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Abstract

Biological experiments involving genomics or other high-throughput assays typically yield a

data matrix that can be explored and analyzed using the R programming language with

packages from the Bioconductor project. Improvements in the throughput of these assays

have resulted in an explosion of data even from routine experiments, which poses a chal-

lenge to the existing computational infrastructure for statistical data analysis. For example,

single-cell RNA sequencing (scRNA-seq) experiments frequently generate large matrices

containing expression values for each gene in each cell, requiring sparse or file-backed rep-

resentations for memory-efficient manipulation in R. These alternative representations are

not easily compatible with high-performance C++ code used for computationally intensive

tasks in existing R/Bioconductor packages. Here, we describe a C++ interface named

beachmat, which enables agnostic data access from various matrix representations. This

allows package developers to write efficient C++ code that is interoperable with dense,

sparse and file-backed matrices, amongst others. We evaluated the performance of beach-

mat for accessing data from each matrix representation using both simulated and real

scRNA-seq data, and defined a clear memory/speed trade-off to motivate the choice of an

appropriate representation. We also demonstrate how beachmat can be incorporated into

the code of other packages to drive analyses of a very large scRNA-seq data set.

This is a PLOS Computational Biology Software paper.

Introduction

The combination of the statistical programming language R [1] and the open-source Biocon-

ductor project [2] represents a key platform for exploring and analyzing high-throughput bio-

logical data. R provides efficient, rigorously tested, open-source implementations of many
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statistical and numerical procedures. Its interactive nature lends itself to data exploration

and research, while its programming features allow assembly of complex analyses. It is also

extensible through the installation of optional “packages”, often contributed by the research

community, which contain bespoke methods for specific scientific problems. In particular, the

Bioconductor project [3] provides over a thousand packages for analyzing biological data in

fields such as genomics, transcriptomics and proteomics. Packages are mostly written in R but

can also include native code (in C/C++ or Fortran) for computationally intensive tasks. Use of

native C++ code is facilitated by the Rcpp package [4], which simplifies the integration of pack-

age code with the R application programming interface (API).

A matrix of measurements is a common starting point in many analysis workflows for

high-throughput biological data. A typical example is the expression matrix in transcriptomics

data, where each row represents a gene, each column represents a sample and each entry repre-

sents the quantified expression (e.g., number of mapped reads, transcripts-per-million) for a

gene in a sample. By default, this is represented in R as an “ordinary” matrix, where each entry

is explicitly stored in random access memory (RAM) in a dense contiguous array. Alterna-

tively, it can be represented as a sparse matrix using classes from the Matrix package [5],

which saves memory by only storing non-zero entries. Another option is to use file-backed

representations such as those in the bigmemory [6] or HDF5Array packages, where the data are

stored in a file and parts of it are loaded into RAM upon request. For each representation,

methods are provided in R for common operations such as subsetting, transposition and arith-

metic, such that any downstream code for data processing can be agnostic to the exact repre-

sentation of the matrix. This simplifies software development and improves interoperability.

The major benefit of alternative representations is that they allow efficient handling of large

matrices in R without using large amounts of RAM to construct a dense array. This is particu-

larly important for the effective analysis of biological data sets due to the increasing throughput

of the experimental protocols. It is well known that the output of DNA sequencing machines

has risen consistently over the past decade [7], which is compounded by the increasing com-

plexity of the assays. For example, droplet-based protocols in single-cell transcriptomics [8–

10] generate transcriptome-wide expression profiles for each of thousands or even millions of

cells. Similar issues are encountered outside of transcriptomics, with single-cell ATAC-seq

[11] and bisulfite sequencing [12] yielding genome-wide data (from individual genomic

regions or base positions, respectively) for each cell. Analyses of these large data sets often

involve an extended period of interactive data exploration where the matrix might be trans-

formed, subsetted or rearranged. Given R’s copy-on-write semantics, matrix representations

that achieve efficient memory usage throughout the course of an analysis are highly desirable.

Unfortunately, the use of alternative matrix representations is less straightforward for com-

piled code written in statically typed languages like C++. Existing interfaces for reading R

matrices in C/C++ require the details of the matrix representation to be specified during com-

pilation. This makes it difficult to write a single, general piece of code that can be applied to

many different representations. Writing multiple versions of a function for different represen-

tations is difficult and unsustainable when more representations become available. The other

option is to perform all processing in R to exploit the availability of common methods. How-

ever, this is an unappealing strategy for high-performance code. R is often slower than C++ by

at least an order of magnitude for arbitrary programming tasks that cannot be “vectorized”,

i.e., made to operate on all elements of a vector at once. This includes common procedures in

biological data analysis such as looping across all samples or genes and performing arbitrarily

complex operations on the sample- or gene-specific observations. The use of R alone would

increase the computational time required to perform analyses, which is inconvenient for
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interactive analyses and unacceptable for large simulation studies. It would clearly be prefera-

ble to implement critical functions in native code wherever possible.

Here, we describe a C++ API named beachmat (using Bioconductor to handle Each Matrix

Type), which enables C++ code to access R matrix data in a manner that is agnostic to the

exact matrix representation. This allows package developers to implement computationally

intensive algorithms in C++ that can be immediately applied to a wide range of R matrix clas-

ses including ordinary matrices, sparse matrices from the Matrix package, and HDF5-backed

matrices from the HDF5Array package. Using simulated and real transcriptomics data, we

assess the performance of beachmat for data access from each matrix representation. We show

that each representation has specific strengths and weaknesses, with a clear memory-speed

trade-off that motivates the use of alternative representations in different settings. We also

demonstrate how beachmat can be used by other Bioconductor packages to enable the analysis

of a very large single-cell RNA sequencing (scRNA-seq) data set. By operating synergistically

with existing Bioconductor infrastructure, beachmat extends R’s capabilities for analyzing

high-throughput biological data stored in large matrices.

Design and implementation

Overview

The beachmat API uses C++ classes to provide a common interface for data access from R

matrix representations. For all representations of a given data type (e.g., integer, double-

precision, character strings), we define a base class with common methods for data access.

Each specific representation is associated with a derived class that provides customized imple-

mentations of the access methods. The intention is for a user to pass in an R matrix of any

type, in the form of an RObject instance from the Rcpp API (Fig 1). beachmat then con-

structs an instance of the appropriate derived class, returning a pointer to the base class. This

pointer is the same regardless of the representation and can be used in downstream C++ code

to achieve run-time polymorphism.

When access to a specific row or column (or a part thereof) is requested, the beachmat API

will use representation-specific methods to fill a Rcpp-style Vector object with corresponding

data values from the matrix. This copy-on-access strategy ensures that the API behaves consis-

tently across different matrix representations, and provides flexibility for downstream applica-

tions by allowing in-place modifications to vector elements and guaranteeing contiguous data

storage. It is also possible to avoid copying altogether when performing read-only data access

from columns of ordinary or sparse matrices, improving efficiency in certain situations.

Finally, a request for a specific entry of the matrix will directly return the corresponding data

value.

While the beachmat API is agnostic to the matrix representation, it still needs to know the

type of data that are stored in the matrix. We use C++ templating to recycle the code to define

specific classes for common data types, i.e., logical, integer, double-precision floating point or

character strings. The same methods are available for all classes of each data type, improving

their ease of use for developers.

Supported matrix representations

The simplest matrix representation is the ordinary R matrix, where data are stored in RAM as

a contiguous dense array in column-major format. This is most commonly constructed with

the base matrix function, though the dgeMatrix class from the Matrix package imple-

ments an equivalent representation. Both of these classes are supported by beachmat. Using

simulated data (Section 1 of S1 Text), we measured the speed of row- or column-level data
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access from ordinary matrices with beachmat. Our results indicate that beachmat provides

comparable performance to a reference Rcpp implementation (Section 2 of S1 Text, S1 Fig).

beachmat also supports data access from sparse matrices in the compressed sparse column-

orientated (CSC) format (Section 3.1 of S1 Text, S2 Fig), implemented in the dgCMatrix
class from Matrix. This representation only stores non-zero values in RAM, which is highly

memory-efficient for assays that yield many zeroes, e.g., scRNA-seq. When the density of non-

zero entries is low, column access from CSC matrices can also be faster than the equivalent

ordinary matrix (Section 3.2 of S1 Text, S3 Fig). However, row access from CSC matrices is

more complex, as obtaining elements from an arbitrary row of the matrix involves a binary

search for each column (Section 3.3 of S1 Text). We use a novel caching strategy to improve

the efficiency of accessing data from consecutive rows by avoiding unnecessary binary searches

(Fig 2). This provides a 4-fold increase in speed compared to a naive approach, as well as faster

row-level access than the RcppArmadillo and RcppEigen APIs [13, 14]. Our caching strategy

also improves performance for non-consecutive row access (S4 Fig).

Another representation supported by beachmat is a file-backed matrix based on the hierar-

chical data format (HDF5) [15], implemented in the HDF5Matrix class from the HDF5Array
package (Section 4 of S1 Text). This stores the entire data set in a HDF5 file, only retrieving

subsets into RAM upon request. As a result, it is very memory-efficient but much slower than

the other representations (S5 Fig). A key determinant of access speed is the layout of the HDF5

file, where data can be split into “chunks” for easier retrieval. Once read, chunks can be cached

in memory to avoid redundant retrieval of data from the same chunk in adjacent rows or col-

umns. To improve performance, beachmat automatically tunes the parameters of the HDF5

chunk cache to optimize data access from consecutive rows or columns (S2 Text). This allows

beachmat to use the same rectangular chunking layout for row and column access (Fig 3) with

Fig 1. Schematic of the beachmat workflow. Various matrix representations at the R level are passed as RObject instances to a C++ function.

beachmat identifies the specific representation, constructs an instance of the appropriate C++ derived class, and returns a pointer to the base class. (In

this case, a numeric_matrix pointer is returned for input matrices holding double-precision data.) This pointer can then be used in user-level code

in a manner that is agnostic to the details of the original representation.

https://doi.org/10.1371/journal.pcbi.1006135.g001
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Fig 2. Timing of access to consecutive rows of simulated CSC matrices using the caching method in beachmat, a naive binary search written in

Rcpp or through the RcppArmadillo and RcppEigen APIs. For reference, the access time for an equivalent ordinary matrix is also shown. (a) Access

times with respect to the density of non-zero entries, for a matrix with 10000 rows and 1000 columns. (b) Access times with respect to the number of

rows, for a matrix with 1000 columns and 1% non-zero entries. Each value shown above represents the time required to access all rows of the matrix,

averaged across 10 iterations. Horizontal dotted lines represent 2-fold increases in time.

https://doi.org/10.1371/journal.pcbi.1006135.g002

Fig 3. Timing of beachmat-based access to consecutive columns or rows of a simulated HDF5Matrix object constructed with different HDF5

file layouts, i.e., contiguous, row- or column-chunking, or 40 × 40 rectangular chunks. (a) Column access times with respect to the number of

columns, for a matrix with 1000 rows. (b) Row access times with respect to the number of rows, for a matrix with 100 columns. Each value shown

above represents the time required to access the entirety of the matrix, averaged across 10 iterations. Horizontal dotted lines represent 2-fold

increases in time.

https://doi.org/10.1371/journal.pcbi.1006135.g003
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performance comparable to pure row- and column-chunking layouts. We also provide func-

tions to choose suitable chunk dimensions during file creation, when consecutive row or col-

umn access is expected downstream; as well as functions to convert to layouts that are well-

suited for random row or column access (S6 and S7 Figs, S3 Text).

Other representations are also supported, including packed symmetric matrices and matri-

ces based on run-length encodings (see Section 5 of S1 Text for details). As a general rule,

matrix representations that occupy more RAM provide faster data access, as data do not need

to be unpacked or retrieved from file. The exception is that of sparse matrices with few non-

zero entries, where the ability to ignore zeroes can dramatically improve performance for cer-

tain algorithms. Indeed, for a more complex operation like matrix multiplication, the use of

sparse matrices is much faster than ordinary or HDF5-backed matrices (Section 6 of S1 Text,

S8 Fig), though obviously this depends on the density of non-zero entries.

Generating matrix output from C++

In addition to accessing data in existing matrices, the beachmat API allows C++ code to store

data in various representations for output to R. For integer, logical, double-precision and char-

acter data, ordinary and HDF5-backed matrices can be constructed that are indistinguishable

from those generated in R. Logical and double-precision data can also be stored in sparse

format, where only true or non-zero values are retained in lgCMatrix or dgCMatrix
instances, respectively. (The Matrix package does not support sparse integer or character

matrices, so these are not considered.) The output representation can either be explicitly speci-

fied in the code, or it can be automatically chosen to match some input representation. To

illustrate, consider a C++ function that accepts a matrix as input and returns a matrix of simi-

lar dimensions. If the input is an ordinary matrix, one might assume that there is enough

RAM to also store the output as an ordinary matrix; whereas if the input is a HDF5Matrix,

one could presume that the output would be similarly large, thus requiring a HDF5Matrix
representation for the results. This means that results of processing in C++ can be returned in

the most suitable representation for manipulation in R.

Alternative strategies for matrix manipulation

An alternative to using beachmat is to write C++ code for ordinary matrices and apply it to

submatrices (or “blocks”) of a given input matrix. Each block is coerced to an ordinary matrix

before it is supplied to the C++ code. After looping across all blocks, the block-wise results are

combined to obtain the final result for the entire matrix. This block processing strategy allows

the application of C++ code while controlling RAM usage by storing only one block as an

ordinary matrix at any given time. However, it requires coordination between R and C++ to

keep track of the block that is being processed, to monitor intermediate variables that persist

between blocks, and to combine the results in an appropriate manner. The need to ensure that

R and C++ are interacting correctly at multiple points imposes a significant burden on the

developer. Computational efficiency is also reduced by looping in R, multiple matrix coercions

and repeated C++ function calls. The beachmat API provides a natural solution by moving the

entire procedure into C++, simplifying development and maintenance.

Unlike the RcppArmadillo and RcppEigen APIs, beachmat does not provide any direct sup-

port for matrix operations such as multiplication or factorization. Rather, beachmat was devel-

oped for applications that treat an input matrix as a collection of (otherwise separate) column-

or row-wise vectors. This is a common use case for data matrices generated by high-through-

put biological experiments, where a function may need to loop over rows or columns to per-

form calculations for each assayed feature or sample, respectively. Indeed, most Bioconductor
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packages that use C++ (309 packages in release 3.6, based on the requirement for Rcpp) do not

use RcppEigen or RcppArmadillo (required by 8 and 74 packages, respectively). This suggests

that the lack of support for matrix operations in beachmat will not be a major hindrance to its

utility in the Bioconductor development framework. In fact, a representation-agnostic API

may not be practical for matrix operations that are not scalable for very large file-backed matri-

ces. Switching to faster approximate approaches is a decision for the developer/user, not a low-

level API like beachmat.

Results

Use cases in single-cell RNA sequencing

Recent advances in scRNA-seq technologies have led to an explosion in the quantity of data

that can be generated in routine experiments. Droplet-based methods such as Drop-Seq [8],

inDrop [9] and GemCode [10] allow transcriptome-wide expression profiles involving 10,000-

40,000 genes to be captured in each of thousands to millions of cells. Careful computational

analysis is critical to extract meaningful biology from these data, but their sheer volume strains

existing pipelines and methods designed for single-cell data processing. The data analysis chal-

lenge is compounded by the presence of large-scale projects such as the Human Cell Atlas

[16], which aims to use single-cell ‘omics to profile every cell type in the human body. The

increasing size of these data sets motivates the use of alternative matrix representations to

store the data as well as the efficient implementation of analysis methods in native code. This

presents itself as a highly relevant use case for beachmat, which we will explore in the following

sections.

Access times for a small brain data set

We evaluated the performance of beachmat with the different matrix representations on real

scRNA-seq data from a study of the mouse brain by Zeisel et al. [17] (Section 1 of S4 Text).

This data set contains integer expression values for 19972 genes in each of 3005 brain cells,

derived from different regions of the brain and consisting of a diverse range of cell types. Only

18% of expression values in the matrix are non-zero, reflecting the low capture efficiencies in

single-cell transcriptomics experiments [18]. The Zeisel et al. data set is not particularly large,

especially in the context of droplet-based experiments that routinely generate transcriptome-

wide data for tens of thousands of cells. However, for our purposes, the smaller number of

cells in this data set is desirable as it means that each of the matrix representations—including

those that are stored wholly in RAM—can be easily evaluated and compared.

We converted the Zeisel et al. data to the various matrix representations and measured the

access speed for the row- or column-level data with beachmat. We observed similar results to

those obtained with simulated data, recapitulating the different trade-offs between access

speed and RAM usage across representations. Specifically, row and column accesses from an

ordinary matrix were fastest, followed by accesses from a sparse matrix (Fig 4a and 4b).

HDF5-backed matrices provided slowest access but also the smallest memory footprint (2 KB,

compared to 480 MB for ordinary matrices and 130 MB for sparse matrices). The size of the

HDF5 file was relatively small, requiring only 16-20 MB of space for each HDF5Matrix
instance. We also recorded the time required to compute some gene- or cell-specific metrics

(Fig 4c, Section 1 of S4 Text) commonly used in scRNA-seq data analysis. Our custom C++

functions based on beachmat were at least comparable to the built-in R functions, and were

faster in some cases by avoiding a type conversion to a logical matrix.

An appropriate choice of matrix representation depends on the context in which it is used.

We could use purely in-RAM representations for optimal access speed, but this may not be
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Fig 4. Timing for data access and calculation of common metrics from various matrix representations of the mouse brain data set from Zeisel et al.
[17]. (a) Time required to calculate the column sums for each representation by accessing data from each column. For HDF5Matrix, a column-chunked

layout and a rectangular 200 × 200 layout were tested. (b) Time required to calculate the row sums for each representation by accessing data from each row.

For HDF5Matrix, a row-chunked layout and a rectangular 200 × 200 layout were tested. (c) Time required to compute the library size per cell, the number

of cells expressing each gene or the number of genes expressed in each cell, using C++ functions written with beachmat or the relevant built-in methods in

R. Each value is an average of 10 repeated timings; standard errors were negligible and are not shown.

https://doi.org/10.1371/journal.pcbi.1006135.g004
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practical for very large data sets. Even high-performance computing systems have their limits,

especially when multiple copies of the matrix are generated throughout the course of an

analysis. Sparse representations also become ineffective if sparsity-destroying operations

(e.g., mean-centering, batch correction) are applied. In such cases, it may be preferable to sac-

rifice speed for reduced memory consumption by using file-backed representations such as

HDF5Matrix. By incorporating beachmat into the C++ code, an R package can dynamically

accept different matrix types appropriate for the size of the data set and computing

environment.

Analysis of the large 10X data set

To demonstrate the utility of beachmat for faciliting analyses of large data sets, we converted

several functions in the scater [19] and scran packges [20] to use beachmat in their C++ code.

We applied these functions to the 1.3 million brain cell data set from 10X Genomics (Section

2 of S4 Text). First, we called cell cycle phase with the cyclonemethod [21], which required

access to each column (i.e., single cell) of the count matrix via beachmat. Most cells were

identified as being in G1 phase (Fig 5a), consistent with the presence of differentiated neu-

rons that are not actively cycling. Next, we applied the deconvolution method [22] to nor-

malize for cell-specific biases, again using column-level data access. This yielded a size factor

for each cell, which was generally well-correlated with the library size (Fig 5b). However, a

few cells have size factors that are much smaller than expected based on their library sizes,

and there is a modest amount of scatter around the size factor-library size trend. This is con-

sistent with composition effects [23] caused by differential gene expression between cell

subpopulations.

We detected highly variable genes (HVGs) based on the variance of the log-normalized

expression values for each gene [20]. We blocked on the sequencing library of origin for each

cell to regress out technical factors of variation unrelated to biological heterogeneity. This was

done on a gene-by-gene basis, and thus required row-level access to the log-expression matrix

via beachmat. We identified a number of HVGs (Fig 5c), including genes involved in neuronal

differentiation and function such as Neurod6 [24] and Sox11 [25]. Finally, we performed

dimensionality reduction on the HVG expression profiles for all cells using randomized prin-

cipal components analysis (PCA) [26]. Visualization of the first two principal components

(PCs) showed clear substructure in the cell population (Fig 5d), reflecting the diversity of cell

types in the mouse brain. Indeed, once PCA has been performed, the first 10-100 PCs for each

cell can be used as a summary of its expression profile. This can be stored as an ordinary

matrix and supplied directly to other R functions for clustering [27, 28] or trajectory recon-

struction [29]. At this point, memory usage ceases to be an issue and we only need to choose

algorithms that are scalable with respect to the number of cells.

While a full characterisation of this data set is outside the scope of this article, it is clear

that we can proceed through many parts of the scRNA-seq analysis pipeline using beachmat-
driven C++ functions. By taking advantage of the file-backed HDF5Matrix, this analysis

can be conducted in reasonable time on a desktop with modest specifications (see Section 3

of S4 Text). These features allow us to obtain biological insights that previously would have

been inaccessible from R. We also note that the incorporation of the beachmat API only

required small modifications to existing C++ code for scRNA-seq data analysis. This indi-

cates that many established methods in the R/Bioconductor ecosystem can be easily and

immediately extended to work with large data sets, enabling the statistically rigorous analysis

of large single-cell data.
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Availability and future directions

The beachmat package contains the C++ API and is available as part of version 3.6 of the Bio-

conductor project (https://bioconductor.org/packages/beachmat). It is straightforward to

Fig 5. Analysis of the 10X 1.3 million brain cell data set. (a) Cell cycle phase assignment, based on the G1 and G2M scores reported by cyclone.

The intensity of colour is proportional to the density of cells at each plot location. Dashed lines indicate the score boundaries corresponding to each

phase, and the number of assigned cells is also shown for each phase. (b) Size factor for each cell from the deconvolution method, plotted against the

library size. Cells are coloured according to the deviation from the median log-ratio of the size factor to the library size across all cells. (c) Variance of

the normalized log-expression values for each gene, plotted against the mean log-expression. The red line represents the mean-dependent trend fitted to

all genes, while the blue line represents the mean-variance trend corresponding to Poisson noise. Orange points represent HVGs with variances above

the red line, with the top 10 genes highlighted. (d) PCA plot generated from the HVG expression profiles of all cells. The variance explained by each of

the first two principal components is shown in brackets.

https://doi.org/10.1371/journal.pcbi.1006135.g005
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integrate beachmat into existing R packages, enabling arbitrary C++ code to accept many

different matrix inputs without any further effort on the part of the developer. Our modifica-

tions to the scran and scater packages have enabled the analysis of a very large scRNA-seq data

set in low-memory environments using file-backed representations, without significantly

compromising speed for smaller data sets that can be held fully in memory. These modifica-

tions are now implemented in the latest versions of scran and scater, both of which can also be

installed from Bioconductor.

The popularity of the R programming language stems, in part, from the ease with which it

can be extended. Packages can be easily developed by the research community to implement

cutting-edge algorithms for new data types. The increasing number of packages designed to

analyze single-cell data (43 on Bioconductor at time of writing) provides a case in point. We

anticipate that beachmat will be useful to developers of novel computationally intensive bioin-

formatics methods that need to access data from different matrices. While we have focused

on scRNA-seq in this paper, analyses of other large matrices (e.g., genome-wide contact matri-

ces in Hi-C data [30]) may also benefit from beachmat-driven code. We will also continue to

develop beachmat to support data access from new formats such as Loom for scRNA-seq data

(http://loompy.org/).

We note that, for large single-cell data, the utility of beachmat for R package development

ultimately depends on the scalability of the underlying algorithms for processing millions or

even billions of cells. Most existing methods for scRNA-seq data analysis are designed to

handle thousands of cells at best. Fortunately, we can make use of the existing expertise in

the Bioconductor community to improve scalability. Highly multiplexed flow and mass

cytometry experiments routinely generate low-dimensional data for millions of cells, and

many Bioconductor packages are already available to analyze and interpret these data [31–

33]. A low-rank representation of scRNA-seq data (e.g., after PCA) is similar to cytometric

data in size and structure, suggesting that algorithms used in the latter can also be applied to

the former. This presents an interesting avenue for future development of software based on

beachmat.
All R/C++ code used to perform the simulations and real data analyses are also available on

Github (https://github.com/LTLA/MatrixEval2017).
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S1 Fig. Time required to access consecutive columns or rows of simulated ordinary matri-

ces using the beachmat or Rcpp APIs. (a) Column access time with respect to the number of

columns, for a matrix with 10000 rows. Times are shown for beachmat with and without copy-
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1000 columns. Each timing represents the average of 10 simulations, and involves accessing
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the entirety of the matrix. Intervals between the horizontal dotted lines represent 2-fold

increases in time.

(PDF)

S2 Fig. A schematic of the column-sparse compressed matrix format, as implemented by

the dgCMatrix class in the Matrix package. The grey box represents a sparse matrix with

zero entries indicated by the dots. The x vector stores all non-zero values, ordered in column-

major format. The index of each element in x is shown in red. The i vector stores the row

indices (blue) corresponding to the ordered non-zero values. The p vector stores the element

index of the first non-zero value in each column (brown). The last element of p is always the

total number of non-zero entries.

(PDF)

S3 Fig. Time required to access consecutive columns of simulated CSC matrices using

beachmat or the RcppArmadillo and RcppEigen APIs, compared to an equivalent ordinary

matrix with beachmat. Timings were also recorded for a copy-free column access method for

CSC matrices in beachmat. (a) Access times with respect to the density of non-zero entries as a

percentage of all entries, for a matrix with 10000 rows and 1000 columns. (b) Access times

with respect to the number of columns, for a matrix with 10000 rows and 1% density. Each

timing represents the average of 10 simulations, and involves accessing all columns in the

matrix. Horizontal dotted lines represent 2-fold increases in time.

(PDF)

S4 Fig. Time required to access non-consecutive rows of simulated CSC matrices using the

caching method in beachmat or a naive binary search implemented in Rcpp, compared to

an equivalent ordinary matrix with beachmat. (a) Access times for ordered but non-consecu-

tive rows, with respect to the number of rows in a matrix with 10000 rows and 1000 columns

at 1% density. This involved accessing every 5th row and returning to the first unaccessed row,

i.e., {1, 6, . . ., 9996, 2, 7, . . .}. (b) Access times for random rows, with respect to the number of

rows in the matrix described previously. Each timing represents the average of 10 simulations,

and involves accessing all rows in the matrix exactly once. Horizontal dotted lines represent

2-fold increases in time.

(PDF)

S5 Fig. Time required for beachmat to access consecutive rows or columns of a simulated

HDF5-backed matrix using column/row-chunking or rectangular 100 × 100 chunks, com-

pared to an equivalent ordinary matrix. (a) Column access time with respect to the number

of columns, for a dense matrix with 10000 rows. (b) Row access time with respect to the num-

ber of rows, for a dense matrix with 1000 columns. Each timing represents the average of 10

simulations, and involves accessing the entirety of the matrix. Horizontal dotted lines repre-

sent 2-fold increases in time.

(PDF)

S6 Fig. Time required to use beachmat to access random rows or columns of a simulated

HDF5-backed matrix constructed with different HDF5 file layouts, i.e., contiguous, row-

or column-chunking, or 40 × 40 rectangular chunks. (a) Random column access times with

respect to the number of columns, for a dense matrix with 1000 rows. (b) Random row access

times with respect to the number of rows, for a dense matrix with 100 columns. Each row or

column in the matrix was accessed exactly once in random order. Horizontal dotted lines rep-

resent 2-fold increases in time.

(PDF)

beachmat: A C++ API to access biological data from R matrices

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006135 May 3, 2018 12 / 15

http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1006135.s006
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1006135.s007
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1006135.s008
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1006135.s009
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1006135.s010
https://doi.org/10.1371/journal.pcbi.1006135


S7 Fig. Time required to convert from a column-based chunk layout to a row-based chunk

layout, or vice versa, in HDF5-backed matrices. Each chunk contained 5000 values along a

single row or column (or set to the corresponding dimension of the matrix, if it was smaller

than 5000). Conversion times were recorded with respect to increasing number of (a) columns

for a dense matrix with 10000 rows, or (b) rows for a dense matrix with 1000 columns. All val-

ues represent the mean of 10 simulation iterations. Horizontal dotted lines represent 2-fold

increases in time.

(PDF)

S8 Fig. Time required to perform matrix multiplication between square ordinary matrices,

between sparse matrices or between a HDF5-backed matrix and an ordinary matrix, as a

function of the order of the matrix. Matrix multiplication was performed using a simple algo-

rithm implemented in C++ with beachmat, or the representation-specific %�% operators in R.

For sparse matrix multiplication, timings are also provided for an alternative algorithm imple-

mented in beachmat that better exploits sparsity (II). Timings for the multiplication of two

HDF5-backed matrices are shown for beachmat only, as the equivalent operation is not yet

supported by DelayedArray.

(PDF)

S1 Code. R and C++ code used for all simulations, timings and analyses.

(ZIP)
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