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Abstract

Important cellular processes such as migration, differentiation, and development often rely

on precise timing. Yet, the molecular machinery that regulates timing is inherently noisy.

How do cells achieve precise timing with noisy components? We investigate this question

using a first-passage-time approach, for an event triggered by a molecule that crosses an

abundance threshold and that is regulated by either an accumulating activator or a diminish-

ing repressor. We find that either activation or repression outperforms an unregulated strat-

egy. The optimal regulation corresponds to a nonlinear increase in the amount of the target

molecule over time, arises from a tradeoff between minimizing the timing noise of the regula-

tor and that of the target molecule itself, and is robust to additional effects such as bursts

and cell division. Our results are in quantitative agreement with the nonlinear increase and

low noise of mig-1 gene expression in migrating neuroblast cells during Caenorhabditis ele-

gans development. These findings suggest that dynamic regulation may be a simple and

powerful strategy for precise cellular timing.

Author summary

Cells control important processes with precise timing, even though their underlying

molecular machinery is inherently imprecise. In the case of Caenorhabditis elegans devel-

opment, migrating neuroblast cells produce a molecule until a certain abundance is

reached, at which time the cells stop moving. Precise timing of this event is critical to C.
elegans development, and here we investigate how it can be achieved. Specifically, we

investigate regulation of the molecule production by either an accumulating activator or a

diminishing repressor. Our results are consistent with the nonlinear increase and low

noise of gene expression observed in the C. elegans cells.

Introduction

Proper timing is crucial for biological processes, including cell division [1–3], cell differentia-

tion [4], cell migration [5], viral infection [6], embryonic development [7, 8], and cell death
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[9]. These processes are governed by molecular events inside cells, i.e., production, degrada-

tion, and interaction of molecules. Molecular events are subject to unavoidable fluctuations,

because molecule numbers are small and reactions occur at random times [10, 11]. Cells com-

bat these fluctuations using networks of regulatory interactions among molecular species. This

raises the fundamental question of whether there exist regulatory strategies that maximize the

temporal precision of molecular events and, in turn, cellular behaviors.

A canonical mechanism by which a molecular event triggers a cellular behavior is accumu-

lation to a threshold [3, 4, 12–14]: molecules are steadily produced by the cell, and once the

molecule number crosses a particular threshold, the behavior is initiated. The temporal preci-

sion of the behavior is therefore bounded by the temporal precision of the threshold crossing.

Threshold crossing has been shown to underlie cell cycle progression [3] and sporulation [4],

although alternative strategies, such as derivative [9] or integral thresholding [15], oscillation

[16], and dynamical transitions in the regulatory network [8], have also been investigated.

Recent work has investigated the impact of auto-regulation (i.e., feedback) on the temporal

precision of threshold crossing [12, 13]. Interestingly, it was found that auto-regulation generi-

cally decreases the temporal precision of threshold crossing, meaning that the optimal strategy

is a linear increase of the molecule number over time with no auto-regulation [12] (although

auto-regulation can help if there is a large timescale separation and the threshold itself is also

subject to optimization [13]). Indeed, even when the molecule also degrades, the optimal preci-

sion is achieved when positive auto-regulation counteracts the effect of degradation, preserv-

ing the linear increase over time [12]. However, in many biological processes, such as the

temporal control of neuroblast migration in Caenorhabditis elegans [5], the molecular species

governing the behavior increases nonlinearly over time. This suggests that other regulatory

interactions beyond auto-regulation may play an important role in determining temporal pre-

cision. In particular, the impact of activation and repression on temporal precision, where the

activator or repressor has its own stochastic dynamics, remains unclear.

Here we investigate the temporal precision of threshold crossing for a molecule that is regu-

lated by either an accumulating activator or a degrading repressor. Using a first-passage-time

approach [12, 17–19] and a combination of computational and analytic methods, we find that,

unlike in the case of auto-regulation, the presence of either an activator or a repressor increases

the temporal precision beyond that of the unregulated case. Furthermore, the optimal regula-

tory strategy for either an activator or a repressor corresponds to a nonlinear increase in the

regulated molecule number over time. We elucidate the mechanism behind these optimal

strategies, which stems from a tradeoff between reducing the noise of the regulator and that of

the target molecule, and is similar to the fact that a sequence of time-ordered stochastic events

becomes more precisely timed with more events. These findings are robust to more complex

features of the regulation process, including bursts of molecule production, more complex reg-

ulator dynamics, and cell division. Our results are quantitatively consistent with both the tem-

poral precision and nonlinearity of themig-1mRNA dynamics of the migrating neuroblast

cells in C. elegans larvae [5]. The agreement of our simple model with these data suggests that

many molecular timing processes may benefit from the generic regulatory strategies we iden-

tify here.

Results

We consider a molecular species X whose production is regulated by a second species, either

an activator A or a repressor R (Fig 1A). The regulator undergoes its own dynamics: the activa-

tor undergoes pure production at a zeroth-order rate k whereas the repressor undergoes pure

degradation at a first-order rate μ, such that in either case the production rate of X increases
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over time. The activator does not degrade and the repressor is not produced, although we later

relax this assumption. For the regulation function we take a Hill function, which is a generic

model of cooperative regulation [12, 13, 20],

fþðaÞ ¼
aaH

aH þ KH
ðactivatorÞ; ð1Þ

f� ðrÞ ¼
aKH

rH þ KH
ðrepressorÞ: ð2Þ

Here a and r are the molecule numbers of A and R, respectively, α is the maximal production

rate of X, K is the half-maximal regulator number, andH is the cooperativity. First we neglect

additional complexities such as bursts of production, more complex regulator dynamics, cell

division, auto-regulation, longer regulatory cascades, or transcriptional delay. Later we check

the robustness of our results to bursts, more complex regulator dynamics, and cell division,

and we speculate upon the effects of auto-regulation, longer regulatory cascades, and delay in

the Discussion.

We suppose that a behavior is initiated when the molecule number x crosses a threshold x�
(Fig 1B). Because the production of X and the dynamics of the regulator are stochastic, the time

at which x first reaches x� is a random variable. We characterize the precision of this event by

the mean �t and variance s2
t of this first-passage time, which we compute numerically from the

master equation corresponding to the reactions in Fig 1A (see Materials and methods). The

Fig 1. Threshold crossing of a regulated molecular species. (A) A target species X is regulated by either an

accumulating activator A or a degrading repressor R. (B) Temporal precision is quantified by the variance s2
t of the

first-passage time, at which the stochastic molecule number x first crosses the threshold x�. (C, D) Deterministic

dynamics illustrate the effects of regulation. Parameters are kt� = 20 and K = 15 in C; μt� = 2.75, K = 2.6, and N = 15 in

B and D; and x� = 15 andH = 1 throughout. t0 is defined by �aðt0Þ ¼ K in C and �rðt0Þ ¼ K in D.

https://doi.org/10.1371/journal.pcbi.1006201.g001
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maximal production rate α is set to ensure that �t is equal to a target time t�, which we assume is

set by functional constraints on the initiated behavior. This leaves k, K, andH as free parame-

ters of the regulation (with α a function of these parameters). In principle, these parameters can

be optimized to minimize the timing variance s2
t .

The deterministic dynamics, illustrated in Fig 1C and 1D, neglect fluctuations but give an

intuitive picture of the regulation. Whereas the amount of activator increases linearly over

time, the amount of repressor decays exponentially from an initial molecule number N:

�aðtÞ ¼ kt; ð3Þ

�rðtÞ ¼ Ne� mt: ð4Þ

In either case, the production rate f± of X increases over time, such that �x increases nonlinearly.

N is an additional free parameter in the repressor case.

Regulation increases temporal precision

To investigate the effects of regulation on temporal precision, we consider the timing variance

s2
t as a function of the parameters k and K, or μ and K. The special case of no regulation corre-

sponds to the limits k!1 and K! 0 in the case of activation, or μ!1 and K!1 in the

case of repression. In this case, the production of X occurs at the constant rate α. Reaching the

threshold requires x� sequential events, each of which occurs in a time that is exponentially dis-

tributed with mean 1/α. The total completion time for such a process is given by a gamma dis-

tribution with mean �t ¼ x�=a and variance s2
t ¼ x�=a2 [19]. Ensuring that �t ¼ t� requires α =

x�/t�, for which the variance satisfies s2
t x�=t

2
�
¼ 1. This expression gives the timing variance for

the unregulated process.

In Fig 2 we plot the scaled variance s2
t x�=t

2
�

as a function of the parameters k and K, or μ
and K, for cooperativity H = 3 (color maps). In the case of activation (Fig 2A), the variance

decreases with increasing k and K. This means that the temporal precision is highest for an

activator that accumulates quickly and requires a high abundance to produce X. In the case of

repression (Fig 2B), the variance has a global minimum as a function of μ and K. This means

that the temporal precision is highest for a repressor with a particular well-defined degradation

rate and abundance threshold. Importantly, we see that for both activation and repression, the

scaled variance can be less than one, meaning that regulation allows improvement of the

Fig 2. Optimal regulatory strategies. Timing variance as a function of the regulatory parameters reveals (A) a

trajectory along which the variance decreases in the case of the activator and (B) a global minimum in the case of the

repressor. White dashed line in A and white dot in B show the analytic approximations in Eqs 9 and 11, respectively.

Parameters areN = 15 in B, and x� = 15 andH = 3 in both.

https://doi.org/10.1371/journal.pcbi.1006201.g002
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temporal precision beyond that of the unregulated process. We have checked that this result

holds forH� 1.

Optimal regulation balances regulator and target noise

To understand the dependencies in Fig 2, we develop analytic approximations. First, we

assume thatH!1, such that the regulation functions in Eqs 1 and 2 become threshold func-

tions. In this limit, the production rate of X is zero if a< K or r> K, and α otherwise. The

deterministic dynamics of X become piecewise-linear,

�xðtÞ ¼
0 t < t0
aðt � t0Þ t � t0;

(

ð5Þ

where t0 is determined by either �aðt0Þ ¼ K or �rðt0Þ ¼ K according to Eqs 3 and 4. Then, to set

α, we use the condition �xðt�Þ ¼ x�, which results in α = x�/(t� − t0).

Lastly, we approximate the variance in the first-passage time using the variance in the mole-

cule number and the time derivative of the mean dynamics [13]. Specifically, the timing vari-

ance of X arises from two sources: (i) uncertainty in the time when the regulator crosses its

threshold K, which determines when the production of the target X begins, and (ii) uncertainty

in the time when x crosses its threshold x�, given that production begins at a particular time.

The first source is regulator noise, and the second source is target noise. We estimate these

timing variances from the associated molecule number variances, propagated via the time

derivatives,

s2

t � s2

y
d�y
dt

� �� 2��
�
�
t0|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

regulator

þs2

x
d�x
dt

� �� 2��
�
�
t�|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

target

; ð6Þ

where y 2 {a, r} denotes the regulator molecule number.

For the activator, which undergoes a pure production process with rate k, the molecule

number obeys a Poisson distribution with mean kt. Therefore, the molecule number variance

at time t0 is s2
a ¼ kt0. For the repressor, which undergoes a pure degradation process with rate

μ starting from Nmolecules, the molecule number obeys a binomial distribution with number

of trials N and success probability e−μt. Therefore, the molecule number variance at time t0 is

s2
r ¼ Ne

� mt0ð1 � e� mt0Þ. For the target molecule, which undergoes a pure production process

with rate α starting at time t0, the molecule number obeys a Poisson distribution with mean α
(t − t0). Therefore, the molecule number variance at time t� is s2

x ¼ aðt� � t0Þ. Inserting these

expressions into Eq 6, along with the derivatives calculated from Eqs 3–5 and the appropriate

expressions for α and t0, we obtain

s2
t x�
t2
�

�
Kx�
ðkt�Þ

2
þ 1 �

K
kt�

� �2

ðactivatorÞ; ð7Þ

s2
t x�
t2
�

�
ðN � KÞx�
NKðmt�Þ

2
þ 1 �

logðN=KÞ
mt�

� �2

ðrepressorÞ: ð8Þ

As a function of kt� and K, the global minimum of Eq 7 occurs as kt� !1 and K!1. The

path of descent toward this minimum is given by differentiating with respect to K at fixed kt�

Temporal precision of regulated gene expression
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and setting the result to zero, which yields the curve

K ¼
0 kt� <

x�
2

kt� �
x�
2

kt� �
x�
2
;

(

ð9Þ

along which the variance satisfies

s2
t x�
t2
�

¼

1 kt� <
x�
2

x�
kt�

1 �
x�

4kt�

� �
kt� �

x�
2
;

8
<

:
ð10Þ

where the first case comes from the fact that Kmust be nonnegative. In contrast, the global

minimum of Eq 8 occurs at finite μt� and K: differentiating with respect to each and setting the

results to zero gives the values

K ¼ e� 2N; ð11aÞ

mt� ¼
e2x�
2N
þ 2; ð11bÞ

s2
t x�
t2
�

¼
x�

x� þ 4e� 2N
; ð12Þ

where we have assumed that K/N� 1 (see Materials and methods), which is justified post-hoc

by Eq 11a.

These analytic approximations are compared with the numerical results for the activator in

Fig 2A (white dashed line, Eq 9) and for the repressor in Fig 2B (white circle, Eq 11). In Fig 2A

we see that the global minimum indeed occurs as kt� !1 and K!1, and the predicted

curve agrees well with the observed descent. In Fig 2B we see that the predicted global mini-

mum lies very close to the observed global minimum. We have also checked along specific

slices in the (K, kt�) or (K, μt�) plane and found that the analytic approximations generally dif-

fer from the numerical results by about 10% or less, despite the fact that the approximations

takeH!1 whereas the numerics in Fig 2 useH = 3.

The success of the approximations means that Eq 6 describes the key mechanism leading to

the optimal temporal precision. Eq 6 demonstrates that the optimal regulatory strategy arises

from a tradeoff between minimizing regulator and target noise. On the one hand, minimizing

only the regulator noise would require that the regulator cross its threshold K with a steep

slope d�y=dt and therefore at an early time, meaning that the target molecule would be effec-

tively unregulated and would increase linearly over time. On the other hand, minimizing only

the target noise would require that the regulator cross its threshold only shortly before the tar-

get time t�, such that the target molecule would cross its threshold x� with a steep slope d�x=dt,
leading to a highly nonlinear increase of the target molecule over time. In actuality, the optimal

strategy is somewhere in between, with the regulator crossing its threshold at some intermedi-

ate time t0, and the target molecule exhibiting moderately nonlinear dynamics as in Fig 1C

and 1D.

Eqs 10 and 12 demonstrate that the timing variance is small for large kt�/x� in the case of

activation, and small for largeN/x� in the case of repression. This makes intuitive sense because

each of these quantities scales with the number of regulator molecules: k is the production rate

of activator molecules, while N is the initial number of repressor molecules. To make this

Temporal precision of regulated gene expression
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intuition quantitative, we define a cost as the time-averaged number of regulator molecules,

hai ¼
1

t�

Z t�

0

dt �aðtÞ ¼
1

2
kt�; ð13Þ

hri ¼
1

t�

Z t�

0

dt �rðtÞ ¼
N
mt�
ð1 � e� mt� Þ; ð14Þ

where the second steps follow from Eqs 3 and 4. We see that, indeed, hai scales with k, and hri
scales with N. Thus, Eqs 10 and 12 demonstrate that increased temporal precision comes at a

cost, in terms of the number of regulator molecules that must be produced.

Model predictions are consistent with neuroblast migration data

We test our model predictions using data from neuroblast cells in C. elegans larvae [5]. During

C. elegans development, particular neuroblast cells migrate from the posterior to the anterior

of the larva. It has been shown that the migration terminates not at a particular position, but

rather after a particular amount of time, and that the termination time is controlled by a tem-

poral increase in the expression of themig-1 gene [5]. Sincemig-1 is known to be subject to

regulation [21], we investigate the extent to which the dynamics ofmig-1 can be explained by

the predictions of our model.

Fig 3A shows the number x ofmig-1mRNA molecules per cell as a function of time t,
obtained by single-molecule fluorescent in situ hybridization (from [5]). We analyze these data

in the following way (see Materials and methods for details). First, noting that the dynamics

are nonlinear, we quantify the linearity using the area under the curve, normalized by that for

a perfectly linear trajectory x�t�/2,

r ¼
2

x�t�

Z t�

0

dt xðtÞ: ð15Þ

Fig 3. Model predictions agree with neuroblast migration data. (A) Number ofmig-1mRNA molecules per cell as a

function of time t, obtained by single-molecule fluorescent in situ hybridization, from [5]. Magenta shows approximate

range of times when cell migration terminates. Black lines show mean �t d (dashed) and standard deviation σd of cell

division times (black points). (B) Timing variance vs. linearity of x(t), both for experimental data in A (blue circle) and

our model (curves, Eqs 16 and 17). Data analyzed using ranges of threshold 10� x� � 25 and bin size 3� Δx� 12;

error bars show standard deviations of these results. We see that for sufficiently large cost hai/x� or hri/x�, model

predictions agree with experimental data point.

https://doi.org/10.1371/journal.pcbi.1006201.g003
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By this definition, ρ = 1 for perfectly linear dynamics, and ρ! 0 for maximally nonlinear

dynamics (a sharp rise at t�). Then, we estimate x�, t�, and the timing variance s2
t from the data.

Specifically, migration is known to terminate between particular reference cells in the larva [5],

which gives an estimated range for the termination time t�. This range is shown in magenta in

Fig 3A and corresponds to a threshold within the approximate range 10� x� � 25. Therefore,

we divide the x axis into bins of size Δx, choose bin midpoints x� within this range, and for

each choice compute the mean t� and the variance s2
t of the data in that bin. Fig 3B shows the

average and standard deviation of results for different values of x� and Δx (blue circle).

The experimental data point in Fig 3B exhibits two clear features: (i) the dynamics are non-

linear (ρ is significantly below 1), and (ii) the timing variance is low (s2
t x�=t

2
�

is significantly

below 1). Neither feature can be explained by a model in which the production of x is unregu-

lated, since that would correspond to a linear increase of molecule number over time (ρ = 1)

and a timing variance that satisfies s2
t x�=t

2
�
¼ 1 (square in Fig 3B). Furthermore, since auto-

regulation has been shown to generically increase timing variance beyond the unregulated

case [12], it is unlikely that feature (ii) can be accounted for by a model with auto-regulation

alone. Can these data be accounted for by our model with regulation?

To address this question we calculate ρ and s2
t x�=t

2
�

from our model. For simplicity, we

focus on the analytic approximations in Eqs 7 and 8, since they have been validated in Fig 2. In

these approximations, since �xðtÞ is piecewise-linear (Eq 5), calculating ρ via Eq 15 is straight-

forward: ρ = 1 − t0/t�, where t0 is once again determined by either �aðt0Þ ¼ K or �rðt0Þ ¼ K
according to Eqs 3 and 4. For a given ρ and cost hai/x� or hri/x�, we calculate the minimum

timing variance s2
t x�=t

2
�
. For the activator, we use the expression for ρ along with Eq 13 to

write Eq 7 in terms of ρ and hai/x�,

s2
t x�
t2
�

¼
x�

2hai
ð1 � rÞ þ r2: ð16Þ

For the repressor, we use the expression for ρ along with Eq 14 to write Eq 8 in terms of ρ and

hri/x�, and then minimize over N (see Materials and methods) to obtain

s2
t x�
t2
�

¼
e3

27

x�
hri
ð1 � rÞ

3
þ r2: ð17Þ

Eqs 16 and 17 are shown in Fig 3B (green solid and red dashed curves, respectively), and we

see the same qualitative features for both cases: all curves satisfy s2
t x�=t

2
�
¼ 1 at ρ = 1, as

expected; and as ρ decreases, each curve exhibits a minimum whose depth and location depend

on cost. Specifically, as cost increases (lighter shades of green or red), the variance decreases,

as expected. Importantly, we see that at a cost on the order of hai/x� = hri/x�* 10, the model

becomes consistent with the experimental data: both the low timing variance and the low

degree of linearity predicted by either the activator or repressor case agree quantitatively with

the experiment. This suggests that either an accumulating activator or a degrading repressor is

sufficient to account for the temporal precision observed inmig-1-controlled neuroblast

migration.

Results are robust to additional complexities including cell division

Our minimal model neglects common features of gene expression such as bursts in molecule

production [22] and additional sources of noise. Therefore we test the robustness of our find-

ings to these effects here. First, we test the robustness of the results to the presence of bursts by

replacing the Poisson process governing the activator production with a bursty production

process. Specifically, we assume that each production event increases the activator molecule

Temporal precision of regulated gene expression
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count by an integer in [1,1) drawn from a geometric distribution with mean b [23, 24]. The

limiting case of b = 1 recovers the original Poisson process. The results are shown in Fig 4A for

b = 1, 3, and 5 (green solid, cyan dashed, and magenta dashed curves). We see that bursts in

the activator increase the timing variance of the target molecule, as expected, but that there

remain parameters for which the variance is less than that for the unregulated case, s2
t x�=t

2
�
¼

1 (dashed black line). This result shows that even with bursts, regulation by an accumulating

activator is beneficial for timing precision.

We also recognize that whereas the activator can be assumed to start with exactly zero mole-

cules, it is more realistic for the repressor to start with an initial number of molecules that has

its own variability. We incorporate this additional variability into the model by performing

stochastic simulations [25] of the reactions in Fig 1A and drawing the initial repressor mole-

cule number from a Poisson distribution across simulations. The result is shown by the green

dashed curve in Fig 4B. We see that the additional variability gives rise to an increase in the

timing variance of the target molecule, as expected (compare with the green solid curve). How-

ever, for most of the range of degradation rates, including the optimal degradation rate, the

Fig 4. Results are robust to additional complexities including cell division. (A, B) Green solid curves show slices

from Fig 2 with K = 10 while black dashed line shows unregulated limit s2
t x�=t2� ¼ 1. We see that regulation can reduce

timing variance even with bursts in activator production of mean size b (A, cyan and magenta dashed), initial Poisson

noise in repressor number (B, green dashed), or steady state k/μ in regulator dynamics (blue) unless it approaches

regulation threshold K (red). (C) Mean dynamics of activator model (solid) and repressor model (dashed) in which cell

division occurs at time �t d on average. Abrupt reductions in molecule numbers are smoothed by noise in td and by

binomial partitioning of molecules. (D) Timing variance approaches that with no division (dashed) within

experimental division region (gray). In A and B, parameters are as in Fig 2. In C and D, parameters are x� = 15,

hai/x� = hri/x� = 10, andH = 3, with kt�, μt�, and K set to optimal values (Fig 2) and �t d and σd set to experimental

values. In all cases, α is set to ensure that mean threshold crossing time �t equals t�.

https://doi.org/10.1371/journal.pcbi.1006201.g004
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variance remains less than that of the unregulated case, s2
t x�=t

2
�
¼ 1 (dashed black line). This

result indicates that the benefit of repression is robust to this additional source of noise.

Then, we test the robustness of the results to our assumptions that the activator undergoes

pure production and the repressor undergoes pure degradation. Specifically, we introduce a

degradation rate μ for the activator, and a production rate k for the repressor, such that either

regulator reaches a steady state of k/μ. The blue curves in Fig 4A and 4B show the case where

the increasing activator’s steady state k/μ is twice its regulation threshold K, or the decreasing

repressor’s steady state k/μ is half its regulation threshold K, respectively. In both cases, we see

that the timing variance of the target molecule increases because the regulator slows down on

the approach to its regulation threshold. Nonetheless, we see that it is still possible for the vari-

ance to be lower than that of the unregulated case. The red curves show the case where the reg-

ulator’s steady state is equal to its regulation threshold. Here we are approaching the regime in

which threshold crossing is an exponentially rare event. As a result, the variance further

increases, to the point where it is above that of the unregulated case for the full range of param-

eters shown. These results demonstrate that the benefit of regulation is robust to more complex

regulator dynamics, but only if the regulator still crosses its regulation threshold at a reason-

able mean velocity.

Finally, we test the robustness of the results to a feature exhibited by the experimental mig-1
data: near the end of migration, cell division occurs (Fig 3A, black data). One daughter cell

continues migrating (Fig 3A, dark blue data), while the other undergoes programmed cell

death [5]. To investigate the effects of cell division, we perform stochastic simulations, and at a

given time td we assume that the cell volume V is reduced by a factor of two. For each simula-

tion, td is drawn from a Gaussian distribution with mean �td and variance s2
d determined by the

data (Fig 3A, black). At td, we reduce the molecule numbers of both the regulator and the tar-

get molecule assuming symmetric partitioning, such that the molecule number after division is

drawn from a binomial distribution with total number of trials equal to the molecule number

before division and success probability equal to one half. We also reduce the molecule number

threshold K by a factor of two because it is proportional to the cell volume via K = KdV, where

Kd is the dissociation constant.

Fig 4C shows the dynamics of the mean molecule numbers of the activator (green solid)

and its target (blue solid), or the repressor (red dashed) and its target (blue dashed). We see

that the activator, repressor, and target drop in molecule number at division but that the

abruptness of the drop is smoothed by the variability in the division time. The smoothing is

more pronounced in the cases of the repressor and the target because the molecule numbers of

these species are smaller at division. Thus, for either the activator or repressor mechanism, we

see that the experimentally observed variability in division time is sufficient to smooth out the

dynamics of the target molecule number, consistent with the experimental data in Fig 3A.

Additionally, we see in Fig 4D that the timing variance of the target molecule in both the

activator and repressor cases is similar to that without division in the region of the experimen-

tal division time. This further indicates that either model remains sufficient to account for the

low experimental timing variance, even with the experimentally observed cell division. Taken

together, the results in Fig 4C and 4D show that the key results of the model are robust to the

effects of cell division.

Discussion

We have demonstrated that regulation by an accumulating activator or a diminishing repres-

sor increases the precision of threshold crossing by a target molecule, beyond the precision

achievable with constitutive expression alone. The increase in precision results from a tradeoff
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between reducing the noise of the regulator and reducing the noise of the target molecule itself.

Our minimal model is sufficient to account for both the high degree of nonlinearity and the

low degree of noise in the dynamics ofmig-1 in C. elegans neuroblasts, providing evidence for

the hypothesis that these cells use regulated expression to terminate their migration with

increased temporal precision. These results suggest that regulation by a dynamic upstream spe-

cies is a simple and generic method of increasing the temporal precision of cellular behaviors

governed by threshold-crossing events.

Why does regulation increase temporal precision, whereas it has been shown that auto-reg-

ulation (feedback) does not [12]? After all, either regulation or positive feedback can produce

an acceleration in molecule number over time, leading to a steeper threshold crossing. The rea-

son is likely that positive feedback relies on self-amplification. In addition to amplifying the

mean, positive feedback also amplifies the noise. In contrast, regulation by an external species

does not involve self-amplification. Therefore, the noise increase is not as strong. The target

molecule certainly inherits noise from the regulator (Eq 6), but the increase in noise does not

outweigh the benefit of the acceleration, as it does for feedback. Future work could investigate

the interplay of regulation and feedback, as well as active degradation of the target molecule,

especially asmig-1 is thought to be subject to feedback and degradation in addition to external

regulation [5, 21].

Our finding that regulation increases temporal precision is related to the more basic phe-

nomenon that a sequence of ordered events has a lower relative timing error than a single

event [19, 26]. Specifically, if a single event occurs in a time that is exponentially distributed

with a mean τ, then the relative timing error is σ/τ = 1. For n such events that must occur in

sequence, the total completion time follows a gamma distribution with relative timing error

s=t ¼ 1=
ffiffiffi
n
p

, which decreases with increasing n. Thus, at a coarse-grained level, the addition

of a regulator can be viewed as increasing the length of the sequence of threshold-crossing

events from one to two, and thus decreasing the timing error. This perspective suggests that

the timing error could be decreased even further via a cascade of regulators.

Although we have demonstrated that our findings are robust to complexities such as bursts

and cell division (Fig 4), our model neglects additional features of regulated gene expression

such as transcriptional delay. Transcriptional delay has been shown to play an important role

in regulation [27, 28] and to have consequences for the mean and variance of threshold-cross-

ing times [29]. If a delay were to arise due to a sequence of stochastic but irreversible steps,

then we conjecture that the relative timing error would decrease with the number of these

steps, due to the same cascading mechanism mentioned in the previous paragraph. However,

it has been shown that if there are reversible steps or cycles within a multistep process, then the

first passage time distribution can approach an exponential as the number of steps becomes

large [26]. In this case the timing statistics would be captured by our simple model, which

assumes single exponentially distributed waiting times. Future work could explore the effects

of transcriptional delay in more detail.

Finally, we have shown that themig-1 data from migrating neuroblasts in C. elegans are

quantitatively consistent with either the accumulating activator or diminishing repressor

model, but the data do not distinguish between the two models. A direct approach to search

for a distinction would be to use genetic knockout techniques to screen directly for regulators

ofmig-1 and their effects on its abundance. A less direct approach would be to more closely

investigate the effects of the cell division that occurs during migration. For example, we

assumed in this study that the volume fraction is equal to the average molecule number frac-

tion in the surviving cell after division. However, if they were found to be unequal for either

mig-1 or its regulator(s), then the concentrations of these species could undergo an abrupt
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change after division, which may have opposing consequences for the activator vs. the repres-

sor mechanism. Future studies could use these or related approaches to more concretely iden-

tify the role of gene regulation in achieving precise timing during cellular processes.

Materials and methods

Computation of the first-passage time statistics

We compute the first-passage time statistics �t and s2
t numerically from the master equation

following [12], generalized to a two-species system. Specifically, the probability F(t) that the

molecule number crosses the threshold x� at time t is equal to the probability Py, x�−1(t) that

there are y regulator molecules (where y 2 {a, r}) and x� − 1 target molecules, and that a pro-

duction reaction occurs with rate f±(y) to bring the target molecule number up to x�. Since this

event can occur for any regulator molecule number y, we sum over all y,

FðtÞ ¼
XY

y¼0

f�ðyÞPy;x�� 1ðtÞ; ð18Þ

where Y = {amax, N}. The repressor has a maximum number of molecules N, whereas the

activator number is unbounded, and therefore we introduce the numerical cutoff

amax ¼ kt� þ
ffiffiffiffiffiffiffiffiffiffiffi
10kt�

p
. The probability Pyx evolves in time according to the master equation

corresponding to the reactions in Fig 1A,

_Pax ¼ kPa� 1;x þ fþðaÞPa;x� 1 � ½kþ fþðaÞ�Pax; ð19aÞ

_Prx ¼ mðr þ 1ÞPrþ1;x þ f� ðrÞPr;x� 1 � ½mr þ f� ðrÞ�Prx: ð19bÞ

The moments of Eq 18 are

htmi ¼
XY

y¼0

f�ðyÞ
Z 1

0

dt tmPy;x�� 1ðtÞ; ð20Þ

where �t ¼ hti and s2
t ¼ ht

2i � hti2. Therefore computing �t and s2
t requires solving for the

dynamics of Pyx.
Because Eq 19 is linear in Pyx, it is straightforward to solve by matrix inversion. We rewrite

Pyx as a vector by concatenating its columns,~P> ¼ ½½P00; . . . ; PY0�; . . . ; ½P0;x�� 1; . . . ; PY;x�� 1��,

such that Eq 19 becomes
_~P ¼ M~P , where

M ¼

Mð1Þ

Mð2Þ Mð1Þ

Mð2Þ Mð1Þ

. .
. . .

.

Mð2Þ Mð1Þ

2

6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
5

: ð21Þ

Here, for i, j 2 {0, . . ., Y}, the x� − 1 subdiagonal blocks are the diagonal matrix Mð2Þ

ij ¼ f�ðiÞdij,

and the x� diagonal blocks are the subdiagonal matrix Mð1Þ

ij ¼ � ½kð1 � diamax
Þ þ fþðiÞ�dij þ kdi� 1;j

or the superdiagonal matrix Mð1Þ

ij ¼ � ½miþ f� ðiÞ�dij þ mðiþ 1Þdiþ1;j for the activator or repres-

sor case, respectively. The diamax
term prevents activator production beyond amax molecules. The

final M(1) matrix in Eq 21 contains f± production terms that are not balanced by equal and

Temporal precision of regulated gene expression

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006201 June 7, 2018 12 / 16

https://doi.org/10.1371/journal.pcbi.1006201


opposite terms anywhere in their columns. These terms correspond to the transition from x� − 1

to x� target molecules, for which there is no reverse transition. Therefore, the state with x� target

molecules (and any number of regulator molecules) is an absorbing state that is outside the state

space of~P [12]. Consequently, probability leaks over time, and~Pðt !1Þ ¼~;. Equivalently, the

eigenvalues of M are negative.

The solution of the dynamics above Eq 21 is~PðtÞ ¼ expðMtÞ~Pð0Þ. Therefore, Eq 20

becomes htmi ¼ ~V>½
R1

0
dt tmexpðMtÞ�~Pð0Þ, where ~V> is a row vector of length x�(Y + 1) con-

sisting of [f±(0), . . ., f±(Y)] preceded by zeros. We solve this equation via integration by parts

[12], noting that the boundary terms vanish because the eigenvalues of M are negative, to

obtain

htmi ¼ ð� 1Þ
mþ1m!~V>ðM� 1Þ

mþ1~Pð0Þ: ð22Þ

We see that computing �t ¼ hti and s2
t ¼ ht

2i � hti2 requires inverting M, which we do numer-

ically in Matlab. We initialize~P as Pax(0) = δa0 δx0 or Prx(0) = δrN δx0 for the activator or repres-

sor case, respectively.

When including cell division, we compute �t and s2
t from 50,000 stochastic simulations [25].

Deterministic dynamics

The dynamics of the mean regulator and target molecule numbers are obtained by calculating

the first moments of Eq 19, @t�y ¼
P

yxy _Pyx and @t�x ¼
P

yxx _Pyx, where y 2 {a, r}. For the regu-

lator we obtain @t�a ¼ k or @t�r ¼ � m�r in the activator or repressor case, respectively, which are

solved by Eqs 3 and 4. For the target molecule we obtain @t�x ¼ hf�ðyÞi, which is not solvable

because f± is nonlinear (i.e., the moments do not close). A deterministic analysis convention-

ally assumes hf�ðyÞi � f�ð�yÞ, for which the equation becomes solvable by separation of vari-

ables. For example, in the case ofH = 1, using Eqs 1–4, we obtain

�xðtÞ ¼
at � ðaK=kÞlog½ðkt þ KÞ=K� ðactivatorÞ

ða=mÞlog½ðN þ KemtÞ=ðN þ KÞ� ðrepressorÞ:

(

ð23Þ

Eq 23 is plotted in Fig 1C and 1D.

When including cell division, we compute the mean dynamics from the simulation trajecto-

ries (Fig 4C).

Details of the analytic approximations

To find the global minimum of Eq 8, we differentiate with respect to kt� and K and set the

results to zero, giving two equations. kt� can be eliminated, leaving one equation for K,

1

2
log

N
K
¼ 1 �

K
N

ð24Þ

This equation is transcendental. However, in the limit K� N, we neglect the last term, which

gives Eq 11.

To derive Eq 17, we use

r ¼ 1 �
t0
t�
¼ 1 �

logN=K
mt�

ð25Þ
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where the second step follows from �rðt0Þ ¼ K according to Eq 4; and, from Eq 14,

hri ¼
N
mt�
ð1 � e� mt� Þ �

N
mt�

ð26Þ

where the second step assumes that the repressor is fast-decaying, μt� � 1. We use Eqs 26 and

25 to eliminate μt� and K from Eq 8 in favor of ρ and hri,

s2
t x�
t2
�

� x� e
Nð1� rÞ=hri � 1

� � hri2

N3
þ r2: ð27Þ

For nonlinear dynamics (ρ< 1) we may safely neglect the −1 in Eq 27. Then, differentiating

Eq 27 with respect to N and setting the result to zero, we obtain N = 3hri/(1 − ρ). Inserting this

result into Eq 27 produces Eq 17.

Analysis of the experimental data

To estimate the time at which migration terminates in Fig 3A, we refer to [5]. There, the posi-

tion at which neuroblast migration terminates is measured with respect to seam cells V1 to V6

in the larva (see Fig. 4D in [5]). In particular, in wild type larvae, migration terminates between

V2 and the midpoint of V2 and V1. This range corresponds to the magenta region in Fig 3A

(see Fig. 4B, upper left panel, in [5]). Under the assumptions of constant migration speed and

equal distance between seam cells, the horizontal axis in Fig 3A represents time.

To compute ρ for the experimental data in Fig 3A according to Eq 15 we use a trapezoidal

sum. For the choices of x� and t� described in the text, this produces the ρ values in Fig 3B.
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