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Abstract

The spread of disease through human populations is complex. The characteristics of dis-

ease propagation evolve with time, as a result of a multitude of environmental and anthropic

factors, this non-stationarity is a key factor in this huge complexity. In the absence of appro-

priate external data sources, to correctly describe the disease propagation, we explore a

flexible approach, based on stochastic models for the disease dynamics, and on diffusion

processes for the parameter dynamics. Using such a diffusion process has the advantage

of not requiring a specific mathematical function for the parameter dynamics. Coupled with

particle MCMC, this approach allows us to reconstruct the time evolution of some key

parameters (average transmission rate for instance). Thus, by capturing the time-varying

nature of the different mechanisms involved in disease propagation, the epidemic can be

described. Firstly we demonstrate the efficiency of this methodology on a toy model, where

the parameters and the observation process are known. Applied then to real datasets, our

methodology is able, based solely on simple stochastic models, to reconstruct complex epi-

demics, such as flu or dengue, over long time periods. Hence we demonstrate that time-

varying parameters can improve the accuracy of model performances, and we suggest that

our methodology can be used as a first step towards a better understanding of a complex

epidemic, in situation where data is limited and/or uncertain.

Author summary

As our world becomes more and more globalized, infectious disease poses an ever-

increasing threat to human health. The multitude of environmental and behavioral fac-

tors, which account for the spread of infectious diseases, are ever-evolving and thus infec-

tious diseases propagation is complex.
In the face of this complexity, mathematical models offer valuable tools to study the

dynamics of epidemic diseases. Developing adequate statistical and mathematical tools,

that take account of the time-varying nature of the different mechanisms responsible for
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disease propagation, remains a major challenge. To take this increasingly important aspect

into consideration, we propose a flexible methodology that encompasses time-varying

aspects of the epidemic. It does this via diffusion process equations for time-varying

parameters. Considering the relative paucity of available data, our principal assertion is

that it is preferable to use this flexible framework with time-varying parameters, that

tracks epidemiological patterns, and updates the key parameters according to data, than

to use a more complex model.

Introduction

Our world constantly faces the threat of emerging and re-emerging diseases and it has been

shown that this has intensified over the past 50 years. This intensification is due, in part, to cli-

mate change, urbanization and globalization [1] meaning that infectious diseases remain a

constant and unpredictable threat to human health.

Numerous factors contribute to the propagation of an infectious disease. These include

increased human connectivity, limited availability of economic resources for adequate inter-

vention, increasing antimicrobial resistance, evolution of the dominant strains and increasing

parasite and vector resistance to the most widely used drugs and insecticides, etc. A key factor

in this huge complexity is non-stationarity [2], meaning that the characteristics of the dynam-

ical epidemiological processes evolve with time. Thus, the mechanisms of transmission are

uncertain, making it difficult to obtain quantitative predictions. One of the classic aspects of

non-stationarity, is the seasonality of epidemiological dynamics, linked to environment and

climate [3–4] but the environmental variability can shape the disease propagation in unfore-

seeable ways on small and large spatial scales [5–8]. Intervention and control may also modify

the course of an epidemic. A less well-described but equally important cause of non-stationar-

ity is linked to social cycles, e.g. school terms, religious holidays and agricultural cycles [9–13].

Research increasingly focuses on the effect of behavioral change in the presence of epidemio-

logical risk as a source of non-stationarity [14–16]. Societal responses and changing human

behavior play an important role in our connected society. Thus, during an epidemic, depend-

ing on the availability of information on the disease, people exhibit a variety of behaviors

including anxiety and social distancing that might greatly influence the course of an epidemic.

For all of the above reasons, the spread of pathogens through human populations can be

complex and hard to predict. In the face of this complexity, mathematical models offer valu-

able tools to study the dynamics of epidemic diseases, in order to synthesize information to

understand observed epidemiological patterns and to test different hypothesis on the underly-

ing key mechanisms [17]. Moreover, mathematical models play a crucial role in infectious dis-

ease prevention by assessing the impact of different control measures, e.g. vaccination

strategies [18–19].

Nonetheless, there are very few, if indeed any, cases where modelers can access all the nec-

essary information to reliably predict the course of an epidemic. This is particularly the case

when we consider the non-stationarity features of epidemics and their transient nature poses a

challenging problem for modeling. Further to this, different hypothesis must be formulated. In

the case of influenza, for example, some researchers have suggested using a quantitative rela-

tionship between climatic variables and the effective transmission rate [20]. Another recent

example illustrates non-stationarity in epidemiology. Between November 2010 and February

2011, despite a low level of population susceptibility, an unexpected third wave of infection

by the H1N1pdm09 pandemic virus was observed in the United Kingdom. Using a
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compartmental mathematical model of influenza transmission, this third wave was explained,

by a substantial increase in the transmissibility of the H1N1pdm09 virus [21]. It has been pro-

posed that this modification of the transmissibility was caused by the virus evolution with a

better adaptation to the human host, or by climatic factors, namely the very cold weather expe-

rienced in the United Kingdom at that time, or by a combination of these factors [21].

To tackle the problem of non-stationarity in epidemiology, some approaches use a linear

function to reconstruct the effective reproduction number (average number of secondary

cases per primary case, Reff). Wallinga and Teunis [22] proposed a generic method that

requires only case incidence data and the distribution of the serial interval (the time between

the onset of symptoms in a primary case and the onset of symptoms of secondary cases) to esti-

mate Reff over the course of an epidemic. This approach has been improved by numerous

authors and applied to real time estimation of Reff [23–25]. Other authors estimated using

mathematical models Reff for each season [26,27]. To calculate the time-varying infection rate

the reconstructed time series of Reff derived from the notification data can be used [28].

However, the time evolution of Reff by definition depends not only on the time evolution of

the epidemiological parameters but also on the number of susceptibles. More complex

approaches have therefore been proposed. These approaches use semi-mechanistic models

that incorporate the known compartmental structure of disease transmission but do not spec-

ify the form of the transmission rate equation that is estimated based on the data. In an early

paper, the force of infection is estimated by neuronal network or kernel regression [29]. Now

it is more common to use B-spline [30–33]. An alternative approach is to use diffusion models

driven by fractional Brownian motion to model time-varying parameter of major epidemio-

logical significance [34–36]. The models developed assign diffusion processes to the time-vary-

ing parameters embedded in a state-space framework. With the Kalman filter, the time-

evolution of some key parameters (average transmission rate, mean incubation rate, and basic

reproduction rate) were estimated during the course of the HIV/AIDS epidemics in the Paris
region [34–35]. Dureau et al. [36] generalized this approach using a Bayesian framework with

an adjusted adaptive particle Markov chain Monte Carlo algorithm (PMCMC), but only

applied to the transmission rate, for short epidemics, with application to the 2009 pandemic

flu. Very recently, an algorithm relying on robustly estimating the time-varying infection rate,

based on the method of the unknown input observers from control theory, has been proposed

[37]. Similarly, an approach for the reconstruction of time-dependent transmission rates, by

projecting onto a finite subspace, spanned by Legendre polynomials, has been introduced [38].

In our previous works [34–36], we have introduced an approach for reconstructing the

time evolution of some key parameters with just the weak hypothesis according to which they

follow a basic stochastic process. The parameter time evolution is estimated solely based on

observations of the incidence or the prevalence. Here, we propose to expand this approach to

recurrent epidemics over time periods longer than just one season. The underlying idea of this

approach is to capture unknown influences by considering time-varying parameters. As with

other semi-mechanistic approaches, the key advantage of this approach, for the parameter

dynamics, is that it is data-driven, and thus the shape of change does not need to be specified

beforehand. We applied our framework both to a toy model, where parameters and observa-

tion process are known, and to two real data sets. This allows us to demonstrate that this data-

driven approach is very effective for tackling the non-stationarity of recurrent epidemics, even

with long time series. It has other benefits too. For instance, with limited access to information,

it can capture unknown influences. By so doing, and by analyzing the parameter time evolu-

tion, this framework allows a more thorough analysis of the different influences, facilitating

their introduction in more complex models with pertinent hypotheses based on observations.
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Models with time-varying parameters

Our approach is based on three main components: an epidemiological model embedded in a

state-space framework, a diffusion process for each time-varying parameter and an up-to-date

Bayesian inference technique based on adaptive PMCMC.

The main advantage of the state-space framework is the use of two sets of equations, the

first set describes the propagation of the disease in the population and the second is for the

observation process. This allows for consideration of unknowns and uncertainty both in the

epidemiological mechanisms and in the partial observation of the disease:

(
_xðtÞ ¼ gðt; xðtÞ; y0ðtÞ; uðtÞÞ

yðtÞjxðtÞ � f ðhðxðtÞÞ; y0ðtÞÞ
ð1Þ

The first equation is for the epidemiological model, with x(t) representing the state variables

(for instance, S(t) the susceptibles, I(t) the infectious and R(t) the removed for the classical SIR

model) and θ'(t) the epidemiological parameters. The second is the observational process

defined by probabilistic law f and a reporting rate on transformation of some state variable

h(x(t)) because we may not be able to directly measure all state variables but just some or a

function of them. In these equations, y(t) are partial observations of x(t), u(t) is the process

noise describing different form of stochasticity and the observational noise is included in f. In

our applications, h(x(t)) will be the cumulative sum of new cases over the observation time

step, that is generally the quantity observed by Public Health systems.

Considering the time-varying parameters θ(t) as a subset of θ'(t), we make the assumption

that they evolve more or less randomly and do not follow a defined mathematical function. In

the absence of prior information the use of diffusion motion allows us to impose few restric-

tions on the evolution of θ(t). We consider that they follow a continuous diffusion process (a

discrete diffusion process was used in [35]):

dyðtÞ ¼ sdBðtÞ

or

dlogðyðtÞÞ ¼ sdBðtÞ

ð2Þ

where σ is the volatility of the Brownian process (dB(t)) and will be estimated during the fitting

process. The use of a Brownian process can be viewed as a weak hypothesis for the imposed

motion of θ(t) and the volatility σ being a regularized factor. Intuitively, the higher the values

of σ the larger the changes in θ(t). The logarithm transformation avoids negative values which

have no biological meaning. When prior knowledge on θ(t) is available this Brownian process

can be modified to account for a drift in (2) (see [36]).

For the time-varying parameter, we focus on the parameter of the force of infection classi-

cally defined as:

lðtÞ ¼ bðtÞ:
SðtÞ:IðtÞ

N
ð3Þ

with β(t) the transmission rate usually defined by a sinusoidal function. The control or the

behavior modification can also be taken into account:

lðtÞ ¼ bðtÞ:
ðSðtÞεSðtÞÞ:ðIðtÞεI ðtÞÞ

N
ð4Þ

εi(t) describe the clustering of the population [39,40] but can also describe a reduction in

the population due to voluntary avoidance behavior or social distancing. However due to the
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absence of structural identifiability properties [41, 42] it should be very difficult to estimate

simultaneously both β(t) and εi(t).
For model estimation we use Bayesian methods, coupling particle filter and MCMC for par-

tially observed stochastic non-linear systems [36,43] (see Methods). The implementation pro-

vided in SSM software [36] is used.

Results

Reconstructing dynamics and time-varying parameter for a toy SIRS model

We start our demonstration by showing that it is possible to reconstruct both the trajectory of

a SIRS model (SIRS stands for Susceptibles, Infectious, Removed and Susceptibles again) and

that of the sinusoidal transmission rate. In this example, the trajectory of each variable has

been simulated with a model for which all the parameters were known. Moreover we also

knew the observation process that has generated the data, a Poisson law for the incidence with

an observation rate equal to 1. Fig 1 displays the reconstructed trajectories of both the

Fig 1. Reconstruction of both the incidence (A) and the time evolution β(t) (B) for the SIRS model. In (A) the black

points are observations generated with a Poisson process with a mean equal to the incidence simulated by the model.

In (B) the black points are the true values of β(t) = β0.(1 + β1 sin(2π t/365+2πϕ)). The blue lines are the median of the

posterior, the mauve areas are the 50% Credible Intervals (CI) and the light blue areas the 95% CI. For all the figures,

the observation process is also applied to the inferred incidence trajectory. The time unit of the model is day, the initial

date is arbitrary (2000-01-09) and parameters used for the SIRS model are as follows: μ = 1/(50�365), α = 1/(7�365),γ =
1/14, β0 = 0.65, β1 = 0.4, ϕ = -0.2, ρ = 1, N = 10000, S(0) = 600, I(0) = 30. The prior and posterior distributions of the

inferred parameters are in S1 Fig.

https://doi.org/10.1371/journal.pcbi.1006211.g001
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incidence and the transmission rate highlighting the potential of the method. The parameter

estimations are in perfect agreement with the values used to generate the observations and the

estimation process has correctly converged (S1 and S2 Figs). This clearly demonstrates the fea-

sibility of accurately ascertaining the time evolution of the transmission rate and correctly esti-

mating the Reff (see Fig 2). It is worth emphasizing that the SIRS model is a complicated

example for different reasons. First, even with a constant transmission rate the SIRS model can

generate oscillations (damped oscillations, see [17,44]). Secondly, the model trajectories are

not very sensitive, a modification of ± 10% can induce minor modifications of the trajectories

Fig 2. Simulation of the SIRS model: (A) Susceptibles; (B) Infectious; (C) Time evolution of both Reff and β(t). In (A)

and (B) the black lines are the true values, the blue lines are the median of the posterior, the mauve areas are the 50%

CI and the light blue areas the 95% CI. In (A) and (B) the susceptibles and infectious trajectories with a modification of

10% of the value of S(0), I(0) and β(t) have been added to show the weak sensitivity of the SIRS model to these values.

In (C) the black line is the true values of Reff, the blue line is the median of the posterior, and the dashed lines the 95%

CI of Reff; the red dot line is the true time evolution of β(t) and the red line the median of its posterior. Model

parameters as in Fig 1: The time unit of the model is day, the initial date is arbitrary (2000-01-09) and parameters used

for the SIRS model are the following: μ = 1/(50�365),α = 1/(7�365),γ = 1/14, β0 = 0.65, β1 = 0.4, ϕ = -0.2, ρ = 1,

N = 10000, S(0) = 600, I(0) = 30.

https://doi.org/10.1371/journal.pcbi.1006211.g002
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that are inside or near the 95% CI of our inferences (Fig 2). Moreover in this example we have

used initial conditions outside the attractor of the dynamics to generate transients that appear

more realistic for real applications, but are more complex to reconstruct. The robustness of

our approach has also been tested: (i) using long time series and initial conditions near the

attractor (Fig 3A and S3A Fig); (ii) modifying the number of inferring parameters (S4–S6

Figs), for instance estimating just the volatility parameter (S7 and S8 Figs); (iii) considering the

possibility of not using the transformation log in the diffusion process (S9 and S10 Figs) and

(iv) using a true β(t) with 2 or 3 periodic components (Fig 3B and 3C and S3B and S3C Fig).

We have also explored the performance of our approach by comparing their inferences to

those of the true model. The re-estimation of the true model on its own data is displayed in

S11–S13 Figs. Table 1 presents indices of the goodness-of-fit of the true model and models

with time-varying β(t) with different number of parameters inferred. As expected, the error on

β(t) is smaller when the true equation is used (Table 1). However, regarding the estimated inci-

dence, the true model and our approach give similar results both in terms of mean and vari-

ance (Table 1). It could be argued that the price of the flexibility of our approach is a greater

variability in some of the trajectory estimations (Table 1). Nevertheless the average dynamics

are always estimated correctly.

As misspecification is an important problem (e.g. [45]) we have also compared the perfor-

mance of our approach to those of a misspecified seasonal SIRS model. We have thus used the

example of a sinusoidal β(t) with two periodic components (see Fig 3B) and computed the

indices of the goodness-of-fit of the true model with the SIRS model with 1 year sinusoidal β(t)
and with our time-varying periodic β(t). The results clearly show that our approach performed

better than the misspecified model for the three trajectories analyzed, Incidence, β and Reff
(Table 2). Once again the price of the flexibility of our approach is a greater variability in some

of the trajectory estimations. However this is preferable to a large error in the median trajecto-

ries as occurred in those observed with the misspecified model (Table 2).

Our methodology is also applicable to other more complex or simpler tasks. For instance, it

can follow the time evolution of a parameter describing the availability of susceptibles, εS(t)
(Fig 4 and S14 and S15 Figs). Fig 4 shows the accurate reconstruction of the trajectory of the

incidence and also of the trajectory of εS(t) that shifted at a given time point and decreased

slightly thereafter. This highlights once again the potential of our approach as it is never easy

to estimate a discontinuous dynamic with a continuous process (2).

Application to real datasets: Flu

In previous works, the dynamics of influenza in Israel have been analyzed using a discrete

deterministic SIRS model and weekly data from Israel’s Maccabi health maintenance organiza-

tion [20,46]. To describe the seasonality of this recurrent epidemic, the authors used a linear

model between the transmission rate and local climatic variables, daily temperature and rela-

tive humidity [20,46]. We have re-analyzed their dataset (but limited to 1998–2003 due to a

modification in the reporting) to reconstruct the time evolution of β(t). Our results (Fig 5 and

S16 Fig) clearly show the potential of our method, highlighting that the β(t) fluctuations are

more irregular and complex than a simple sinusoidal function.

Application to real datasets: Dengue

Our last example is on dengue in Cambodia. Again the idea is to relax the assumption of a

sinusoidal β(t) in a SEIR model. Monthly data from the capital Phnom Penh [47], for which

the meteorological data is available from the international airport, was used. We can accurately

describe the 12 year time series and reconstruct the time evolution of β(t) (Fig 6 and S17 Fig).
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Fig 3. Reconstruction of both the incidence (bottom panel) and the time evolution of β(t) and Reff (top panel) for a SIRS

model with the initial conditions near the attractor of the dynamics. The true β is generated by β(t) = β0.(1 + β1 sin(2π t/365
+2πϕ) + β2 sin(2πt/(3 365)+2πϕ))+ β3 sin(2πt/(0.5 365)+2πϕ)) with in (A) β1 = 0.4, β2 = 0, β3 = 0, S(0) = 911.5, I(0) = 3.5; in (B)

β1 = 0.4, β2 = 0.3, β3 = 0, S(0) = 1735, I(0) = 20; and in (C) β1 = 0.1, β2 = 0.1, β3 = 0.1, S(0) = 3365, I(0) = 3. The other

parameters used are as follows: μ = 1/(50�365),α = 1/(7�365), γ = 1/14, β0 = 0.65, ϕ = -0.2, ρ = 1, N = 10000. In both panels

blue lines are the median of the posterior, the mauve areas are the 50% CI and the light blue areas the 95% CI. In the top

panel, the red line is the reconstructed Reff, the points are the true values of Reff (red) and of β(t) (black). In the bottom panel

the black points are observations generated with a Poisson process. The prior and posterior distributions of the inferred

parameters are in S3 Fig.

https://doi.org/10.1371/journal.pcbi.1006211.g003
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Our results stress that the β(t) oscillations are more complex than a simple sinusoidal function.

Sometimes bi-modality occurs over one season. In general one observes a fast growth of β(t)
and a slow decrease. Moreover the amplitude of the β(t) varies from year to year, perhaps

depending on the fluctuations in the mosquito population and in the environment. Interest-

ingly the peak in β(t) appears 1 to 2 months before the incidence peak. This delay can be

explained by the extrinsic incubation period and might be used in a warning system.

To explain the β(t) oscillations we have explored the potential effects of local and global cli-

matic variables using wavelet decomposition [48] as one of our main underlying hypotheses is

non-stationarity. We observed very significant coherency between β(t) and climate for the

local climate for the seasonal mode (Fig 7 and S18–S20 Figs) and also for the 2–3 year compo-

nents with global climatic variable (S21 Fig). Thus, the rhythm of β(t) can be explained per-

fectly by climatic factors. Nevertheless, again mainly due to large non-stationarity, by using

solely one or two climatic variables we are able to correctly describe dengue evolution in the

short-term (Fig 7C, red area) but not over a large time period (Fig 7C, blue area). This reflects

Table 1. Comparison of goodness-of fit indices for different models and different numbers of parameters inferred. The indices are computed on Incidence, β and

Reff trajectories: RMSE: root mean square error using the median; MAPE: maximum absolute percentage error using the median; MIQR: mean inter-quartile range. The

parameter values used are in the captions of the figures. For comparison purposes we used a stochastic version of the SIRS model with sinusoidal β and for all figures the

observation process is applied to the inferred incidence trajectory.

Model Sinusoidal β Time-varying β(t) Time-varying β(t) Time-varying β(t)

Figure S11 Fig Fig 1 S4 Fig S7 Fig

# of parameters inferred 8 7 5 1

Incidence RMSE 4.18 4.14 4.13 4.12

MAPE 2.24 2.34 2.39 2.24

MIQR 1.03 0.95 1.04 1.03

β(t) RMSE 0.07 0.11 0.14 0.13

MAPE 0.29 0.48 0.52 0.50

MIQR 0.07 0.43 0.36 0.33

Reff RMSE 0.06 0.19 0.24 0.24

MAPE 0.18 0.47 0.50 0.50

MIQR 0.23 0.64 0.53 0.41

https://doi.org/10.1371/journal.pcbi.1006211.t001

Table 2. Comparison of goodness-of fit indices between a misspecified model and a model with a time-varying parameter. The reference is a sinusoidal model with 2

periodic components. The parameter values used are in the captions of Fig 3. The indices are computed on Incidence, β and Reff trajectories: RMSE: root mean square

error using the median; MAPE: maximum absolute percentage error using the median; MIQR: mean inter-quartile range. For comparison purposes we used a stochastic

version of the SIRS models with sinusoidal β and for all figures the observation process is applied to the inferred incidence trajectory.

Model Reference: Sinusoidal β with 2 periods (see Fig 3B

caption)

Sinusoidal β with 1 year period (see Fig 3A

caption)

Time-varying β (t)

(5)

# of parameters

inferred

8 including 4 for β 7 including 3 for β 5 including 1 (σ) for β

Incidence RMSE 4.80 5.21 4.83

MAPE 2.21 1.98 2.40

MIQR 0.87 1.03 0.98

β(t) RMSE 0.05 0.26 0.08

MAPE 0.22 1.43 0.27

MIQR 0.06 0.06 0.28

Reff RMSE 0.06 0.22 0.08

MAPE 0.12 0.44 0.20

MIQR 0.20 0.20 0.46

https://doi.org/10.1371/journal.pcbi.1006211.t002
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the complexity of such a disease where the ecology of the vectors, the environment, the climate,

the immune status of the human population and its behavior are all involved. This large non-

stationarity association between dengue and climatic factors has recently been demonstrated

using statistical models (dynamic generalized linear models) and data from a medium-sized

city in Colombia [49]. The authors showed that dengue cases correlate with climatic variables

(temperature, rainfall, solar radiation and relative humidity) but these correlations change

over time, some intervals showing a positive association, while in others the association is neg-

ative [49]. The non-stationarity association between dengue and climate may be explained by

the fact that a climatic variable has different effects depending on the biological cycle of the

pathogen or of the vector. Moreover the effects of one climatic variable can also depend on

other climatic variables potentially enhancing the non-stationarity association.

Discussion

As there remain numerous uncertainties during the course of each epidemic, we are increas-

ingly aware of the importance of developing adequate statistical and mathematical tools. Such

Fig 4. Reconstruction of both the incidence (A) and the time evolution of εS(t) (B) for the SIRS model. In (A) the

black points are observations generated with a Poisson process with a mean equal to the incidence simulated by the

model. In (B) the black points are the true value of εS(t): εS(t) = 1 and shift to εS(t) = 0.96 - (0.012/365)�(t—tshift) at

tshift = 450 days after t0 in days. The blue lines are the median of the posterior, the mauve areas are the 50% CI and the

light blue areas the 95% CI. The time unit of the model is day, the initial date is arbitrary (2000-01-09), β(t) = β0.(1 + β1
sin(2πt/365+2πϕ)) and parameters used for the SIRS model are as follows: μ = 1/(50�365), α = 1/(7�365),γ = 1/14, β0 =
0.65, β1 = 0.4, ϕ = -0.2, ρ = 1, N = 10000, S(0) = 600, I(0) = 30. The prior and posterior distributions of the inferred

parameters are in S15 Fig.

https://doi.org/10.1371/journal.pcbi.1006211.g004

Accounting for non-stationarity in epidemiology

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006211 August 15, 2018 10 / 26

https://doi.org/10.1371/journal.pcbi.1006211.g004
https://doi.org/10.1371/journal.pcbi.1006211


tools need to take account of the time-varying nature of the underlying ecological and biologi-

cal mechanisms as well as social and behavioral influences involved in an epidemic. Because of

this, time-varying parameters modeled with a diffusion process, that track epidemiological pat-

terns and update the key parameters according to data appear to be a worthwhile approach.

Indeed developing a more complex model would be difficult considering the relative paucity

of available data.

We propose a flexible modeling framework that encompasses time-varying aspects of the

epidemic. It does this via diffusion process equations for time-varying parameters and also

considers uncertainty associated with key parameters and data. This data-driven framework

for time-varying parameters has been coupled with simple stochastic models and a robust

Bayesian procedure for inference. To test its efficiency, our proposed methodology was first

applied to a toy model and then to real epidemiological examples.

Our results clearly demonstrate the potential of our framework. Firstly, our methodology

was able to accurately reconstruct both the incidence and the sinusoidal transmission rate of a

simple SIRS model just based on noisy observations (Figs 1–4 and S4,S5,S7,S9 and S14 Figs).

Based on these reconstructions one can also closely estimate Reff which is one of the key rele-

vant epidemiological parameters. Our results also highlight the flexibility of our developed

methodology. It can reconstruct the time evolution of a shifting parameter (εS(t), see Fig 4 and

Fig 5. Reconstruction of both the incidence (A) and the time evolution β(t) (B) in the case of the 1998–2002 seasonal flu

epidemics in Israel. In (A) the black points are influenza-like illness incidence collected by Israel’s Maccabi health

maintenance organization [46]. The blue lines are the median of the posterior, the mauve areas are the 50% CI and the

light blue areas the 95% CI. The prior and posterior distributions of the inferred parameters are in S16 Fig.

https://doi.org/10.1371/journal.pcbi.1006211.g005
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S14 Fig) as well as an oscillating parameter that influences the nonlinear part of the model

(β(t), see Figs 1–3 and S4,S5,S7 and S9 Figs). The comparison using goodness-of-fit indices

with the inferred true model allows us to highlight the fact that our methodology performs as

well for the observed incidence. Its flexibility results in greater variability in some other trajec-

tories mainly β(t) and Reff (Table 1). Moreover, in the absence of knowledge of the true evolu-

tion of the transmission rate, our approach appears to capture the dynamic observed more

accurately than a misspecified model (Table 2). Secondly, applied to real datasets, our frame-

work is able, based solely on simple stochastic models, to reconstruct complex epidemics such

as flu or dengue over long time periods (Figs 5 and 6). In such cases, the reconstruction of the

time evolution of the transmission rate clearly stresses that, on real datasets, it is difficult to

assimilate the dynamic of this parameter as a simple sinusoidal function. It is more irregular in

amplitude and sometimes multi-modal over one season.

Considering the paucity of information available regarding the complexity of the mecha-

nisms involved during an epidemic, describing and fitting a full model for a given transmissi-

ble disease is always challenging. Our data-driven methodology can be used as a first step

towards a better understanding of a complex epidemic, where data is limited or lacks certainty.

Indeed most of the unknowns and uncertainties can be put into time-varying parameters. The

Fig 6. Reconstruction of both the incidence (A) and the time evolution of β(t) (B) in the case of the 2002–2013 dengue epidemics in

the province of Phnom Penh (Cambodia). In (A) the black points are dengue incidence recorded by the Cambodian National

surveillance (National Dengue Control Program from the Ministry of Health, see [47]). The blue lines are the median of the posterior,

the mauve areas are the 50% CI and the light blue areas the 95% CI. The prior and posterior distributions of the inferred parameters

are in S17 Fig.

https://doi.org/10.1371/journal.pcbi.1006211.g006
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potential effects of all these uncertainties can then be explored by analyzing the reconstructed

time evolution of the time-varying parameters. See Fig 7 for such preliminary analysis of den-

gue in Phnom Penh. This allows a more thorough analysis of the influences and the

Fig 7. Association between dengue transmission rate and monthly average maximum temperature in the province of Phnom

Penh (Cambodia). (A) Time evolution of the normalized median of β(t) (blue line) and average temperature (red line) as well as the

evolution of their phase computed based on wavelet decomposition (see Method and [48,70]), blue dashed line for the normalized β(t),
red dashed line for the normalized averaged temperature and black dotted line for their phase difference. (B) Wavelet coherence (see

Method and [48,70]) between the reconstructed β(t) and average temperature. The colors code for low values in white to high values in

dark red. The white dashed lines show the 90% and the 95% CI computed with adapted bootstrappes [71]. (C) Model simulations

using a linear model describing β(t) with monthly average maximum temperature (S18 Fig) and monthly average minimum

temperature (S19 Fig) (β(t) = a0 + a1.MaxTemp(t)+a2.MinTemp(t) ). The red line is the median of the posterior and the red area is the

95% CI when parameters are estimated for the period 2002–2005. The blue line is the median of the posterior and the light blue area is

the 95% CI when parameters are estimated for the full time period. The black points are dengue incidence recorded by the Cambodian

National surveillance [47].

https://doi.org/10.1371/journal.pcbi.1006211.g007
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interactions between both the human behavior and complex environmental drivers. In a

recent paper [50], the authors reviewed evidence of interactions between seasonal influenza

virus and other pathogens (bacteria or virus). They concluded that it is important to incorpo-

rate these different coinfecting pathogens in models of seasonal flu in order to get a better esti-

mate of the burden of influenza. Our framework could be an alternative to the development of

complex models with all the potential interactions between pathogens and to estimate the

strength of the interactions. After reconstructing the time evolution of the transmission rate

the statistical association between the coinfecting pathogens and the transmission rate could

be tested. This screening may facilitate the construction of more complex models that could

incorporate only the most significant coinfecting pathogens in the seasonal flu model.

Our methodology also has other advantages. Taking account of the simplicity of the model

used, and the fact that weak hypotheses on the dynamics of the time-varying parameters have

been included, our proposed methodology can retrospectively test the impact of interventions.

This has previously been done in the case of HIV epidemics [34–35], where it was hypothe-

sized that the reduction in the transmissibility was due to a modification of the sexual behavior

in the population and the increase in the seropositive period duration due to the introduction

of the first antiviral treatments. Evaluation of interventions has also been done recently in the

case of the Ebola epidemic in West Africa [51]. The relative simplicity of our methodology is

also suitable for short-term predictions and it can then easily be used to predict an epidemic in

real time. Starting with a given estimated state defining the system, the fitting process can be

run again each time new data is available and the new posteriors are used for new predictions

[36]. This can inform public health decisions and indeed has been done recently to great effect

in the case of the Ebola epidemics in West Africa [52].

A major challenge in model fitting is the reliability of data collected and also the non-iden-

tifiability of the mechanistic models that always have very rich dynamical behavior. The ques-

tion of identifiability is too often avoided in epidemiological models applied to a topical Public

Health issues. There is, however, considerable literature on this subject (e.g. [41,42,53–55]).

Identifiability is not evident even for a simple seasonal SIR model [56]. To solve this problem

one can fit a combination of parameters or fix some of them (the population size for instance)

[57]. In our applications there is a clear limitation due to practical non-identifiability of report-

ing rate and initial conditions. To fix these problems we have used informative priors (see

Method). Using informative priors or fixing some parameters gives very similar results (com-

pare Fig 1 and S4–S7 Figs). Related to this is the misspecification of models [45]. In our cases,

as with other semi-mechanistic models the time-varying parameter methodology captures

some of the information in the data but not in the mechanistic part of the model. If the model

is misspecified due to lack of precision, it compensates for it and the dynamics of β(t) will

drive improvements in the model to make it more complex and realistic (Table 2). If the

model is misspecified to the extent that it creates mechanisms that do not exist, the recon-

structed β(t) would compensate for these effects but it will be harder to interpret.

In this work we have used simple mechanistic models. The proposed methodology is not

limited to simple models. For instance, a two-strain dengue model has also been tested. In this

case the main problem was linked to the unavailability of both seroprevalence and incidence

for each strain. Indeed, one of the major difficulties with these multi-strain models is the iden-

tification of the initial conditions (e.g. [58]). Nevertheless it is worth emphasizing that the

Bayesian inference method used in our framework, PMCMC, the approximation of the likeli-

hood is limited for a large number of parameters and/or equations [59]. In such cases testing

other methodologies like ABC [60,61] is advisable.

It is always difficult to fit complex models with rich behaviors based on very limited infor-

mation. In this regard we agree with Metcalf et al. [62] who stressed that nowadays we need
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seroprevalence studies to quantify the immunological status of the population, because in

most cases the magnitude of the outbreak is difficult to evaluate without precise seroprevalence

data.

To tackle the uncertainty and the non-stationarity of epidemics, our methodology, although

it appears non-standard, makes important progress towards a better understanding of the

mechanisms responsible for disease propagation. We believe that, should it form part of the

development of the next predictive tools for Public Health, it will make a significant contribu-

tion to improving the understanding and control of infectious diseases in our increasingly

uncertain world.

Methods

Models

SIRS model. Our first model is a classical SIRS model with an observation rate ρ = 1 and

Poisson law as the observational process:

_S ¼ m:ðN � SÞ � bðtÞ:S:I=N þ a:R
_I ¼ bðtÞ:S:I=N � ðgþ mÞ:I
_C ¼ bðtÞ:S:I=N
_R ¼ g:I � ðaþ mÞ:R

ð5Þ

where S, I and R are the susceptibles, the infectious and the removed respectively, the transmis-

sion rate β(t) = β0.(1 + β1 sin(2πt/365+2πϕ), 1/α is the average duration of immunity, γ is the

recovery rate and μ is the recruitment or mortality rate. In (5), C is the number of new cases,

then h(x(t)) is the cumulative sum of C(t) over the observation time step, 7 days. With this

model Reff(t) = β(t).S(t)/(N.γ). The parameter values are in the caption of Fig 1. For the fit of

our simulated data, Gaussian priors are used for epidemiological parameters (α and γ). Initially

non-informative priors were used for the volatility σ, the reporting rate ρ and the initial condi-

tions γ(0) by β(0) but to reduce problems linked to practical non-identifiability materialized by

correlation between some estimates, informative priors were used for ρ (see S1 Fig). Some

other simulations have been done fixing β(0) and ρ or just inferring σ (see S4–S8 Figs).

SIRS flu model. For analyzing Israel flu data we have used a continuous SIRS model iden-

tical to (5), we simply added imported infectious people i in the force of infection:

lðtÞ ¼ bðtÞ:
SðtÞ:ðIðtÞ þ iÞ

N
ð6Þ

The initial guess values for the parameters are from [46]. In this example the observational

process is a Negative-Binomial law with an over-dispersion parameter equal to 0.05 and the

reporting rate ρ = 0.15 [46]. For the fit, Gaussian priors are used for epidemiological parame-

ters (i, α, γ) and non-informative priors for the volatility σ and the initial conditions (S(0),

I(0)). S16 Fig displays the priors and the posteriors.

SEIR one strain dengue model. To describe the dengue epidemics, taking account of the

available data for Phnom Penh, we have fitted a one strain model using a SEIR model:

_S ¼ m:ðN � SÞ � bðtÞ:S:ðI þ iÞ=N
_E ¼ bðtÞ:S:ðI þ iÞ=N � ðdþ mÞ:E
_I ¼ d:E � ðgþ mÞ:I
_R ¼ g:I � m:R

ð7Þ
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where E is for infected but not yet infectious, β(t) is the transmission rate, 1/δ is the average

duration of the latent period, γ is the recovery rate and μ is the recruitment or mortality rate.

The initial guess for parameter values comes from the literature [63]. In this example the

observational process is a Negative-Binomial law with an over-dispersion parameter equal to

0.05 and the reporting rate ρ has been estimated using a narrow Gaussian prior. Non-informa-

tive priors are used for the volatility σ, initial condition for infected E(0) and imported infec-

tious people i. Gaussian priors are used for other parameters and initial conditions. When E(0)

is fitted, I(0) is estimated as a steady-state value I(0) = δ.E(0)/(γ+μ). S17 Fig. displays the priors

and the posteriors.

Inference

Stochastic framework. Due to the use of a diffusion Eq (2) for the dynamic of the time-

varying parameters, the stochastic versions of the previous models have been fitted. Thus the

models are considered in a stochastic framework in which the compartments are discrete and

the number of reactions occurring in a time interval dt is approximated by a multinomial dis-

tribution. It is fully described in [64,65].

SMC algorithm as implemented in SSM [65]. In a model with n observations and J parti-

cles. L is the model likelihood p(y1:n|θ). WðjÞ
k is the weight and xðjÞk is the state associated to parti-

cle j at iteration k.

1. Set L ¼ 1; WðjÞ
0 ¼ 1=J.

2. Sample ðxðjÞ0 Þj¼1:J from p(x0|θ)
3. for (k = 0:n−1) do
4. for (j = 1:J) do
5. Sample xðjÞkþ1 from pðxkþ1jx

ðjÞ
k ; yÞ

6. Set aðjÞ ¼ pðykþ1jx
ðjÞ
kþ1; yÞ

7. end for
8. Set WðjÞ

kþ1 ¼ aðjÞ=
PJ

l¼1
aðlÞ and L ¼ L 1

J

PJ
l¼1

aðlÞ

9. Resample ðxðjÞ0:kþ1Þj¼1:J from WðjÞ
kþ1.

10. end for
Estimation with particle Markov Chain Monte Carlo (PMCMC). Since the epidemio-

logical propagation models are considered in a stochastic framework, their likelihood is intrac-

table and it is estimated with particle filtering methods (Sequential Monte Carlo, SMC). With

a given set of parameters, the SMC algorithm reconstructs sequentially the trajectory of the

state variables and the time-varying parameters, and computes the associated likelihood.

Firstly, the distribution of the initial conditions of the system is approximated with a sample of

particles. Then, at each iteration, the particles are projected according to the propagation

model up to the next observation point, they receive a weight reflecting the quality of their pre-

diction compared to the observation and the total likelihood is updated. A resampling step

using the weights is performed before the next iteration, in order to discard the trajectories

associated with low weight particles.

In order to estimate the parameters of the system, the particle filter is embedded in a Mar-

kov Chain Monte Carlo framework, leading to the PMCMC algorithm [43]. More precisely,

the likelihood estimated by SMC is used in a Metropolis Hasting scheme (particle marginal

Metropolis Hastings) [43]. The proposal distribution is a Gaussian whose co-variance matrix

is adapted following the framework described in [65].

The starting point of the MCMC chain is initialized using optimal values obtained from the

KSimplex algorithm on a large number of parameter sets. Then, a pre-adaptation of the pro-

posal co-variance matrix is performed with Kalman MCMC (KMCMC). Each time the idea
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relies on less computationally intense algorithms in order to facilitate the exploration of

parameter space. But as we use stochastic models we approximate the likelihood using the

extended Kalman filter both in the simplex algorithm (KSimplex) [65] and in the MCMC

(KMCMC) [36]. Then the adaptive PMCMC is executed on the output of the KMCMC with

100000 iterations and 10000 particles for the final figures. For instance, the results such as

those of Fig 1 take less than 24 hours, on a blade server from PowerEdge M-Series with 40 pro-

cessor cores.

PMCMC algorithm as implemented in SSM [65]. In a model with n observations and J
particles.

q(.|θ(i)) is the transition kernel
1. Initialize θ(0)

2. Using SMC algorithm, compute p̂ðy1:njy
ð0Þ
Þ and sample xð0Þ0:n from p̂ðx0:njy1:n; y

ð0Þ
Þ

3. for (i = 0:N−1) do
4. Sample θ� from q(.|θ(i))
5. Using SMC algorithm, compute Lðy�Þ ¼ p̂ðy1:njy

�
Þ and sample x�

0:n from
p̂ðx0:njy1:n; y

�
Þ

6. Accept θ� (and x�
0:n) with probability 1 ^

Lðy�Þpðy�ÞqðyðiÞ jy�Þ
LðyðiÞÞpðyðiÞÞqðy�jyðiÞÞ

7. If accepted, θ(i+1)= θ� and xðiþ1Þ

0:n ¼ x�
0:n. Otherwise, θ(i+1)= θ(i) and

xðiþ1Þ

0:n ¼ xðiÞ0:n.
8. end for

In order to assess convergence of the chain, the visual inspection of the chains (e.g. S2 Fig or S8

Fig) was complemented by diagnosis provided in the Coda package in R [66]. Due to the large

computational cost of the algorithm, we did not run multiple independent chains, rather we relied

on diagnosis using one MCMC chain and testing its stationarity: Geweke diagnosis [67] and Hei-

delberger and Welch’s diagnosis [68]. The results are presented in S1 and S2 Tables.

Wavelet analysis

Among the various approaches developed to study nonstationary data, wavelet analysis is proba-

bly the most efficient. In particular, this method gives us the possibility of investigating and quan-

tifying the evolution in time of the periodic components of a time series (see [69]). Wavelets

constitute a family of functions derived from a single function, the ‘‘mother wavelet”, Ca,τ(t), that

can be expressed as the function of two parameters, one for the time position τ, and the other for

the scale of the wavelets a, related to the frequency. More explicitly, wavelets are defined as:

Ca;tðtÞ ¼
1
ffiffiffi
a
p c

t � t

a

� �

The wavelet transform of a time series x(t) with respect to a chosen mother wavelet is per-

formed as follows:

Wxða; tÞ ¼
1
ffiffiffi
a
p :

Zþ1

� 1

xðtÞ:C� t � t

a

� �
:dt¼

Zþ1

� 1

xðtÞ:C�

a;t:dt

where � denotes the complex conjugate form. The wavelet transform Wx(a,τ) represents the

contribution of the scale a to the signal at different time positions τ. The computation of the

wavelet transform is done along the signal x(t) simply by increasing the parameter τ over a

range of scales a until all coherent structures within the signal can be identified. Here, as

mother wavelet, we have used the Morlet wavelet [69].

With the wavelet approach, we can estimate the repartition of variance at different scale a
and different time location τ. This is known as the wavelet power spectrum: Sx(a,τ) = |Wx(a,τ) |2.
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An important point with the continuous wavelet is that the relationship between the wavelet fre-

quency f0 and the wavelet scale a can be derived analytically. For the Morlet wavelet this relation-

ship is given by:

1

f
¼

4pa
f0 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ f 2

0

p

Then when f0 = 2π, the wavelet scale a is inversely related to the frequency, f� 1/a. This

greatly simplifies the interpretation of the wavelet analysis and one can replace, on all equa-

tions, the scale a by the frequency f or the period 1/f.
To determine the statistical relationship between two time series, wavelet coherence can be

computed (e.g. [48,70]):

Rx;yðf ; tÞ ¼
jhWx;yðf ; tÞij

2

jhWxðf ; tÞij
2
:jhWyðf ; tÞij

2

 !1=2

where the angle brackets around terms indicate smoothing in both time and frequency, Wx(f,τ) is

the wavelet transform of series x(t), Wy(f,τ) is the wavelet transform of series y(t), and Wx,y(f,τ) is

the cross-wavelet spectrum. The values of wavelet coherence are between 0< Rx,y(f,τ)< 1. The

wavelet coherency is equal to 1 when there is a perfect linear relation at particular time and scale

between the two signals, and equal to 0 if x(t) and y(t) are independent.

To complement this, phase analysis can be used to characterise the association between sig-

nals (e.g. [48,70]). The phase difference provides information on the sign of the relationship

(i.e., in phase or out of phase) and can be computed, for complex mother wavelet, with the

wavelet transform Wx(f,τ) as:

�xðf ; tÞ ¼ tan� 1 ImðWxðf ; tÞÞ
ReðWxðf ; tÞÞ

Similarly with the cross-wavelet transform Wx,y(f,τ) the phase difference between the two

time series can be computed:

�x;yðf ; tÞ ¼ tan� 1
ImðWx;yðf ; tÞÞ
ReðWx;yðf ; tÞÞ

Supporting information

S1 Code. Examples of model files and code for using SSM.

(ZIP)

S1 Table. Test of the MCMC chains: Geweke diagnosis [67] that tests for the non-stationar-

ity of the chains, the parameter means computed using the first 10% and the last 50% of

the chain are compared through a Z-score (stationarity is not rejected if the Z-scores are

below the critical values at 5%, NS (non-significant) in the Table). The test was imple-

mented with the Coda package in R [66].

(PDF)

S2 Table. Test of the MCMC chains: Heidelberger and Welch’s diagnosis [68] that tests for

the non-stationarity of the chains (NS (non-significant) in the Table meaning stationarity

is not rejected at the 5% level). The test was implemented with the Coda package in R [66].

(PDF)
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S1 Fig. Prior and posterior distributions for the SIRS model inferences of Fig 1. I(0), S(0)

initial values, β(0) initial value of β(t), 1/α is the average duration of immunity, γ is the recov-

ery rate, ρ is the reporting rate and σ is the volatility of the Brownian process of β(t). The blue

distributions are the priors and the discrete histograms are the posteriors. The medians of the

prior distributions for I(0), S(0), β(0), 1/α, 1/γ and ρ are the “true values” used for the simula-

tions of the observed incidences.

(PDF)

S2 Fig. The traces of the MCMC chain for the SIRS model inferences of Fig 1. I(0), S(0) ini-

tial values, β(0) initial value of β(t), 1/α is the average duration of immunity, γ is the recovery

rate, ρ is the reporting rate and σ is the volatility of the Brownian process of β(t).
(PDF)

S3 Fig. Prior and posterior distributions for the SIRS model inferences displayed on Fig 3

when the initial conditions are near the attractor of the dynamics. A/ Observed data gener-

ated with a SIRS model and a sinusoidal β with 1 periodic component (5). B/ Observed data

generated with a SIRS model and a sinusoidal β with 2 periodic components. In A/ and B/,

I(0), S(0) are initial values, 1/α is the average duration of immunity, γ is the recovery rate and σ
is the volatility of the Brownian process of β(t). C/ Observed data generated with a SIRS model

and a sinusoidal β with 3 periodic components, σ the volatility of the Brownian process of β(t)
is the only parameter inferred. The blue distributions are the priors and the discrete histo-

grams are the posteriors. The medians of the prior distributions are the “true values” used for

the simulations of the observed incidences.

(PDF)

S4 Fig. Reconstruction of both the incidence (A) and the time evolution β(t) (B) for the SIRS

model as in Fig 1 but only 5 parameters have been inferred, β(0) and ρ were fixed. Model

parameters as in Fig 1 and S6 Fig.

(PDF)

S5 Fig. Simulation of the SIRS model when the initial conditions are near the attractor of the

dynamics and just 5 parameters inferred: (A) Susceptibles; (B) Infectious; (C) Time evolution

of both Reff and β(t). In (A) and (B) the black lines are the true values, the blue lines are the

median of the posterior, the mauve areas are the 50% CI and the light blue areas the 95% CI. In

(C) the black line is the true values of Reff, the blue line is the median of the posterior, and the

dashed lines the 95% CI of Reff; the red dot line is the true time evolution of β(t) and the red

line the median of its posterior. Model parameters as in Fig 1 and S6 Fig.

(PDF)

S6 Fig. Prior and posterior distributions for the SIRS model inferences of S4 Fig. I(0), S(0)

initial values, 1/α is the average duration of immunity, γ is the recovery rate and σ is the volatil-

ity of the Brownian process of β(t). The blue distributions are the priors and the discrete histo-

grams are the posteriors. The medians of the prior distributions for I(0), S(0), 1/α and 1/γ, are

the “true values” used for the simulations of the observed incidences.

(PDF)

S7 Fig. Reconstruction of both the incidence (A) and the time evolution β(t) (B) for the SIRS

model as in Fig 1 but σ the volatility of the Brownian process of β(t) is the only parameter

inferred. Model parameters as in Fig 1 and S8 Fig.

(PDF)
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S8 Fig. The trace of the MCMC chain and the prior and posterior distributions for the

SIRS model inferences of S7 Fig when σ is the volatility of the Brownian process of β(t) is

the only parameter inferred.

(PDF)

S9 Fig. Reconstruction of both the incidence (A) and the time evolution β(t) (B) for the SIRS

model as in S4 Fig but the logarithm transformation of the Brownian process of β(t) is not

used: dθ(t) = σ.dB(t). Model parameters as in Fig 1 and S4 Fig.

(PDF)

S10 Fig. As in S6 Fig but the logarithm transformation of the Brownian process of β(t) is

not used: dθ(t) = σ.dB(t).

(PDF)

S11 Fig. Reconstruction of both the incidence (A) and the time evolution β(t) (B) with the

true SIRS model. In (A) the black points are observations generated with a Poisson process

with a mean equal to the incidence simulated by the model. In (B) the black points are the true

values of β(t) = β0.(1 + β1 sin(2πt/365+2πϕ)). The blue lines are the median of the posterior,

the mauve areas are the 50% Credible Intervals (CI) and the light blue areas the 95% CI. For all

the figures, the observation process is also applied to the inferred incidence trajectory. The

time unit of the model is day, the initial date is arbitrary (2000-01-09) and parameters used for

the SIRS model are as follows: μ = 1/(50�365),α = 1/(7�365), γ = 1/14, β0 = 0.65, β1 = 0.4, ϕ =
-0.2, ρ = 1, N = 10000, S(0) = 600, I(0) = 30. The prior and posterior distributions of the inferred

parameters are in S13 Fig

(PDF)

S12 Fig. Simulation of the true SIRS model: (A) Susceptibles; (B) Infectious; (C) Time evolu-

tion of both Reff and β(t). In (A) and (B) the black lines are the true values, the blue lines are

the median of the posterior, the mauve areas are the 50% CI and the light blue areas the 95%

CI. In (C) the black line is the true values of Reff, the blue line is the median of the posterior,

and the dashed lines the 95% CI of Reff; the red dot line is the true time evolution of β(t) and

the red line the median of its posterior. Model parameters as in S11 Fig and S13 Fig.

(PDF)

S13 Fig. Prior and posterior distributions for the true SIRS model inferences of S11 Fig.

I(0), S(0) initial values, β0, β1, ϕ, the parameters of the sinusoidal β, 1/α is the average duration

of immunity, γ is the recovery rate and ρ is the reporting rate. The blue distributions are the

priors and the discrete histograms are the posteriors. The medians of the prior distributions

are the “true values” used for the simulations of the observed incidences.

(PDF)

S14 Fig. Simulation of the SIRS model: (A) Susceptibles; (B) Infectious; (C) Time evolution of

both Reff and εS(t). In (A) and (B) the black lines are the true values, the blue lines are the

median of the posterior, the mauve areas are the 50% CI and the light blue areas the 95% CI. In

(C) the black line is the true values of Reff, the blue line is the median of the posterior and the

dashed lines the 95% CI of Reff; the red dot line is the true time evolution of εS(t) and the red

line the median of its posterior. Model parameters as in Fig 4 and S15 Fig.

(PDF)

S15 Fig. Prior and posterior distributions for the SIRS model inferences of Fig 4. I(0), S(0)

initial values, 1/α is the average duration of immunity, γ is the recovery rate and σ is the volatil-

ity of the Brownian process of εS(t). The blue distributions are the priors and the discrete
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histograms are the posteriors. The medians of the prior distributions for I(0), S(0), 1/α and 1/γ,

are the “true values” used for the simulations of the observed incidences.

(PDF)

S16 Fig. Prior and posterior distributions for the parameters of the SIRS flu model. I(0),

S(0) initial values expressed in percentage of the population N, β(0) initial value of β(t), i
imported infectious, 1/α is the average duration of immunity, γ is the recovery rate and σ is the

volatility of the Brownian process of β(t). The blue distributions are the priors and the discrete

histograms are the posteriors. Prior values are adapted from [46].

(PDF)

S17 Fig. Prior and posterior distributions for the parameters of the SEIR dengue model.

E(0), S(0) expressed in percentage of the population N, β(0) the initial value of β(t), γ is the

recovery rate, i imported infectious, 1/α is the average duration of immunity, σ is the volatility

of the Brownian process of β(t) and ρ the reporting rate. The blue distributions are the priors

and the discrete histograms are the posteriors. Prior values are adapted from [63].

(PDF)

S18 Fig. Association between dengue transmission rate and monthly average maximum

temperature recorded at the Phnom Penh International Airport (Cambodia). (A) Time

evolution of the normalized β(t) (blue line) and normalized average temperature (red line). (B)

and (C) Wavelet Power Spectrum (WPS) [48,70] of the two time series. The graph on the right

shows the average WPS. (D) Wavelet coherence [48,70] between the reconstructed β(t) and

average temperature. In (B), (C) and (D) the colors code for low values in white to high values

in dark red. The dashed lines show the 95% CI computed with adapted bootstrappes [71], in

(C) the 90% and the 95% CI have been plotted. (E) The evolution of the phase of the two time

series computed based on wavelet decomposition for the seasonal mode, blue dashed line for

the normalized β(t) red dashed line for the normalized averaged temperature and black dotted

line for their phase difference. The graph on the right shows the distribution of the phase dif-

ferences.

(PDF)

S19 Fig. Association between dengue transmission rate and monthly average minimum

temperature recorded at the Phnom Penh International Airport (Cambodia). (A) Time

evolution of the normalized β(t) (blue line) and normalized average temperature (red line). (B)

and (C) Wavelet Power Spectrum (WPS) [48,70] of the two time series. The graph on the right

shows the average WPS. (D) Wavelet coherence [48,70] between the reconstructed β(t) and

average temperature. In (B), (C) and (D) the colors code for low values in white to high values

in dark red. The dashed lines show the 95% CI computed with adapted bootstrappes [71], in

(C) the 90% and the 95% CI have been plotted. (E) The evolution of the phase of the two time

series computed based on wavelet decomposition for the seasonal mode, blue dashed line for

the normalized β(t) red dashed line for the normalized averaged temperature and black dotted

line for their phase difference. The graph on the right shows the distribution of the phase dif-

ferences.

(PDF)

S20 Fig. Association between dengue transmission rate and monthly rainfall recorded at

the Phnom Penh International Airport (Cambodia). (A) Time evolution of the normalized

β(t) (blue line) and normalized monthly rainfall (red line). (B) and (C) Wavelet Power Spec-

trum (WPS) [48,70] of the two time series. The graph on the right shows the average WPS. (D)

Wavelet coherence [48,70] between the reconstructed β(t) and monthly rainfall. In (B), (C)
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and (D) the colors code for low values in white to high values in dark red. The dashed lines

show the 95% CI computed with adapted bootstrappes [71], in (C) the 90% and the 95% CI

have been plotted. (E) The evolution of the phase of the two time series computed based on

wavelet decomposition for the seasonal mode, blue dashed line for the normalized β(t) red

dashed line for the normalized monthly rainfall and black dotted line for their phase differ-

ence. The graph on the right shows the distribution of the phase differences.

(PDF)

S21 Fig. Association between dengue transmission rate and the Dipole Mode Index (DMI),

a proxy of Ocean Indian Dipole (see [72] and http://www.jamstec.go.jp/frcgc/research/d1/

iod/HTML/Dipole%20Mode%20Index.html). (A) Time evolution of the normalized β(t)
(blue line) and normalized DMI (red line). (B) and (C) Wavelet Power Spectrum (WPS)

[48,70] of the two time series. The graph on the right shows the average WPS. (D) Wavelet

coherence [48,70] between the reconstructed β(t) and DMI. In (B), (C) and (D) the colors

code for low values in white to high values in dark red. The dashed lines show the 95% CI com-

puted with adapted bootstrappes [71], in (C) the 90% and the 95% CI have been plotted. (E)

The evolution of the phase of the two time series computed based on wavelet decomposition

for the seasonal mode, blue dashed line for the normalized β(t) red dashed line for the normal-

ized DMI and black dotted line for their phase difference. The graph on the right shows the

distribution of the phase differences.

(PDF)
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