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Abstract

Movement is fundamental to human and animal life, emerging through interaction of com-

plex neural, muscular, and skeletal systems. Study of movement draws from and contrib-

utes to diverse fields, including biology, neuroscience, mechanics, and robotics. OpenSim

unites methods from these fields to create fast and accurate simulations of movement,

enabling two fundamental tasks. First, the software can calculate variables that are difficult

to measure experimentally, such as the forces generated by muscles and the stretch and

recoil of tendons during movement. Second, OpenSim can predict novel movements from

models of motor control, such as kinematic adaptations of human gait during loaded or

inclined walking. Changes in musculoskeletal dynamics following surgery or due to human–

device interaction can also be simulated; these simulations have played a vital role in sev-

eral applications, including the design of implantable mechanical devices to improve human

grasping in individuals with paralysis. OpenSim is an extensible and user-friendly software

package built on decades of knowledge about computational modeling and simulation of

biomechanical systems. OpenSim’s design enables computational scientists to create new

state-of-the-art software tools and empowers others to use these tools in research and clini-

cal applications. OpenSim supports a large and growing community of biomechanics and

rehabilitation researchers, facilitating exchange of models and simulations for reproducing

and extending discoveries. Examples, tutorials, documentation, and an active user forum

support this community. The OpenSim software is covered by the Apache License 2.0,

which permits its use for any purpose including both nonprofit and commercial applications.

The source code is freely and anonymously accessible on GitHub, where the community is

welcomed to make contributions. Platform-specific installers of OpenSim include a GUI and

are available on simtk.org.
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Introduction

By studying the biomechanical structures and neuromuscular control underlying movement,

we can discover strategies to prevent injury, treat disease, and enhance performance. The ben-

efits are undeniable: an understanding of typical and impaired neuromuscular control has

improved rehabilitation for patients after a stroke [1]; musculoskeletal analysis has shown

promise as a tool for predicting outcomes of orthopaedic surgeries and for optimizing assistive

devices [2, 3]; studies of posture have led to recommendations for establishing safe working

conditions to reduce the risk of musculoskeletal injuries, such as carpal tunnel syndrome and

low back pain [4, 5]; and biomechanical observations have led to improved technique and per-

formance in swimming [6, 7]. However, the complex interactions of neural control with mus-

culoskeletal dynamics during the production of movement (Fig 1) pose a significant barrier to

making such discoveries. A complication is that many quantities of interest—including neural

control signals and joint loads—are difficult or impossible to measure with experiments. To

advance movement science, researchers desire computational modeling and simulation tools

that span disciplines such as anatomy, physiology, neuroscience, kinesiology, mechanics,

Fig 1. Elements of a typical musculoskeletal simulation in OpenSim. Movement arises from a complex orchestration of the neural, muscular,

skeletal, and sensory systems. OpenSim includes computational models of these systems, enabling prediction and analysis of human and animal

movement. Neural command to muscles, in the form of excitations, can be estimated from controller models or experimental data (e.g., EMG).

OpenSim’s Hill-type musculotendon models, which translate excitations into muscle forces, include the force–length and force–velocity properties of

muscles. OpenSim provides the flexibility to represent the wide range of muscle geometry found in animals, and the parameters defining muscle

geometry and contraction dynamics can be modified based on experimental data. OpenSim’s underlying Simbody engine for multibody dynamics

includes contact models (e.g., to simulate foot–ground interaction) and several solvers/integrators that allow users to generate muscle-driven

simulations (forward simulation) or to solve for muscle forces and moments that generate an observed motion (inverse simulation).

https://doi.org/10.1371/journal.pcbi.1006223.g001
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robotics, and computer science, distributed with permissive software licenses so that discover-

ies can be widely shared. Several open-source software packages (e.g., BTK [8] and OpenMA

[9]) provide tools for collecting and analyzing experimental movement data, but have limited

support for simulation and optimization tasks. While a few groups around the world have

developed their own simulation and optimization software tools, these independent

approaches limit the exchange of models and algorithms.

OpenSim enables the advancement of movement science by equipping research and clinical

communities with biomechanical models and simulation tools in an open-source, extensible,

and collaborative platform. OpenSim’s capabilities span four core areas. First, users can build,

manipulate, and interrogate biomechanical models. For example, bone specimens were used

to build a musculoskeletal model of the Australopithecus afarensis hand to investigate whether

this primate species had sufficient grip strength to make certain stone tools [10]. Second,

OpenSim can be used to simulate musculoskeletal dynamics and neuromuscular control. Sim-

ulations enable researchers to pursue studies that are difficult to perform experimentally, such

as investigating how humans and animals exploit tendon elasticity to make running more effi-

cient [11–13] and optimizing the design of implantable mechanisms and assistive devices [14–

18]. Third, using solely principles of neuromuscular control and dynamic simulation, Open-

Sim can be used to predict novel movements and adaptations to novel conditions, without

performing any experiments. This capability has led to a deeper understanding of muscle coor-

dination during loaded and inclined walking [19], insight into limitations of reflexes in pre-

venting ankle injuries when landing [20], and suggestions of optimal device design to enhance

jumping performance [21]. Fourth, OpenSim’s modular and extensible design allows research-

ers to create and share new computational models [22, 23], numerical methods, and simula-

tion tools [24–26] that extend the capabilities of the software.

In addition to its advanced computational tools, OpenSim provides a collaborative research

platform that serves a diverse, global, and expanding user base (Fig 2). This active research com-

munity is using OpenSim to make scientific discoveries, and is disseminating these results in

workshops, webinars, conference presentations, and journal publications. The paper describing

the first version of OpenSim [27] was cited 322 times in 2016 alone (Google Scholar; accessed

June 5, 2017); approximately 3/4 of the citing papers used the software in their study. Many of

the models, data, and plugins described in these references are publicly shared, enabling one to

reproduce, validate, and extend others’ results. There are currently over 180 OpenSim-related

projects on simtk.org, a website for sharing biophysical models and software, many of which

contain valuable experimental data sets (e.g., [22, 28, 29]). OpenSim users also contribute to the

community by asking and answering questions on the user forum and by contributing software

to the codebase on GitHub. Community engagement is critical as user requirements play a sub-

stantial role in shaping the software. We have developed a suite of teaching materials, which

includes (i) a user’s guide, (ii) dozens of tutorials and examples for training novice users, dem-

onstrating advanced features, and providing templates for starting new studies, and (iii) docu-

mentation of the Application Programming Interface (API) for plugin developers and scripting

users. The software and these teaching materials are used for introducing biomechanics to a

broad range of students, from middle-school to graduate-school levels.

This paper describes the design and capabilities of OpenSim and provides a sampling of

the types of research questions that can be answered using OpenSim. The software was first

released in August 2007 as a research tool for generating simulations of movement. Early ver-

sions of the software were used primarily for studying human gait and exploring the effects

of pathologies and treatments [27, 32]. We have introduced many additional capabilities in

recent years, among which are enhancements in four key areas. First, new accurate models

for modeling muscle contraction dynamics, muscle metabolic power, joint kinematics, and
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assistive devices have been introduced. These models enable users to closely replicate human

and animal movements, and to explore metabolic cost under natural and engineered condi-

tions. An extensive test suite ensures these models are correctly implemented, robust, and effi-

cient. Second, users are now able to explore beyond predefined workflows and create custom

studies that combine existing computational tools in new ways. For example, users can now

access muscle-related variables like moment arms [33], fiber lengths, and passive fiber forces

directly from a model, without running a complicated analysis in the OpenSim application.

This functionality is available through the C++ API as well as MATLAB and Python scripting

interfaces, ensuring the tools are accessible to researchers with differing computational back-

grounds. Third, OpenSim now includes functionality for controlling data flow, such as

converting data from motion capture file formats and managing data within a simulation.

Without the help of third-party tools, users can read in experimental data from files in

Fig 2. The OpenSim community is worldwide, diverse, and growing. (A) Locations of visitors to the OpenSim documentation (sessions per country

in the 1-year period ending April 21, 2018). Since its launch in 2012, the OpenSim documentation wiki has been visited by over 25,000 users from

around the world per year [30]. (B) Publications citing OpenSim by research category (Web of Science). Note that journals, and thus citations of

OpenSim, may belong to more than one research category. According to Google Scholar, OpenSim [27] has been cited 1947 times as of June 13, 2018;

based on analysis of the subset of these papers published in 2016, we estimate that 3/4 of these publications make use of the software. (C) Cumulative

downloads of OpenSim since its release in August 2007. 35,915 users have downloaded the software as of June 13, 2018 [31]. World map in (A)

created using tools at http://gunn.co.nz/map.

https://doi.org/10.1371/journal.pcbi.1006223.g002
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standard motion capture file formats to plot the data in OpenSim and use it to generate simula-

tions. Fourth, the OpenSim desktop application incorporates a modern cross-platform visual-

izer with tools for creating animations of movement (Fig 3), which provides users with more

control over the visualization and allows use on both Windows and Mac operating systems.

These capabilities enable groundbreaking work in the academic, clinical, and industrial arenas.

Design and implementation

Overview of the software design

Formulating and solving the equations that govern the motion of a neuromusculoskeletal sys-

tem are daunting, even for experts. OpenSim automates the difficult and error-prone task of

formulating these equations from a conceptual model and provides tools to solve them (Fig 4).

We define a Model to be a codified description of the form (topology) and function (dynam-

ics) of a biomechanical system, which can include neural, muscular, and skeletal structures, as

well as non-biological components like exoskeletons. We capitalize “Model” here, and similar

Fig 3. The OpenSim desktop application. A graphical user interface provides access to tools for inspecting, modifying, and simulating musculoskeletal

models. Shown here are the results of muscle-driven simulations of human and chimpanzee walking that were generated by tracking experimental

motion capture data. OpenSim models can be augmented with passive and active devices to explore designs of exoskeletons. (Human model and

simulation from Rajagopal et al. [34]; chimpanzee model from O’Neill et al. [35] and unpublished simulation results provided by M.C. O’Neill and B.R.

Umberger.)

https://doi.org/10.1371/journal.pcbi.1006223.g003
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terms elsewhere, to denote the specific data structure (i.e., class) defined in OpenSim. An

OpenSim user creates a Model by defining the components of the Model (e.g., rigid bodies

and muscles), their properties (e.g., body masses and muscle fiber lengths), and the connec-

tions between each of the components (e.g., the femur and tibia bodies in a lower limb model

are connected by a knee joint). OpenSim then automatically generates a System, which com-

prises the system of equations that governs the kinematics and dynamics of a Model. The Sys-

tem, which does not change during a simulation, is separate from the time-varying State of a

Model, which stores the values of the variables in the Model’s equations of motion (e.g., joint

angles, muscle activations, and the stretch of a clutched elastic cord). A simulation generates a

trajectory of these States in time. One can then employ OpenSim’s Solvers to systematically

study Models and their motion. For example, one can solve for a set of muscle forces required

to track a movement observed experimentally, or integrate the Model’s equations of motion to

compute its trajectory (States) over time.

OpenSim is accessible via a desktop application and the API, through C++, Java, MATLAB,

and Python interfaces. The desktop application (built using the Java interface) comprises a

graphical user interface (GUI) and a visualizer, enabling a broad community of users to apply

models and simulations to study movement. The desktop application provides tools for users

to visualize Models and motions via WebGL, interrogate and edit Models, configure and run

Solvers, and plot and export simulation results. OpenSim’s command-line executables allow

batch processing. Extensible Markup Language (XML) files are used to document and store

Models and simulation parameters, and human-readable file formats allow users to archive

Fig 4. The OpenSim framework is used to study the dynamics of human and animal musculoskeletal systems.

An OpenSim Model is a codified description of a physical system and its dynamics, and can be expressed as a

topological graph of interconnected components. Each component represents a self-contained module (biological

structure, neuromotor controller, mechatronic device, etc.) comprising the Model, and contributes to building the

computational system. The computational system consists of two parts: (1) the system of equations (“System”), which

includes physical parameters that are constant during a simulation (mass, dimensions, muscle properties, etc.); and (2)

the State, which is the list of all variables in the System that may vary over time (e.g., joint angles). The model developer

designs an OpenSim Model that represents the physical system of interest, and the OpenSim software automatically

constructs the computational system of differential and algebraic equations that describe the dynamics of the Model.

https://doi.org/10.1371/journal.pcbi.1006223.g004
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and share simulation results. OpenSim is built atop other validated packages. OpenSim relies

on Simbody to compute the dynamics of multibody systems, which is done using an order-N
recursive formulation [36–39]. Additional dependencies include BTK (Coordinate 3D (C3D)

file support), SWIG (creating non-C++ interfaces), doxygen (API documentation), Java Net-

Beans (GUI), JFreeChart (plotting), Jython (GUI scripting), and TinyXML (XML parsing).

OpenSim employs several design, implementation, and testing strategies to maintain soft-

ware quality. The software’s object-oriented design strictly limits the scope of each software

unit, allowing each to be tested thoroughly in isolation. We also use comprehensive unit testing

to ensure components are valid (e.g., tests for Components, like Joints, verify that energy is con-

served) and can be written to and read from file to maintain backward compatibility with old

model files (serialization). Regression testing ensures that simulation and analysis results are

preserved as the software grows and evolves. We employ continuous integration (via AppVeyor

and Travis CI) to run our full test suite before accepting proposed changes to the codebase.

Biologically accurate models

OpenSim includes computational models of muscle, biological joints, and other musculoskele-

tal structures that are based on decades of research. Muscle mechanics, muscle architecture,

and joint kinematics can be defined and modified to represent a wide variety of human and

animal musculoskeletal structures. These capabilities are useful for modeling muscle spasticity

and contracture in children with cerebral palsy [40], the unique musculoskeletal structures of

animals to understand how ostriches run at high speed and with high metabolic economy [12],

and in many other computational studies. Models of muscle mechanics have typically been

validated against experimental data obtained from animals (e.g., the soleus muscle of rats; see

Fig 5). These models have been adapted for studying human movement and can likewise be

adapted to study a diversity of other animals. We have used recent experimental studies to

improve previously published models and continue to add new models to expand the possible

research applications of OpenSim. For example, biomechanical joints [38] compute accurate

joint kinematics and reaction forces for the lower extremity (e.g., the knee [41, 42]), the spine

and neck [43], and the shoulder [44]. The muscle models in OpenSim capture activation

dynamics, the force–length and force–velocity relationships, and muscle–tendon dynamics

[45]. Recent enhancements improve the computational speed and numerical stability of the

muscle models as well as their agreement with in vitro testing of rat muscles [46]. Muscle meta-

bolics models [13, 47–49] in OpenSim allow users to estimate muscle-level and whole-body

energetics during movement. Neurophysiological structures and controllers, such as goal-

directed and tracking (Computed Muscle Control; CMC) controllers [50] and a reflex control-

ler [20], enable users to generate muscle-driven simulations of observed motions and to pre-

dict human and animal movement.

To ensure our models and simulations are biologically accurate, we validate our simulation

results by comparing with experimental measures and other independent models and simula-

tions (Fig 5). We also make all of our simulation and experimental data freely available so oth-

ers can perform independent testing. Members of the OpenSim community are helping to

validate models and simulations by performing sensitivity studies [52], developing bench-

marks for multi-body system analysis [53], and analyzing parameter uncertainty [54].

Custom simulation studies

OpenSim uses a modular Component and Solver architecture. Users can create custom simu-

lation studies that combine existing computational tools in new ways, and write new computa-

tional tools that extend the built-in capabilities of OpenSim.

OpenSim: Simulating human and animal movement
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OpenSim Components employ the composite design pattern [55], enabling users to

assemble and combine models of musculoskeletal structures, exoskeletons, and implantable

mechanisms to compute and report values of interest (Fig 6). A Component is a self-con-

tained part of a Model that describes a physical structure or phenomenon and its contribu-

tion to the Model’s equations of motion. A variety of Components are built into OpenSim,

including rigid bodies, joints, constraints, controllers, actuators, contact models, and springs.

The computational models of muscle, biological joints, and other musculoskeletal structures

described in the previous section are also Components. An OpenSim user builds a Model by

specifying an interconnected set of Components. For example, a femur Body and a tibia Body

are connected by a knee Joint, all of which are contained by the Model. This modular archi-

tecture allows users to systematically compose complex models from simpler submodels. The

properties of the Component (e.g., the mass and inertia tensor of a Body) can be written to

and read from a file (as XML), facilitating model archiving, editing, and sharing. Further-

more, users can write and share their own Components to extend OpenSim. For example,

van der Krogt and colleagues created and validated a muscle spasticity controller and shared

it as an OpenSim plugin on simtk.org [40].

OpenSim includes several inverse and forward Solvers to compute quantities of interest

from a Model. For example, a forward dynamics Solver can be used to integrate model

Fig 5. A variety of experimental and simulated data are used to validate OpenSim models. For example, our models of muscle

contraction dynamics [46] were validated using in vivo isolated rat soleus muscle data from Krylow and Sandercock [51]. The

data shown here (second column) were collected from one of these sources (force transducer; first column) as the muscle was

maximally excited and its free end was displaced according to a predetermined time-varying signal, repeating for various

displacements (shown here for 0.10–1.00 mm). We replicated these experiments in simulation to validate our computational

model of muscle contraction dynamics [46].

https://doi.org/10.1371/journal.pcbi.1006223.g005
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Fig 6. OpenSim enables physically accurate simulation of neuromusculoskeletal systems. Physics-based models of

biological structures can be augmented with models of neuromotor controllers and mechatronic devices to reproduce

and explain experimental observations, and to predict novel movements. OpenSim natively supports a wide variety of

components, including those for modeling the skeleton as rigid bodies connected by joints, ligaments and other

passive structures, muscles and motors, tracking and reflex-based controllers, external forces from the environment,

and assistive devices composed of rigid bodies, joints, springs, and actuators. We have added new components to

OpenSim (indicated with “†”) and enhanced many existing components (indicated with “�”). OpenSim’s collaborative,

open-source development philosophy allows users to create, extend, and share new component models to accelerate

their research.

https://doi.org/10.1371/journal.pcbi.1006223.g006

OpenSim: Simulating human and animal movement

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006223 July 26, 2018 9 / 20

https://doi.org/10.1371/journal.pcbi.1006223.g006
https://doi.org/10.1371/journal.pcbi.1006223


dynamics (i.e., state derivatives) forward in time to generate a trajectory of States. By incorpo-

rating reflex and other neurophysiological controllers, users can generate de novo movements.

Alternately, inverse kinematics and dynamics Solvers determine the generalized coordinates

(e.g., joint angles) and forces, respectively, that are consistent with external measurements

(e.g., experimental marker trajectories from a motion capture system and ground reaction

forces). OpenSim’s novel Component design provides access to the underlying dynamic equa-

tions, along with quantities like contact forces and metabolic cost, allowing users to extend

OpenSim by creating custom Solvers. For example, single-shooting (e.g., [19–21]) and direct

collocation (e.g., [56–60]) methods have been applied to predict movements like walking and

jumping that optimize a user-determined objective (e.g., minimizing metabolic cost or maxi-

mizing jump height).

Data flow

OpenSim provides users with flexibility and control when both inputting data, such as experi-

mental measurements that drive a simulation, and outputting results of interest, such as joint

angles and muscle forces. FileAdapters provide the capability to import data from common

file formats (e.g., C3D, CSV, and TRC) and can be extended by developers to support new file

types. Any Component can generate Outputs (e.g., a Muscle can output its force-generating

capacity), which users can report to an internal table, a file, or the console using a Reporter.

OpenSim also provides tools to manage the exchange of data within a simulation. Any Output

generated by a Component (e.g., a Muscle’s fiber length) can be received by another Compo-

nent as an Input (e.g., a stretch-based reflex Controller that generates an excitation signal

based on a Muscle’s fiber length as an Input). DataTables are in-memory containers that can

be used to store experimental and simulation data (e.g., marker locations, muscle-fiber lengths,

and excitation signals) as columns of time series and their related metadata, such as column

labels and units of measurement.

Model visualization

Visualization of models and simulations is vital for interpreting, troubleshooting, and commu-

nicating results. OpenSim’s WebGL visualizer (see Fig 3) uses a modern graphics rendering

pipeline, which provides features such as lighting, shadows, and textures, along with cross-

platform support. Components can be visualized with analytic geometry (e.g., spheres, cylin-

ders, and boxes; see the exoskeleton in Fig 3) that is straightforward to define, in addition to

mesh-based geometry (e.g., bone meshes).

Results

OpenSim is enabling researchers from diverse fields to gain insight into human and animal

movement. Since its first release, OpenSim has been used as a modeling and visualization tool

to examine the functional roles of individual muscles in human gait and to understand the

effect of treatments on patients with gait disorders caused by cerebral palsy and stroke [2, 61–

71]. Open access to human and animal models and recent improvements to the software (see

Design and implementation) have expanded the scope of studies that are performed with

OpenSim. Comparative biologists are using OpenSim to study relationships between form and

function in animals [12, 72–76], and engineers are using OpenSim to design and analyze assis-

tive devices [14–17]. Researchers are also using OpenSim to create models of reflexes and spi-

nal circuits [20, 40, 77, 78] to understand movement disorders or prevent injury. OpenSim is

being integrated into larger simulation and experimental frameworks for research in ergo-

nomics [79], assistive robotics [80–82], and neurorehabilitation [78], where a model of human
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or animal movement is integral to the design of workspaces, devices, and treatments. The four

examples below represent the range of studies enabled by recent advances in OpenSim.

Example 1: Form and function

OpenSim is being used to discover relationships between form and function that explain how

humans and animals move. For example, Rankin and colleagues [12] investigated the mecha-

nisms responsible for the impressive speed, agility, and efficiency of the fastest running biped:

the ostrich. The researchers constructed a musculoskeletal model of the ostrich’s lower limb

(Fig 7A) and used an inverse approach in OpenSim to compute the muscle forces and mechan-

ical work required to track experimental measurements of walking and running. Their analysis

revealed that the biarticular muscles crossing both the hip and knee were the primary contrib-

utors to propulsion during stance, based on the large positive work they generate (Fig 7B, biar-
ticular hip/knee). In contrast, the uniarticular knee extensors acted like brakes, performing

negative work. The digital extensor muscles—which cross several joints, including the ankle

and the metatarsal–phalangeal joints—and their compliant tendons acted like springs by stor-

ing energy (performing negative work) in early stance and releasing energy (performing posi-

tive work) in late stance, particularly during running (Fig 7B, digital flexors). The model,

experimental data, and simulation procedures to reproduce their results are available on

Dryad [83]. Analogous studies have been performed for other extant [35, 74, 75, 84] and

extinct animals [10] to relate musculoskeletal form to function.

Example 2: Device design

OpenSim is being used to design implantable and exoskeletal devices. For example,

Homayouni and colleagues [14] used OpenSim to prototype new passive, implantable

Fig 7. OpenSim facilitates defining anatomically accurate musculoskeletal models to reveal relationships between form and function. In this

study, Rankin et al. [12] built a detailed model of an ostrich (Struthio camelus) pelvic limb in OpenSim (A) and collected motion capture data to

generate simulations of ostrich locomotion. The researchers generated simulations of running (navy blue) and walking (light blue) with compliant

tendons, using the Computed Muscle Control Tool in OpenSim. For each muscle group, they computed the negative and positive work performed by

the muscles during stance (B) and swing (not shown). The biarticular muscles crossing both the hip and knee performed largely positive work during

stance, contributing to propulsion, while the knee extensors performed negative work, acting as brakes. Adapted from Rankin et al. [12].

https://doi.org/10.1371/journal.pcbi.1006223.g007
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mechanisms for hand tendon transfer surgery to improve grasp performance and restore func-

tion in patients with partial paralysis of the upper extremity. The goal of the mechanisms is to

achieve a grasp that evenly distributes forces between the fingers—a key limitation of current

tendon transfer procedures. The researchers modeled an artificial tendon network and a lever

mechanism (Fig 8A and 8B), both of which act to distribute force from the attached extensor

carpi radialis longus (ECRL) muscle among four tendons in the hand. They performed for-

ward dynamics simulations of grasping tasks, where the motion was not prescribed but

evolved based on the activation of the ECRL muscle. They examined the resulting kinematics

of the digits of the hand and the forces applied to a grasped ball. Both proposed mechanisms

allowed for greater motion of the digits (Fig 8C) while maintaining grasp strength comparable

to that of healthy individuals. Others are using OpenSim to study assistive devices, such as

those that assist walking and running [16–18], and to improve below-knee prosthetic comfort

and performance [85].

Example 3: Neural control

The ability to create custom controllers in OpenSim enables users to investigate the role of

reflexes in generating movement and preventing injury. Consider, for example, ankle sprains,

which are the most common acute sport trauma [86]. Existing interventions have limited suc-

cess [87, 88], in part because the role of muscle coordination in preventing injury is poorly

understood [20]. DeMers and colleagues used OpenSim to compare the effectiveness of reflex

control and preparatory co-activation in preventing ankle injuries. The authors simulated

many landing scenarios, including those too dangerous to study experimentally. Their simula-

tions used a full-body musculoskeletal model with muscle stretch reflexes and preset muscle

Fig 8. OpenSim supports design and analysis of implantable devices to restore grasp for those with paralysis. In current practice, individuals with

partial paralysis of the upper limb receive tendon transfer surgeries to reconnect the tendons that facilitate finger movement to a non-paralyzed donor

muscle. Homayouni and colleagues [14] are designing implantable devices to improve outcomes of traditional, suture-based tendon transfer. In one

design (A), the single-suture attachment is replaced with an artificial tendon network. In a second design (B), a lever mechanism replaces the suture to

more evenly distribute forces between the digits. The investigators used OpenSim to model the traditional suture-based surgery and each proposed

design, and simulated a grasping motion. The implantable devices (green and blue) achieved greater finger flexion (C) than the traditional suture-based

surgery (black). Adapted from Homayouni et al. [14].

https://doi.org/10.1371/journal.pcbi.1006223.g008
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activation controllers (Fig 9A). The model also included an elastic foundation contact model

to compute foot–floor contact forces, and passive force elements that modeled the mechanics

of ankle ligaments. Over a wide range of simulated landing scenarios, they found that strong

preparatory co-activation of the ankle evertors and invertors prior to ground contact pre-

vented the ankle inversion angle from exceeding injury thresholds (Fig 9B). Conversely, even

superhuman stretch reflexes were too slow to generate adequate eversion moments before the

simulations reached the threshold for inversion injury (Fig 9C). These results suggest that

training interventions to protect the ankle should focus on stiffening the ankle with muscle co-

activation prior to landing. The musculoskeletal and neuromuscular controller models, soft-

ware, and simulation results from this study are freely available [23]. Previous studies using

OpenSim have provided controller-driven simulations to examine the changes in muscle func-

tion due to factors like muscle spasticity [40] or surgical intervention [63–65, 77]. Further, by

applying optimization to select controller parameters, researchers have been able to predict

human-like movements [21] and adaptations to varying physiological and environmental con-

ditions [19].

Fig 9. OpenSim reveals the roles of reflexes and preparatory co-activation in preventing ankle injury. DeMers and

colleagues [20] created an OpenSim model to study risky landing scenarios (A), which included a detailed ankle joint

to model both passive and active components, stretch-reflex controllers to actuate the muscles, and a contact model to

estimate foot–floor reaction forces. They used the model to simulate a single-leg drop-landing onto an angled surface,

which induced rapid ankle inversion. While preparatory co-activation of the invertor and evertor muscles (B) was able

to prevent the ankle from inverting to angles that may cause injury (gray region), a reflex-only strategy (C) was not

able to prevent injury in the scenario studied. Models and data are available on simtk.org [23]. Adapted from DeMers

et al. [20].

https://doi.org/10.1371/journal.pcbi.1006223.g009
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Example 4: Multidisciplinary research

OpenSim enables investigators to incorporate musculoskeletal models into multidisciplinary

simulation studies that require expertise and tools from diverse fields, such as neuroscience

[78], ophthalmology [89], and human–machine interaction [80]. For example, electrical epidu-

ral stimulation has shown promise for restoring some voluntary function in individuals with

spinal cord injury (SCI; Fig 10); however, the mechanisms by which the therapy enables modu-

lation of muscle activity are poorly understood. Moraud et al. [78] used simulations to uncover

potential mechanisms by which the stimulation can restore standing and walking, and inform

the design of new stimulation patterns to improve function. OpenSim was integrated into a

larger computational framework to provide biomechanically accurate estimates of muscle

stretch in rats during locomotion—key inputs to the computational spindle circuit model of

Moraud et al. The simulations revealed that epidural stimulation modulated muscle activity by

interacting with muscle spindle feedback circuits such that increments in frequency ranging

from 10 to 100 Hz led to a linear increase in the mean firing rate of both sensory and motor

neurons. A comparable modulation in motor output was observed when increasing electrical

epidural stimulation amplitude. These characterizations enabled the investigators to design

phasic stimulation strategies for rats with incomplete and complete SCI, thereby reducing gait

asymmetry and restoring balance in spinalized rats. Their findings and stimulation techniques

could eventually help humans regain mobility after SCI.

Availability and future directions

OpenSim is an open-source project with dozens of contributors and thousands of users. The

OpenSim source code is available under the permissive Apache License 2.0, making OpenSim

suitable for any academic, commercial, government, or personal use (some dependencies have

more restrictive licenses). The source code is available on GitHub at https://github.com/

opensim-org/opensim-core and https://github.com/opensim-org/opensim-gui. To make

OpenSim accessible to a broad community of users, pre-packaged binaries with a desktop

Fig 10. Combining neural and musculoskeletal models to study neuromodulation of spinal circuits for correcting motor deficits. Moraud et al.

[78] measured the movement of spinal cord–injured rats (left panel; experimental setup with marker kinematics, ground reaction forces, and muscle

electromyography (EMG)). A musculoskeletal model of the rat hindlimb (center panel) was developed in OpenSim to provide estimates of muscle fiber

lengths and velocities from measured kinematics, which were inputs to muscle spindle models (right panel; black coils). Spindle reflexes from the major

flexor and extensor muscles were the primary inputs to a realistic model of spinal neuronal circuits (right panel), which generated the neural drive to

the same major muscle groups. The spindle reflexes were coupled to electrical epidural stimulation (EES) that modulated the spindle signals into the

spinal circuits. The results (not shown) from Moraud et al. revealed that simulated neuromuscular activity successfully predicted changes of in vivo
muscle activity (EMG) due to variations in EES frequency and amplitude. The OpenSim model of the rat hindlimb by Johnson et al. is available on

simtk.org [90].

https://doi.org/10.1371/journal.pcbi.1006223.g010
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application (GUI and visualizer) are released periodically at https://simtk.org/projects/

opensim. Documentation for users and developers, teaching materials, examples, musculoskel-

etal models, the Q&A Forum, and other resources can be accessed through http://opensim.

stanford.edu/support/.

The recent software developments described above, coupled with the collective effort of the

diverse and growing user community, will enable OpenSim to play an integral role in advanc-

ing research and design. Generating simulations of de novo movements (i.e., predictive simula-

tion) is one area of particular interest. For example, providing easier access to predictive

simulation would enable rehabilitation researchers to use simulations to guide the design of

devices for preserving, restoring, and enhancing movement, and would accelerate the efforts

of comparative biomechanists to predict the locomotor patterns of extinct species [91, 92].

Recent advances in direct collocation [57, 60, 93], fast and accurate impact models [94], and

efficient modeling techniques [44] will help bring predictive simulation to a broader audience.

As demonstrated by Moraud et al. [78], neural controllers can be studied experimentally by

using a computational model of the musculoskeletal system as the plant in simulations of

movement. The principles learned from such studies could eventually be used to improve con-

trol of implantable devices, prostheses, and exoskeletons (e.g., via real-time sensing and bio-

feedback). OpenSim can provide virtual prototyping capabilities for improving outcomes and

reducing development time in clinical applications.

As with any open-source project, the future of OpenSim will be determined largely by the

participation of the community. Our vision is to deepen the understanding of human and ani-

mal movement and to accelerate the development of rehabilitative treatments and assistive

devices. Simulation can help realize this vision. Computer-aided design revolutionized the

processes of conceptualizing, developing, and manufacturing engineered products from appli-

ances to airplanes. We envision that neuromuscular and musculoskeletal simulation will con-

tinue to drive the evolution of engineered devices and treatments that assist and interact with

people. The complexity and diversity of the human (and animal) motor system present funda-

mental challenges that can be overcome only by a large, diverse, and active community of

researchers, engineers, and clinicians. This community benefits from models and simulation

tools for making discoveries, transferring knowledge, and designing effective technologies.

OpenSim is poised to support these endeavors.
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