predicting drug toxicity, with

Tox_CNN outperforming Tox_RCNN classification in most cases. Even though these models

were trained in HL1 cells, they suitably predicted toxicity from these drugs in two other cell

lines, EAHY926 (Fig 3E) and MEVEC (S3B Fig), thus confirming the applicability of Tox_(R)

CNN models for the prediction of toxicity in different cell types. In addition, these models suc-

cessfully predicted toxicity of HL1 cells labelled with Hoechst 3342 (S4 Fig). Together, these

Deep convolutional neural networks for predicting toxicity from nuclei images
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results demonstrate the robustness of deep-learning-based toxicity prediction with regard to

inter-experimental and intra-experimental variability, thus confirming Tox_(R)CNN as pow-

erful screening tools.

Validation of Tox_(R)CNN models for toxicity prediction of different

drugs and mechanisms of action

To demonstrate the value of these Tox_(R)CNN models as tools for broad toxicity predic-

tion, we performed a new screening in which HL1 cells were treated with a panel of 24 drugs,

Fig 3. Region-based CNN implementation and evaluation of (R)CNN deep-learning toxicity-assessment approaches. (A) RCNN architecture for

automated detection of cells and prediction of their health status from micrographs of DAPI fluorescence, as described in the Materials and Methods.

(B) Example of nuclei bounding boxes resulting from the region proposal network included in the RCNN framework. (C) HL1 cells (Experiment #8)

were seeded at the indicated densities (cells/well). (D,E) HL1 (Experiment #1) and EAHY926 (Experiment #9) cells were seeded at 5000 cells/well. (C-E)

24h after seeding, cells were treated or not (-) with the indicated concentrations of DMSO (%) or the indicated drugs (μM) and processed as described

in the Materials and Methods. Representative images are shown of untreated cells at the indicated cell-seeding densities (cells/well). Plots display mean

toxicity readouts of four replicate wells, obtained from the percentage of healthy cells predicted by the CNN Nuc (Tox_CNN) and RCNN

(Tox_RCNN_balanced and Tox_RCNN) mixed models, and from nuclei counting by standard image segmentation (Num Nuc), or by using RCNN-

based automated detection (Num Nuc RCNN) from Tox_RCNN training. For each well, toxicity readouts were obtained by computing Z-scores

(normalizing to DMSO-treated wells) with adjustment of the sign to display toxic effects as positive values.

https://doi.org/10.1371/journal.pcbi.1006238.g003
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including those used to train the CNN model and additional drugs acting through several

mechanisms. Tox_(R)CNN mixed models sensitively predicted the outcome of toxic com-

pound-treatments, thus proving their ability to reveal the toxicity of compounds for which

they have not been trained (Fig 4A). Conveniently, Tox_CNN enabled the automated

Fig 4. Deep (R)CNN model validation to predict toxicity and to extract knowledge for clustering of drugs based on their toxicity mechanisms.

HL1 cells treated with one of 24 compounds or DMSO at the concentrations indicated (μM) (Experiments #11–14) were processed as described in the

Materials and Methods. (A) Plots displaying mean toxicity readouts of four replicate wells, obtained from percentage of healthy cells predicted by the

CNN Nuc (Tox_CNN) or RCNN (Tox_RCNN) mixed models, and from nuclei counting by standard image segmentation (Num Nuc), or by using

RCNN-based automated detection (Num Nuc RCNN). For each well, toxicity readouts were obtained by computing Z-scores (normalizing to DMSO-

treated wells) with adjustment of the sign to display toxic effects as positive values. (B) Hierarchical clustering of features obtained with the Tox_CNN

model from HL1 cells treated with 25μM of the indicated drugs or 0.78μM Taxol; untreated (-); DMSO, control. Colors highlight mechanism of toxicity

associated with compounds.

https://doi.org/10.1371/journal.pcbi.1006238.g004
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extraction of features from pixel intensity values, which were used for unsupervised hierar-

chical clustering of compounds (see Materials and methods). Tox_CNN features clustered

compounds with known mechanisms of toxicity associated in a biologically meaningful

manner, even though the models were not trained for this purpose (Fig 4B). The ionophores

FCCP and monensin, which produce ROS and mitochondrial toxicity clustered together.

The DNA synthesis inhibitors 5Fluo, gemcitabine, and mitomicine also group in the

same cluster. Apoptotic death inducers (staurosporine, thapsigargin, bortezomib, and imati-

nib) were clustered closely together with other drugs of unknown mechanism. The DNA

intercalating anthracyclines epirubicin and doxorubicin and the topoisomerase II inhibitor

Etoposide, all of which promote double strand breaks also clustered together. Other drugs

included, such as microtubule modulators Taxol and Vinblastine did not cluster together.

Statins (lovastatin and simvastatin) with yet unknown mechanism of toxicity, but expected

to be similar because belonging to the same family of proteins, were clustered together.

These findings confirm not only that deep CNN are able to perceive general toxic effects, but

also that their ability to learn feature representations provides useful knowledge for compar-

ing drug-induced mechanisms of toxicity.

Validation of Tox_(R)CNN models as toxicity screening tools

To further evaluate the Tox_(R)CNN deep-learning models as screening tools for prioritizing

compounds based on their toxicity potential, we re-analyzed a pre-accomplished HCS of pri-

mary pancreatic cancer associated fibroblasts (pan-CAFs). Among several assay-specific labels,

most of which are irrelevant here, this HCS included DAPI staining in the assay for both

image segmentation and nuclei counting as a toxicity endpoint. A transfer learning strategy

was applied to the Tox_(R)CNN models delivering Tr_Tox_(R)CNN models. Training strat-

egy was designed to allow the use of pre-run screens lacking reference toxicity-inducing treat-

ments (see Materials and methods). In brief, the training dataset was produced from images

from drug-treated wells with a significantly reduced cell number, which were labeled toxicity
affected, while cells from DMSO treated wells were labeled healthy, since no untreated cells

were available for training. Interestingly, compounds #19 and #33 (anagrelide and quercetin)

were negligibly lethal according to nuclei counting, but were predicted by Tox_CNN to be

toxic at high concentrations (Fig 5A and 5B), demonstrating the greater sensitivity of deep-

learning-based prediction compared with Num Nuc. Toxicity of these compounds was con-

firmed by re-testing in primary cardiac fibroblasts (S5 Fig). Even though Tr_Tox_CNN per-

formed better that the Tox_CNN model, the latter was still a more sensitive predictor of toxic

effects than nuclei counting, demonstrating the value of these tools. Nuclei counting by both

the transferred and original Tox_RCNN models (Tr_Tox_RCNN and Tox RCNN) was consis-

tent with the standard procedure (Num Nuc), revealing that object detection was performing

adequately. However, the original Tox_RCNN model was a poor toxicity predictor in pan-

CAFs compared with the transferred RCNN model (Tr_Tox_RCNN), further evidencing the

need for a transfer-learning approach for RCNN toxicity predictions in cell lines different

from those used for training. The screening comprised 60 drugs at 8 concentrations (480 treat-

ments) and yielded 102 toxicity hits (mean Z-score > 3) based on nuclei counting (Fig 5C). In

contrast Tr_Tox_CNN and Tr_Tox_RCNN identified 127 and 126 toxic wells, respectively

(Fig 5D and 5E). Z-scores computed for the transferred Tr_(R)CNN models were plotted inde-

pendently for all compounds screened (S6 Fig). These results further demonstrate the superior

performance and sensitivity of deep Tox_(R)CNN toxicity predictions over classical screening

endpoints based on nuclei staining.
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Discussion

There is a need to incorporate highly predictive toxicity assays into primary in vitro high-

throughput screening in order to reduce the attrition of drug candidates at later phases of the

drug discovery pipeline. In vitro cytotoxicity assessment is normally limited to measuring the

number of viable cells per well. However, single-cell readouts make better outputs that avoid

sources of experimental error such as non-homogeneities in cell-dispensing, drug-induced

proliferative effects, and heterogeneous responses of different cell sub-populations, which

could be misinterpreted if only well averages are examined. The toxicity research field has

therefore been directed towards finding novel cell labels and readouts that distinguish between

different cytotoxicity mechanisms [8–13]. Nevertheless, the use of toxicity reporters has not

gained broad acceptance because it adds experimental complexity, thus reducing throughput

and increasing screening costs. Here, we have established tools that predict cell toxicity based

on the analysis of fluorescently labeled nuclei. These tools outperformed outputs that rely on

toxicity reporters or cell counting. Since nuclei staining is common to most high content cell

based assays, this tool has broad applicability for toxicity prediction in HCS, even in pre-

accomplished screens, as demonstrated here.

Over recent years, deep learning approaches have been successfully deployed in computer

vision tasks and constitute the state-of-the-art tools for supervised machine learning. Several

key features give deep learning approaches an advantage over other machine learning meth-

odologies for toxicity analysis. First, by learning to represent data with multiple levels of

abstraction in an unsupervised manner (i.e. without human-based programming) it avoids

Fig 5. Validation of deep (R)CNN models for general drug toxicity screening. Pancreatic CAFs treated with 60 compounds or DMSO at the

concentrations indicated (μM) (Experiments #15–24) were processed as described in the Materials and Methods. (A-B) Plots display mean toxicity

readouts of replicate wells for quercetin (#19, A) and anagrelide (#33, B), obtained from the percentage of healthy cells predicted by the CNN Nuc

(Tox_CNN) or RCNN (Tox_RCNN) mixed models before (dashed lines) and after (solid lines) transfer learning, and from nuclei counting by standard

image segmentation (Num Nuc), or by using RCNN-based automated detection (Num Nuc RCNN) before (dashed lines) and after (solid lines) transfer

learning. (C-E) Plots showing individual well toxicity readouts obtained after transfer learning from: nuclei counting using standard image

segmentation (Num Nuc) (C), percentage of healthy cells predicted by CNN (Tr_Tox_CNN) (D), and percentage of healthy cells predicted by RCNN

(Tr_Tox_RCNN) (E). Negative control, DMSO-treated wells, are highlighted in red. For each well, toxicity readouts were obtained by computing Z-

scores (normalizing to DMSO-treated wells) with adjustment of the sign to display toxic effects as positive values.

https://doi.org/10.1371/journal.pcbi.1006238.g005
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cumbersome knowledge-based feature engineering. This makes deep learning approaches

independent of prior in depth knowledge of the target phenotypes, and therefore more suit-

able for broad toxicity prediction of multiple drugs with differing mechanisms by HCS. Sec-

ond, their ability to learn intricate patterns improves recognition, feature extraction, and

classification from noisy images, providing accuracy. This has led to deep technology outper-

forming other machine learning methods and human-based analysis, as demonstrated for

several challenging biomedical applications [23–28]. Third, using transfer learning methods,

networks can be updated to classify new datasets with limited training data [26,27,30], and

thus makes them suitable for predicting toxicity in pre-accomplished screenings. Accord-

ingly, the deep-learning approaches presented here successfully predict toxicity of a broad

spectrum of toxicity-associated patterns in HCS images of fluorescently labeled nuclei, prov-

ing to be more sensitive than established toxicity reporters and readouts for the recognition

of pre-lethal toxicity. The Tox_(R)CNN models suitably predicted toxicity in cell lines,

nuclear stains and for compounds different from the ones used for training. Moreover, for

very different cell lines, pre-trained Tox_(R)CNN models can be subject to a simple transfer-

learning approach that does not require toxicity controls, increasing the performance of tox-

icity predictions; this was successfully achieved here in the pre-accomplished screening with

primary pancreatic cancer associated fibroblasts (panCAF). Although CNN models were

more sensitive and transferable and performed better, the use of RCNN models is justified

by their independence from external segmentation and image cropping. We also demon-

strate the utility of CNNs for extracting knowledge (as feature maps) that allows comparative

analysis of different drugs in a screen. Previous cell-based toxicity screening approaches have

combined multi-parametric image analysis of fluorescently labeled nuclei with the use of tox-

icity reporters in advanced machine learning pipelines [14–18]. The main strength of the

tools presented here is their unique ability to predict toxicity based exclusively on nuclei

staining, which offers the advantage of improving affordability and applicability of toxicity

prediction. HCS is now an established tool for phenotypic drug discovery; in this setting, the

deep-learning approaches presented here will promote a better use of HCS technology for

toxicity assessment. The relevance of the deep learning approaches presented here relies on

their high potential to enable sensitive and efficient compound prioritization based on detec-

tion of pre-lethal toxicity. They thus provide affordable cytotoxicity counter-screens for high

throughput primary campaigns and could allow academic screening centers and pharma

companies to discard cytotoxic compounds during primary screening and hit-to-lead drug

development campaigns, thereby increasing the efficiency of drug discovery.

Materials and methods

Cell culture and reagents

Mouse cardiac muscle HL1 cells purchased from Merck Millipore were grown on fibronectin

(25μg/ml)/gelatin(1mg/ml) coated dishes with 10% fetal bobine serum (FBS) in Claycomb

medium (Sigma-Aldrich). Mouse embryonic ventricular endocardial cells (MEVEC) were

kindly provided by Dr. de la Pompa [31] and cultured on 0.1% gelatin coated flasks in 10%

FBS supplemented DMEM. EAHY926 cells were kindly provided by Dr. Edgell and main-

tained in 10% FBS supplemented DMEM. PanCAF were obtained from Dr. Hidalgo and cul-

tured in RPMI with 20% FBS. Primary pig cardiac fibroblasts were isolated from fresh surgical

samples by collagenase tissue digestion as described in [32]. Fibroblasts were grown to 80%

confluency in flasks containing supplemented DMEM. All culture media were supplemented

with 10% FBS (except PanCAFs, which had 20% FBS), 100 U/ml penicillin, 100 μg/ml
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streptomycin and 2 mM L-glutamine and refreshed every 2–3 days. Mycoplasma tests were

performed bimonthly for all cell line cultures.

Fluorescence staining reagents including DAPI (40, 6-diamidine-2-fenilindol), Hoechst

33342 (H42), Mitotracker Orange and Cell Event 3/7 Caspase Green, were purchased from

Invitrogen. Dimethyl sulfoxide vehicle (DMSO); Acetaminophen (ACETA); Doxorubicin

(DOXO); carbonylcyanide p-trifluoromethoxyphenylhydrazone (FCCP); Sunitinib; Stauros-

porine (STAUR); Paclitaxel (TAXOL); Imatinib; Thapsigargin; Gemcitabine; Quercetin; Aten-

olol; Simvastatin; Genistein; Vinblastine; Monensin; Anagrelide; Epirubicin; Etoposide and

Lovastatin were from Sigma. Ciclophosphamide (CICLO), 5-Fluorouracil (5FLUO)and Suniti-

nib malate (SUNIT) were from Tocris. Indacaterol and Bortezomib were kinldy provided by

Dr. Blanco, Experimental Therapeutics Programme at CNIO.

Assay procedure

Cells were seeded on 384-well plates (5000 cells/well, otherwise specified), after 24h com-

pounds were added to wells at N serial concentrations in 4 replicate wells. Plate was designed

to avoid well distribution effects by using layout shown in S1A Fig, which places negative con-

trols oriented asimetrically in distant positions within the plate (usually center and right).

Additionally, in experiments designed for training deep learning models, double of wells with

extreme doses were included in the plate simetrically distributed at top and bottom locations.

To avoid evaporation-related edge effects external rows were filled with PBS and not used for

the assay. Compounds were dissolved in DMSO (final concentration of 1% across the entire

assay, otherwise specified). Cells were maintained in culture with compounds for 24h, and

then stained for Caspase 3/7 and/or MitoTracker prior fixation with 4% PFA for 10 min at RT

and final nuclei staining. Imaging of fluorescently labelled nuclei and toxicity probes was per-

formed with an Opera automated confocal microscope (Perkin Elmer) fitted with an NA = 0.7

water immersion objective at a magnification of 20×. S1 Table summarizes all experiments

used in this work, including information about cell lines, stainings, treatments, and number of

images and cells.

Image processing

Image processing algorithm was developed using Definiens Developer version XD2.4 (Defini-

ens AG, Germany). Nuclei and cytoplasmic regions were first segmented based on differential

contrast of DAPI/Hoechst 33342 intensity. Cells with a nuclear size bellow 0.3 times or over

twice the mean of nuclear sizes per field were considered as debris and reclassified as non-cel-

lular regions. An ID was univocally assigned to each cell the number of cells per well was com-

puted. Toxicity readouts based on fluorescent reporters were extracted as Caspase 3/7 nucleus:

cytoplasm intensity ratio (Casp nuc/cyto), and Mitotracker mean intensity in the cytoplasmic

region (Mito), where specified.

Images from DAPI/Hoechst 33342 stained nuclei were cropped and saved individually

assuring one cropped image per single mass-centered cell, thus conserving univocal cell ID.

Four different strategies of cropping images were established (Fig 1F):

1. Nucleus (Nuc): Pixels from nuclear region preserve their intensity, while pixels from other

regions including cytoplasm, neighbour cells or background are set to zero. Unless speci-

fied, this cropping strategy is used for training Tox_CNN models and classification pur-

poses throughout the manuscript.

2. Nucleus and ring (Nuc_Ring): Pixels from nuclear region including a thin margin of 3 pix-

els containing a small region of the cell cytoplasm adjacent to the nuclei preserve their
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intensity. Pixels from other regions including the remaining cytoplasm, neighbour cells or

background are set to zero. This cropping strategy was designed to include properties of

nuclear border that could benefit the classification task.

3. Cell (Cell): Pixels from nuclear and cytoplasmic regions preserve their intensity. Pixels

from other regions, including neighbour cells or background are set to zero. This crop-

ping strategy incorporates information of nuclei fluorescence signal beyond the nuclear

boundaries.

4. All regions (All): All pixels within the crop preserve their intensity, which include those

from the cell nucleus and cytoplasm, the background and eventually the fractions of neigh-

boring cells.

The four strategies were set to a fixed size of 50x50 pixel crops, thus guaranteeing a proper

inclusion of complete nuclei based on nuclear sizes and image pixel sizes. To avoid off-cen-

tered nuclei crops, those nuclei with a distance to field image boundaries of less than 50 pixels

were excluded from the cropping extraction and further analysis. Additionally, bounding

box coordinates from segmented cells were also extracted for training automatic object detec-

tion by RCNN.

Convolutional neural network (Tox_CNN)

We designed the toxicity convolutional neural network with an architecture and parameters

adapted from a state-of-the-art CNN model, VGG [33], with high performance in image classi-

fication and well-known layers, activations, and initializations, including several 3x3 convolu-

tions before a max-pooling layer. However, the limited size of our image crops (50x50 instead

of 224x224 used by VGG) required a reduction in the depth of the network to prevent overfit-

ting. Inspired by state-of-the-art architecture LeNet-5 [34], which was designed to work with

32x32 images, we constrained the network to 2 convolutional + max pooling groups of layers.

Most of parameters were inherited from VGG model (batch size, initial learning rate, weight

initialization. . .), since the lack of a general reference standard did not allow us to perform

systematic optimization of parameters. Number of epochs was set up to 120 since performance

of the network reached stability (hold-out validation using 33% of training data during 300

epochs with batch size of 256) while maintaining a reasonable computing time and preventing

from potential overfitting. Kernel sizes of 3 and 5 were also tested reaching very similar results

(AUC values for caspase-based evaluation were 0.9513±0.0065 and 0.9509±0.0053 for CNN

Nuc model with kernel sizes of 3 and 5, respectively; p-val = 0.9), so we fixed them to 3 such as

in original VGG architecture, which also speeded up computations x1.63. Final Tox_CNN net-

work architecture comprises 4 convolutional and 2 fully connected layers (Fig 1E) to classify

single-cell images as healthy or toxicity affected. The Rectified Linear Unit (ReLU) activation

function is applied between each layer except the output dense layer, which uses a softmax

activation function to provide a separate probability for each of the classes. We used ReLu as

activation function since Sigmoid and Tanh can result in the so-called vanishing gradient

problem. Convolutional layers convolve a 3×3 kernel over some input to produce 32, 32, 64,

and 64 feature maps, respectively. To reduce the number of features and the computational

complexity of the network, we introduced two max-pooling layers with a window size of 2×2

after convolutional layers 2 and 4. Additionally, to avoid overfitting, we included two dropout

blocks after convolutional layers 2 and 4 (probability of 25%), and another one next to the first

fully connected layer (probability of 50%). Dropout deactivates some neurons randomly with a

specified probability during the weight update cycle. The final max-pooling layer is then flat-

tened and followed by two densely connected layers with 512 and 2 features. Finally, we
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applied a softmax activation function to the output of last fully connected layer to calculate the

probability for each class label. The total number of parameters to learn is equal to 4,031,458,

most of them belong to the first fully connected layer. We used ADADELTA algorithm [35] to

adjust the learning rate automatically. To increase the number of data and avoid overfitting,

we augmented images by applying random rotations in the range of [0˚, 20˚], horizontal shifts

in the range of [0, 0.2 × Imagewidth], vertical shifts in the range of [0, 0.2 × Imageheight], and hor-

izontal/vertical flips, where Imagewidth and Imageheight show width and height of input images,

respectively. By default, the modifications were applied randomly, so not every image will be

changed every time. Images were normalized to zero mean and unit variance before feeding

them into the network.

Region based convolutional neural networks (Tox_RCNN)

We used state-of-the-art Faster Region-Based CNN [29] (RCNN) to both detect and classify

cells as healthy or toxicity affected from entire images. Faster RCNN is composed of two mod-

ules: a Regional Proposal Network (RPN) and a RCNN network. RPN is a Fully Convolutional

Network (FCN) [36] which proposes square regions within an image that may contain objects

of interest without considering their classes while RCNN network classifies the object propos-

als from RPN into one of the classes (or background), and refines the bounding boxes’ coordi-

nates of the final proposals. We used the original Faster RCNN architecture [29] without any

significant modifications except for the number of outputs for the classification and regression

layers since we have two classes. Therefore, the classification layer has 18 (9×2) outputs, and

the regression layer has 36 (9×4) outputs (coordinates). Number of iterations was fixed to

750,000.

Label-free toxicity annotation of images

To train the network for single-cell toxicity prediction, a set of cells need to be labelled as

healthy and toxicity affected. The uncertainty of the toxicity state of individual cells due to lack

of bona-fide toxicity reporters hamper the possibility of creating a pure and clean training

dataset. Therefore, cells were labeled according to the known or expected toxic response of dif-

ferent extreme treatments; a set of untreated cells (or cells under harmless treatment) were

labelled as healthy, and a set of cells treated with known toxic compounds at the highest con-

centrations were labelled as toxicity affected. This labelling strategy minimize the amount of

manual supervision needed to perform the tedious task of creating a large annotated dataset

for training, avoiding also the use of any toxicity labels such as fluorescent reporters that

always provide partial information since they are unable to detect all the toxic effects. These

healthy and toxicity affected sets are initially conformed by all cells in a selection of wells corre-

spondent to the appropriate extreme treatments. Training sets for both classes (healthy and

toxicity affected) were balanced, where indicated, by removing all cells from randomly selected

entire images. The final output is a field-based treatment-driven training dataset that repre-

sents two groups/classes with the (expected) highest mean difference in terms of toxicity state.

A training-strategy avoiding overfitting was undertaken to properly deal with minimized, yet

still present mislabeling of cells affected by toxicity in conditions with harmless or no treat-

ment, as well as resilient cells in extreme harmful conditions.

Training Tox_(R)CNN

Training of both Tox_CNN and Tox_RCNN models need the outputs obtained from the

image processing routine developed in Definiens (see Image processing section). CNN

approach used cropped single cell 50 × 50 pixel images; and RCNN approach used full fields
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(683 x 507 pixel images) and bounding-box coordinates of cells. The initial experiment pursu-

ing the comparison of CNN performance from the different cropping strategies used images

from one experimental plate (Experiment #1), where the correspondent trainings were per-

formed in parallel and repeated five times. The creation of central Tox_(R)CNN mixed models

involved images from 7 HL1 experiments (Experiments #1–7) including several conditions:

untreated cells, cells treated with DMSO, and cells treated with up to 8 drugs with known toxic

effects at different concentrations. All drugs used demonstrated toxic effects in previous exper-

iments where dose curves were fixed. Three of these experiments were designed in a way that

allows the classifier to learn that healthy cells can also grow at low densities. Training dataset

was created as detailed in the previous section, labelling single cells from wells without any

treatment as healthy, and cells from treated wells with highest concentrations of the 8 available

compounds as toxicity affected. In each plate, only half of these wells per condition were

sparsely selected for training, and the rest were bound to test (S1A Fig). In total, Tox_CNN

mixed model was trained using 739,727 cells (image crops) covering 8 compounds (toxicity
affected) and untreated cells (healthy). Bounding-box coordinates of training cells, together

with the correspondent 7,489 (balanced) and 10,883 (unbalanced) entire images (fields) were

used to train the Tox_RCNN mixed models. S2 Table summarizes the number of instances

(crops or field images) and experiments used for training each model.

Transfer learning Tr_Tox_(R)CNN

For CAF screening, we used deep transfer learning [37] to adapt Tox_(R)CNN mixed models

to a different cell line improving toxicity prediction. With this strategy, an existing pre-trained

network is fine-tuned, avoiding training an entire neural network from scratch and reusing

low level feature-detectors already learned. Therefore, we froze the weights of the first two

convolutional layers in both (R)CNN approaches and retrained the rest of the layers to adapt

to this new dataset. For this screening, since there is no prior information about the dose-

response curve and expected toxicity, we used a different strategy to create the training set, but

again following the guidelines detailed before (see Label-free toxicity annotation of images).

First, we selected drugs with at least one concentration with a significant toxic effect scored as

a significant reduction of the number of cells per well (Z-score>3). Then, for each selected

drug, cells treated with the two highest concentrations of that drug were included in the train-

ing set, and labelled as toxicity affected. Since untreated wells are not included in regular

screenings, cells from half of the DMSO-treated wells were included in the healthy training set,

which corresponds to the harmless condition in this specific screening. This resulted in a train-

ing set with 150,529 instances (6,057 field-images). S2 Table includes information about the

number of instances (crops or field images) and experiments used to create the transferred

models. We followed this general strategy for generating training sets, to ensure that it can be

used in any assay where no prior information about toxic effects of compounds included in

the screening is available. We used 25 epochs to re-train the Tox_CNN model, and 45,000 iter-

ations to update the weights of the Tox_RCNN model; conforming the transferred models for

toxicity prediction in PanCAF screening (Tr_Tox_(R)CNN models).

Tox_(R)CNN classification and evaluation

We evaluated the performance of Tox_(R)CNN models on several independent experiments.

Cells out of the training set coming from experiments that were partially used for training

were also employed for testing purposes: treatments with intermediate concentration of drugs

were never included in training set, and not all wells from extreme treatments were selected

for training. Tox_CNN model classified crop images at the input as healthy or toxicity affected
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based on the probabilistic scores obtained at the output for both classes. Tox_RCNN model

return object detections which were classified as healthy, toxicity affected or background (con-

sidered as non-cell detections and discarded from further analyses) in entire field images. S3

Table summarizes experiments and number of instances (crops or field images) tested with the

different models, and references to figures including the corresponding results.

Toxicity readouts

Well-based toxicity measurements were constructed from Tox_(R)CNN predictions by com-

puting the percentage of cells classified as healthy in each well. Standard toxicity measurements

obtained from fluorescent reporters (Caspase 3/7 and Mitotracker) were aggregated in well-

based values by computing the mean. Nuclei count obtained by image processing and RCNN-

derived counting of nuclear detections were also reported for each well. For each type of toxic-

ity measure (x), we computed Z-scores by subtracting the mean (μ) and then dividing by the

standard deviation (σ) of negative control (DMSO treated wells):

Z � Score ¼
x � m
s

Finally, we adjust the sign of the outputs to get increasing values for toxic effects, thus

obtaining final well-based toxicity readouts that allow direct comparisons.

Comparison of CNN models

The previously explained uncertainty of the toxicity status of individual cells under the wide

range of different compound treatments hampers the proper evaluation of CNN models for

parameter optimization and comparison of models obtained with different cropping strategies

(CNN Nuc, CNN Nuc_Ring, CNN Cell, CNN All, and the combination of all the previous,

CNN 4crops). For that reason, assessment of model performance was tackled in different

ways:

1. Reproducibility. In order to increase confidence on results and measure variabilities, 5

independent models for each of the different cropping strategies were created (rounds)

from 5 different initial states. In each round, the different models corresponding to each

cropping strategy or combination of them were trained in parallel from the same initial

state.

2. Consistency. Z-score readouts provide a measurement of distance in terms of number of

standard deviations from the mean effect in control conditions. These values represent a

magnitude that allow us to check the strength of toxic effects and the consistency in the evo-

lution of these effects with drug doses in a meaningful manner.

3. Sensitivity. The ability of predicting early toxicity can be quantified by computing toxic hits

(effects over a specific magnitude). The choice of the cutoff of Z-score = 3 has been previ-

ously suggested for hit selection in high throughput screening reports [38], which highlights

that a condition with a Z-score bigger than 3 guarantees the fulfillment of the 3-sigma Rule

[39]. Therefore, a Z-score of 3 translates into the distance of 3 × std extended from sample

mean (or median), and the wells with a Z-score of 3 or greater represent an extreme 0.27%

sub-set in a normal distribution [40]. This cutoff is not perfect since it is not robust to outli-

ers as it tends to miss weak hits in data with frequent outliers, whereas lowering the stan-

dard deviation threshold to capture weak hits may unacceptably increase the rate of false

positives [40,41]. Nevertheless, this threshold is found in the literature as a common cutoff
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for high-throughput screens [42,43] who reported that setting this threshold of 3 yielded a

0.5% hit rate.

4. Accuracy. A caspase-based evaluation can be used to measure the correctness of prediction:

when toxic effects on cells are mainly driven by apoptotic processes, the ability to predict

single cell toxic effects can be assessed using Caspase 3/7 fluorescent reporter. Therefore,

we used caspase readout for ground truth labelling of untreated or staurosporine (an apo-

ptotic death inducer) treated cells. To do so, we established a threshold of caspase positive

cells using the distribution of Caspase nuc/cito ratio average value from untreated cells,

plus three standard deviations. This allowed us to use caspase readout for ground truth

labelling (i.e., caspase-negative cells from untreated wells as healthy and caspase-positive

cells from staurosporine treated wells as toxicity affected). The corresponding test set was

used for computing ROC curves to evaluate model prediction accuracies using AUCs.

5. Robustness. Single cell predictions should be independent on cell density. Although mea-

suring toxic effects of compounds has been traditionally bound to cell density and nuclear

counting, the presented CNN models pursue the prediction of toxicity at individual cell

level, using only morphological information provided by nuclear staining. Therefore, each

cell prediction should be independent on its neighborhood, providing a robust estimation

not biased by neighboring cells to avoid confusing cell density changes with toxic effects.

We measured this independence by computing Pearson correlations between number of

cells in each field image and their mean predictions. This measurement was carried out in

images from untreated cells, since these cells should be predicted as healthy independently

on the amount of cells detected in the image.

Hierarchical clustering

Tox_CNN features from the first fully connected layer (512 features/sample) were extracted

for all cells in 4-plate screening of HL-1 cells with 24 drugs. Features obtained from cells that

were either untreated, DMSO-treated, or treated with a non-extreme toxic concentration of

the drugs (25 μM) (except for Taxol in which a 0.781 μM concentration was used) were ana-

lyzed by PCA to select the 50 most informative features for further processing. Mean well-

based features were later normalized (Z-score with respect to untreated condition) and aggre-

gated in order to obtain mean values per treatment/condition. Finally, these feature vectors

were assembled by hierarchical clustering [44] to generate the hierarchical tree (clustergram

function in MATLAB with Euclidean distance metric and weighted average linkage). Clusters

along both dimensions (features and treatment/condition) were displayed in a heatmap of fea-

ture vector values including dendrograms representing the multilevel hierarchy obtained.

EC50

Half maximal effective concentration (EC50) is the concentration of a drug which induces a

response halfway between the observed baseline and maximum effect of that drug. For the

present work, the drug responses used for the EC50 calculations are the different toxicity

effects, as indicated. EC50 were computed by fitting a Hill Equation sigmoid curve to the dose-

response values and estimating the correspondent EC50 Hill Equation parameter [45]. Dose-

response values and adjusted curves are displayed in Fig 2 and S2 Fig in such way that visual

increasing values depict toxic effects for all toxicity measurements in order to allow proper

comparison. Response axes are fixed to [1; 0] for CNN predictions, [4,000; 0] for nuclei count,

[0.5; 3.5] for the Caspase ratio and [500; 100] for Mitotracker measurements. EC50 values
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were not calculated in cases where standard sigmoidal curve fitting was inappropriate within

the existing range of drug doses (Fig 2E and 2F).

Software and hardware resources

We used Keras [46] on the Theano backend [47] to develop the Tox_CNN model presented

here. To construct the Tox_RCNN model we used a python implementation of Faster RCNN

[29] which is developed on Caffe [48]. All experiments were run on a standard PC with an

Intel Xeon CPU E5-2643 @ 3.30 GHz, 32 GB working memory, and using a 16 GB NVIDIA

Quadro K4000 GPU to speed up the computations. Training time for the Tox_CNN model

was 11 hours; transfer learning took 2 hours. Training time for the Tox_RCNN mixed model

and transfer learning were 187 hours and 9 hours, respectively. Boxplots and well-based dot

plots were created with NCSS Statistical Software (version 11), and mean Z-score plots were

depicted with Python. MATLAB (R2017a) was used to perform hierarchical clustering and to

compute dose-response curve adjustments and EC50 calculations.

Figures

All figures displaying (R)CNN-derived information include only results from test sets; other-

wise indicated. Figures showing information from initial CNN models associated with differ-

ent cropping strategies show either the results from 5 independently trained models or the

results of a representative model/cropping-strategy performing with the median AUC value

(out of five).

Supporting information

S1 Fig. Plate layout and predictions with secondary CNN strategies. (A) Plate layout corre-

sponding to a reference experiment used for both training and testing CNNs, where cells

from indicated wells were used to create the training dataset with healthy (green) and toxicity
affected (red) labelled cells coming from untreated wells and wells treated with the highest

drug concentrations, respectively. (B-E) HL1 cells treated or not (-) with DMSO or the indi-

cated concentrations of drugs (μM) from Experiment #1 were processed as described in the

Materials and Methods. Boxplots of per-well toxicity assessments from CNN-based predic-

tions: percentage of cells classified as healthy by the CNN Nuc_Ring (B), CNN Cell (C), CNN

All (D), and CNN 4crops (E) models.

(TIF)

S2 Fig. Sensitivity of CNN Nuc_Ring and 4crops toxicity predictions. HL1 cells treated or

not (-) with DMSO or the indicated concentrations of drugs (μM) from Experiment #1 were

processed as described in the Materials and Methods. Plots display individual well toxicity

readouts (top) and the 5-Fluorouracil dose-response curve (bottom), including the EC50,

from CNN Nuc_Ring (A) and CNN 4crops (B) toxicity predictions. For each well, toxicity

readouts were obtained by computing Z-scores (normalizing to DMSO-treated wells) with

adjustment of the sign to display toxic effects as positive values. Z-scores > 3 represent toxic

hits.

(TIF)

S3 Fig. Evaluation of (R)CNN deep-learning toxicity-assessment approaches. HL1 (A)

and MEVEC (B) cells treated or not (-) with DMSO or the indicated concentrations of drugs

(μM) were processed as described in the Materials and Methods (Experiments #2 and #10).

Representative images are shown of untreated cells. Plots display mean toxicity readouts

of four replicate wells, obtained from the percentage of healthy cells predicted by the CNN
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Nuc (Tox_CNN) or RCNN (Tox_RCNN) mixed models, and from nuclei counting by stan-

dard image segmentation (Num Nuc), or by RCNN-based automated detection (Num Nuc

RCNN). For each well, toxicity readouts were obtained by computing Z-scores (normalizing

to DMSO-treated wells) with adjustment of the sign to display toxic effects as positive val-

ues.

(TIF)

S4 Fig. Evaluation of a different nuclear staining. HL1 cells treated or not (-) with DMSO or

the indicated concentrations of drugs (μM) were stained in parallel with DAPI (Experiment

#26) or H42 (Experiment #27) as described in the Materials and Methods. Representative

images of untreated cells are shown. Plots display toxicity readouts of four replicate wells,

obtained from the percentage of healthy cells predicted by the CNN Nuc (Tox_CNN) or

RCNN (Tox_RCNN) mixed models for both experiments. For each well, toxicity readouts

were obtained by computing Z-scores (normalizing to DMSO-treated wells) with adjustment

of the sign to display toxic effects as positive values.

(TIF)

S5 Fig. Confirmation of (R)CNN-predicted toxic hits. Primary cardiac fibroblasts (Experi-

ment #25) treated or not (-) with DMSO or the indicated concentrations of drugs (μM) were

processed as described in the Materials and Methods. Boxplots of per-well toxicity assessments

in culture wells from established measurements (A-C), and corresponding individual well tox-

icity readouts (D-F), obtained from Caspase 3/7 nucleus:cytoplasm ratio (Casp Nuc/Cyto) (A,

D), Mitotracker cytoplasmic intensity (Mito) (B,E), and nuclei counting (Num Nuc)(C,F).

Data are from 4 replicate wells of the same experiment. For each well, toxicity readouts (D-F)

were obtained by computing Z-scores (normalizing to DMSO-treated wells) with adjustment

of the sign to display toxic effects as positive values.

(TIF)

S6 Fig. Validation of (R)CNN as drug toxicity screening tools. Pancreatic CAFs (Experiments

#15–24) treated with 60 compounds at the indicated concentrations (μM) were processed as

described in the Materials and Methods. Plots correspond to results in all 10 complete plates,

displaying mean toxicity readouts of four replicate wells, obtained from the percentage of

healthy cells predicted by the CNN (Tr_Tox_CNN) and RCNN (Tr_Tox_RCNN) mixed mod-

els after transfer learning, and from nuclei counting by standard image segmentation (Num

Nuc), or by RCNN-based automated detection (Num Nuc Tr_RCNN). For each well, toxicity

readouts were obtained by computing Z-scores (normalizing to DMSO-treated wells) with

adjustment of the sign to display toxic effects as positive values.

(TIF)

S1 Table. Experiments. Summary of all experiments used in this work, including information

about cell lines, treatments, and the number of images and cells.

(XLSX)

S2 Table. (R)CNN models and training. Summary of the number of instances (crops or field

images) and experiments used for training each model generated in this work.

(XLSX)

S3 Table. (R)CNN tests and figures. Summary of experiments and the number of instances

(crops or field images) tested with the different models, and references to figures including the

corresponding results.

(XLSX)
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S1 File. Supporting data. Compressed file containing processed data represented in figure’s

graphics.

(ZIP)
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18. Donato MT, Tolosa L, Jiménez N, Castell J V, Gómez-Lechón MJ. High-content imaging technology for

the evaluation of drug-induced steatosis using a multiparametric cell-based assay. J Biomol Screen.

2012 Mar; 17(3):394–400. https://doi.org/10.1177/1087057111427586 PMID: 22116976

19. Emery A, Sorrell DA, Lawrence S, Easthope E, Stockdale M, Jones DO, et al. A novel cell-based, high-

content assay for phosphorylation of Lats2 by Aurora A. J Biomol Screen. 2011; 16(8):925–31. https://

doi.org/10.1177/1087057111413923 PMID: 21788394

20. Rao TD, Rosales N, Spriggs DR. Dual-Fluorescence Isogenic High-Content Screening for MUC16/

CA125 Selective Agents. Mol Cancer Ther. 2011; 10(10):1939–48. https://doi.org/10.1158/1535-7163.

MCT-11-0228 PMID: 21817115

21. Lecun Y, Bengio Y, Hinton G. Deep learning. Nature. 2015; 521(7553):436–44. https://doi.org/10.1038/

nature14539 PMID: 26017442

22. Angermueller C, Pärnamaa T, Parts L, Stegle O. Deep learning for computational biology. Mol Syst

Biol. 2016; 12(7):878. https://doi.org/10.15252/msb.20156651 PMID: 27474269

23. Esteva A, Kuprel B, Novoa RA, Ko J, Swetter SM, Blau HM, et al. Dermatologist-level classification of

skin cancer with deep neural networks. Nature. 2017; 542(7639):115–8. https://doi.org/10.1038/

nature21056 PMID: 28117445

24. Pärnamaa T, Parts L. Accurate Classification of Protein Subcellular Localization from High-Throughput

Microscopy Images Using Deep Learning. G3 (Bethesda). 2017; 7(5):1385–92.

25. Mamoshina P, Vieira A, Putin E, Zhavoronkov A. Applications of Deep Learning in Biomedicine. Mol

Pharm. 2016; 13(5):1445–54. https://doi.org/10.1021/acs.molpharmaceut.5b00982 PMID: 27007977

Deep convolutional neural networks for predicting toxicity from nuclei images

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006238 November 30, 2018 22 / 23

http://www.ncbi.nlm.nih.gov/pubmed/11167076
https://doi.org/10.1093/toxsci/kfq268
http://www.ncbi.nlm.nih.gov/pubmed/20829425
http://www.ncbi.nlm.nih.gov/pubmed/4561027
https://doi.org/10.1177/019262339702500116
http://www.ncbi.nlm.nih.gov/pubmed/9061857
https://doi.org/10.1007/s00204-015-1503-z
https://doi.org/10.1007/s00204-015-1503-z
http://www.ncbi.nlm.nih.gov/pubmed/25787152
https://doi.org/10.1016/j.addr.2013.11.012
https://doi.org/10.1016/j.addr.2013.11.012
http://www.ncbi.nlm.nih.gov/pubmed/24309014
http://www.ncbi.nlm.nih.gov/pubmed/16988420
https://doi.org/10.1038/nrd3373
http://www.ncbi.nlm.nih.gov/pubmed/21358741
https://doi.org/10.1177/1087057108318428
http://www.ncbi.nlm.nih.gov/pubmed/18566484
https://doi.org/10.1093/toxsci/kft005
https://doi.org/10.1093/toxsci/kft005
http://www.ncbi.nlm.nih.gov/pubmed/23315586
https://doi.org/10.1177/1087057112450050
http://www.ncbi.nlm.nih.gov/pubmed/22706350
https://doi.org/10.1371/journal.pone.0088338
http://www.ncbi.nlm.nih.gov/pubmed/24505478
https://doi.org/10.1177/1087057111427586
http://www.ncbi.nlm.nih.gov/pubmed/22116976
https://doi.org/10.1177/1087057111413923
https://doi.org/10.1177/1087057111413923
http://www.ncbi.nlm.nih.gov/pubmed/21788394
https://doi.org/10.1158/1535-7163.MCT-11-0228
https://doi.org/10.1158/1535-7163.MCT-11-0228
http://www.ncbi.nlm.nih.gov/pubmed/21817115
https://doi.org/10.1038/nature14539
https://doi.org/10.1038/nature14539
http://www.ncbi.nlm.nih.gov/pubmed/26017442
https://doi.org/10.15252/msb.20156651
http://www.ncbi.nlm.nih.gov/pubmed/27474269
https://doi.org/10.1038/nature21056
https://doi.org/10.1038/nature21056
http://www.ncbi.nlm.nih.gov/pubmed/28117445
https://doi.org/10.1021/acs.molpharmaceut.5b00982
http://www.ncbi.nlm.nih.gov/pubmed/27007977
https://doi.org/10.1371/journal.pcbi.1006238


26. Kandaswamy C, Silva LM, Alexandre LA, Santos JM. High-Content Analysis of Breast Cancer Using

Single-Cell Deep Transfer Learning. J Biomol Screen. 2016; 21(3):252–9. https://doi.org/10.1177/

1087057115623451 PMID: 26746583

27. Kraus OZ, Grys BT, Ba J, Chong Y, Frey BJ, Boone C, et al. Automated analysis of high-content micros-

copy data with deep learning. Mol Syst Biol. 2017; 13(4):924. https://doi.org/10.15252/msb.20177551

PMID: 28420678
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