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Abstract

MicroRNAs (miRNAs) are small non-coding RNAs that regulate gene expression by binding

to partially complementary regions within the 3’UTR of their target genes. Computational

methods play an important role in target prediction and assume that the miRNA “seed

region” (nt 2 to 8) is required for functional targeting, but typically only identify *80% of

known bindings. Recent studies have highlighted a role for the entire miRNA, suggesting

that a more flexible methodology is needed. We present a novel approach for miRNA target

prediction based on Deep Learning (DL) which, rather than incorporating any knowledge

(such as seed regions), investigates the entire miRNA and 3’TR mRNA nucleotides to learn

a uninhibited set of feature descriptors related to the targeting process. We collected more

than 150,000 experimentally validated homo sapiens miRNA:gene targets and cross refer-

enced them with different CLIP-Seq, CLASH and iPAR-CLIP datasets to obtain *20,000

validated miRNA:gene exact target sites. Using this data, we implemented and trained a

deep neural network—composed of autoencoders and a feed-forward network—able to

automatically learn features describing miRNA-mRNA interactions and assess functionality.

Predictions were then refined using information such as site location or site accessibility

energy. In a comparison using independent datasets, our DL approach consistently outper-

formed existing prediction methods, recognizing the seed region as a common feature in the

targeting process, but also identifying the role of pairings outside this region. Thermody-

namic analysis also suggests that site accessibility plays a role in targeting but that it cannot

be used as a sole indicator for functionality. Data and source code available at: https://

bitbucket.org/account/user/bipous/projects/MIRAW.

Author summary

microRNAs are small RNA molecules that regulate biological processes by binding to the

3’UTR of a gene and their dysregulation is associated with several diseases. Computation-

ally predicting these targets remains a challenge as they only partially match their target

and so there can be hundreds of targets for a single microRNA. Current tools assume that
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most of the knowledge defining a microRNA-gene interaction can be captured by analys-

ing the binding produced in the seed region (* the first 8nt in the miRNA). However,

recent studies show that the whole microRNA can be important and form non-canonical

targets. Here, we use a target prediction methodology that relies on deep neural networks

to automatically learn the relevant features describing microRNA-gene interactions for

predicting microRNA targets. This means we make no assumptions about what is impor-

tant, leaving the task to the deep neural network. A key part of the work is obtaining a

suitable dataset. Thus, we collected and curated more than 150,000 experimentally verified

microRNA targets and used them to train the network. Using this approach, we are able

to gain a better understanding of non-canonical targets and to improve the accuracy of

state-of-the-art prediction tools.

This is a PLoS Computational BiologyMethods paper.

Introduction

MicroRNAs (miRNAs) are a family of *22-nucleotide (nt) small RNAs that regulate gene

expression at the post-transcriptional level. They act by binding to partially complementary

sites on target genes to induce cleavage or repression of productive translation, preventing the

target gene from producing functional peptides and proteins. Despite advances in understand-

ing miRNA:mRNA interactions, the rules that govern their targeting process are not fully

understood [1–4].

While many miRNA targets have been computationally predicted only a limited number

have been experimentally validated. Moreover, although a variety of miRNA target prediction

algorithms are implemented, results amongst them are generally inconsistent and correctly

identifying functional miRNA targets remains a challenging task. The majority of prediction

tools are based on the assumption that it is the miRNA seed region—generally defined as a 6 to

8 nucleotide sequence starting at the first or second nucleotide—that contains almost all the

important interactions between a miRNA and its target and their focus is on these canonical

sites. This seed-centric view has been supported by structural studies [5] and a widely cited

report [6] that investigated the importance of other (non-canonical) regions within a miRNA

and concluded their contributions had relatively low relevance compared to the (canonical)

seed region. However, more recent studies have revealed that many relevant targets are imple-

mented via non-canonical binding and involve nucleotides outside the seed region, indicating

that the entire miRNA should be considered in target prediction algorithms [3, 7, 8]. This is

also supported by the performance of target prediction tools which typically identify approxi-

mately 80% of known miRNA targets, indicating the mechanisms associated with the remain-

ing 20% of non-canonical targets remain poorly understood. Thus, there is an opportunity for

novel approaches to improve knowledge of miRNA-regulated processes. In turn, this can lead

to better understanding the effects of mutations in the non-coding region of the genome in

terms of function and disease. To this end, in this work, we apply deep learning techniques to

investigate the role of non-canonical sites and pairing beyond the canonical seed region in

microRNA targets.
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Almost all target prediction methods are rule-based or adopt machine learning (ML) meth-

odology with varying success. Rule-based systems incorporate various human-crafted descrip-

tors to represent miRNA:gene target binding (e.g. type of pairs in the site, binding stability, or

conservation of the target site among species). Machine learning techniques also use human

crafted descriptors, but as input features to machine learning models. The limitation of both

these approaches is the process of feature selection and representation, which is constrained by

the use of handcrafted descriptors to model a process that is not fully understood.

Recent increases in computational power have permitted the rise of methods that can dis-

pense with human-crafted features; making it possible to deal directly with raw data and

autonomously learn and identify patterns to appropriately represent data. In particular, deep

learning (DL) [9] has been shown to be an effective method for classification tasks in domains

with complex feature representation. Generally, DL methods represent raw data by incorporat-

ing multiple hierarchical levels of abstraction. While this approach is typically applied to stan-

dard ML problems such as image classification [10], natural language processing [11] or

speech recognition [12], it is now finding use in the life sciences for applications such as RNA

splicing prediction [13] and gene expression inference [14, 15]. DL has also been applied to the

miRNA target prediction problem. Cheng et al. [16] used convolutional neural networks to

analyze matrices of miRNA:site features, but the selected features were still human-crafted

descriptors and thus the method faces similar problems as rule-based and ML approaches. A

more recent work, DeepTarget [17], relied on recurrent neural networks to identify potential

binding sites and assess their functionality. However this work is still oriented to the identifica-

tion of canonical sites and relies on a limited small data set for the training phase.

In this paper we present miRAW, a novel miRNA target prediction tool that works with

raw input data and which makes no assumptions about suitable input descriptors. miRAW

scans the 3’UTR of the gene to identify potential target sites. It then uses DL to identify rele-

vant patterns by directly analyzing the whole mature miRNA transcript, rather than focusing

on the seed region and analyzing precomputed descriptors. It is trained and tested against

experimentally verified positive and negative datasets. The resulting predictions can then be

refined by incorporating exogenous information. When compared to other state-of-the-art

miRNA target prediction tools, miRAW demonstrates a significant improvement in perfor-

mance, highlighting the importance of considering pairing beyond the seed region. In order to

gain a deeper understanding of the characteristics of non-canonical targets, we also investi-

gated the prediction results in terms of model design (i.e., how different configurations affect

the type of predictions obtained) and from a biological perspective (i.e., how different classes

of predicted target sites varied in terms thermodynamic stability and binding structures). In

particular, results reveal (i) many potential functional non-canonical binding structures that

are supported by experimentally verified miRNA:mRNA target data and (ii) commonly priori-

tized features such as site accessibility energy and seed region structure are relevant but not

sufficient for discerning between functional and non-functional target sites.

Materials and methods

In our approach, we sought to minimize the introduction of potential biases in the data repre-

sentation by working directly with the raw data—i.e., the miRNA and mRNA transcripts—

rather than incorporating any human selected feature descriptors. To this end we applied deep

artificial neural networks (ANN) theory, taking advantage of two of their fundamental proper-

ties: (i) with sufficient data-samples and an adequate number of nodes and hidden layers, an

ANN can approximate any mathematical function [18]; and (ii) an ANN has the capacity to

automatically learn the relevant features of complex data structures by means of its hidden

miRAW: A deep learning-based approach for miRNA target prediction

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006185 July 13, 2018 3 / 32

https://doi.org/10.1371/journal.pcbi.1006185


layers [19]. In the following text, we refer to a target site within the 3’UTR of a gene as a

miRNA binding site (MBS), comprising the set of sites where partially complementary nucleo-

tides individually form bonds between the miRNA and the target mRNA.

The miRAW pipeline (Fig 1) for investigating the target potential of a miRNA and the

3’UTR of a query gene can be summarized as follows: A 30nt sliding window with a 5nt step is

used to scan the 3’UTR of a gene. For each 30nt fragment, miRAW predicts the stability of the

binding between the miRNA and the fragment. If the structure is sufficiently stable, miRAW

examines the secondary structure to see whether the extended seed region meets the criteria

defined in the candidate site selection method (CSSM). If the criteria are met, the sequence of

Fig 1. Schematic of the process used by miRAW to evaluate a miRNA binding site. (i) A 30nt sliding window (with

5nt step) is used to scan the 3’UTR of a gene; (ii) The Vienna RNACofold software package is used to estimate whether

the microRNA and the 30nt transcript can form a stable bond; (iii) If a stable bond is predicted, miRAW checks if the

extended seed region meets the criteria defined in the candidate site selection method (CSSM); (iv) If the criteria are

met, the full mature microRNA transcript and 30nt corresponding to the candidate site are fed into miRAW’s neural

network to generate a classification; (v) The prediction can be refined by a filtering step that applies additional

information that is external to the miRNA:site duplex.

https://doi.org/10.1371/journal.pcbi.1006185.g001
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the entire mature miRNA and the 30nt fragment are binarized and fed into network to gener-

ate a classification. The prediction can be further refined by including one or more filtering

steps that apply additional information that is external to the miRNA:site duplex.

Dataset preparation

A key factor for successful application of any ML classification technique is access to a suffi-

ciently variable and representative dataset that will generalize a trained model to new and

unseen data. For the miRNA target prediction problem, this requires a comprehensive dataset

of verified positive and negative targets that encompass both canonical and non-canonical

examples. While there are multiple data repositories providing information regarding experi-

mentally validated positive miRNA targets [20–22], there are significantly fewer experimen-

tally verified negative targets. This is not an issue for methods that use rule-based approaches

to describe positive matches [6], but it represents a major concern for ML-based approaches

that require similar numbers of labeled examples for both classes.

Here, we focused on human data and used (i) Diana TarBase [21]—the most comprehen-

sive publicly available dataset, which contains information for both positive (121,090) and neg-

ative (2,940) experimentally verified human miRNA:mRNA interactions—and (ii)

MirTarBase [20]—containing 410,000 experimentally verified positive targets—as the knowl-

edge core for our study. Annotation related to transcripts and miRNA binding site locations

were obtained by cross-referencing Diana TarBase identifiers with miRBase release 21 [23]

and Ensembl release 87 [24] entries. As a preliminary step, the Diana and MirTarBase data

were parsed to (i) remove inconsistent entries that were marked both as positive and negative

targets—due to contradictory results in different experimental validations—and (ii) combine

entries that were validated more than once by different verification methods. This produced a

final dataset of 303,912 positive (+) and 1,096 negative (-) miRNA:mRNA interactions. The

data was then split into two parts (each consisting of 151,956+ and 548- interactions) for the

training and testing stages (see Fig A in S1 and S2 Files).

Training dataset. The training dataset serves the purpose of training and validating the

ANN responsible for classifying miRNA target sites between functional (positive targets) and

non-functional (negative targets). Thus, the training dataset is composed of miRNA:MBS pairs

rather than miRNA:mRNA pairs.

• Positive Training Dataset To build the positive training dataset we used the reference tran-

scripts of the mature miRNAs and the target mRNAs and, where possible, the binding sites

of the experimentally verified targets. However, binding site information is only available

and/or parsable for a limited number of Diana Tarbase’s targets. Thus, in order to obtain

specific information regarding binding site locations for the remaining target entries, we

cross-referenced Diana Tarbase and TarBase with publicly available datasets containing

miRNA:MBS locations obtained through PAR-Clip [2] and CLASH [25] experiments. While

CLIP and CLASH data provides information regarding experimentally identified miRNA

binding site locations, these sites are not necessarily functional. In order to reduce the proba-

bility of including non-functional sites in the positive training dataset we considered MBSs

that (i) formed stable duplexes –negative free energy in the predicted secondary structure–

according to Vienna RNACofold [26] and (ii) corresponded to a miRNA:gene pair marked

as functional in mirTarBase or Diana TarBase.

Additionally, we complemented our positive training dataset by including the most probable

broadly conserved sites obtained from TargetScanHuman 7.1 [6] that matched experimen-

tally validated functional data from Diana Tarbase or mirTarBase. The resulting dataset was
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composed of both canonical and non-canonical MBSs and comprised a total of 33,142 posi-

tive target sites for training and validating the miRAW deep learning network.

• Negative Training Dataset The smaller number of negative experimentally validated targets

poses a challenge when constructing a representative negative dataset. Some ML-based target

prediction tools address this problem by using “mock” miRNA targets which are artificially

generated miRNA:MBS sequences that resemble true positive targets but which do not

appear in positive miRNA target repositories [17, 27]. However, in our case, this type of

strategy can lead to the ANN learning the function used to generate the “mock” data and

being trained to discriminate between real data and artificial data rather than discriminating

functional and non-functional targets. In addition, there is no guarantee that the generated

sequences do not belong to miRNA:gene functional pairs yet to be discovered or validated.

Thus, we opted for building a negative dataset based upon experimentally verified data.

Any sequence of approximately 22 nt within a mRNA of a negatively validated miRNA:

mRNA pair represents a possible negative MBS. However, in practice, most of these

sequences are irrelevant as they cannot form a stable bond with a miRNA and including

them in the training set would merely introduce noise, unnecessarily increasing the com-

plexity of the problem. To obviate this issue, we only considered negative sites within the 3’

UTR of a mRNA that (i) comprise a region with a maximum length of 30 nucleotides and

(ii) where a miRNA has the potential to form a stable bond (The choice of a binding site

length greater than the average length of an mRNA allows the presence of bulges within the

MBS). For each experimentally verified negative miRNA:mRNA pair, we used a sliding win-

dow of 30 nt along the entire 3’UTR region. The secondary structure of themiRNA:MBS
duplex was then predicted using the RNACoFold tool from the ViennaRNA package [26]

using default settings for all parameters and was considered to be a potential MBS if it had

a negative binding energy. This process resulted in a total of 32,284 negatively validated

target sites.

For training and validating the neural network, we followed a 10 fold random-subsampling

cross-validation approach using the positive and negative training datasets. For the training

folds, we stratified the sampling process to ensure the presence of both positive and negative

samples for each miRNA family (miRNAs sharing a common ancestor and which have similar

similar sequence and structure [23, 28]); this prevents the network making predictions based

solely on the presence of a miRNA in only one of the classes and not using the whole set of

inputs. For the generation of validation and testing datasets we excluded those miRNA:MBS

pairs that shared miRNA and MBS with data instances in the training data; this ensures that

there is no overlap of miRNA families between testing and training, forcing the evaluation of

new data in the testing stage. 66.67% percent of data was used for training, 33.33% for testing

and validation. For each fold we used the same proportion of positive and negative class

instances.

Test dataset. To evaluate our methodology with independent data we generated two dif-

ferent test datasets: one using the *17000 experimentally verified miRNA:gene targets

excluded from the training data (TarBase test dataset); and one using results of independent

microarray datasets reporting mRNA changes after transfecting a miRNA into HeLa cells [29]

(Transfection Test Dataset). Note that, in contrast to the training stage, the goal of the test

dataset is to evaluate the whole miRAW methodology and, therefore, the testing data consist of

pairs containing the miRNA and the whole gene 3’UTR transcripts, rather than the specific

MBSs.

The 17000 data points from the TarBase test dataset were highly biased towards positive

entries in a ratio of 97:3; this imbalance will impede true evaluation of the trained model—a

miRAW: A deep learning-based approach for miRNA target prediction
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tool that exclusively predicts positive targets against the full test data would achieve an accu-

racy of 97%. Thus, besides the full test dataset, additional datasets were generated with equal

numbers of positive and negative targets (548+, 548-) where positive entries were randomly

selected. To avoid bias attributable to positive target selection, different randomly sampled

datasets were generated and compared (10 folds and 100 folds).

The Transfection Test Dataset was obtained from [29], which provides a collection of 175

published microarray datasets that monitored the mRNA expression response of transfecting

miRNAs or siRNAs (sRNAs) into HeLa cells. We compared the sRNAs used in these experi-

ments with their miRbase 21 annotation and selected those annotated as high confident miR-

NAs (GSE8501-GSM210898: hsa-miR-9-5p, GSE8501-GSM210913: hsa-miR-181a-5p,

GSE8501-GSM210911: hsa-miR-148b-3p, GSE8501-GSM210909: hsa-miR-142-3p,

GSE8501-GSM210904: hsa-miR-132-3p). This makes it more plausible to relate the changes in

expression levels observed within each of the microarray datasets to the targets predicted by

the various target prediction tools that were selected for comparison. In the original paper

associated with the data, Garcia et Al. acknowledge that expression variability might come

from additional factors unrelated to targeting such as array noise, differential transfection effi-

ciencies, or differential sRNA loading or stability. In a subsequent study, Agarwal et Al. [6]

attempted to normalize and standarize datasets to address these issues as well as other phe-

nomena such as batch effects. Here, as all the selected datasets originated from the same series

[30] we used the original Garcia mRNA expression profiles.

Candidate site selection

Selection of candidate MBSs in a mRNA is another key step for a miRNA target prediction

algorithm as it identifies which regions within a mRNA have the potential to be a target bind-

ing site. Most target prediction methods follow a similar approach for candidate selection: they

scan the 3’UTR of the gene looking for sites that are partially complementary to the miRNA

transcript; if a site fulfills certain criteria, it is considered to be a candidate site and is subjected

to further analysis. Candidate site selection methods (CSSMs) that focus on the retrieval of

canonical targets only consider those sites that have perfect complementary within the miRNA

seed region (nucleotides 2 to 8, see Fig 2a) and will return the smallest number of predicted

targets. Methods willing to accept non-canonical sites have looser restrictions: some accept a

limited number of bulges, mismatches or wobble pairs in the seed region whilst others accept

such mismatches only if there are compensatory nucleotide pairs outside the seed region

(Fig 2b and 2c).
In an ideal scenario where the training dataset contained sufficient examples of all the possi-

ble forms of positive and negative targets, the CSSM would not be required as, theoretically, an

ANN would be able to estimate the function acting as CSSM. In reality, there are limited num-

bers of reliable experimentally verified miRNA:targets (especially for negatively validated sites)

and the CSSM step effectively narrows the search space to simplify the ANN classification task.

The CSSM used by miRAW (CSS miRAW) for searching the 3’UTR follows a similar

approach to other prediction tools –investigating successive 30-mer segments– but employs a

more relaxed set of restrictions that reflect recent experimental studies that relax the require-

ment of perfect pairing in the seed region and acknowledge a possible role for the other nucle-

otides. For example, Kim et al [8] report the role of nucleotide 9 in several miRNA binding

sites and Grosswendt et al [2] found that a significant number of miRNAs do not require per-

fect complementarity within the seed region and compensate for this in non-seed nucleotides.

Finally, a recent structural study by Klum et al [31] clarify a role for the 3’ end of the miRNA

in the targeting process. Based on the findings from these and other related studies, we
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investigated three different approaches that expand the analysis beyond the typical 7mer seed

region and relax the broadly adopted requirement for perfect pairing within the seed region.

In particular, we consider a site to be a candidate MBS if there is a minimum number of

base pairs—considering both Watson-Crick (WC) pairing and wobbles—within an extended

seed region and investigated three different configurations:

• CSS miRAW-6-1:10: a candidate MBS contains at least 6 base pairs between nucleotides 1

and 10.

• CSS miRAW-7-1:10: a candidate MBS contains at least 7 base pairs between nucleotides 1

and 10.

• CSS miRAW-7-2:10: a candidate MBS contains at least 7 base pairs between nucleotides 2

and 10.

In each case, base pairs do not need to be consecutive in order to accommodate the pres-

ence of gaps and bulges.

Thus, these models can accommodate both standard canonical MBSs as well as a broader

range of non-canonical target site structures (see Fig 2), including the vast majority (up to

97.63%) of experimentally validated sites from Diana TarBase and CLIP/CLASH binding site

datasets. Moreover, while these relaxed conditions for the seed region generate a much larger

number of candidate sites, the decision of whether a site represents a functional target is dele-

gated to the ANN (which considers the entire miRNA & mRNA sequence). In this way, we

ensure that minimal assumptions, and hence bias, are incorporated into the analysis.

Fig 2. Examples of the types of miRNA binding sites considered by different candidate site selection methods (CSSMs). (a)

Potential canonical binding site accepted by the PITA, TargetScan (TS), and miRAW CSSMs. Here, the seed region contains a

perfect 7mer. (b) Potential non-canonical compensatory binding site accepted by TS and miRAW CSSMs. The missing nucleotide

pair in the seed region is compensated by the 9 consecutive pairs starting at position 10—centered pairing requires at least a 4mer at

positions 10 to 14. (c) Potential non-canonical centered target site accepted by TS and miRAW CSSMs. The lack of perfect seed

matching is compensated by additional consecutive pairs in nucleotides 9 to 12. (d) Potential non-canonical sites accepted only by

the miRAW CSSMs. The extended seed region (10 nucleotides) and the inclusion of wobbles allows these scenarios to be considered

as potential target sites.

https://doi.org/10.1371/journal.pcbi.1006185.g002
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To further evaluate the impact of choice of CSSM, we also implemented the CSSMs used in

two of the most commonly used miRNA target prediction tools:

• TargetScan (CSS miRAW-TS) considers three types of sites: (i) perfect canonical matches

(perfect complementarity in nt 2 to 8, Fig 2a), (ii) 3’ compensatory sites (a minimum of 3

consecutive WC pairs between nt 13 and 16 compensates an imperfect seed match –one

wobble, bulge or mismatch–, Fig 2b) and (iii) centered sites (imperfect seed match but 11

contiguous WC pairs between nt 4 and 15, Fig 2c).

• PITA (CSS miRAW-Pita) considers (i) 7mers starting at nt 1 or 2 (Fig 2a) and (ii) sites con-

taining a gap, wobble or mismatch in the seed region (starting at nt 1) if it contains at least 7

WC pairs.

Both these CSSMs are subsets of CSSM-miRAW-6-1:10 and CSSM-miRAW-7-1:10 (Fig 2).

Implementation of different CSSMs served the primary purpose of fine-tuning miRAW but

also allowed us to investigate the targeting process from a biological perspective. The 5 pro-

posed methods encapsulate different target ranges. At one extreme, CSS-miRAW-TS and CSS-

miRAW-P adopt conservative approaches oriented towards canonical sites but they also con-

sider a limited number of non-canonical sites with small irregularities in the seed region; at the

other extreme, the other non-canonical CSSMs follow a greedier approach that allows the con-

sideration of several non-canonical sites with broader irregularities in the seed region. These

differences produce variations in both the canonical and non-canonical predicted targets.

Transcript binarization

As an ANN requires numerical data for input, we transformed the miRNA and candidate

mRNA site transcripts to binary values using one hot encoding. Each of the mRNA and

miRNA nucleotides was translated to a binary vector of dimension 4, corresponding to the

four possible nucleotide values (see Table 1). Thus, each miRNA target is represented by two

concatenated binary vectors: one composed of dimension 120 (4x30nt, where 30nt accommo-

dates the longest known miRNA) corresponding to the mature miRNA transcript, and a sec-

ond composed of dimension 160 (4x40nt) corresponding to the mRNA site (30 nt) and 5

additional upstream and downstream nucleotides. These additional nucleotides seek to cap-

ture any influence that the flanking sequence may exert on the target [32, 33]. The optimal

number of additional upstream/downstream nucleotides was determined by evaluating how it

affected the predictive power of the neural network (see Fig B in S1 File). The number of addi-

tional nucleotides also conditions the window step size used when scanning the 3’UTR—a

smaller window would result in a redundant analysis of potential sites by the neural network

whilst a larger step would result in unscanned regions within the 3’UTR.

Neural network design

Classification of candidate miRNA:MBSs was performed using a feed forward deep ANN. As

we rely on the network to identify the relevant relationships between a sequence and the

Table 1. Binarized nucleotide encoding.

Nucleotide Binarization

A 0 0 0 1

C 0 0 1 0

G 0 1 0 0

U 1 0 0 0

Empty 0 0 0 0

https://doi.org/10.1371/journal.pcbi.1006185.t001
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features that describe the miRNA:mRNA interaction, the input of the network consisted of the

binarized transcripts of the miRNA and the MBS. The network was configured so that the

number of inputs in the input layer was equal to the dimensionality of the binarized represen-

tation of the miRNA:mRNA transcripts, and the output layer consisted of two outputs (posi-

tive and negative class classification). In addition, transcripts were aligned so the start of the

seed region corresponded always to the same input node.

The deep ANN was composed of eight dense hidden layers (comprising rectifier activation

function –RelU– nodes) whilst the output layer comprised two softmax output nodes. The

shape of the network was consistent with its intended functionality: (i) the first hidden sparse

layer increases the dimensionality of the problem allowing the representation of data in a more

complex dimension (over-completion); this layer does not necessarily improve the efficiency

of the network autoencoder but it gives it “room” to explore the search space. (ii) Hidden lay-

ers one to five aim to identify the relevant features representing the data; they correspond to

the first half of a stacked autoencoder. These layers were pre-trained as an isolated autoencoder

in order to learn the features that are most representative of miRNA:MBS duplexes. (iii) the

last three layers are responsible for classifying the features learned by the autoencoder; and fol-

low the typical shape of a feedforward classification network.

The number of nodes per layer was chosen experimentally using the guidelines in [34] as a

starting point and resulted in the structure shown in Fig C and Fig D in S1 File. The size of the

autoencoder was determined by minmizing the number of layers required to compress the

data without losing important information (relative error < 0.05); i.e., a smaller network may

struggle to capture important information whereas a larger one may require additional train-

ing time and would have higher overfitting risk.

To ensure the network’s capacity to deal with newly observed data and to avoid overfitting,

training was performed with a dropout rate of 0.2. The maximum number of epochs was set to

500 in order to prevent excessive training time and overfitting. We tested two different loss

functions for the network: negative log likelihood (NLL) and cross entropy (XENT). After per-

forming cross-validation, and determining the best model configuration (see “Results:Neural

Network Evaluation”) we generated miRAW’s ANN model by retraining the network using the

complete training dataset (with the same proportion of positive and negative class instances).

The two neurons of the output layer correspond to the negative (output 0, o0) and positive

(output 1, o1) classes. Therefore, the class of the site is determined by the values of the two out-

put neurons:

class ¼

(
1 if o1 � o0 > 0

� 1 if o1 � o0 � 0
ð1Þ

This method will assign a positive or negative classification even if there is only a small dif-

ference between the positive and negative output neurons. This scenario corresponds to situa-

tions where the network is not confident about the classification of the input data. To deal

with such uncertainty a constant parameter K was used to define a ‘grey area’ in which the net-

work is not able to provide a reliable prediction:

class ¼

1 if o1 � o0 � K

� 1 if o1 � o0 � � K

unknown if � K < o1 � o0 < K

8
>>><

>>>:

ð2Þ
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Gene prediction and filtering

According to [35], we consider that a miRNA targets an mRNA if any of the potential MBSs of

the mRNA are functional. In the representation of the targeting process implemented within

miRAW, we require the neural network classify at least one candidate site as positive to con-

sider a miRNA:mRNA pair as a positive targeting event.

In our model, given a miRNAm and a gene g, a candidate site selection method sm(m, g)
determines a set of potential MBSs for that pair, i.e.

smðm; gÞ ¼ CS ð3Þ

CS ¼ fcs0 . . . csig ð4Þ

To determine if the miRNA is targeting the gene, each candidate site within the miRNA:

mRNA segment is binarized and input to miRAW’s deep ANN. The result of the targeting pre-

diction T(m, g) corresponds to the disjunction of the neural network outputs (ann(m, csi)) for

all the candidate sites csi 2 CS in the gene g.

Tðm; gÞ ¼
_jCSj

i¼0

annðm; csiÞ ð5Þ

The fact that it only requires a single candidate site to be classified as positive for the

miRNA:mRNA prediction to be positive implies that miRAW is particularly sensitive to false

positives. A false negative for a single candidate site can be abrogated by a positive classifica-

tion for any of the remaining candidate sites but a single false positive cannot be corrected by

any number of negative candidate sites. Hence, the more potential sites a CSSM identifies, the

higher the probability of obtaining a false-positive prediction, reducing the performance of the

classification due to a lower precision.

PðFPCSSMÞ ¼ 1 � Pð!FPCSSMÞ ¼ 1 � ð1 � FDRÞjCSj

PðFPCSSMÞ ¼ 1 � precisionjsitesj
ð6Þ

where FDR corresponds to the false discovery rate of the neural network (that can also be defi-

nied as 1—precision). This also implies that CSSMs that adopt a greedier approach will end up

obtaining more false positives by chance.

The presence of false positives in miRAW’s ANN can be partially attributed to the fact that

not all the information concerning miRNA targets can be obtained from the miRNA:MBS

duplex and, therefore, cannot be inferred by the neural network. For instance, aspects such as

site accessibility [36] require accessing additional external data sources. This external informa-

tion can be used to refine ANN outcomes by removing sites unlikely to be functional. In an

attempt to reduce the likelihood of false positives, we included an a posteriori filtering step

based on accessibility energy. It is known that miRNA binding sites that are more easily acces-

sible tend to have higher chances of being functional targets [36]; for this reason, several tools

usch as PITA, miRMAP [37] or PACMIT [38] combine this information with the binding site

minimum free energy (ΔGduplex) to produce a refined target prediction. The site accessibility

energy (ΔGopen) of a MBS can be defined as the energy required to unfold the secondary struc-

ture of the mRNA in order to accommodate the miRNA [36, 38]. As the calculation of ΔGopen
requires information that extends beyond the MBS and which involves the whole mRNA

sequence, it is particularly well suited for use as a posteriori filter in miRAW. Following the site

accessibility energy definition of [38], we implemented an ΔGopen filter that removed all pre-

dicted sites presenting a ΔGopen higher than a threshold thsa. Based on results from previous
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studies [36, 38], we set thsa = −10kcal/mol. For accuracy and robustness, we computed local

site accessibility following the guidelines defined in [39] and [38]. Specifically, we used the

ViennaRNA package [26] and considered the 200nt surrounding the target rather than folding

the whole mRNA sequence as this may result in less accurate and more complex secondary

structures [38].

Implementation and evaluation

miRAW was implemented using Java. RNACoFold from the ViennaPackage [26] was used for

computing the candidate sites. Implementation of the deep neural network was done using the

DeepLearning4Java (DL4J) library [40]. DL4J allows the use of both CPU and GPUs for neural

network training and classification. All the analyses presented in this paper were performed

using GPUs due to its improved performance; however, a CPU based version of miRAW is

also available.

To assess miRAW’s performance, we compared it against the following commonly used tar-

get prediction tools: TargetScan release 7.1 [6], Diana microT-CDS v.4 [41], PITA v.6 [36],

miRanda (built upon the mirSVR predictor) [42], mirzaG [43], Paccmit [44] and mirDB [45].

These represent the current gold standards (i.e., most commonly referenced) for microRNA

target prediction software. These software periodically release datasets containing all available

predicted target databases (as of January 2017) with the test datasets defined in “Methods:

Dataset Preparation”. We performed 10-fold validation for the TarBase test, and repeated the

analysis for 100-fold (Fig F in S1 File) and the full TarBase test (Fig G, Fig H and Table D in

S1 File). For the 10-fold analysis we also characterized the predictions in terms of the structure

and site accessibility energy distributions to try and to gain a better understanding of the iden-

tified targets in these terms.

If a miRNA:mRNA was present in the test dataset, but missing in a release dataset, then that

interaction was assigned the lowest possible score for that algorithm. For genes with multiple

annotated 3’ UTRs we selected the isoform used to build the test dataset. In prediction datasets

where such an isoform was not available or not specified, we tested the longest isoform avail-

able. The comparison was performed using the optimal reported configuration for each tool.

For the release datasets that provided a prediction score, we used a variable threshold and the

pRoc R package [46] to build receiver operating characteristic (ROC) curves. To assess the sig-

nificance of the results, we performed a Wilcoxon signed rank test for each of the evaluated

metrics; Results were considered significant for p< 0.05 unless otherwise stated (see S3 File

for specific p-values).

To evaluate the correlation between the target predictions for a miRNA and the corre-

sponding gene expression profiles in the Transfection Test Dataset we computed the coeffi-

cient of determination (r2) between the reported predictions for each different algorithm and

the changes of gene expression levels present within the corresponding transfection dataset. As

some methods such as miRAW or microT adopt binary approaches that only evaluate whether

or not a miRNA is targeting a gene, rather than quantifying the repression efficacy of the

miRNA target, we also examined the expression changes for the top 1% of predicted targets for

each of the algorithms, counting how many of the predicted targets presented significant

changes in their expression levels. In contrast to the r2 test, this approach determines if higher

confidence predictions are reliable and does not penalize methods that follow less restrictive

approaches in order to favour sensitivity. As before, we considered the interactions not present

in the release datasets as negatives and we assigned them the lowest score for that algorithm.

mirSVR, mirDB and mirza-G have been excluded from this test due to absence of predictions

for the transfected miRNAs we evaluated here.
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All genes within the testing datasets correspond to the GRCh38 release of the reference

human genome whilst all the miRNAs appear in miRBase version 19 and later. All tested

target prediction datasets with the exception of PITA and miRanda were built using these, or

more recent, releases of miRBase and the reference human genome. This might impair the per-

formance of PITA and miRanda as some of their negative predictions may not have been

tested. TargetScan, Paccmit and MIRZA-G offer two different databases in each release, one

providing target sites highly conserved among species (TS_Conserved, Paccmit_Cons

MG_Conserved) and one providing sites not-necessarily conserved among species

(TS_NonConserved, Paccmit_NonCons, MG_NonConserved). In both cases, the two versions

of the databases were considered.

Results

The two key components of miRAW’s design are (i) the ANN that analyzes candidate target

sites and (ii) the CSSM used during the target prediction step. To assess these two aspects of

the model we first evaluated the outputs of the ANN training process through cross-validation

and then investigated performance using the different candidate site selection methods out-

lined in the methodology. These comprised the novel (non-canonical) models implemented

for miRAW—miRAW-6-1:10, miRAW-7-1:10 andmiRAW-7-2:10—and the existing (canoni-

cal) models already used in TargetScan and PITA—miRAW-TS andmiRAW-Pita. In addition,

we explored how a posteriori filtering can improve the reliability of the predictions by evaluat-

ing miRAW results for the predicted canonical and non-canonical targets in the presence and

absence of filtering. Finally, we tested miRAW’s performance by comparing it against TargetS-

can, Diana microT-CDS, PITA, miRanda, Paccmit, mirza-G and mirDB, which represent the

most commonly used target site predictors based on citations.

Neural network evaluation

Cross validation of miRAW’s ANN presented good results in terms of predicting both positive

and negative sites. This was independent of the loss function used during training, with all

evaluated metrics resulting in scores higher than 0.90 (Fig 3 and Tables A and B in S1 File).

Nonetheless, accuracy and area under the curve (AUC) metrics show that the XENT (accu-
racy = 0.92, AUC = 0.96) loss function resulted in a statistically significantly (Wilcoxon signed

sank test) better network compared to the NLL function (accuracy = 0.91, AUC = 0.93). This

was reflected in both prediction of positive targets, where the XENT network achieved higher

precision, sensitivity and F1-score compared to the NLL network. For negative target predic-

tion, the XENT network returned a larger number of predictions than the NLL but neverthe-

less achieved a similar negative precision. It is worth noting that, across the different folds, the

XENT network was less consistent in terms of negative precision than in positive precision

and that for most of the folders it presented more FN than FP. This, combined with the differ-

ence in sensitivity and specificity values (0.92 vs 0.94), suggests that the XENT network is

slightly biased towards negative predictions as it predicted more negative than positive sites

for each fold. Despite this fact, the statistically significant higher accuracy, AUC and F1-scores

(both positive and negative) indicate that the XENT network is more appropriate than the

NLL network for miRNA target prediction.

Fig 4 shows the receiver operating characteristic (ROC) curves for the NLL and XENT net-

works. The XENT network has a larger AUC, indicating superior performance. Moreover,

there is a clear difference in shape of the curves and distribution of data points. The XENT net-

work exhibits a smooth curve with relativity evenly spaced points, the NLL curve is more dis-

continuous and the data points are concentrated within a smaller region. This indicates a
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stronger polarization of the NLL network, where all the predictions are strongly classified as a

positive or a negative target (i.e. class value is very close to 1 or -1). Conversely, the smoothness

of the XENT network represents a more progressive classification, allowing the presence of

less polarized predictions, resulting in a more generalized predictive ability. The shape of the

NLL curve also suggests that the NLL network might be overfitted and that it might struggle to

classify new observations that significantly differ from the training data—this is also supported

by the average epoch numbers used by each network to reach its optimal set of weights, 7.32

for the XENT network versus 11.21 for the NLL network.

The general consistency of calculated parameters and ROC curves across the different folds

in the two networks (Tables A and B in S1 File) indicates that the model performance is not

dependent on the training and test datasets used. Fold 7 of the XENT network achieved the

highest performance in terms of all the considered evaluation metrics and so this ANN model

was selected for testing in the gene prediction stage.

miRNA target prediction with miRAW: The role of the site selection

method

To investigate the impact of the site selection method, we compared the performance of five

different CSSMs (miRAW-6-1:10, miRAW-7-1:10, miRAW-7-2:10, miRAW-TS and miR-

AW-Pita) in the presence and absence of a site-accessibility energy (AE) filter of -10kcal/mol,

summarized in Fig 5 and Table C in S1 File. All the methods achieve accuracies between 0.64

and 0.74 with significant differences depending on if the site-accessibility filtering is present

(AE) or absent (NF). This effect can be seen when the different CSSMs are ordered by accu-

racy. miRAW-Pita-NF, miRAW-TS-NF, miRAW-7-2:10-AE and miRAW-7-1:10-AE obtain

Fig 3. Comparison of miRAW’s neural network performance with the positive and negative training datasets

when using a negative log likelihood (NLL) loss function and a cross entropy loss function (XENT) with 10 fold

cross validation. XENT provides significantly better accuracy, precision, sensitivity, specificity, F1-scores and area

under the curve (AUC) compared to NLL (� p-value< 0.05, �� p-value< 0.01).

https://doi.org/10.1371/journal.pcbi.1006185.g003
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similar accuracies (� 0.72) with no statistically significant differences in the metric, although

miRAW-6-1:10-AE has a slightly poorer performance (0.71). However, miRAW-7-2:10-NF,

miRAW-7-1:10-NF, miRAW-Pita-AE and miRAW-TS-NF ranked in the bottom of the table

in terms of accuracy. Thus, while the non-canonical CSSMs specifically derived for miRAW

obtain better results in the presence of filtering, the canonical derived CSSMs (miRAW-Pita

and miRAW-TS) exhibit improved performance in the absence of filtering.

The F1-scores summarize how well a particular class is classified by a particular CSSM, an

optimal CSSM will perform well for both positive and negative targets. Fig 5 and Table C in

S1 File show that CSSMs with reported low accuracy underperform in at least one of the

F1-scores: miRAW-7-2:10-NF, miRAW-7-1:10-NF and miRAW-6-1:10 have high positive

F1-scores but a low negative F1-score caused by an excess of false positives (causing a low spec-

ificity) whilst miRAW-Pita-AE and miRAW-TS-AE have a low positive F1-score cause by the

excess of false negatives (causing a low sensitivity). However, miRAW-Pita-NF, miR-

AW-TS-NF, miRAW-7-2:10-AE and miRAW-7-1:10-AE all obtain balanced F1-scores rang-

ing between 0.71 and 0.74, indicating an ability to effectively predict both positive and

negative targets.

Fig 6 summarizes the composition of site types by each CSSM. Fig 6a shows the average

number of canonical (blue) and non-canonical (green) sites identified for each miRNA:gene

pair in the test dataset whilst Fig 6b shows the relative proportions of each identified type. As

expected, CSSMs methods following conservative approaches (miRAW-Pita and miRAW-TS)

identified more canonical than non-canonical potential sites, whereas the miRAW CSSMs

identified larger total numbers of potential sites, of which many more were non-canonical.

The figure also shows that the number of predicted canonical sites varies according to the

Fig 4. Average ROC curves for cross validation of miRAW’s neural network using the positive and negative

training datasets. The dashed line corresponds to the aggregated ROC obtained with the XENT loss function

(AUC = 0.96), the solid line corresponds to the NLL loss function (AUC = 0.93). The XENT loss function presents a

smoother ROC curve with a higher area under the curve, indicating better performance.

https://doi.org/10.1371/journal.pcbi.1006185.g004
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selected CSSM, with the conservative approaches obtaining more canonical sites than the

greedy approaches. While this seems to contradict the expectation that all the CSSMs should

identify similar canonical sites, the difference can be understood when the higher number of

accepted binding structures recognized by the non-canonical oriented CSSMs are taken into

account. Several of the sites identified by miRAW-Pita or miRAW-TS overlap with non-

canonical binding sites predicted by the miRAW specific CSSMs that present greater stability

and are therefore preferentially selected (Fig 7). Fig 6b also shows that the application of the

site accessibility filter does not significantly alter the ratio of canonical and non-canonical sites

for any CSSM, suggesting that site accessibility filters do not act as a discriminator between

canonical and non-canonical sites.

Site accessibility filtering

Fig 5 shows that site accessibility filtering has very different effects in the canonical and non-

canonical CSSMs. This difference can be understood by considering the different approaches

taken by the canonical (conservative) and non-canonical (greedy) models. The conservative

Fig 5. Evaluation of miRAW using different CSSMs and in the presence (AE) and absence (NF) of ΔGopen filtering

(threshold = -10Kcal/mol). Results are evaluated in terms of accuracy, precision, sensitivity, negative precision,

specificity, positive F1-score and negative F1-score. The best results in terms of accuracy and negative F1-Score were

obtained when using Pita’s CSSM and when no filtering was applied. The highest positive F1-Score was obtained by

miRAW-7-2:10. Canonical CSSMs (TS and Pita) obtain better results when no filter is applied, the application of

ΔGopen filtering introduces false negatives resulting in low sensitivity and negative precision. Conversely, non-

canonical CSSMs (miRAW-6-1:10, miRAW-7-1:10 and miRAW-7-2:10) present better results when filtering is applied

as this reduces the number of false positives, thereby increasing precision and specificity; when no filtering was applied

miRAW was biased towards the prediction of positive sites, which resulted in high sensitivity but low precision.

https://doi.org/10.1371/journal.pcbi.1006185.g005
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Fig 6. Composition of site types identified by the different CSSMs implemented in miRAW. (a) Average number

of miRNA binding sites (MBSs) identified by the different CSSMs in a miRNA:mRNA pair. Blue color refer to MBS

following a canonical structure, green refer to non-canonical sites; darker colors correspond to positive sites predicted

in experimentally verified functional miRNA:mRNA pairs (true positives), lighter colors refer to positive sites

identified in non-functional pairs (false positives). (b) Proportion of canonical, non-canonical, true positive and false

negative sites identified by each of the candidate site selection methods. Figures illustrate that miRAW-Pita and

miRAW-TS CSSMs are strongly biased towards detection of canonical sites whereas miRAW specific CSSMs detect a

higher proportion of non-canonical sites.

https://doi.org/10.1371/journal.pcbi.1006185.g006
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models only consider canonical sites containing close to perfect complementarity (�7mers) in

the seed region and a restricted number of non-canonical sites, resulting in a limited amount

of candidate sites. Conversely, the greedy models not only recognize canonical sites but also

screen a wide range of non-canonical sites that follow unconventional target structures,

obtaining a much higher number of potential target sites. This is illustrated in Fig 8a which

shows the average and median number of potential MBSs identified for a miRNA:mRNA pair

for each CSSM. The boxplot shows that, in the absence of filtering, more potential MBSs

are identified for the more relaxed non-canonical CSSMs. For example, on average,

miRAW-Pita_NF and miRAW-TS_NF identify between 3 and 4 sites respectively per miRNA:

mRNA pair, whereas miRAW-7-1:10_NF and miRAW-6-1:10_NF identify *22 and

*13 sites respectively. However, as more potential MBSs are identified, the chance of incor-

rectly obtaining a false positive increases.

From the training results for the XENT network (Table A in S1 File), we can estimate the

overall probability of the network obtaining a false positive prediction as 0.068 (P(FP) = 1 −
precision). However, there is greater variation when we independently consider the various

CSSMs (Eq 6). Fig 8b shows the relationship between the probability of obtaining a false posi-

tive and the average number of sites obtained by each CSSM.

The non-canonical CSSMs with filtering are at the bottom left of the curve, indicating the

efficacy of the filtering step, a-posteriori filtering for these CSSMs reduces the number of iden-

tified potential MBS which, in turn, lowers the probability of returning a false-positive error in

the network and obtaining a false positive miRNA:mRNA classification–. Conversely, applica-

tion of a posteriori filtering in conservative CSSMs significantly reduces the number of candi-

date sites, leading to the exclusion of true binding sites and increasing the probability of

classifying a miRNA:mRNA pair as a false negative.

We next investigated the relationship between the ΔGopen threshold applied in miRAW

and the accuracy and the negative and positive F1-score metrics. The results are summarized

in Fig 9a–9c. Again, the canonical and non-canonical CSSMs curves exhibit distinct

Fig 7. Example of a miRNA binding site that can accommodate a miRNA (hsa-miR-21) with different

binding patterns and different site stabilities. The left figure shows a canonical binding (perfect 7mer) with

ΔGduplex = −10.30kcal/mol while the right figure shows a non-canonical binding (containing wobbles in the seed

region) ΔGduplex = −11.70kcal/mol. While the left structure can be identified by both canonical and non-canonical

CSSMs, a non-canonical CSSM will preferentially select the right hand structure as a potential MBS since it reports a

more stable predicted binding energy.

https://doi.org/10.1371/journal.pcbi.1006185.g007
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Fig 8. (a)Number of MBSs identified by each CSSM in the presence (AE) and absence (NF) of ΔGopen filtering.

Values> 40 are excluded from the plot for comparative purposes. Red (upper) numbers and green (lower) numbers

show the mean and the median respectively of the number of MBSs identified by each CSSM. miRAW-Pita_AE and

miRAW-TS_AE have the lowest number of MBSs while miRAW_6-1:10_AE has the highest. The number of sites

discarded by accessibility energy filtering (AE) is higher in non-canonical oriented CSSMs than in canonical-oriented
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characteristics. All the metrics for the canonical CSSMs improve with increasing ΔGopen, i.e.,

these CSSMs are most effective in the absence of any threshold filtering. Conversely, the non-

canonical CSSMs improve with low ΔGopen thresholds. While the positive F1-score progres-

sively increases with high ΔGopen thresholds, the negative F1-score achieves a peak value

between -8 and -10kcal/mol. This reflects the fact that, as the ΔGopen threshold is increased,

more sites are considered by miRAW: increasing sensitivity (more true positives) but in turn

reducing specificity (less true negatives and more false positives). The observation that site

ones. (b) Relationship between the probability of miRAW obtaining a false positive prediction and the number of sites

identified by each CSSM. The fact that miRAW classifies a miRNA:mRNA duplex as positive if a single miRNA:MBSs

is predicted as positive by the neural network increases the chances of obtaining a false-positive prediction as the

number of potential MBSs increases. As non-canonical oriented CSSMs tend to detect higher numbers of potential

MBSs they are more sensitive to a false positive. The application of ΔGopen filtering reduces the number of potential

MBSs and therefore reduces the probability of a false positive.

https://doi.org/10.1371/journal.pcbi.1006185.g008

Fig 9. Performance of miRAW in relation to ΔGopen filtering threshold. (a) Variation in accuracy with respect to ΔGopen filtering threshold. (b)

Variation in positive F1-score with respect to ΔGopen filtering threshold. (c) Variation in negative F1-score with respect ΔGopen filter threshold. Graphs

show that for non-canonical oriented CSSMs, the application of a ΔGopen improves accuracy and negative F1-score values as better scores are obtained

when sites with higher ΔGopen values are removed. The peak in the accuracy curve and the fact that the positive F1-score reaches a plateau around

ΔGopen = 10, indicates this is an optimal cutoff value. For the canonical-oriented CSSMs, accuracy and positive F1-score metrics reach a plateau around

ΔGopen� 23 whereas the negative F1-score curve slightly decreases from ΔGopen� 18. However, the decrease is small compared to the changes in the

positive F1-score chart, suggesting that ΔGopen filtering has limited relevance for these models.

https://doi.org/10.1371/journal.pcbi.1006185.g009
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accessibility filtering increased the performance of non-canonical CSSMs but decreased per-

formance in canonical CSSMs suggests a potential bias towards low site-accessibility energy

in non-canonical sites. To explore this possibility, we examined the site accessibility energy

distribution of the sites predicted by the different CSSMs and separated them into canonical

and non-canonical sites found in true positive (TP) and false positive (FP) miRNA:mRNA

pairs. The results are shown in Fig 10a–10d.

Fig 10a groups data according to type of site and classification outcome (canonical TP,

canonical FP, non-canonical TP and non-canonical FP). For the canonical TP sites, the differ-

ent CSSM energy distributions do not present statistically significant differences between

them (pairwise comparison using Kolmogorov-Smirnov test; we considered differences as sta-

tistically significant when p< 0.05)(Fig 10b); this is explained by the fact that all the site selec-

tion methods identify similar canonical sites. For the FP canonical sites there are no significant

Fig 10. Energy distributions of the site accessibility energy ΔGopen for target sites predicted by miRAW using different CSSMs (a) ΔGopen distributions

grouped by the type of site identified by each CSSM (with extreme values removed for comparative purposes). Blue curves correspond to non-canonical

CSSMs, red and yellow curves correspond to canonical CSSMs. In general, ΔGopen distributions are smoother for true positive sites (for both canonical

and non-canonical CSSMs) than for false positive sites. (b) Pairwise comparison for statistical significance among CSSMs (Kolmogorov-Smirnov test

(p< 0.05)). The most striking differences are between the ΔGopen distributions of non-canonical false positive sites, with differences identified between

all CSSMs. For non-canonical true positive sites, statistical significance is only identified between canonical (miRAW-TS, miRAW-Pita) and the non-

canonical (miRAW specific) CSSMs. For canonical sites, there are fewer significant differences; this can be explained by the fact that all the CSSMs

identify similar MBSs. (c) Same energy distribution data in (a), but grouped by the CSSMs used for identifying the sites. The smoother distribution of

the true positives is also apparent in these plots. (d) Pairwise comparisons of the different site types identified by each CSSM (TP/FP and canonical/

non-canonical)—(Kolmogorov-Smirnov test (p< 0.05)).

https://doi.org/10.1371/journal.pcbi.1006185.g010
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differences among the three non-canonical CSSMs, however the miRAW-Pita CSSM does

have significant differences with these CSSMs. From the corresponding graph in Fig 10a (top

right) the peak in the miRAW-Pita distribution occurs around a threshold of -10kcal/mol

whereas for the non-canonical CSSMs the peaks occur between -14 and -15 kcal/mol. The rea-

son for this difference is unclear as we would anticipate a similar set of false positive canonical

sites for all the CSSMs –as all consider sites with perfect seed region complementarity–. How-

ever, one possibly for this divergence may be a consequence of the fact that, in contrast to the

other CSSMs, miRAW-Pita is the most conservative and does not consider pairing beyond the

seed region as a factor for determining the binding site. This is also consistent with the situa-

tion shown in Fig 7 where some canonical sites identified by miRAW-Pita can accommodate

more stable non-canonical bindings. This explanation is also consistent with the lower peak in

the miRAW-TS CSSM curve, miRAW-TS only considers orthodox non-canonical sites

(involving several consecutive WC pairs outside the seed region) compared to miRAW

CSSMs. For the non-canonical TPs, there are significant differences between the canonical

and non-canonical CSSMs. Although the profiles of the curves for the miRAW-Pita and non-

canonical distributions appear similar, there are significantly more sites predicted at the peak

energy (� -12kcal/mol) for miRAW-Pita than for the non-canonical CSSMs, although it is

unclear whether this is the only feature responsible for the estimated the significant differences

between these distributions. Finally, for the non-canonical FP sites, there are significant differ-

ences between all the CSSMs, with the non-canonical CSSMs generally presenting distinct dis-

tributions compared to the TS and Pita CSSMs. As the exact differences between normalized

energy distribution curves were unclear even between statistically significantly different situa-

tions, we also performed pairwise comparisons between the mean (Mann-Whitney U test;

p = 0.05) and median values (Mood’s median test; p = 0.05) for each of the distributions. We

found that the miRAW-Pita CSSM tended to have higher ΔGopen in non-canonical sites

(both TP and FP), which can be attributed to the fact that miRAW-Pita only considers non-

canonical sites based on the seed region whereas both TS and CSSM-miRAW accommodate

sites beyond this. Therefore MBSs in Pita non-canonical sites have less dependency on accessi-

bility as they only need to accommodate a (smaller) seed region compared to the broader

accessibility by the non-canonical sites in the other CSSMs. This is also observed to some

degree between miRAW-TS and the miRAW specific CSSMS; miRAW-TS requires several

consecutive binding sites outside of the seed region but the miRAW-CSSMs accommodate

even more flexible structures.

Fig 10c shows the same site energy distribution information, but with each plot grouped by

CSSM. In all cases, the TP curves have smoother distributions than the FP curves and Kolmo-

gorov-Smirnov tests Fig 10d) report statistically significant differences (p< 0.05), between the

energy distributions of the predicted canonical and non-canonical sites for almost all the

CSSMs. False positives present more irregular distributions in all the CSSMs. Despite these

observed differences, there is no clear explanation for either the distinction between canonical

or non-canonical sites or true and false positives.

In summary, the results in Fig 10 indicate that: there are differences in the energy distribu-

tions of the sites obtained using different CSSMs; there are differences between canonical and

non-canonical sites; and there are differences between the energy distributions for the true

and false positives. Nevertheless, these differences are not sufficient to identify any clear dis-

criminatory features between MBSs, i.e., ΔGopen application of a ΔGopen filter improved perfor-

mance of CSSMs by reducing the amount of potential MBS (thus reducing the probability of a

false positive), rather than by identifying a relationship between ΔGopen and true or false

positives.
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Comparison with other miRNA target predictors

Fig 11 and Fig G and Table C in S1 File compare the performance of the best miRAW configu-

rations—miRAW-Pita-NF, miRAW-TS-NF, miRAW-6-1:10-AE, miRAW-7-1:10-AE and

miRAW-7-2:10-AE– with state-of-the art target prediction software tools—TargetScan release

7.1 [6], Diana microT-CDS v.4 [41], PITA v.6 [36], miRanda (built upon the mirSVR predic-

tor) [42], Paccmit [44], MirzaG [43], and mirDB [45]—using the dataset defined in “Methods:

Dataset Preparation”.

All the miRAW implementations generally obtained (statistically significant—See S3 File -)

better results than each of the other prediction tools for all the evaluated metrics, except for

specificity, where most of the methods obtain a similar score, and for precision where mirDB

also obtained similar results. Generally, the other methods presented low accuracies: TargetS-

can, PITA, miRanda and mirDB values were around 0.50; Micro-TDS achieved a value of 0.61,

but this was still much less than that reported for miRAW (0.78). For mirDB, miRanda,

Fig 11. Comparison of miRAW with different CSSMs and eight other commonly used target prediction tools

(TargetScan C & NC, Diana microT-CDS v4, PITA v6, miRanda, Paccmit, mirzaG and mirDB). Colouring for

miRAW results are consistent with the color scheme in Fig 5; other prediction tools follow a light to dark blue color

schema. Evaluation was determined in terms of accuracy, precision, sensitivity, negative precision, specificity and

F1-score (an ideal predictor would obtain a score of 1 for each metric). All miRAW configurations outperformed other

methods in terms of accuracy and F-scores, which are good representations of general measures of performance.

mirDB and Target-Scan (highly conserved targets) obtained high specificity scores but a low negative precision as a

consequence of their conservative approach, which classified almost all the miRNA:mRNA pairs as negative. After

miRAW, microT was the method which presented better and more balanced results.

https://doi.org/10.1371/journal.pcbi.1006185.g011
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TS_Conserved and TS_NonConserved, the low accuracies seem a consequence of their ten-

dency to misclassify true targets as negative; i.e., despite reporting high specificities (> 0.70),

their negative precision, and hence their F1-score, was low. Conversely, PITA reported better

sensitivity than specificity, but obtained similar positive and negative precision. Finally,

microT-CDS did not show a particular bias towards any of the classes. It presented balanced

specificity (0.63) and sensitivity (0.59) and similar precision (0.62) and negative precision

(0.61). Nevertheless, it was still outperformed by all the tested miRAW configurations. The bal-

ance behaviour observed for microT-CDS and miRAW is also reflected in the shape of their

ROC curves when using the full dataset (Fig H in S1 File), which presented higher AUCs

(miRAW > 0.75, microT-CDS * 0.72).

These results also highlight how the consideration of interspecies site preservation influ-

ences the prediction results. This is particularly apparent in the performance of the two differ-

ent TargetScan releases. TargetScan achieved low accuracy for both conserved (0.53) and non-

conserved datasets (0.56); in both cases the reason for such low accuracy are a consequence of

the high number of false negatives. The TS_Conserved model presented a high specificity

(0.94), meaning that it classified almost all negative targets correctly, but a large number of

positive sites were also misclassified as negative, which caused the negative precision to drop

to 0.52. Despite filtering positive targets using interspecies conservation information, the

TS_Conserved precision (0.68) was still lower than the values achieved with any miRAW con-

figuration. For the non-conserved sites dataset (TS_NonConserved) the increase in the num-

ber of positive predicted sites augmented the number of true positives and sensitivity (0.40)

but this, in turn, increased the number of false positives, which reduced precision to 0.59 and

specificity to 0.72. Similarly, Mirza-G and Paccmit achieved better performance in the releases

that do not consider interspecies conservation as a prediction factor. Comparison of TargetS-

can performance with miRAW reveals that both releases obtained lower performances than

any miRAW configuration in all the evaluated metrics with the exception of specificity, which

is a consequence of the conservative approach used by TargetScan regarding positive

classification.

Two of the tested methods (PITA and mirSVR) rely on thermodynamic features such as

site accessibility ΔGopen or duplex stability ΔGduplex for target refinement. However, neither

method achieved good performance. PITA obtained a relatively high sensitivity compared to

other methods (0.62) meaning that it retrieved most of the positive sites, however it has a low

precision (0.48) meaning that several negative targets were misclassified. Considering that

PITA identifies mostly canonical sites and that it bases its classification on the combination of

ΔGduplex and ΔGopen, this indicates that thermodynamic features alone are not sufficient for dif-

ferentiating a positive and a negative target, consistent with our results in Figs 8–10. As a con-

sequence several negative targets with low accessibility energy are wrongly classified as

positive. Conversely, the miRAW-Pita-NF results, which share the same site selection method,

presents better scores in all the evaluated metrics. Considering that miRAW-Pita-NF uses the

same canonical target-oriented CSSM as PITA but does not use ΔGopen for determining the

functionality of the miRNA:mRNA pair, this also indicates that ΔGopen does not appear to be

the most important (i.e. most effective) feature for evaluating canonical sites. This is consistent

with the fact that miRAW-Pita-NF and miRAW-TS-NF outperformed miRAW-Pita-AE and

miRAW-TS-AE, which only considered sites with low ΔGopen. However, our observation that

the methods based on the non-canonical CSSMS had improved performance in the presence

of a ΔGopen filter, suggests that this feature does have a role in target functionality. This appar-

ent contradiction can be understood by recognizing that such a role is primarily linked to the

broader set of non-canonical sites which correspondingly have a larger range of ΔGopen values,
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many of which possess higher secondary structure stability, therefore making binding site

access difficult.

Correlation between target prediction and gene expression change

Fig 12B shows the coefficient of determination (r2) between the target predictions made by the

different algorithms and the expression level changes present in the the transfection test data-

sets. Four non canonical-oriented variants of miRAW (miRAW-7-1:10-NF, miRAW-7-

2:10-NF and miRAW-6-1:10-NF, miRAW-6-1:10-AE) obtained the best correlation, with

r2� 0.033, followed by microT-CDS (r2 = 0.027). Focusing on miRAW, non-canonical ori-

ented methods clearly outperformed the canonical oriented ones, which ranked at the bottom

of the table. In this test, site accessibility energy filtering did not improve the r2 score of the

miRAW methods, although miRAW-6-1:10 performed similarly with and without filtering.

Regarding the rest of the methods, microT outperformed TargetScan, Paccmit and Pita; this

ranking is consistent with the one obtained by the different miRAW configurations as meth-

ods considering more non-canonical binding structures outperform the ones focused on

canonical ones. The r2 values obtained by all the methods were low, this can be explained by

the fact that methods tend to adopt a binary classification approach to predict if a miRNA is

targeting a gene and that prediction scores reflect confidence on the predictions rather than

the efficiency of the target itself; quantifying the effects of such targeting would require a

regression approach. In addition error in the microarray measurements, different miRNA

transfection efficiencies or secondary effects of introducing the miRNAs may caused unex-

pected variability in the expression profiles that can affect r2. The low scores obtained in this

analysis by even the best methods might also be consequence of the simplicity of the test: the

datasets contain the gene expression changes provoked by an isolated miRNA in a specific tis-

sue sample, a situation that is rarely observed in in vivo scenarios, where miRNAs and genes

havemany-to-many relations.

Fig 12C shows the proportion of the most 161 confident predictions (top 1%) of the differ-

ent algorithms that corresponded to genes differentially expressed in the microarrays of the

Fig 12. Correlation between target prediction and gene expression change after miRNA transfection to HeLa cells. A) Gene expression fold-change

distribution after miRNA transfection to HeLa cells. The distribution shows that only a small fraction of genes interacted with miRNAs hsa-miR-9-5p,

hsa-miR-181a-5p, hsa-miR-148b-3p, hsa-miR-142-3p and hsa-miR-132-3p. B) Coefficient of determination (r2) between miRNA targets predicted by

different algorithms predictions and mRNA fold changes observed in the dataset. Higher r2 values indicate a higher link between predictions and

mRNA fold changes. �TargetScan was not evaluated for hsa-miR-148b-3p (GSE8501-GSM210911) due to lack of predictions for that miRNA. C)

Percentage of the top predictions of each algorithm that corresponded to genes that presented changes in their gene expression (� log(2)).

https://doi.org/10.1371/journal.pcbi.1006185.g012
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transfection test dataset. The functional predictions provided by the different miRAW config-

urations ranged between 66.87% and a 16.62% depending on the tested microarray, being

miRAW-6-1:10-NF the configuration that presented the best results (μ = 29.25%). In the

top ranked methods, configurations that did not rely on site-accessibility filtering obtained

slightly better results (μ = 29.25%, μ = 28.00%) than those ones that filtered unaccessible sites

(μ = 29.15%, μ = 27.75%); nevertheless, those differences cannot be considered significant.

Similarly, non-canonical oriented methods obtained slightly better performances than

canonical-oriented ones although the difference was not significant. Regarding the rest of

tested methods, the TargetScan release that considered interspecies site conservation per-

formed similar to miRAW (29.06%) whilst the other methods were outperformed. The

obtained results are fairly consistent with the results of the previous test as, in general, methods

that provided higher precisions reported a higher proportion of differentially expressed genes

in their predictions, being Paccmit the exception to that trend.

Discussion

The imprecise nature of miRNA targeting allows the generation of complex regulatory net-

works and understanding the mechanisms and functions of these networks requires systematic

experimental investigation. In the ideal world it would be possible to experimentally verify

the target set of all miRNAs, but both the cost and limited throughput of current methods

means that miRNA studies depend on computational predictions to complement experimental

data.

The requirement for complimentary base pairing within the seed region for miRNA target-

ing has been established through numerous experimental studies and forms the basis of all cur-

rent prediction tools. Initially, it was assumed that seed region binding was a core requirement

for all targets but, as more non-canonical targets were experimentally identified, prediction

tools evolved to try to accommodate this divergence. The differences in how the various pre-

diction tools recognize the relevance of specific deviations from canonical binding highlights

the complexity surrounding the targeting process. The most conservative tools only consider

targets that achieve full complementary pairing in the seed regions, whereas other tools allow

compensatory binding to accommodate seed mismatches. Moreover, to accommodate non-

canonical binding sites, current target prediction tools rely on the use of human crafted

descriptors in an attempt to summarize current knowledge regarding miRNA:mRNA interac-

tions, maintaining a bias towards properties associated with the miRNA seed region. Also, as

knowledge has increased, so has the complexity of feature descriptors and consequently there

is limited consistency amongst the different tools. Thus, researchers tend to use multiple pre-

diction tools to adopt a “carpet bombing” approach to investigate target space, retaining only

those targets that are common among a certain fraction of tools. This further biases predic-

tions back towards the most conservative (i.e. canonical) targets.

In this study, we adopted a neutral approach towards the prediction process, avoiding

incorporating any knowledge related to the targeting process. The performance gap between

miRAW and the descriptor-based approaches suggests that current knowledge is still not suffi-

cient to accurately capture all aspects of the miRNA targeting process. This is consistent with

recent studies, e.g., [3], [7] and [31], which demonstrate that the whole miRNA can play a rele-

vant role in many functional miRNA targets. Based on these findings, we took advantage of

deep learning methodology to incorporate the whole miRNA sequence for target prediction.

As deep learning has the capacity to automatically extract its own data feature descriptors,

miRAW is not limited by the assumptions incorporated into current target prediction tools.

Our experiments showed that miRAW consistently outperforms current techniques,
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suggesting that the descriptors learned by the deep neural network are able to encode current

knowledge and include additional yet to be understood information.

Moreover, we attempted to remove any preconceptions from the learning stage by includ-

ing all miRNA and mRNA nucleotides as input to our model. The only knowledge we apply is

during the selection of candidate targets where we implement a selection step to retain

miRNA:mRNA pairs that have established binding within a relaxed seed region that spans

nucleotides 1 through 10. Despite the application of this selection step, the entire miRNA:

mRNA sequence is used as input to the deep learning model. This has the benefit of narrowing

the search space while retaining a larger number of candidate targets including non-canonical

target types. In an ideal scenario, with enough representative positive and negative data sam-

ples, the selection step could be skipped as a deep enough neural network should be able to

map such information into its weights.

Relaxation of the seed region allows the consideration of both canonical and non-canonical

targets, including the ones defined in recent studies that stated the importance of considering

nucleotides beyond the 7th position [3, 8]. This also aligns with recent studies which investi-

gated potential binding sites based on microarray expression data that indicate a significant

role for miRNA nucleotide 9 [8] and structure studies [31] that demonstrate off-site targeting

in the 3’ region of the miRNA is achieved by a pivoting structural element, α helix-7, within

the Ago2 protein that permits rapid making and breaking of miRNA:target base pairs in the 3’

end of the seed region. This allows Ago2 to rapidly screen potential targets to dynamically

search for non-canonical sites.

The impact of the candidate site selection model can be seen from the results for different

CSSMs within the miRAW model. Conservative approaches (miRAW-Pita and miRAW-TS)

presented slightly better accuracies than more relaxed approaches (miRAW-6-1:10, miRAW-

7-1:10 and miRAW-7-2:10) but their predictions were heavily biased towards canonical sites.

On the other hand, more relaxed models identified a higher number of potential MBSs follow-

ing both canonical and non-canonical structures. For the latter, the higher number of identi-

fied sites generated higher numbers of false positives that decreased precision and specificity.

This problem was addressed by post filtering sites with a high ΔGopen value, increasing accu-

racy, precision and specificity to levels analogous to the ones obtained by miRAW-Pita and

miRAW-TS but with a broader spectrum of binding structures. The contrasting performance

among miRAW-Pita, miRAW-TS and the different miRAW specific CSSMs can be under-

stood by the way in which the methods filter the candidate targets. miRAW-Pita has a conser-

vative approach that discards any site containing more than one mismatch within the seed

region without considering further the remainder of the mature miRNA transcript. This

enhances the reliability of the positive prediction, but at the cost of increasing the number of

false negatives as non-canonical sites are discarded. At the other extreme, miRAW adopts a

more open strategy to maximize the types of sites (both canonical and non-canonical) that are

considered. This more accommodating approach allows the detection of more non-canonical

sites, but with the consequence of an increased number of false positives. This argument is also

consistent with the results observed for miRAW-TS, which has the most restrictive CSSM—

small irregularities are permitted in the seed region but this requires compensatory pairing in

the 3’ end of the miRNA. The extended seed region permitted by miRAW leads to selection of

positive sites with irregular bindings in the canonical seed region, supporting the argument

that pairing beyond the seed region has a more important role. This is observed even with the

miRAW-TS and miRAW-Pita CSSMs (which still feed the whole transcript sequences into the

machine learning model) which obtain better results than their Pita and TargetScan

counterparts.
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As deep learning has the capacity to automatically extract its own data feature descriptors,

by incorporating the entire miRNA and 3’ UTR target region, miRAW is not limited by the

assumptions incorporated into current target prediction tools. Our experiments showed that

miRAW consistently outperforms current techniques, suggesting that the descriptors learned

by the deep neural network are able to encode current knowledge and include additional yet to

be understood information. Furthermore, as the amount of available target data increases,

CSSM constraints can be relaxed which, in turn, will facilitate the discovery or disposal of

additional non-canonical miRNA binding structures.

Another important task within this work was the processing of different data sources to

transform them into suitable training, testing and evaluation datasets. For a ML classifier to

learn the patterns needed to distinguish different classes it is necessary not only to have good

quality training data but also to have a balanced number of instances for each class. We

selected Diana TarBase and mirTarBase as our core data sources as they represented the most

comprehensive set of evidence for miRNA:mRNA functional interactions, spanning a range of

different experimental methods and providing multiple evidence for many interactions. How-

ever, for most of the validated experiments the databases do not provide exact details of the tar-

get site for the supported interactions. To obtain reliable binding site information we

processed and integrated PAR-CLIP and CLASH datasets -which reveal information regarding

binding sites and binding structures but not regarding functionality- and cross-referenced

them with TarBase and mirTarBase. Generally, there are many resources for experimentally

verified positive data but access to experimentally verified negative data is more scarce. Some

approaches solve this problem by generating synthetic negative examples, but these may not

accurately represent real negative targets and are particularly inappropriate for the DL

approach we implemented here. Thus, we generated our negative data by carefully selecting

sites that had both the potential of providing stable miRNA binding and were associated with

an experimentally verified negative target.

Despite the enhanced performance demonstrated by miRAW, it is prudent to consider

some of the potential limitations of automatic feature learning approaches such as DL. The

hierarchical and opaque internal data representation learned by a neural network can be diffi-

cult to interpret and map into human interpretable knowledge, hence it is not possible to

directly identify the features that determine the classification. To address this issue, studies on

neural networks knowledge transferability [47] and weight constraining [48] may aid the inter-

pretation process, which is the next logical step in our work. Another issue is incorporating

knowledge that is external to the miRNA:MBS duplex transcripts. For example, some of the

broadly incorporated features in current prediction tools, such as interspecies conservation or

site accessibility energy, cannot be inferred by deep learning as these features are built upon

external information not contained in the miRNA:MBS duplex transcript. In miRAW this is

addressed by applying a posteriori filtering that refines the outcomes of the neural network

using external information. As a first test of such a posteriori filtering, the ΔGopen filter proved

to be effective at narrowing the search space in CSSMs possessing an elevated false positive

probability (caused by the high number of identified MBSs). An analysis of the ΔGopen energy

distribution showed significant differences between canonical and non-canonical sites, and

between true positive and false positive predictions. Nevertheless these differences were not

enough to discriminate between these categories, indicating that ΔGopen energy is relevant in

the targeting process but is not a sufficient indicator to identify target classes. Regarding inter-

species conservation, the fact that miRAW, regardless of the CSSM, outperformed current

methods without considering interspecies conservation information suggests that this has lim-

ited applicability as a descriptor for miRNA sites. This is also supported by the accuracy and

F1-Score results obtained by TargetScan NC, which outperformed the ones obtained by
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TargetScan C. This is also consistent with research from a recent study which found that inter-

species preservation filtering can be disregarded for functionally important non-canonical tar-

get sites [2].

Another consideration is the combinatory effect of multiple but weak binding sites which,

acting in concert, can have significant functional roles [49]. Consistent with other target pre-

diction tools, miRAW’s binding site centric approach cannot evaluate the joint regulatory

effect of multiple potential weak target sites in a mRNA as sites are analyzed independently.

Nevertheless, we observe that many miRNA:mRNA duplexes where the CSSM detected a high

number of potential MBSs tended to be classified as functional. Although in many cases the

classification might simply be a reflection of the increased probability of the ANN producing a

false positive, it could also be a consequence of the ANN recognizing features associated with

cumulatively strong targeting as proposed by [49]. Similarly, some of the false positive predic-

tions obtained by the non-canonical CSSMs without Δopen filtering might correspond to weak

targets without clear regulatory effects. This hypothesis could be explored in miRAW by

updating the ANN in order to add a third class (negative, positive and weak) and by trans-

forming the prediction aggregation Eq (5) into a cumulative function. Nevertheless, this

approach would require the construction of a training dataset containing enough weak target

examples, a challenging task considering that most existing miRNA target resources address

the targeting from a binary perspective.

The work presented in this paper focused on the prediction of human miRNA targets,

nonetheless the methodology can be readily applied to build target prediction models in other

species. Bearing in mind that data availability is crucial for building reliable machine learning

classifiers, a logical next step is to implement a target prediction model for mouse. Beyond

this, the presented approach will benefit from further experimental studies that will serve to

validate new predictions obtained by miRAW but also to generate new experimental data to

reliably expand the training of the model. Additionally, considering the a posteri filtering step

can be applied in retrospective way, it can be used to re-investigate the relevance of some

miRNA target descriptors, such as interspecies conservation. Finally, as miRAW considers the

whole miRNA:mRNA transcript for its predictions, this also allows the use of miRAW to assess

the impact of target site mutations and miRNA isoform variations on the targeting process,

which have been shown to have functional roles and characteristic populations that can vary

amongst different conditions.
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