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Abstract

The dendritic spines of pyramidal neurons are the targets of most excitatory synapses in the

cerebral cortex. They have a wide variety of morphologies, and their morphology appears to

be critical from the functional point of view. To further characterize dendritic spine geometry,

we used in this paper over 7,000 individually 3D reconstructed dendritic spines from human

cortical pyramidal neurons to group dendritic spines using model-based clustering. This

approach uncovered six separate groups of human dendritic spines. To better understand

the differences between these groups, the discriminative characteristics of each group were

identified as a set of rules. Model-based clustering was also useful for simulating accurate

3D virtual representations of spines that matched the morphological definitions of each clus-

ter. This mathematical approach could provide a useful tool for theoretical predictions on the

functional features of human pyramidal neurons based on the morphology of dendritic

spines.

Author summary

Dendritic spines of pyramidal neurons are the targets of most excitatory synapses in the

cerebral cortex and their morphology appears to be critical from the functional point of

view. Thus, characterizing this morphology is necessary to link structural and functional

spine data and thus interpret and make them more meaningful. We have used a large

database of more than 7,000 individually 3D reconstructed dendritic spines from human

cortical pyramidal neurons that is first transformed into a set of 54 quantitative features

characterizing spine geometry mathematically. The resulting data set is grouped into

spine clusters based on a probabilistic model with Gaussian finite mixtures. We uncover

six groups of spines whose discriminative characteristics are identified with machine

learning methods as a set of rules. The clustering model allows us to simulate accurate
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spines from human pyramidal neurons to suggest new hypotheses of the functional orga-

nization of these cells.

Introduction

It is known that the dendritic spines (for simplicity’s sake, spines) of pyramidal neurons are

the targets of most excitatory synapses in the cerebral cortex [1]. Numerous studies suggest

that spine shape could determine their synaptic strength and learning rules and is also related

to the storage and integration of excitatory synaptic inputs in pyramidal neurons [2]. Quanti-

tative analyses have demonstrated strong correlations between spine morphological variables

and synaptic structure. Specifically, the spine head volume in the neocortex is correlated with

the area of the postsynaptic density (PSD) [3]. Both parameters are highly variable across

spines. Interestingly, however, the spine head volume (like the total spine volume) is positively

correlated with the PSD area, and there is a remarkably small variance. Moreover, PSD area is

correlated with the number of presynaptic vesicles, the number of postsynaptic receptors and

the readily-releasable pool of transmitters. By contrast, the length and diameter of the spine

neck is proportional to the extent to which the spine is biochemically and electrically isolated

from its parent dendrite [4–8]. Also, it has been shown that larger spines can generate larger

synaptic currents than smaller spines [9]. Furthermore, dendritic spines are dynamic struc-

tures with volume fluctuations that appear to have important implications for cognition and

memory [10–13]. Therefore, spine morphology appears to be critical from the functional point

of view (for a review, see [14]).

There are a wide variety of spine morphologies, especially in the human cortex [15]. While

many different classifications of spines have been proposed on the basis of their morphological

characteristics, the most widely used was proposed by Peters and Kaiserman-Abramof [16]

which groups spines into three basic categories—thin, mushroom and stubby spines—and an

additional category—filopodia. However, it has also been argued that the large diversity of

spine sizes reflects a continuum of morphologies rather than the existence of discrete groups

[3]. Automatic clustering techniques over 2D spine representations have recently been used

[17,18] to address this argument with the aim of avoiding the subjectivity and bias involved in

manual analysis. Both studies consider that some spines cannot be clearly assigned to one of

Peters and Kaiserman-Abramof’s classes because these spines are transitions between shapes.

However, the geometry of spines can be more accurately determined by means of 3D recon-

structions, since many morphological features are not taken into account in 2D.

Ideally, 3D reconstruction using electron microscopy serial sections is the gold standard to

obtain accurate estimations of the geometry of spines. However, a relatively low number of

spines (at best in the order of a few hundred) can be reconstructed in 3D using electron

microscopy in a reasonable time period, and these reconstructions can only be carried out in

small segments of the dendritic arbor of the neurons. Furthermore, the quality of electron

microscopy when using human brain tissue is usually suboptimal due to technical constraints.

On the contrary, fluorescent labeling of neurons and the use of high power reconstruction

with confocal microscopy (or other techniques) allow the visualization of thousands of spines

with high quality along the dendritic arbor (apical and basal dendrites). Thus, in this study, we

used a large, quantitative database of completely 3D-reconstructed spines (7,916) of human

cortical pyramidal neurons—using intracellular injections of Lucifer Yellow in fixed tissue—to

further characterize spine geometry [15].

3D morphology-based clustering and simulation of dendritic spines
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Here we proposed a new set of 54 features. They were selected so as to unambiguously

approximate the 3D shape of spines, enabling 3D simulation of spines. A probabilistic cluster-

ing grouped the 3D reconstructed human spines according to the selected set of morphology-

based features. The best number of groups for probabilistic clustering based on the Bayesian

information criterion was six groups of human spines. The interpretation of the clusters in

terms of their most discriminative characteristics relied on the rules generated automatically

by a rule induction algorithm. Since previous studies have shown that there are selective

changes in dendritic and spine parameters with aging and dendritic compartments [15,19–

21], we also explored the distributions of the groups according to dendritic compartment, age

and distance from soma to further characterize possible variations according to these parame-

ters. Finally, we present a stochastic method designed to simulate biologically feasible spines

according to the probabilities defined by the clustering model. We introduce a procedure to

shape simulated spines generating their 3D representations. To the best of our knowledge, this

is the first attempt to fully characterize, model and simulate 3D spines.

Results

Clustering of spines into six different groups according to a selected set of

geometrical features

We used a set of 7,916 3D reconstructed individual spines along the apical and basal dendrites

of layer III pyramidal neurons in the cingulate cortex of two individuals (aged 40 [C40] and 85

[C85] years) (Fig 1). For each individual spine, a particular threshold was selected to constitute

a solid surface that exactly matched the contour of each spine. In many cases, it was necessary

to use several surfaces of different intensity thresholds to capture the complete morphology of

a spine [15]. In such cases, spines were usually fragmented or detached from their parent den-

drite (Fig 2A and 2B) due to the diffraction limitation of confocal microscopy. Therefore, they

had to be repaired by means of a novel semi-supervised mesh processing algorithm (see Mate-

rials and Methods) which generated a new dataset of corrected spines. Those spines that were

extremely fragmented, far removed from the dendrite or significantly deferred from their orig-

inal shape were discarded. As a result, the original set of 7,916 spines yielded 7,297 (92.18%)

spines. The number and percentage of spines after repair by their dendritic compartment and

age can be found as S1 Table. For the repair process, the insertion point of each spine was man-

ually marked, approximately at the center of the created spine surface side that was in contact

with the dendritic shaft. In those cases where the created spine surface did not reach the den-

dritic shaft, the insertion point was placed directly on the dendritic shaft where the spine

emerged from the shaft, while rotating the image in 3D (Fig 1G). The insertion point was use-

ful for repairing the detached spines and computing a multiresolutional Reeb graph for feature

extraction.

The characterization of spines was addressed by dividing the surface of the spine into

regions according to a multiresolutional Reeb graph (Fig 2C–2F and Materials and Methods).

Thus, regions provided local information on the spine topology while the combination of all

regions gave global details of the morphology. Major morphological aspects like length, width,

size or curvature were measured for each region to build a set of 36 spine features (see Materi-

als and methods). This set was complemented with 18 features, like growth direction for exam-

ple. These features were included to achieve an unambiguous representation of the spine

morphology. The complete set of 54 features unambiguously describes the position and orien-

tation of all the ellipses that characterize the geometry of a spine. The software to compute the

features can be found at https://github.com/ComputationalIntelligenceGroup/3DSpineMFE.

3D morphology-based clustering and simulation of dendritic spines
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To find groups of spines, we applied a model-based clustering approach which assigned

spines to six clusters according to the Bayesian information criterion (BIC) (Fig 3A and Mate-

rials and Methods). Our approach, based on probabilistic clustering, assigned a probability dis-

tribution (p1,. . .,p6) of belonging to each of the six clusters to each spine, where pi is the

Fig 1. 3D reconstructions of human dendritic spines. (A) Confocal microscopy z-projection image showing a

horizontally projecting basal dendrite of an intracellular injected layer III pyramidal neuron of the C40 human

cingulate cortex. (B) Three-dimensional reconstruction of the complete morphology of each spine shown in (A). (C)

Estimation of the spine volume values shown in (B) by color codes (blue-white: 0.0–0.8 μm3). (D-I) Higher

magnification images of a dendritic segment shown in A-C to illustrate the three-dimensional triangular mesh (I)

obtained for each individual spine. Scale bar in panel I corresponds to: 4.5 μm in panels A-C; 2.5 μm in panels D-F and

1 μm in panels G-I.

https://doi.org/10.1371/journal.pcbi.1006221.g001

3D morphology-based clustering and simulation of dendritic spines
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probability of belonging to cluster (pi 2 [0,1],∑ipi = 1). Furthermore, we counted the number

of spines whose maximum probability, p� = max{p1,. . .,p6}, was lower than a given threshold

(Table 1). We found that the membership probability of most of the spines was greater than

0.99 and clearly belonged to a cluster, whereas a very small number were more scattered and,

consequently, their membership was not so clear. Therefore, we can conclude that with this set

of features most of spines had very high membership probabilities.

Cluster interpretation and visualization

To gain a deeper insight into the characterization of each group unveiled by the probabilistic

clustering, we identified the most representative features for each cluster. The process was

based on the generation of classification rules according to the RIPPER algorithm (see Materi-

als and Methods). Each spine was attributed to its most probable cluster. Then, the RIPPER

algorithm generated discriminative rules for each cluster, turning the problem into a binary

supervised classification problem which pitched each cluster label against the rest. We forced

the algorithm to generate a unique rule in order to improve our understanding of the differ-

ences between clusters. However, a single rule cannot be regarded as enough to characterize all

the spines within a cluster because it is unable to capture all the relations between the variables

defined by the model-based clustering. The result was that each cluster was characterized by

only one, two or three observable features (Fig 4). The discriminative rules are available in S1

Fig 2. Spine repair process and multiresolutional Reeb graph computation. Spines are colored with a gradient

whereby the closest points to the insertion point were colored green and the furthest points were colored purple. (A)

Example of a fragmented spine. The fragmentation problem is solved by applying the closing morphological operator,

and the spine is completely connected. (B) Example of the reconstruction of a spine detached from its dendritic shaft.

The spine was oriented so as to align the insertion point and its closest vertex with the z-axis. The gap between the

spine and the dendritic shaft is filled by means of an iterative process starting from the base of the spine. This resulted

in the growth of the missing neck. (C) Geodesic distance computation from the insertion point. The black line denotes

the shortest path from the insertion point to an arbitrary point on the surface of the spine. (D) The domain of the

geodesic distance on the surface of the spine was divided into seven regions. (E) Regions and segments between curves

provide enough information to reconstruct an approximation of the surface. Features extracted from these regions and

segments must conform a complete set of spine topology to provide for a proper computer simulation. (F) Curves were

approximated by the best fitting plane resulting in ellipses that improve the characterization and interpretation of the

geometry of the spine. Features were computed on this final 3D representation.

https://doi.org/10.1371/journal.pcbi.1006221.g002

3D morphology-based clustering and simulation of dendritic spines
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Text. An example of representative spines of the six clusters is shown in Fig 3B. The rules gen-

erated by RIPPER when it comes to classify the spines according to their cluster label, with

their accuracy between parentheses, may be summarized as:

• Cluster 1: The height of the spines is extremely low in region 2. (92.94%).

• Cluster 2: Spines with a low curvature across regions 4, 5 and 6 and a small volume in region

7 (80.90%).

• Cluster 3: These spines have a medium-small volume, a low curvature across regions 2 and 3

and the area of their 6th ellipse area may not be more than double or less than half of the

area of their 4th ellipse (75.89%).

• Cluster 4: Their volume is high in region 4 and the 6th ellipse has a smaller area than the 4th

(82.16%).

• Cluster 5: Groups spines whose height in region 2 is high and whose 6th ellipse has an area

that is almost equal to or greater than that of the 4th region (81.95%).

• Cluster 6: Contains the spines with a large volume in region 7 (70.68%).

The diversity of morphologies within a cluster was estimated by computing the total vari-

ance for each cluster. Fig 3D shows that Cluster 2 has the lowest total variance, denoting simi-

larity among its spines, whereas variance in Cluster 6 has the highest total variance, suggesting

more heterogeneity.

To improve cluster visualization and interpretation, the distances between the membership

probabilities (p1,. . .,p6) of the spines in a 6D space were projected to 2D according to multidi-

mensional scaling (see Fig 3C and Materials and Methods). Spines were colored in line with

their probability of belonging to each cluster. Accordingly, “intermediate” spines whose mem-

bership probabilities were distributed evenly across several clusters have a mixture of colors. In

this representation, we find that most of the points are clearly assigned to a cluster, as

Fig 3. Model-based clustering representation and interpretation. (A) Graph showing the resulting BIC values depending on the number of

clusters. Results are shown in a range from two to ten clusters. The model that achieved the highest BIC value had six clusters. (B) Representative

examples of dendritic spines with a p� = 1 (highest membership probability) from the six different clusters. (C) 2D projection of the 6D

probability distributions representing the membership probability of each spine to each cluster according to classical multidimensional scaling.

Spines were colored combining cluster colors according to their probabilities of membership to each cluster. (D) The absolute value of the

logarithm of the total variance for each cluster, i.e., |log10det(Σi)|, where Σi is the variance-covariance matrix of cluster i. It is a value that

summarizes the heterogeneity of morphologies within a cluster.

https://doi.org/10.1371/journal.pcbi.1006221.g003

Table 1. Number of spines whose maximum probability p� of belonging to a cluster is greater than a threshold.

Prob./Cl. Cluster 1 (1,025) Cluster 2 (1,588) Cluster 3 (1,273) Cluster 4 (1,454) Cluster 5 (1,264) Cluster 6 (693)

0.99 953 1464 1110 1289 1155 648

0.9 995 1558 1229 1404 1226 679

0.8 1008 1575 1248 1425 1244 682

0.7 1013 1581 1257 1441 1254 687

0.6 1016 1585 1268 1448 1260 690

0.5 1025 1588 1273 1454 1264 693

The total number of spines for each cluster is specified between parentheses. Column 1 establishes a threshold probability. Each cell denotes the number of spines that

belong to its column cluster with a probability greater than is indicated by its row. For example, 953 spines out of the 1,025 grouped in Cluster 1 had a maximum

probability p� greater than 0.99.

https://doi.org/10.1371/journal.pcbi.1006221.t001

3D morphology-based clustering and simulation of dendritic spines
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suggested by the results reported in Table 1. Clusters 1 and 6 are outstanding examples of a

clearly defined cluster, since they are quite isolated and, consequently, easy to discriminate

from the other clusters. However, clusters like 3 and 4 are quite closely related. This tallies with

the results reported in Table 1, where the clusters identified as being clearly separate had a

higher threshold than highly related clusters that needed a lower threshold for all their spines

to be crisply assigned. To quantify the distance of the points observed by multidimensional

scaling, we measured the overlap between clusters (see Materials and Methods). Note that

clearly defined clusters should not overlap. The results reported in S2 Table support the inter-

pretation of multidimensional scaling. By selecting p� of each spine, the spines can be crisply

assigned to a unique cluster yielding the distribution shown in Fig 5A. This bar chart repre-

sents the percentage of spines that belong to each cluster.

Distribution of clusters by dendritic compartment, age and distance from

soma

To gain a deeper insight, we analyzed how it changes the cluster distribution of the whole pop-

ulation of spines (Fig 5A) when a dendritic compartment (apical/basal), an age (40/85) or a

Fig 4. Graphical representations of the main features that characterize each cluster of spines. Representative examples of the spines of each cluster have

been rescaled to improve the visualization of their characteristics. The actual proportions between spines are shown in Fig 3B. The correspondences

between spines and clusters are: (A) Cluster 1, (B) Cluster 2, (C) Cluster 3, (D) Cluster 4, (E) Cluster 5 and (F) Cluster 6.

https://doi.org/10.1371/journal.pcbi.1006221.g004

3D morphology-based clustering and simulation of dendritic spines
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Fig 5. Bar charts showing the distribution of spines by cluster according to maximum probability p�. (A) Distribution of spines

into the six clusters. (B) Relative frequency distribution of clusters for apical (left) and basal (right) spines. (C) Relative frequency

distribution of clusters for C40 (left) and C85 (right) spines. (D) Relative frequency distribution of clusters for the combination of

dendritic compartment and age, apical C40 (left end), apical C85 (center left), basal C40 (center right) and basal C85 (right end).

Horizontal lines in (B), (C) and (D) denote the heights shown in (A). (E) Bar chart showing the distribution of spines belonging to

each of the six clusters according to distance from soma. Horizontal lines denote the percentage of spines in each cluster (A). Spines

were grouped into intervals of 50 μm to improve visualization.

https://doi.org/10.1371/journal.pcbi.1006221.g005

3D morphology-based clustering and simulation of dendritic spines
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combination of both (Fig 5B–5D) is selected. The study of the cluster distribution of the spines

according to their dendritic compartment unveiled that the proportion of spines in Clusters 3,

5 and 6 increase for apical dendrites and diminish for basal dendrites compared with those

observed in Fig 5A, whereas the major increment for basal dendrites and decrement for apical

dendrites is yielded in Cluster 1. In order to evaluate these differences, we used χ2 hypothesis

testing, that is, we tested whether the cluster distribution is independent of the dendritic com-

partment (null hypothesis H0). The hypothesis test returned a p-value lower than 3.80 × 10−34

thereby the null hypothesis H0 was rejected.

The same process as applied for dendritic compartment was repeated for age. Fig 5C shows

that Cluster 2 is overrepresented in C40 and Clusters 4 and 6 in C85. On the contrary, the

major decreases occur in Cluster 2 in C85 and Clusters 4 and 6 in C40. To test if cluster distri-

bution is independent of age, we tested the hypothesis again. Results rejected the null hypothe-

sis (the p-value was lower than 3.73 × 10−06). Furthermore, we run the clustering algorithm for

each subject (C40 and C85) to study their distribution independently. As a result, six clusters

emerged from C40 spines mostly matching those obtained for the complete population of

spines and an additional one of 36 spines that only grouped spines from Clusters 5 and 6. Clus-

tering of C85 spines generated five clusters showing similar results to those achieved for the

global population but combining spines from Cluster 2 with Cluster 4 in a unique cluster and

tending to include some spines of original Cluster 6 into Cluster 5.

We then tested the cluster distribution and the combination of dendritic compartment and

age for independence (Fig 5D). Fig 5D shows that there is an increase of Clusters 3 and 5 for

C40 apical dendrites; Clusters 3, 5 and 6 for C85 apical dendrites; Clusters 1 and 2 for C40

basal dendrites and Clusters 1 and 4 for C85 basal dendrites with respect to the distribution

observed for the whole population of spines. Additionally, from Fig 5D it can be observed that

Clusters 1 and 4 are underrepresented in C40 apical dendrites; Clusters 1 and 2 in C85 apical

dendrites; Clusters 5 and 6 in C40 basal dendrites and Clusters 2, 3 and 4 in C85 basal den-

drites. The null hypothesis was rejected (p-value� 4.11 × 10−36). Hence we can reject indepen-

dence between cluster distribution and dendritic compartment combined with age.

In spite of the fact that the null hypothesis was rejected for all the above cases, Fig 5B–5D

show that the discrepancies in the distributions are confined to only a few clusters and are not

evenly spread. With the aim of pinpointing those clusters that exhibit significant differences,

each one was analyzed individually. A Pearson’s χ2 test was performed cluster by cluster to

check if the proportion of spines in each individual cluster was independent of the dendritic

compartment, age and combination of both. The outcome of the tests is shown in Table 2.

Results confirm that only some clusters vary significantly depending on dendritic compart-

ment, age or combination of both and indicate how strongly the hypothesis was rejected for

each cluster. An example can be found for age where the null hypothesis was only rejected for

Clusters 2, 4 and 6, showing that they are the only clusters whose distribution varies signifi-

cantly with age.

Table 2. Results for Pearson’s χ2 test checking if the distribution of each cluster is independent of its dendritic compartment, age and combination of both.

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6

Dendritic compartment ��� �� ��� ��

Age � � ��

Combination ��� � � � ��� ���

The � symbol denotes that the resulting p-value is lower than 0.05 and the null hypothesis is rejected, �� denotes p-value < 0.001 and ��� denotes p-value < 0.0001.

https://doi.org/10.1371/journal.pcbi.1006221.t002

3D morphology-based clustering and simulation of dendritic spines
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Furthermore, we evaluated the cluster distribution according to the distance from soma

(Fig 5E). The number of spines was categorized in 50 μm long sections, from 0 μm (the begin-

ning of the dendrite) to 300 μm. A χ2 hypothesis test was applied in order to test the indepen-

dence between cluster distribution and distance from soma. The outcome rejected the null

hypothesis H0 (p-value� 8.00 × 10−23). The number of spines assigned to each section is speci-

fied in S3 Table. Briefly, Fig 5E shows that there is a predominance of Clusters 1 and 2 at proxi-

mal distances (0–50 μm) whereas Clusters 1 and 4 show a higher percentage than expected at

longer distances.

Three-dimensional simulation of spines

Model-based clustering describes the probability distributions governing each cluster. Given a

cluster, a spine is simulated sampling the values for the 54 features from its probability distri-

bution (see Materials and Methods). This set of features unambiguously specifies the position

and orientation of ellipses that define the skeleton of a simulated spine (Fig 6A). The simulated

spine is represented in 3D by surfacing the skeleton (Fig 6B). However, simulated spines have

an artificial appearance because the regions delimited by the ellipses are clearly distinguishable

between them (Fig 6C). A more accurate morphology for the simulated spine is generated by

smoothing the surface (Fig 6D). Examples of simulations of each cluster can be found in Fig

6E. R code, model and dataset to perform clustering and simulation of dendritic spines can be

downloaded from https://github.com/sergioluengosanchez/spineSimulation.

To be useful for future research, simulated spines must be geometrically equivalent to real

spines. Thus, simulated and real must be indistinguishable. To test for equivalence, we state a

supervised classification problem within each cluster, where the possible labels are “simulated”

vs. “real”. Hence, if both groups were indistinguishable, a classifier would perform badly, hav-

ing a classification accuracy of around 50%. As a result we found that both groups of spines are

almost indistinguishable (accuracy being around 60%), with the exception of cluster 1 (80%),

where the size of simulated spines is usually somewhat larger than real spines.

Discussion

This study illustrates the geometrical clustering results from over 7,000 complete manual 3D

reconstructions of human cortical pyramidal neuron spines. Specifically, we uncovered six dif-

ferent classes of human spines according to a particular set of features. Additionally, we found

that particular clusters were predominant in different dendritic compartments, ages and dis-

tances from soma. Furthermore, we created 3D virtual representations of spines that matched

the morphological definitions of each cluster. To the best of our knowledge, this is the first

time that such a large dataset of individual manually 3D reconstructed spines from identified

human pyramidal neurons is used to automatically generate objective morphological clusters

with a probabilistic model.

Technically, serial electron microscopy is the technique of choice to obtain highly accurate

measurements of the dendritic spine structure. However, it is very time-consuming and diffi-

cult, which makes it challenging to obtain large numbers of measurements. Even using high

throughput 3D reconstruction of identified dendritic spines by means of automatic electron

microscope techniques such as FIB/SEM technology (combined use of focused ion beam mill-

ing [FIB] and scanning electron microscopy [SEM]), the number of reconstructed spines is rel-

atively low. For example, FIB/SEM technology has permitted the full 3D reconstruction of up

to 248 spines and their synaptic inputs in the adult-generated granule cells in mice [22], which

represents a major achievement in the field. Light microscopic techniques, although limited by

the lower level of resolution, remain the method of choice to obtain large-scale spatial
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Fig 6. Simulation of 3D dendritic spines. (A) Skeleton built from the set of features computed according to the multiresolution Reeb graph. (B) Generation of the

surface between two ellipses through the triangulation of the region. (C) Three-dimensional representation of a spine. Once all the regions of the spine have been

triangulated, the spine is a closed mesh used to visualize an artificial spine. (D) Improved spine representation. Loop’s subdivision algorithm yields a smoother and

more accurate version of the artificial spine. (E) Examples of simulated spines for each cluster.

https://doi.org/10.1371/journal.pcbi.1006221.g006

3D morphology-based clustering and simulation of dendritic spines

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006221 June 13, 2018 12 / 22

https://doi.org/10.1371/journal.pcbi.1006221.g006
https://doi.org/10.1371/journal.pcbi.1006221


information regarding the number and distribution of dendritic spines along the dendrites (in

the order of several thousands of spines). Nevertheless, light microscopic studies normally esti-

mate dendritic spine volumes from measurement of the spine head volumes, whereas spine

necks are usually not included, due to the lack of software tools to reconstruct these structures

accurately and because some of the spine necks have spatial dimensions of around 50–200 nm

and, therefore, are not resolvable by confocal microscopy. Moreover, as discussed by Tønnesen

and Nägerl [14], image projection artifacts and limited spatial resolution mask short spine

necks, leading to the false identification of stubby spines. In addition, it is difficult to distin-

guish the border between the head and the neck in many cases. Thus, in the present study, we

used 3D reconstructed dendritic spine morphology using commercially available module soft-

ware (Imaris surface), which allowed us to create our own protocol to accurately represent the

morphology of the spine within the limits of light microscopy (see [15]).

Model-based clustering methods used in this study yield six clusters based on their BIC

value (see Fig 3A). This criterion resulted in high cluster membership probabilities for this set

of features. These included measurements of major morphological aspects like length, width

or size of the spine but also other aspects such as curvature. Thus, these and previous results

[3,15], where only their volume and length were measured, are not comparable.

Interestingly, we observed that there are particular clusters of spines that are proportionally

highly represented in a particular dendritic compartment/age combination. Specifically, basal

dendrites contained a higher proportion of the small Cluster 1 spines (Fig 3B), whereas apical

dendrites contained a higher proportion of the medium/large Clusters 3, 5 and 6 spines. These

differences would imply that their functional properties should be expected to be different in

the two dendritic compartments [2]. Regarding individuals, Cluster 2 spines accounted for a

higher percentage in the younger individual, whereas Clusters 4 and 6 of bigger spines had

higher values than the mean percentage in the older individual. Since small spines have been

reported to be preferential sites for long-term potentiation induction and large spines might

represent physical traces of long-term memory [9,13], the results suggest that the younger indi-

vidual has a higher potential for plasticity than in the aged case. The dendritic compartment/

age combination results also agreed with our previously reported study [15] that found that

apical dendrites have longer spines than basal dendrites, and younger basal dendrites are sig-

nificantly smaller than aged basal dendrites. For instance, small and short spines of aged basal

dendrites and long spines of apical dendrites were lost. Regarding the distance from soma,

there is a higher predominance of the small Clusters 1 and 2 spines than expected at proximal

distances (0–50μm) and the small Cluster 1 spines at distal distances. Also, distal distances

showed a higher percentage of the medium-sized Cluster 4 spines than expected. Since varia-

tions in spine geometry reflect different functional properties of the spine, this particular dis-

tribution of spines might be related to the morphofunctional compartmentalization of the

dendrites along the length of the dendritic pyramidal neurons. For example, it has been

reported that different domains of the basal dendritic arbors of pyramidal cells have different

properties with respect to afferent connectivity, plasticity and integration rules [15,19,23–26].

Thus, these results may be a reflection of a functional dendritic organization based on spine

geometry.

Using the technique of model-based clustering described in this study, we were able to sim-

ulate accurate spines from human pyramidal neurons. This is important for three main rea-

sons. First, it is not necessary to store large volumes of data because all the information is

summarized in the mathematical model. Second, spines are known to be dynamic structures

(see [27] for a recent review), and changes in spine morphology have important functional

implications potentially affecting not only the storage and integration of excitatory inputs in

pyramidal neurons but also mediating evoked and experience-dependent synaptic plasticity.

3D morphology-based clustering and simulation of dendritic spines
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This, in turn, has major repercussions on cognition and memory [13,28–32]. Thus, it is neces-

sary to link the structural data with theoretical studies and physiological data on spines in

order to interpret and make the geometrical data on spines more meaningful. Functional

modeling of spines is commonly carried out according to their values of surface area, spine

maximum diameter, spine neck diameter, spine length, and spine neck length. Since each clus-

ter contains a spine population with a range of morphological features, it is necessary to model

all of these morphological variations within each cluster in order to compare the possible func-

tional differences between the clusters found in the present study. Third, one of the major

goals in neuroscience is to simulate human brain neuronal circuitry based on data-driven

models because ethical limitations prevent all of the necessary datasets from being acquired

directly from human brains. Therefore, the implementation of this mathematical model of

spines of human pyramidal cells in current models of pyramidal neurons is a potentially useful

tool for translating neuronal circuitry components from experimental animals to human brain

circuits. The simulation of the spines in this study represents a mathematical model that could

be implemented in pyramidal cell models [33] in order to present the data in a form that can

be used to reason, make predictions and suggest new hypotheses of the functional organization

of the pyramidal neurons. Finally, spine heads and necks of human pyramidal cells are signifi-

cantly larger in terms of their area and longer, respectively, than mouse spines [34]. Therefore,

it would be interesting to compare human and non-human spines using the present model-

based clustering to ascertain whether the clusters that appear are the same or different in other

species, or whether there are differences between different cortical areas.

Materials and methods

Ethics statement

Brain samples were obtained from the Institute of Neuropathology Brain Bank, a branch of the

HUB-ICO-IDIBELL Biobank and member of the Spanish Biobank network (RETIC Biobank)

of the Institute of Health Carlos III, following the guidelines of Spanish legislation (real

Decreto 1716/2011) and the approval of the local ethics committee, and in accordance with

recently published criteria for sample quality (PMID: 25113170).

Tissue preparation

A set of 7,916 individually 3D reconstructed spines from layer III pyramidal neurons from the

cingular cortex of two human males (aged 40 [C40] and 85 [C85]) were used for analyses.

These cases were used as controls in a previous study unrelated to the present investigation

that was dealing with Alzheimer’s disease [35]. The cause of death was traffic accident (case

C40) and pneumonia plus interstitial pneumonitis (aged case, C85). The tissue (kindly sup-

plied by Dr I. Ferrer, Instituto de Neuropatologı́a, Servicio de Anatomı́a Patológica, IDIBELL--

Hospital Universitario de Bellvitge, Barcelona, Spain) was obtained at autopsy (2–3 h post-

mortem). The brains were immediately immersed in cold 4% paraformaldehyde in 0.1 M

phosphate buffer, pH 7.4 (PB) and sectioned into 1.5-cm-thick coronal slices. Small blocks of

the cortex (15 × 10 × 10 mm) were then transferred to a second solution of 4% paraformalde-

hyde in PB for 24 h at 4˚C. After fixation, vibratome sections (250 μm) from the anterior cin-

gular gyri (Brodmann’s area 24;[36]) were obtained with a Vibratome and labelled with 4,6

diamino-2-phenylindole (DAPI; Sigma, St Louis, MO) to identify cell bodies. Pyramidal cells

were then individually injected with Lucifer Yellow (LY; 8% in 0.1 M Tris buffer, pH 7.4), in

cytoarchitectonically identified layer III of the anterior cingular gyrus. LY was applied to

each injected cell by continuous current until the distal tips of each cell fluoresced brightly,

indicating that the dendrites were completely filled and ensuring that the fluorescence did not
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diminish at a distance from the soma (for a detailed methodology of the cell injections, see

[37–39]). Apical and basal dendrites were then scanned at high magnification by confocal

microscopy and reconstructed in three dimensions using a methodology previously described

in detail [15]. Sections were imaged with a Leica TCS 4D confocal scanning laser attached to a

Leitz DMIRB fluorescence microscope. Fluorescent labeling profiles were imaged, using an

excitation wavelength of 491 nm to visualize Alexa fluor 488. Consecutive stacks of images

(3 ± 0.6 stacks per dendrite; 52 ± 17 images) were acquired at high magnification (×63 glycerol;

voxel size, 0.075 × 0.075 × 0.28 μm3) to capture the full dendritic depth, length, and width of

basal dendrites, each originating from a different pyramidal neuron (10 per case). The voxel

size was calculated to acquire images at the highest resolution possible for the microscope

which made it possible to capture the traditional diffraction limits of fluorescence microscopy

(approximately 200 nanometers). Regarding apical dendrites, the main apical dendrite was

scanned, at a distance of 100 μm from the soma up to 200 μm (8 dendrites per case). Thus, no

apical dendritic tufts were included in the analyses. As a result, a dataset containing 7,916 3D

reconstructed individual spines along the apical and basal dendrites was built (Fig 1).

Repairing spines

We addressed the task of repairing spines by means of a semi-automatic mesh processing algo-

rithm (Fig 2A). The procedure starts by identifying fragmented spines. A spine is fragmented

if there is no path between every pair of vertices on the surface of the 3D mesh, and all the ver-

tices belong to a closed mesh. If this is the case, fragmentation is repaired by applying a closing

morphological operator to each spine individually. This operator requires a binary image as

input, and therefore 3D meshes are voxelized [40]. As a result of applying the closing operator

to each voxel of the volumetric spine using a sphere as a structuring element, fragments are

joined to form a single body. The marching cubes algorithm [41] recovers the mesh represen-

tation from the volumetric image of the repaired spine.

The repair process was continued by connecting spines to dendrites by means of spine path

reconstruction (Fig 2B). Several points were created to attach the spine to the dendrite, using

the measurement point tool in Imaris software. These are considered to be the spine insertion

points. Spine reconstruction was applied to any spines whose insertion point was not on the

surface of the mesh. This step in the repair process consists of filling the gap between the clos-

est vertex of the spine to the insertion point and the insertion point according to an iterative

process that grew the missing base of the spine. Specifically, each detached spine was oriented

so that both points bounding the gap were aligned with the z-axis. Then, the mesh of each

spine was voxelized. Each voxel slice perpendicular to the z-axis between the spine and the

insertion point was filled with the result of applying a 2D Gaussian filter to the slice immedi-

ately above. The mesh representation of the completely repaired spine was recovered from the

volumetric representation by the marching cubes algorithm. Finally, we smoothed the triangu-

lar mesh with a curvature flow technique [42]. As result of this process a new dataset of cor-

rected spines is obtained.

Feature extraction

Given 3D meshes representing the surface of the spines, our goal was to extract a set of mor-

phological features providing enough information to reconstruct an approximation of their

original shapes. Our work was partially inspired by the concept of multiresolutional Reeb

graph (MRG) [43] and its particular implementation in [44], a technique that constructs a

graph from a 3D geometric model to describe its topology (Fig 2C–2F). This approach parti-

tions a triangular mesh into regions based on the value of a function μ(�). This function should
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preferably be the geodesic distance, i.e., the shortest path between two points of the mesh

along the surface because it is invariant to translation and rotation and is robust against mesh

simplification and subdivision. We computed geodesic distance from the insertion point

of the spine to each vertex of the mesh (Fig 2C). The domain of μ(�) was divided into K = 7

equal length intervals, where ri indicates the beginning and the end of each region such that

r0 ¼ 0; 1

K a
� �

; r1 ¼
1

K a; 2

K a
� �

; . . . ; rK� 1 ¼
K� 1

K a; a
� �

, where α is max μ(�). This means that each of

the vertices in the triangular mesh was allocated to a particular region depending on its evalua-

tion function μ(�) (Fig 2D–2E). At each region i, the curves defining the top and bottom

bounds were assumed to be ellipses contained in the best fitting plane computed using princi-

pal component analysis. We denote Ti and Bi the top and the bottom ellipses of each region i
respectively. Thus, each region provided a local description of the morphology while the com-

bination of the information of all regions represented a global characterization of the spine.

Representing a spine as a set of ellipses allows us to capture its most relevant morphological

aspects while spurious details are avoided.

The proposed set of 54 features must unambiguously describe the placement of the ellipses.

To achieve this, at each region i a set of features was computed according to their ellipses Ti

and Bi. Since the surface was required to be continuous coherence constraints were imposed

on adjacent regions: 8i; 1 < i < K þ 1;BR
i ¼ TR

i� 1
;Br

i ¼ Tr
i� 1

. Thus, to satisfy the previous con-

dition the following features were considered to characterize the spine (Fig 7):

Height (|hi|)): This variable measures the length of the vector hi between the centroids of

two consecutive ellipses. The higher the value of this variable, the longer the spine in that

region.

Length of major axis of ellipse ðBR
i Þ: Low values mean that spine is thin around BR

i .

Length of minor axis of ellipse ðBr
i Þ: It gives information about the squishiness of the spine

when it is compared with BR
i . If BR

i and Br
i have the same values the ellipse is in fact a circle

while when Br
i gets smaller the ellipse becomes more squished.

Ratio between sections (φij): It is the ratio between the area of the ellipses j and i, i.e.,

φij ¼
pBR

j Br
j

pBR
i Br

i
. If it is higher than 1 it means that ellipse j is bigger than ellipse i. When values are

between 0 and 1 it means that ellipse i is bigger than ellipse j. It can be interpreted as the wid-

ening or narrowing along the spine. We compute φ24, φ26 and φ46.

Growing direction of the spine: The vector between ellipse centroids hi defines a direction

which can be expressed in spherical coordinates, i.e., an azimuth angle ϕi and an elevation

angle θi.

• cos(ϕi): Cosine of the azimuth or azimuthal angle, obtained as the angle between the vectors

defined by three consecutive ellipses. The cosine is computed from the dot product:

cosð�iÞ ¼
hi�hiþ1

jhi jjhiþ1j
. It measures the curvature of the spine.

• θi: The polar angle, also called colatitude in the spherical coordinate system. It is needed for

simulation.

Ellipse direction: It is the direction of the perpendicular vector to ellipse Bi. It is obtained

from
BR

i
jBR

i j
�

Br
i
jBr

i j
(vectorial product). It is expressed in spherical coordinates as:

• Θi: The polar angle or colatitude in spherical coordinate system. It is the inclination of the

vector perpendicular to the ellipse with respect to Z
!

axis. If it is 0 then the spine grows hori-

zontally at that point. When it is p

2
, it means that the spine grows completely vertical at that

point. It is needed for simulation.
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• Fi: The azimuth or azimuthal angle. It indicates if the spine is growing to the right, left, for-

ward or backward as it was previously explained for the growing direction but in this case it

is computed for the perpendicular vector to the ellipse. It is needed for simulation.

Volume (V): It is the total volume of the spine.

Volume of each region (Vi): It an approximation of the volume between two consecutive

ellipses. It is computed from the convex hull of Ti and Bi.

By generating a surface between each pair of ellipses, we get an approximation of the shape

of the spine (Fig 6B and 6C). Surfaces between regions can be computed by the method that

we propose in the spine simulation section under Materials and Methods.

Model-based clustering

Model-based clustering [45] is a probabilistic approach that assumes that data were generated

by a statistical model. Its goal is to recover that model from the observed data. Finite mixture

models provide a formal setting for model-based clustering. In finite mixture models, each

cluster is represented by a probability distribution. The linear superposition of such distribu-

tions generates the finite mixture M. The fit of the model to the data depends on a set of

parameters that are usually optimized by means of maximum-likelihood estimation. This esti-

mation method finds the set of parameters θ that maximize the observed data likelihood, i.e.,

maxθ f(x1,. . .,xN|θ), where x1,. . .,xN are a data sample of size N. Then, we assume that the

Fig 7. Spine features description. An ellipse is defined by its centroid, major axis (TR
i� 1 ¼ BR

i ) and minor axis

(Tr
i� 1 ¼ Br

i ). These points are connected by vectors hi whose length is |hi|. From vectors hi and hi−1, θi and ϕi are

obtained. Θi and Fi are the ellipse directions of the spine.

https://doi.org/10.1371/journal.pcbi.1006221.g007
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vector of features describing the spines is distributed according to a Gaussian mixture, as it

can approximate any multivariate density given enough components [46]. Thus, the density is

f ðx1; . . . ; xN jθÞ ¼
XC

c¼1

pcN ðxjμc;ΣcÞ;

where N denotes a multivariate normal distribution with prior probability πc, mean vector μc

and variance-covariance matrix Σc, C is the total number of clusters and each cluster is denoted

by c. Thus, the goal is to get the values for the set of parameters θ = {πc,μc,Σc}c that maximize

the likelihood. This was approximated using an iterative two-step procedure called expecta-

tion-maximization algorithm [47]. To choose the most suitable number of clusters, we com-

puted the Bayesian information criterion (BIC) score [48] for different values of C. BIC is a

measure that adds a penalty to the log-likelihood of the model based on the number of model

parameters. Therefore, it is used to select the best parameterization and number of clusters by

trying to avoid the selection of overly complex models.

After the clustering process, each spine has a certain probability of belonging to each cluster

(“soft” clustering). We used mclust, a contributed R package [49], for model-based clustering

and density estimation.

Clustering interpretation tools

In order to shed light on the features that characterize each cluster, we generated classification

rules according to the RIPPER algorithm [50]. The spines were crisply assigned to a unique

cluster by selecting the most probable cluster for each spine. Then, RIPPER compared each

cluster against the others, generating discriminative rules. SMOTE [51] was applied as a pre-

processing step before running RIPPER to avoid bias and deal with the unbalanced distribu-

tion of instances arising from data splitting (one cluster versus the rest). SMOTE is a technique

for adjusting the class distribution so that the set of observations of the least represented class

is resampled. We also forced RIPPER to select a unique rule to improve the interpretability of

each cluster, highlighting its most discriminative features. We used the RIPPER implementa-

tion included in the collection of algorithms of Weka, a software for machine learning tasks

[52].

To make the clustering results graphically interpretable, we applied multidimensional scal-

ing to represent the distance of spines to clusters according to their membership probability

(Fig 3C). To achieve this goal, distances between each pair of multivariate Gaussians defined

by the clusters were calculated according to the Bhattacharyya distance [53]. Based on this

measure, we were then able to project the above distances, originally in a 6D space, onto a 2D

space using multidimensional scaling [54]. Thus, spines were placed in this space in propor-

tion to the probability of their belonging to each cluster.

Clustering aims to group similar instances and separate dissimilar instances. Therefore,

method performance depends on whether the clusters overlap with each other. Non overlap-

ping clusters are easily discovered. However, clustering algorithms have trouble separating

overlapped clusters because instances cannot be clearly assigned to clusters. Hence, overlap-

ping was understood according to [55,56] as the probability of misclassifying an instance from

cluster i in a cluster j. Thus, the probability ωj|i of misclassifying an instance of the i-th compo-

nent to the j-th component was computed as

ojji ¼ P½piN ðxjμi;ΣiÞ < pjN ðxjμj;ΣjÞjx � N ðμi;ΣiÞ�:
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Spine simulation

The simulation process aimed at achieving accurate 3D representations of spines generated by

the computer. This process is divided into two main phases.

First, we sampled new instances from the mixture model of multivariate Gaussians. As a

result of sampling, we got a dataset where each instance consisted of a vector with 54 feature

values defined by a multiresolution Reeb graph.

Second, we generated a 3D representation for each instance. From the set of features of a

sampled spine, we built a skeleton composed of the ellipses establishing the beginning and end

of regions (Fig 6A). Because all the ellipses had the same number of points, each pair of conse-

cutive ellipses was easily triangulated to obtain a closed mesh (Fig 6B and 6C). Although this

mesh is a 3D spine, ellipses are clearly distinguishable. We improved this result by smoothing

the surface with the Loop’s subdivision algorithm [57]. Thus, we obtained a more accurate 3D

representation of the spine (Fig 6D).

To objectively validate the realism of the simulated spines, we used a binary classifier, spe-

cifically the RIPPER algorithm. First, for each cluster, we sampled from the probability distri-

bution of each cluster the same number of simulated spines as real spines are. Second, we

combined these with real spines to generate a dataset for each cluster. Third, we applied the

RIPPER algorithm with ten-fold cross-validation [58] over the datasets to discriminate

between real and simulated spines. This process yields classifier accuracy, which can be

regarded as the degree of realism.
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