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Abstract

Numerical models for simulating outbreaks of infectious diseases are powerful tools for

informing surveillance and control strategy decisions. However, large-scale spatially explicit

models can be limited by the amount of computational resources they require, which poses a

problem when multiple scenarios need to be explored to provide policy recommendations.

We introduce an easily implemented method that can reduce computation time in a standard

Susceptible-Exposed-Infectious-Removed (SEIR) model without introducing any further

approximations or truncations. It is based on a hierarchical infection process that operates on

entire groups of spatially related nodes (cells in a grid) in order to efficiently filter out large vol-

umes of susceptible nodes that would otherwise have required expensive calculations. After

the filtering of the cells, only a subset of the nodes that were originally at risk are then evalu-

ated for actual infection. The increase in efficiency is sensitive to the exact configuration of

the grid, and we describe a simple method to find an estimate of the optimal configuration of

a given landscape as well as a method to partition the landscape into a grid configuration. To

investigate its efficiency, we compare the introduced methods to other algorithms and evalu-

ate computation time, focusing on simulated outbreaks of foot-and-mouth disease (FMD) on

the farm population of the USA, the UK and Sweden, as well as on three randomly generated

populations with varying degree of clustering. The introduced method provided up to 500

times faster calculations than pairwise computation, and consistently performed as well or

better than other available methods. This enables large scale, spatially explicit simulations

such as for the entire continental USA without sacrificing realism or predictive power.

Author summary

Numerical models for simulating the outbreak of infectious disease are powerful tools that

can be used to inform policy decisions by simulating outbreaks and control actions.
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However, they rely on considerable computational power to explore all outcomes and sce-

narios of interest. Focusing on model types commonly used for livestock diseases, we here

introduce novel algorithms for efficient computation, alongside techniques to optimize

them based on simplifying assumptions. Through simulations of FMD outbreak in the

US, the UK and Sweden, as well as in computer generated landscapes, we test how these

methods perform under realistic conditions. We find that our optimization techniques

works well, and when the introduced algorithms are implemented with these optimiza-

tions, computation time can be reduced by more than two orders of magnitude compared

to pairwise calculations. We propose that the considered algorithms—which are straight

forward to implement—will be useful for simulation of a wide range of diseases, and will

promote the use of simulation models for policy recommendation.

Introduction

Models of infectious diseases are powerful tools for studying outbreak dynamics. Mass action

mixing models assume equal probability of infection among all individuals in a population

and have provided important theoretical insights for epidemiology. However, the importance

of deviations from this assumption is now largely recognized [1], and researchers are increas-

ingly implementing stochastic simulation models that incorporate various levels of realism [2].

The effect of spatial heterogeneity can have a pronounced effect on outbreak dynamics [3]

and is of particular concern when models are used to inform policy. Spatially explicit models

can be used to identify geographical hotspots targeted for surveillance [4] or to compare con-

trol scenarios that are themselves spatially explicit (e.g. ring vaccination strategies or regional

movement restrictions). Here we focus on livestock disease models, but emphasize that the

proposed methods are very broadly applicable. Livestock models typically consider infections

at the farm level [5], and since the farms have fixed spatial locations, spatially explicit models

are appropriate. Distance dependent transmission is commonly modeled with a spatial kernel

that describes how transmission risk varies with distance [5–7].

Large livestock disease outbreaks can have severe societal and economic implications,

necessitating models that can simulate outbreaks at the national or even the continental scale

[7–9]. With a large number of farms, computation time may be a limiting factor, particularly

when stochastic simulation models are used to quantify uncertainty when comparing across

multiple scenarios. In the absence of efficient algorithms to improve computational time, pair-

wise calculations must be implemented, whereby the distances between every pair of infectious

and susceptible farms need to be calculated and the spatial, transmission kernel must be evalu-

ated for those distances. When the spatial kernel is narrow compared to the spatial distribution

of farms, there will be many farms that lie within the tail of the kernel where the risk of infec-

tion is low. Given this relatively low risk, it may be tempting to truncate the kernel at such

large distances in order to dramatically reduce the computation time of the simulation. How-

ever, it is difficult to identify a spatial scale where such truncation does not influence the results

and finding such a scale by trial and error may become a time consuming process. Rare long

distance transmission, described by a fat tail of the spatial kernel, can have a pronounced effect

on outbreak dynamics, sparking new infections in virgin areas of susceptible farms [5]. In

addition, with two-dimensional space (and assuming homogeneous farm locations), the num-

ber of potential transmission events also grows linearly with distance. Thus, even if the likeli-

hood of infection of individual farms is low at large distances, there are many farms that can

be infected and the probability of a transmission event occurring is not necessarily small. We
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therefore argue that truncation should be avoided due to its inaccuracy and that effort should

be made to create algorithms to model transmission that circumvent the excessive number of

kernel evaluations required for pairwise evaluation while maintaining accuracy. Brand et al.

[10] introduced one such method, denoted the fast spectral rate recalculation (FSR). This

approach utilizes fast Fourier transformation (FFT) of the spatial kernel, and with only slight

approximation of the transmission rates, it can speed up simulations by two order of

magnitudes.

Keeling and Rohani [11] introduced another technique, hereafter denoted the conditional

entry algorithm, where the point pattern landscape of farm locations is overlaid with a grid,

and the simulation of infections is split up into two steps:

1. Does the infection possibly enter the grid cell?

2. If yes, which farms (if any) within the grid cell are actually infected?

Our study introduces a novel method, which we will refer to as the conditional subsample

algorithm. It builds on the approach of Keeling and Rohani [11], and utilizes a similar gridding

approach but with a different algorithm. Importantly, the conditional entry and conditional

subsample methods do not approximate the epidemiological process (beyond the temporal

discretization, which are typically implemented also in pairwise simulation) that is simulated;

they merely speed up the computation by reducing the number of calculations, and hence pre-

serve the accuracy of the simulation.

Implementing the conditional entry or conditional subsample method requires the specifi-

cation and construction of a grid structure (Fig 1), which raises a central question: how many

farms should each grid cell contain in order to facilitate fast computation? At both very large

and very small cell sizes, both the conditional entry and conditional subsample algorithms

require (at least) as many kernel evaluations as the pairwise algorithm. Thus, some intermedi-

ate grid size should optimize the speed of both algorithms.

This study has three aims. Firstly, we introduce a novel transmission algorithm for grid-

based calculations: the conditional subsample algorithm. Secondly, we propose an optimal

grid size estimation method for determining a grid size configuration for the conditional sub-

sample and conditional entry algorithms that ensures fast computation, and evaluate its

Fig 1. Example of the regular (A) and the adaptive (B) grid construction methods applied to the UK farm

population. Panel (C) shows a schematic representation of the grid-based infection transmission process. From the

infectious farm i (red star) in infectious cell a, spread of infection is initially evaluated at the level of entire susceptible

grid cells (b1, b2, b3) and only occasionally evaluated for the individual susceptible nodes (green).

https://doi.org/10.1371/journal.pcbi.1006086.g001
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performance. Thirdly, we investigate how this algorithm compares to simulations based on

both the pairwise algorithm, the conditional entry algorithm presented by Keeling and Rohani

[11], and the FSR algorithm introduced by Brand et al. [10]. To address these aims, we simu-

late outbreaks on computer-generated farm locations with different levels of spatial clustering,

as well as empirical farm populations from the USA, the UK and Sweden. These spatially het-

erogeneous farm distributions offers more realistic challenges to the proposed methods than

would homogeneous distributions.

Method

The methods of this study has several steps. We start by outlining the epidemic model, and

present three primary transmission algorithms used for simulations: pairwise, conditional

entry, and the novel conditional subsample algorithm. The two latter rely on similar gridding

approaches, and we propose a straightforward optimal grid size estimation method that can be

used for two of these algorithms. This estimation process formulates an equation that approxi-

mates the expected number of kernel evaluations for a particular average grid cell size, θ
(expressed as farms per cell), and subsequently find the value of θ for which the fewest number

of kernel calls are predicted. We denote the true unknown optimum θ� and the estimated

equivalent ŷ�. The estimation of ŷ� was based on the simplified assumptions of homogenous

spatial distribution of farms and animals. We therefore simulated outbreaks of FMD with a set

of θ, including ŷ�, to explore how well the prediction holds when these assumptions are

relaxed. The value of θ that performs best in the simulations is denoted by y
�

sim and will be

equal to ŷ� if the proposed method performs well. The grids were constructed with two differ-

ent methods that either retains equal cell sizes, or equal number of farms in each cell (Fig 1).

Table 1 provides an overview of the different methods and how they fit together.

To further evaluate the performance of the two gridding based algorithms, we compared

them to an algorithm proposed by Brand et al. [10]. We here simulated FMD outbreaks with

kernel functions implemented in that study, and applied our introduced gridding optimization

approach to the CE and CS algorithms. Thereby, we challenged the gridding based algorithms

and the associated optimizations outside of the context used to initially explore their

efficiency.

Epidemic model

We use a spatially explicit kernel model based on an approach developed for the FMD out-

break in the UK in 2001 [5]. This is a versatile and common modeling approach that has also

been used to model FMD in other countries such as the Netherlands [12] and Japan [6]; as

Table 1. Methods and epidemic model considered in the study and how they relate to each other.

Method/model Description

Epidemic model The epidemic process that is simulated.

Transmission algorithms Algorithms used to simulate disease transmission of the epidemic model. Three

algorithms are considered: pairwise, conditional entry (CE), and conditional subsample

(CS).

Estimation of optimal

grid size
Method used to an estimate of the optimal average grid size, ŷ�, for the CE and CS

transmission algorithms.

Grid construction

method

Methods used to overlay a spatial grid of square cells on top of a landscape, assigning

each farm to a cell. Two construction methods are implemented, retaining either equal

cell sizes (regular grid construction, Fig 1A), or equal number of farms in each cell

(adaptive grid construction, Fig 1B).

https://doi.org/10.1371/journal.pcbi.1006086.t001
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well as other diseases, such as avian influenza in the USA [13] and bluetongue virus in the UK

[14]. Our formulation is a standard farm level Susceptible-Exposed-Infectious-Removed

(SEIR) model with discrete daily time steps and a daily rate of infection, Rij, between infectious

farm i and susceptible farm j. This rate depends on the kernel K, which is a function of the

Euclidean distance between i and j (dij), as well as the transmissibility of i (Ti) and the suscepti-

bility of j (Sj). The daily infection rate is given by

Rij ¼ TiSjKðdijÞ: ð1Þ

The probability of a susceptible farm j becoming infected by farm i within a given span of

days is obtained by discretizing Eq (1)

pij ¼ 1 � expð� SjTiKðdijÞdtÞ ð2Þ

where δt is the time step. By setting δt to one, pij becomes the daily probability of transmission

from i to j. Once a farm was infected, an incubation period of four days was assumed after

which the farm’s entire animal population was considered infectious for a period of five days

and at the end of the infectious period the farm was considered removed from the population.

Following Tildesley et al. [15], transmissibility and susceptibility of farms were modeled as

a nonlinear function of the number of cattle and sheep present on the premises as

Ti ¼ �cattlez
tcattle
cattle;i þ �sheepz

tsheep
sheep;i ð3Þ

Si ¼ ccattlez
scattle
cattle;i þ csheepz

ssheep
sheep;i; ð4Þ

where all parameters are species-specific constants, and z is the number of animals of the

respective species on the individual farms. For simplicity, we initially used the set of parameter

values for τ, σ, F and C fitted for Cumbria, England in [15] for all simulations (see Table 2 for

parameter values). These parameters resulted in outbreaks large enough to enable exploration

of the efficiency of different grid configurations for the UK, but yielded small outbreak sizes

when simulating infection across the other landscapes (S1 Table). We were also interested in

investigating the performance of the algorithms for large outbreaks, and therefore multiplied

the ψcattle estimated for UK (Cumbria) by 200 when simulating outbreaks in all other land-

scapes, which resulted in substantially larger epidemics. The animal populations for these

other landscapes contained only cattle, thus obviating the sheep terms in Eqs (3) and (4).

Table 2. Infection kernel parameter values used in disease simulations.

Parameter Reference

φsheep 0.00083 Transmissibilty constant for sheep. [15]

φcattle 0.00082 Transm. constant for cattle. .

τsheep 0.49 Transm. exponent for sheep. .

τcattle 0.42 Transm. exponent for cattle. .

ψsheep 1.0 Susceptibility constant for sheep. .

ψcattle 5.7 Susc.constant for cattle. .

σsheep 0.20 Susc. exponent for sheep. .

σcattle 0.41 Susc. exponent for cattle. .

α 0.089 Distance kernel normalization constant. [7]

β 1600 Distance kernel scale parameter. .

γ 4.6 Distance kernel shape parameter. .

https://doi.org/10.1371/journal.pcbi.1006086.t002
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The local spread kernel, K, models the change in infection risk with distance between i and

j, and includes all possible routes of infection except the shipment of animals between farms.

For the purpose of comparing CE and CS and different optimized gridding schemes, we used

the functional form

KðdijÞ ¼
a

1þ
dij
b

� �g ; ð5Þ

parameterized as in [7], (Table 2) and referred to as the Buhnerkempe kernel.

Transmission algorithms

In this section, we consider three transmission algorithms: the pairwise (PW), the conditional

entry (CE) and the conditional subsample (CS) algorithms. The CE algorithm has previously

been published by Keeling and Rohani [11], whereas the CS algorithm is a novel approach.

Example code for these three algorithms is provided as part of a C++ infection simulation

model in the supplementary materials (S1 Appendix and S2 Appendix). The transmission

algorithms were compared using simulation run times. However, since this is a measure that is

both system dependent and also possibly influenced by other processes running simulta-

neously on the system we also determined the total number of calls made to the distance kernel

function (Eq. 5) during a simulation. We considered this a measure of computational com-

plexity and a proxy for relative computational time. Making a call to the kernel function is usu-

ally a relatively costly operation in itself and in a naïve implementation it will constitute most

of the activity during a simulation as it takes place every time an infection probability is evalu-

ated. For small populations of farms, it may be feasible to store the evaluated kernel values for

each pair of farms in order to reduce the number of calculations, but for models on the indi-

vidual farm level on national scales this approach easily becomes limited by memory availabil-

ity. For comparison, representing the distances between all unique pairs as 64 bit double

precision floating point numbers in a population of n nodes and making use of the fact that

such a matrix is symmetrical to only store the upper or lower triangle requires approximately

0.373 GiB for n = 104; 37.3 GiB for n = 105 and 3725.3 GiB for n = 106 (2691.5 GiB for

n = 850000, which is roughly the size of the US farm population used in this study). Although

supercomputer systems generally have memory per node in the ranges of 32 to 256 GiB, the

availability of nodes in the higher range is usually limited and going above the limit of what a

single node can handle necessitates a code that can handle shared memory between nodes,

making a relatively simple problem significantly more complex. Also, even if it would be possi-

ble to run a simulation requiring a large amount of memory, lowering the memory require-

ment may allow multiple such simulations to run in parallel on the same system. A large

number of independent replicates are generally needed, making numerical models for disease

simulation prime examples of problems subject to embarrassingly simple parallelization. For

the general case, this means that parallelization can be performed over the different replicates

with no need for specialized code or extra overhead due to thread or process management,

and that there is little to gain from more complex forms of parallelization.

Throughout the explanation of the algorithms we will refer to the farms as nodes. A cell

containing an infectious node is referred to as a, while a cell with susceptible nodes is referred

to as b (Fig 1C). The set of all cells that contain susceptible nodes is denoted B. An infectious

node is referred to as i, a susceptible node as j. Sets of infectious and susceptible nodes are

referred to as I and J respectively. These sets of nodes are sometimes subscripted with a cell to

indicate a set of nodes within a cell. We use the notation of cardinality of the sets to refer to the

number of elements in that set (e.g. |Jb|, the number of susceptible nodes of cell b).
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Pairwise algorithm. The pairwise algorithm is a straightforward approach for simulating

transmission between nodes. The probability of infection is calculated directly for each infec-

tious-susceptible pair in the population by Eq (2), and the probability of an infection occurring

is evaluated as a Bernoulli process. While simple and easy to code, computational speed is a

limiting issue for the pairwise algorithm. The method can be improved somewhat by pre-cal-

culating distances or infection probabilities, but such an approach is instead very memory

intensive for any but the smallest of populations, and here we provide the pairwise algorithm

mostly for comparison, rather than a serious candidate for actual simulation work. The num-

ber of kernel function evaluations required per iteration (NPW
tot ) for the pairwise algorithm fol-

lows a bilinear relationship with the number of infectious, |I|, and susceptible, |J|, nodes, given

by

NPW
tot ¼ jIjjJj: ð6Þ

Pseudocode 1. Pairwise algorithm. Probability pij as defined by Eq (2).
for each infectious node i {

for each susceptible node j {
R = uniform random number (0, 1)
if R < pij {

j is infected
}

}
}

The CE and CS algorithms utilize gridding approaches to partition the spatial landscape

into grids. Although this partitioning of the landscape adds some overhead, it is small com-

pared to the runtimes of the simulations. This is especially true if the nodes in the landscape

are constant between replicates, since one grid can then be reused between runs. Unless the

number of grid cells is exceptionally high, modern computers have enough memory to store

the pre-calculated shortest distances or evaluated kernel values between all cell pairs to further

minimize the number of calculations. The grid construction methods used to partition the

landscapes are described after the transmission algorithms and the optimal grid cell size esti-

mation algorithm have been outlined.

Conditional entry algorithm (CE). With this method, the simulation of the infection

process is separated into two steps:

1. Calculate the maximum possible probability of infection between the infectious node i in

cell a and the most susceptible node within cell b, υib, using the minimum distance between

the two cells. Based on this overestimated probability of infection, test if at least one suscep-

tible node in cell b will be infected by i.

2. If yes, iterate over all susceptible nodes in b and test each individually to see which nodes (if

any) actually become infected.

This approach has the benefit that if the outcome of step one is negative, only one evalua-

tion of the kernel function will be required, thereby avoiding a large amount of computational

operations. This is often the case at large distances, where the kernel predicts low transmission

risk.

We denote the overestimated theoretical node-to-node level probability of step one as υib,
obtained by assuming that the node in b with the highest susceptibility (Ŝb) is located at dis-

tance dab, defined as the shortest possible distance between any two points within a and b,

Accelerated computation of spatial disease simulations
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respectively

uib ¼ 1 � e� TiŜbKðdabÞ: ð7Þ

Given υib and assuming that all susceptible nodes in b become infected with this probability,

the probability of at least one of the susceptible nodes in b becoming infected is given by

oib ¼ 1 � ð1 � uibÞ
jJb j: ð8Þ

If a random draw rib~U([0,1))> ωib, no further calculations are necessary to evaluate infec-

tions for nodes in b for the current infectious node i as not even one node became infected

even with an overestimated infection probability. However, if rib< ωib, there is a possibility of

infection of each node in cell b, as evaluated in step two of the algorithm. Here, exact infection

probability is evaluated for the nodes in b, based on actual distances and susceptibilities. How-

ever, the probability of infection needs to account for conditioning on the probability ωib of

step one, that at least one hypothetical node at distance dab with susceptibility Ŝb must become

infected. This is achieved by iterating over all susceptible nodes j in b, Jb, and for each iteration

calculate the probability of at least one of the remaining |Jb|-j hypothetical nodes becoming

infected, χj:

wj ¼ 1 � ð1 � uibÞ
jJbj� j: ð9Þ

The probability of j becoming infected at dab with susceptibility Ŝb conditional on χj is eval-

uated by comparing another random draw rj~U([0,1]) to υib / χj. This ensures that the condi-

tion imposed in step one, that at least one node gets infected given the overestimated infection

probability, will be fulfilled when j = |Jb|-1, since at that point χj = υib. For every j where rj<
υib / χj, the node would have become infected if it was at dab and had susceptibility Ŝb, so there

is now also a risk of actual infection taking place. Furthermore, the first time this occurs, the

condition from step one is fulfilled and χj for the subsequent |Jb|-j iterations is set to 1. The

probability of actual infection is pij, given by Eq (2), conditional on χj such, that j becomes

infected if rj< pij / χj. The same random number is reused in this step since the first test is

essentially checking if infection can occur given the known upper bound of the probability

(υib / χj), and then only calculating pij / χj if necessary. For within-cell infections (when a = b)

the pairwise algorithm was used. For a formal proof of the exactness of this method, see the

supplementary material (S3 Appendix).

Pseudocode 2. Conditional entry algorithm. Probabilities pij, υib and ωib as defined by Eqs

(2), (7) and (8) respectively.
for each infectious node i {

for each cell b {
if i is not in b {

R1 = uniform random number (0, 1)
if R1 < ωib {

N = set of susceptibles in b
n = size of N
over-estimated infection has occurred = false
for j from j = 0 to j<n {

if over-estimated infection has occurred {
q = 1

} else {
q = 1 –(1 - υib)

n-j

}
R2 = uniform random number (0, 1)
if R2 < υib / q {

Accelerated computation of spatial disease simulations
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over-estimated infection has occurred = true
if R2 < pij / q {

N[j] is infected
}

}
}

}
} else {

pairwise algorithm
}

}
}

Conditional subsample algorithm (CS). Here, we introduce a novel transmission algo-

rithm that shares several features with the CE algorithm. However, instead of either rejecting

an entire cell or iterating through all the susceptible nodes of the cell, it selects a sub-sample of

the cell’s population of susceptible nodes to be considered for infection. Similar to the CE

method, it utilizes an overestimated probability of infection, ωab, describing an upper bound-

ary for the probability of infection spreading from any of the infectious nodes in cell a to a sus-

ceptible node in cell b in one time step (in contrast to spreading from one single infectious

node i in a to any of the susceptible nodes j in b as in the CE method). We first define the

upper boundary for the probability of one infectious node i in cell a infecting one susceptible

node j in cell b based on over-estimated transmission parameters. This is similar to Eq (7) but

not identical because we use the maximum transmissibility of any node in cell a, T̂ a, in addi-

tion to the maximum susceptibility of any node in cell b, Ŝb:

Pð̂ia ! ĵbÞ ¼ uab ¼ 1 � e� T̂ aŜbKðdabÞ ð10Þ

Using only over-estimated transmission parameters means that υab will be constant for a

given combination of a and b, since the maximum transmission parameters T̂ a and Ŝb, as well

as the distance that the calculation is based on remain unchanged throughout a simulation.

Therefore, υab can be pre-calculated for all cell pairs to improve performance. Now we define

the probability that at least one of the infectious nodes in cell a infects one node in b given T̂ a

and Ŝb as

oab ¼ Pðâ ! ĵbÞ ¼ 1 � ð1 � uabÞ
jIa j: ð11Þ

Based on ωab, the CS method simulates transmission by the following steps:

1. For each cell a containing at least one infectious node, iterate over all other cells b and gen-

erate a random number nb from a binomial distribution with number of trials |Jb| and prob-

ability ωab. This gives the number of nodes that can potentially become infected given the

upper boundary to the probability of infection.

2. Randomly select a subset of nb nodes from b, each with equal probability of being selected.

3. For each of the nodes j in the selected subset of nodes, calculate the cumulative true proba-

bility of the event that j is infected by one or more of the infectious nodes in a as

paj ¼ Pða! jbÞ ¼ 1 �
Y

i2Ia

ð1 � pijÞ ð12Þ

where pij is the true probability of infection spreading from i to j as given by Eq (2). Evaluate

if infection actually takes place using the true probability conditional on the upper bound-

ary of the probability used in step 1.

Accelerated computation of spatial disease simulations
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We treat the infection of node j by cell a as conditional on the event that it would be

infected using the over-estimated transmission parameters,

Pðâ ! ĵbÞPða! jbjâ ! ĵbÞ ¼ Pðâ ! ĵbÞ
Pða! jbÞ
Pðâ ! ĵbÞ

: ð13Þ

In practice this becomes two separate Bernoulli trials with probability Pðâ ! ĵbÞ and

Pða! jbÞ=Pðâ ! ĵbÞ respectively. Since the first of these two trials have equal probability

regardless of which susceptible node j is being considered, their combined number of suc-

cesses, nb, can be expressed as a binomial random variate. Because Pðâ ! ĵbÞ is identical for all

nodes j, all nodes have equal probability to pass the first Bernoulli trial where infection based

on over-estimated transmission parameters is evaluated. Therefore, sample of nb nodes from

the susceptible population of cell b, where each susceptible node have equal probability of

being selected yields the exact set of nodes to be tested for actual infection with probability

Pða! jbÞ=Pðâ ! ĵbÞ. Thereby, the actual probability of infection paj only needs to be calcu-

lated for a subsample of susceptible nodes each time step.

We once again stress that the CS algorithm is not an approximation of the pairwise algo-

rithm; it reduces the number of times that the true infection probability pij needs to be calcu-

lated by using a single step to filter out nodes that would not have become infected even with

the overestimated probability ωab. Even though the operation of generating a binomially dis-

tributed random variable can be considered relatively costly, this extra complexity is small in

relation to the number of evaluations of the kernel function that is avoided. A way to work

around the computationally costly construction of binomial random generators each time a

new nb is drawn is to set up a number of generators for all combinations of range of fixed prob-

abilities PCS and all possible values of n between 1 and the largest number of nodes within any

cell given the grid in use. To generate nb from this set of binomial generators one simply

rounds ωab up to the closest fixed p in PCS this makes the over estimation of the actual infec-

tion probability even more crude giving a slightly larger nb on average, but the time saved from

not having to set up the generators will likely be much larger than the extra tests necessary. For

the simulations in this work we used the set PCS = {1.0, 0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1,

1.0e-2, 1.0e-3, 1.0e-4, 1.0e-5, 1.0e-6, 1.0e-7, 1.0e-8, 5.0e-9}. We point out that this approach simply

makes the over-estimation of ωab slightly larger and does not introduce any approximation of

the true probabilities of nodes becoming infected. The implementation of the binomial ran-

dom number generator used will of course still impact the absolute speed of the algorithm and

care should be taken to ensure that the most naïve implementations are avoided.

For within-cell infections (when a = b) the pairwise algorithm was used.

Pseudocode 3. Conditional subsample algorithm. Probabilities pij, and ωab as defined by

Eqs (2) and (11) respectively.
for each cell with infectious nodes a {

for each cell with susceptible nodes b {
if a is not b {

Nb = set of susceptibles in b
nb = size of Nb
nsample = binomial random variate(nb, ωab)
if(nsample > 0) {

Na = set of infectious in a
Nsample = random subsample of size nb from Nb
for each j in Nsample {

paj = 1.0
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for each i in Na {
paj = paj � (1.0—pij)

}
R = uniform random number (0, 1)
if R < (1 –paj) / ωab {

Nsample[j] is infected
}

}
}

} else {
pairwise algorithm

}
}

}

Estimation of optimal grid cell size

The cell size (number of nodes contained in each cell) will have a large impact on the efficacy

of both the CE and CS transmission algorithms. Conceptually, it is easy to see that either too

small or too large cells will render the methods inefficient. At one extreme end, a single cell

covering the entire landscape would equate the method to the pairwise algorithm. On the

other hand, if each cell is so small that it only contains a single farm, the kernel similarly needs

to be evaluated for every farm and iteration, plus an additional evaluation when a cell is

entered. Clearly, some intermediate cell size is optimal.

In theory, the best cell configuration is one where the difference between the upper bound

of the probability of infection (υib or ωab) and the probability of infection itself is as small as

possible because this will lead to fewer ‘false positives’ (times where the outcome of step 1 is

true for the CE algorithm, or a larger than necessary binomial sample for the CS algorithm).

The amount of overestimation of υib and ωab can be reduced by using small cells with few

nodes in each since that will minimize the difference between dab (the cell-to-cell distance) and

dij (the actual distance between the infectious node i and the susceptible nodes j). Furthermore,

having a cell in which the distribution of the nodes’ susceptibility, Sj, is as homogenous as pos-

sible also contributes to a smaller amount of overestimation. At the same time, the more small

cells there are, the closer the behavior of the transmission algorithm will be to that of the pair-

wise algorithm in that there will be a larger amount of operations required just to evaluate part

one of respective algorithm. Finding a grid configuration with an optimal balance between

these factors for a landscape with a spatially heterogeneous node distribution is not a trivial

problem. Also, any perfect solution will be dependent on where in the landscape the infectious

node is, further complicating the task.

We propose a straightforward method to quickly find an approximation of the optimal

average grid cell size, ŷ�, for a given landscape. The method relies on a set of simplifying

assumptions, where all farms are assumed to have equal susceptibility and transmissibility, and

distributed uniformly in a quadratic landscape. Also, we only estimate ŷ� for the initial phase

of the outbreak, where only one node is considered infectious and all other nodes are suscepti-

ble. Note, however, that we challenge these assumptions below when we evaluate the perfor-

mance of the gridding methods. The method to identify an optimal grid size is:

1. Starting out with the landscape of interest, determine the longest side x of the surface delim-

ited by the outer bounds of the node population and consider a square of area x2.

2. Overlay this square with a grid consisting of κ2 uniformly sized square cells and assign the

nodes to the cells. This gives an average number of nodes per cell, y ¼ nk̂ � 2.
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3. For each grid cell calculate the expected number of kernel function calls that would be

required to simulate infection spreading from a single infectious node in this cell a to all

cells (including itself) in the landscape with the current grid configuration. For these calcu-

lations let the number of nodes in each cell be the average number of nodes per cell, and let

susceptibility and transmissibility be the same respective parameter value for all nodes. In

our study we based these on the median of the number of animals (zsheep,i and zcattle,i, Eqs

(3) and (4)) within the farm populations, but stress that the approach could also be used

when other demographic heterogeneities are considered.

4. Repeat step 2 and 3 with differently sized grid configurations.

5. Determine ŷ� as the value of θ yielding the fewest average number of expected kernel func-

tion calls per cell a.

This procedure was performed for 100 different grid configurations, each with total number

of cells κ2 where κ 2 {1,. . .,100}. For κ = 1, a single cell overlays the landscape, and 100 was

chosen as an upper bound that we determined to yield a large enough span of grid configura-

tions to be sufficiently certain that the optima for the landscapes used in this study were found.

The sum of expected number of kernel calls required for each evaluated cell was calculated as

Ntot ¼
X

a2C

X

b 2 C
b 6¼ a

ðNi;b þ 1Þ þ jJaj

0

B
B
B
B
@

1

C
C
C
C
A
; ð14Þ

where C is the set of all cells for the given configuration and Ni,b is the expected number of

calls to the kernel function required to simulate infection spreading from one infectious node i
in a to the nodes in b during one time step. For both the CE and CS transmission algorithms,

there will always be one kernel call made for each cell that is checked in order to calculate the

overestimated infection probability υib or ωab, as well as |Ja|calls associated with the internal

pairwise checks of the susceptible nodes within a. Note that since the distribution of animals is

uniform over the nodes and the nodes are uniform within the landscape, the transmissibility

parameters from Eq (7) and Eq (10), will have the same value (Ti ¼ T̂ a) and the number of

infectious nodes in a is one, so υib = ωab. After the initial overestimated probability υib or ωab
has been calculated, the expected number of kernel calls for a given pair of infectious node i
(or cell a, it is the same in this context since there is only one infectious node in a) and grid cell

b is

Ni;b ¼ uibjJbj: ð15Þ

This is simply the expected value of the binomial distribution given |Jb| draws and probabil-

ity υib or ωab. Eq (15) is intuitive for the CS algorithm because each node in the binomial sam-

ple, drawn from the population of susceptible nodes within a grid cell during the execution of

the algorithm, will be evaluated exactly once. This adds one kernel call for each node in the

sample. The proof is somewhat less apparent for the CE algorithm, requiring a more compre-

hensive derivation. This is provided in the supplementary material (S4 Appendix).

Due to ωab increasing with the number of infectious nodes within a cell it was expected that

during actual simulations with the CS algorithm the probability ωab would be close to or equal

to one more often than υib would with the CE algorithm. This leads to the CS algorithm degen-

erating into the pairwise algorithm (when ωab = 1, nb = |Jb|) more often than the CE algorithm

which will still only occasionally enter the susceptible cell b, even when a cell contains a lot of
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infectious nodes. In order to make a fair comparison between the methods we therefore also

calculated ŷ� using the maximum number of animals on any farm in the landscape as well as

the 75th percentile of the number of animals on the farms for transmission parameters rather

than the median, and evaluated both using the CS and CE algorithms. With these higher trans-

mission parameters, the cells become somewhat smaller which offsets this effect for the CS

algorithm. The results showed mostly minute differences in run times for simulations depend-

ing on summary statistic used, but for the CS method using maximum number of animals was

clearly optimal for the UK (3.2 and 2.9 times faster than 75th percentile and median, respec-

tively). Based on this we chose to use maximum for all simulations with the CS algorithm and

median for all simulations with the CE method.

Grid construction

Two different methods were used to spatially divide the nodes of the landscapes into grids,

each grid consisting of a set of square cells, C. The first such grid construction method,

denoted regular grid construction, overlays the landscape with a set of uniformly sized square

cells of predetermined spatial size (Fig 1A), generated by selecting a number κ, describing the

square root of the total number of cells (or the number of cells along one dimension) desired,

and simply constructing κ2 square cells with side = l/κ, where l is the longest side of the rectan-

gle bounding the landscape.

Secondly, we used an adaptive grid construction approach with similarities to the quad-tree

data structure common in computer science, where a spatially heterogeneous grid is con-

structed (Fig 1B), with the aim of having an equal number of nodes per cell. Starting with one

large cell covering the entire landscape, we recursively divided cells (parents) into four smaller

equal-sized cells (children), which in turn were divided into even smaller cells and so on. The

process was continued for each cell as long as further subdivision satisfied the following condi-

tion:

ðlogðjLajÞ � logðlÞÞ2 �

X

b2B

ððlogðjLbjÞ � logðlÞÞ2Þ

jBj
: ð16Þ

Here, La and Lb indicates the set of nodes within parent (a) and child (b) cells, respectively,

B is the set of up to four child cells of a that contain nodes (depending on the spatial distribu-

tion of nodes inside the parent cell, some child cells can end up without nodes) and λ is the

threshold number of nodes per cell. As such, the subdivision minimizes the squared difference

on between log-number of nodes per cell and the specified log-λ.

At the end, all cells that did not contain any nodes were removed from the final grid for

both the adaptive and the regular grid construction methods.

We applied the grid construction methods to farm landscapes that deviated from the under-

lying assumptions of the approximation in section Estimation of optimal grid cell size (uniform

node distribution inside a square with equal susceptibility and transmissibility), using grids

according to the optimized ŷ� as well as both finer and coarser grid configurations. We speci-

fied

li ¼ Ziŷ�; i 2 ½� 6; � 5; . . .; 6�: ð17Þ

The constant ηwas set to 1.75 in order to give a large enough span of different grid configu-

rations across all landscapes and the range of i was chosen as [6, 6] to yield a manageable num-

ber of grid configurations with a sufficient level of detail as well as equal amount smaller and
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larger cell sizes in addition to ŷ� itself. In order to make the regular grids somewhat compara-

ble in size to the grids constructed with the adaptive method, the sets of values for κ were set to

the integer values for which the average number of nodes per cell (n/κ2) was closest to the sets

of values of λ.

For the landscape with uniform spatial distribution of nodes, the adaptive gridding

approach generally resulted in configurations with cell sizes that deviated substantially from λ.

Therefore, for this landscape, we used only the regular gridding method.

Landscapes

The evaluation of the algorithms and the gridding schemes were performed on the empirical

cattle and sheep farm population of the UK and the cattle farm populations of the 48 contigu-

ous states of the USA (i.e. excluding Alaska and Hawaii) and Sweden, each with 177 855, 832

514 and 24 275 farms respectively; as well as on three generated landscapes with differing

degrees of clustering. The generated landscapes were created with the method of [16] and each

had one quarter of the number of farms of the USA data (208 129) and an area that was one

tenth of that of the contiguous USA. This scaling of the random landscapes was found to pro-

vide consistently large outbreak sizes through high enough farm density, while keeping simula-

tion runtimes with the pairwise method at a manageable level. The number of animals on the

farms for the generated landscapes were sampled randomly from the USA farm size distribu-

tion. See S2 Table for clustering statistics of the landscapes.

The UK and Sweden keep detailed information about farms in central databases, including

position and herd sizes. These data were made available for the study under confidentiality

agreements and could be used when simulating outbreaks. There are however no equivalent

data bases for the USA. Instead we used simulated demography data generated by the Farm

Location and Agricultural Production Simulator (FLAPS). FLAPS simulates spatially-explicit

farm locations and farm sizes, based on county level demography information from the

National Agricultural Statistics Service (NASS), in combination with environmental features

(e.g. topography and climate), and anthropogenic factors (e.g. roads and urban markets) [17].

While not a perfect representation of the geographical distribution and demography of the

USA farm population, it offers the most realistic depiction available. As such, it is well suited

for investigating the performance of the presented disease simulation algorithms.

The three randomized landscapes as well as the FLAPS realization for the USA farm popu-

lation used in this study are available as supporting information (S1–S4 Datasets).

Simulations

The usefulness of k̂ and ŷ� as indicators of the actual optimal grid size for the original land-

scape was tested by comparing them to a number of other configurations generated using the

two different grid construction methods (regular and adaptive) through simulations. Each

simulation was seeded with one random farm as the initial case and was run until the outbreak

either died out or until 10,000 cumulative farms had become infected. The run time and total

number of kernel operations depends heavily on the number of nodes infected over the course

of the simulated outbreaks, making comparisons between replicates with different outbreak

sizes difficult. To circumvent this problem, the number of kernel operations of the simulations

were recorded at the end of the time step where 10, 100, 1,000 and 10,000 nodes became

infected (we refer to these as outbreak stages).

To improve the speed of all simulations regardless of transmission algorithm the kernel was

evaluated for every integer distance between 1 and the maximum possible distance within the

given landscape (in meters) and the distances calculated during the simulations were rounded
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to nearest integer. This does not, however, mean that the number of kernel calls as a relative

measure of complexity changes as it still indicates the number of operations made where the

kernel is involved. Also, even though this can be seen as an approximation, we argue that the

error introduced by this approach will be smaller than the error in a set of landscape coordi-

nates at the one-meter level.

The simulations of the epidemic model using the grid construction methods and transmis-

sion algorithms, as well as the algorithm for finding ŷ�, were all implemented in C++ (S1

Appendix, S2 Appendix). All simulations were run at a supercomputer cluster consisting of

2.2GHz 8-core Intel Xeon E5-2660 processors.

Comparison to existing algorithms

The CE and CS algorithms were compared to the fast spectral rate recalculation method (FSR)

presented by Brand et al. [10]. Simulations with the FSR method and the other algorithms was

performed using the US farm population with parameters as described in the [10]

We compared the two methods using the distance kernel from the evaluation of the FSR

method on the US population in [10] (referred to as Brand kernel; notation converted to

match that already in this paper)

KgðdÞ ¼ aNgbðb
2
þ d2Þ

� g=2
: ð18Þ

As closely as possible we tried to replicate the simulations in the original study and tested

the methods with three different sets of parameters corresponding to three different shapes of

the kernel (Table 3), Nγ being a normalization constant dependent on the choice of γ. In the

comparison, the same node second closest to the center of Franklin County, Texas was seeded

every replicate. The reason for choosing the node second closest to the center over the node

closest to the center as in the original study, was that it had 19 animals in our data set as

opposed to the central node which had only 1, increasing chances of outbreaks taking off. Esti-

mation of optimum grid size (ŷ�) for the CS and CE method was performed as described

under section Estimation of optimal grid cell size using the relevant kernel (Table 3). For these

simulations, results were recorded at the time step when 10000 cumulative infected nodes was

reached as well as at the point where the epidemic died out.

Table 3. Parameters for infection kernels used in the comparison to FSR method.

Kernel

Brand Brand Brand Buhnerkempe
α 0.12 0.12 0.12 0.089

β 10.0 12.73 20.0 1.6

γ 3.0 4.0 5.0 4.6

Nγ 0.16 4.05 190.99 -

φc 1.0 1.0 1.0 1140.0

τc 0.2 0.2 0.2 0.00082

ψs 1.0 1.0 1.0 0.41

σc 0.2 0.2 0.2 0.42

ŷ� (CS) 411 393 450 377

ŷ� (CE) 925 925 925 308

Brand refers to the infection kernel used in [10] which was implemented using three different values for the shape

parameter γ as in the original work. Buhnerkempe refers to the infection kernel of [7].

https://doi.org/10.1371/journal.pcbi.1006086.t003
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A comparison to the FSR method was also attempted for the kernel and set of parameters

used for the other analyses presented earlier in this paper (Eq (5) and Table 3). However, the

very local nature of this kernel caused problems with the FSR method as the kernel shape

necessitates a very fine resolution for the grid on which the image of infection is calculated in

order to accurately capture the behavior of the kernel. For such fine resolutions, the efficiency

of the algorithm drastically diminishes and made simulations until the end of the epidemic too

long to be feasible. Thus, for this kernel, only the results from reaching 10000 cumulative

infected farms was recorded before the simulations were terminated.

Please note that the kernels used in the comparison with FSR are parameterized for a dis-

tance unit of kilometers rather than meters as for the other analyses presented.

Results

For all landscapes, outbreak stages and grid construction methods using conditional subsam-

ple and conditional entry algorithms, even the worst grid configuration tested provided an

improvement over the pairwise method, and the simulations with optimal suggested grid con-

figurations (ŷ�) yielded improvements in the range of 2.9–500.0 times faster (Figs 2 and 3, S1

Fig, S2 Fig). In almost all of those simulations the CS transmission algorithm consistently per-

formed as well as or better than the CE method (Fig 4), and for that reason we present the

results for the CS algorithm here and the results for the CE algorithm can be found in the sup-

plementary material together with the result of the optimal grid estimation method for the six

landscapes (S3 Fig).

The estimated optimal grid size, ŷ�, coincided with y
�

sim for half of the combinations of land-

scapes and outbreak stages, meaning that the optimum grid estimation method worked well.

However, for the situations where it was not the optimal grid size, it was generally very close to

the optimal size, the most notable exception being for the uniformly random landscape at out-

break stage 10000 for which simulations using ŷ� were 18.4% slower on average than for the

optimal grid size y
�

sim (Fig 2, Table 4).

For the different outbreak size thresholds and landscapes using the conditional subsample

transmission algorithm with the adaptive grid construction method, the positive values indicate

that ŷ� performed best in the simulations. For these cases the numbers represent the relative

increase in average run time when comparing ŷ� to the second-to-optimal grid cell size. Negative

values indicate that ŷ� did not perform best in the simulations and show the relative decrease in

average run time when comparing ŷ� to the value of θ that gave the best performance.

No difference was evident in the number of time steps required in order to reach the differ-

ent stages regardless of transmission algorithm and grid configuration, supporting our claim

that the methods treat the dynamics of the outbreak equally (S4 Fig, S5 Fig). Incidence curves

further supporting the identical behavior for the CE and CS method to the pairwise simula-

tions using the estimated optimal grid size ŷ� can be found as supplementary information (S6

Fig). Out of the 500 replicates for each of the 13 grid configurations, not all reached all out-

break stages. Information on the number of replicates that reached the different stages can be

found in the supplementary material (S1 Table).

The regular grid construction method (Fig 1A) is only suitable for creating a grid configura-

tion for a landscape with uniform spatial node distribution. If the node distribution is hetero-

geneous (as is expected for most real landscapes), the estimated optimal grid configuration will

not be close to the actual optimum. This is evident from S7 Fig, S8 Fig where the results of sim-

ulating outbreaks on the landscapes with heterogeneous node distribution using the regular

gridding method are shown.
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The comparison between the transmission algorithms presented in this paper with the FSR

method presented in [10] showed that the CS algorithm always performed best on outbreaks

with up to 10000 cumulative infected nodes (Fig 5). For simulations that ran the entire course

of outbreaks the FSR method performed better for Brand kernels with shape parameter a = 3
and a = 4, while FSR and the CS algorithm was on par for shape a = 5 (Fig 6).

Discussion

Stochastic disease simulation models are powerful tools for contingency planning and can be

used to evaluate the efficiency of different control options [2,18,19]. However, a large number

of replicates may have to be simulated to capture a representative range of possible outcomes;

an issue that is amplified when different seeding conditions are included. Commonly, multiple

control actions need to be considered [20,21], further inflating the number of simulations.

Thus, computation time quickly becomes a limiting factor. We have introduced a novel algo-

rithm for this purpose, denoted the conditional subsample method, and demonstrated that it

yield substantial reduction of computational complexity. When compared to two other avail-

able optimization methods, it outperformed the conditional entry algorithm in almost all situ-

ations, and in most cases also the FSR algorithm.

We have in this study focused on spatially explicit simulation models, using as an applica-

tion livestock disease models where farms are considered the infective unit. The introduced

algorithm as well as the CE method [11] requires gridding of the spatial landscape (e.g. Fig 1),

making the potential for speed-up sensitive to the grid configuration. For this purpose, we

have introduced a method for estimation of the optimal number of nodes per cell. The estima-

tion is based on the simplifying assumption that nodes are distributed randomly in a unit

square. As expected, the method performs well in identifying an optimal grid size when simu-

lating outbreaks under such ideal conditions (Fig 3A).

Fig 2. Speed-up of estimated optimal grid configuration with the conditional subsample algorithm compared to

the pairwise algorithm. Comparison of simulations using the CS algorithm with ŷ� as cell-size threshold, with the

pairwise algorithm for different outbreak stages. The y-axis indicate how many times faster (based on run time) the

simulations using the CS algorithm were compared to the pairwise simulations.

https://doi.org/10.1371/journal.pcbi.1006086.g002
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However, this is far too crude an assumption for most instances, as node locations are usu-

ally not randomly distributed [16]. To see how well our optimal grid size estimation method

holds when this assumption is violated, we also simulated outbreaks in two computer

Fig 3. Results from outbreak simulations with the conditional subsample transmission algorithm. Average run time in

seconds for each tested grid cell size up to and including the outbreak stages 10 and 10000 (� indicates estimated optimal

grid cell size ŷ�). The 5th and 95th percentiles are indicated by the ranges (main panels). Each combination of landscape

and grid configuration using the CS algorithm, as well as simulations with the pairwise algorithm for comparison was

simulated with 500 replicates. The landscapes were (panels A-F): random uniform, random moderate clustering, random

high clustering, USA, Sweden, UK. The regular grid construction method was used for the uniform random landscape and

the adaptive grid construction method was used for the other landscapes. The black line indicates a unitless relative

expected efficacy of the different grid sizes as indicated by the grid optimum estimation method.

https://doi.org/10.1371/journal.pcbi.1006086.g003
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generated landscapes with different levels of clustering, as well as three empirical landscapes of

farm locations: Sweden, the UK and the USA. The analysis showed that the simulations based

on the approximated optimal grid size did not perform well on these landscapes using a regu-

lar grid configuration (Fig 1A, S7 Fig, S7 Fig). However, when using adaptive grid sizes,

Fig 4. Transmission algorithm performance for estimated optimal grid size θ̂�. Run time in seconds for simulations

reaching 10, 100, 1000 and 10000 cumulative infected nodes. The grids were constructed using the adaptive gridding method

using the estimated optimal grid size ŷ� for each of the six different landscapes.

https://doi.org/10.1371/journal.pcbi.1006086.g004
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targeting equal numbers of farms per cell, the simulations based on the estimated optimum

performed very well compared to the simulations with other grid configurations (Fig 3, S1 Fig,

S2 Fig). This is encouraging, suggesting that our optimal grid size estimation method can be

used to decide on the grid structure for a wide range of spatial configurations. Importantly, the

simulations based on the estimated optimal grid size (ŷ�) were substantially faster than the pair-

wise simulations, both during early and late stages of the outbreak (Fig 2, Fig 3, Fig 4, S1 Fig, S2

Fig). The observed speed-up when using the estimated optimal grid size ranged from a factor of

Table 4. Comparison between predicted optimal grid size, θ̂�, and best actual grid configuration apart from θ̂�.

Relative difference in run time.

Outbreak stage (infected nodes) 10 100 1000 10000

Random uniform -1.2% +1.2% -8.5% -18.4%

Random mod. Clustering -6.0% -3.0% -3.5% +5.3%

Random high clustering -0.3% +1.2% +7.1% +11.2%

USA -4.9% -0.6% +1.4% +3.6%

Sweden -14.4% +6.7% +20.6% +16.8%

UK -8.6% -7.1% +3.2% +15.8%

https://doi.org/10.1371/journal.pcbi.1006086.t004

Fig 5. Comparison of transmission algorithms to the FSR method for outbreaks of up to 10000 infected nodes. Outliers

represent the results from replicates where the epidemic died out early and consequently took considerably less time than larger

outbreaks.

https://doi.org/10.1371/journal.pcbi.1006086.g005
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2.9 for the random high clustering landscape (161 nodes/cell, 10 infected nodes) to a factor of

500.0 for the USA (333 nodes/cell, 10000 infected nodes; Fig 2) with the CS algorithm.

The estimation of ŷ� was based on simplified representations of the landscapes. Specifically,

for in order to achieve the best estimation the transmissibility and susceptibility of the nodes

were based on the median or maximum farm size across the un-simplified landscape for the

CE and CS algorithms, respectively. The reason for this difference is that in the CE algorithm

the transmissibility used for evaluating the entry into a cell or not is based on a single infec-

tious node which corresponds closer to the median than the maximum farm size. In the CS

algorithm, however, the transmissibility used is that of the most transmissible farm in cell a for

which maximum farm size is a better proxy than the median.

To further investigate the performance of the gridding algorithms and make comparisons

to the FSR algorithm, we ran simulations with different spatial kernels, differing primarily in

tail fatness [10]. We focused on the USA demography because this is the system the FSR

method was introduced for. It is also the largest farm population and therefore where compu-

tational gain is the most important. Fig 5 shows that for all considered kernel shapes, the CS

algorithm (using a grid configuration determined by the method described in section Estima-
tion of optimal grid cell size) again outperformed the CE and pairwise methods. When compar-

ing runtimes with the FSR method, the CS algorithm was consistently faster in terms of

Fig 6. Comparison of transmission algorithms to the FSR method for simulations of outbreaks that were allowed to run their

full course.

https://doi.org/10.1371/journal.pcbi.1006086.g006
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simulations to the first 10000 infected farms, whereas the results differed between kernel types

in terms of computation time for entire outbreaks. One likely reason for this is that the FSR

method works on susceptible farms and as they become fewer due to being infected and

removed, the complexity of the algorithm decreases. The algorithms presented in this paper on

the other hand has a complexity that grows with the number of infected farms and so, will be

faster during the initial stages of the outbreak and lose relative speed as the epidemic grows. As

such, there are instances where the FSR would be quicker, particularly if the simulated out-

breaks are extremely large.

The FSR method introduces a slight approximation unless a suitable grid size for the image

of infection can be found. No apparent difference in terms of precision is revealed in Fig 5 for

the Brand kernels; all simulation methods provide similar estimates of number of time steps to

reach either 10000 infected farms (Fig 5) or end of outbreak (Fig 6). Thus, the issue of approxi-

mation is of less concern in terms of choosing algorithm for kernels such as these. However,

for the Buhnerkempe kernel which is particularly local, the grid requires a very fine resolution

something that increases the computational burden significantly. The effect of increasing the

grid resolution can be seen in the lower right panel of Fig 5 where the run time of FSR is

markedly higher than for the other kernels. The grid resolution used for that simulation was

high, but still too coarse to avoid introducing a slight error (upper right panel) and remedying

that with an even finer grid would make the method even less competitive. It should be noted

that the CS and CE algorithms are exact only beyond the discretizing into daily time steps. The

Gillespie algorithm [22] can be used to model the continuous processes exactly, but to the

knowledge of these authors, no optimization for this algorithm exists for the system considered

here, and Brand et al. [10] showed for simulation of FMD outbreaks in the USA that the Gilles-

pie algorithm is computationally very expensive. Beyond computation time, the discretization

can be justified by the fact many process are cyclical at a finer resolution than the time scale of

discretization (i.e. daily discretization and diurnal cycles), or that data is typically available at

discrete time scales [10].

To explore the efficiency of the set of methods described, we have applied them to out-

breaks of FMD. This is a valuable approach, because we demonstrate the applicability of the

method for relevant situations. Yet, a potential objection emerges–do the results hold outside

of the context we have explored? It is infeasible to consider all possible applications of the

methodology; stochastic simulations of spatially explicit kernel models are used for a wide

range of diseases and questions (e.g. [6,12–14]). However, the study design along with the

results provide some useful insight. We simulated outbreaks in a variable assortment of spatial

landscapes with varying levels of clustering and farm densities, and found that our optimiza-

tion method was efficient and constantly identified a grid configuration that sped up computa-

tions substantially, ranging from 100 to 500 times faster than the pairwise estimation for

outbreaks of substantial size (10000 infected nodes). Next, we used the same optimization

method to identify the optimal grid configuration for different kernels and found that in this

novel context, the CS method improved computation time by a factor of 600 to 800, depending

on kernel. Here it also holds an edge over the FSR method when considering infections up to

10000 farms and vary in terms of computation time for extreme outbreaks (Fig 6).

These simulations suggest that the CS method is a good candidate to consider for stochastic

simulations of disease outbreak. Based on Fig 6, the FSR algorithm may be faster for some

applications, particularly when the simulations are expected to result in very large outbreaks.

However, we are encouraged that in the instances where the CS algorithm performs slower

than FSR, the difference is not vast (approximately a factor of two; Fig 6). Also, the FSR

method was found to have some issues with very local kernels such as the one used in this

work, so for such cases the CS or even the CE method would be more suitable.
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We argue that beyond the fast computation time, one strength of the CS algorithm lies in

its simplicity. Because it does not approximate the epidemic model, it requires no tweaking to

avoid loss of precision. As shown in the supplement (S1 Appendix), the algorithm requires lit-

tle additional code compared to the pairwise computation. In addition, the code structure is

easy to combine with other processes. For instance, we have in our own ongoing work found it

straightforward to combine a local transmission process, implemented with the CS algorithm,

with a model for animal movements that leads to transmission over large distances [23] (see

supplement S1 Appendix for example code).

Thus, we conclude that the transmission algorithms considered in this study are suitable for

epidemic modeling of diseases where local area spread, modeled with a spatial kernel, is an

important factor. By using the CS gridding approach, together with the introduced optimal

grid cell size estimation, the computation can be sped up by several orders of magnitude. This

allows for exploration of more scenarios, facilitating the use of disease simulation models for

policy recommendations.

Supporting information

S1 Table. Summary of outbreak sizes for simulations. Summary of the amount of replicates

that reached 10, 100, 1000 and 10000 cumulative infected nodes using the original parameter

values fitted for Cumbria to the 2001 UK FMD outbreak in [15] as well as with susceptibility

scaled up by a factor of 200. Initial simulation with original parameter values were only per-

formed with the conditional subsample algorithm. Simulations with scaled parameters were

performed with all three algorithms (conditional subsample algorithm, CS; conditional entry,

CE; pairwise, PW). The Cumbria parameters were kept for the UK simulations but not for the

other landscapes.

(XLSX)

S2 Table. Summary of landscapes. Number of nodes (n) and spatial clustering measure Rip-

ley’s L for different distances r. A value close to one indicates homogenous spatial distribution

of nodes.

(XLSX)

S1 Appendix. Disease simulation C++ code.

(ZIP)

S2 Appendix. Optimum grid size algorithm C++ code.

(ZIP)

S3 Appendix. Formal proof of the exactness of the CE algorithm.

(PDF)

S4 Appendix. Formal proof showing that the number of expected kernel calls are the same

for the CE algorithm as for the CS algorithm.

(PDF)

S1 Dataset. An instance of the US cattle farm population as generated by FLAPS.

(7Z)

S2 Dataset. Randomly generated farm population with high degree of clustering.

(7Z)

S3 Dataset. Randomly generated farm population with moderate degree of clustering.

(7Z)
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S4 Dataset. Randomly generated farm population with uniform spatial distribution.

(7Z)

S1 Fig. Results from outbreak simulations with the conditional subsample transmission

algorithm. Average run time in seconds for each tested grid cell size up to and including the

given outbreak stages (� indicates estimated optimal grid cell size ŷ�). The 5th and 95th percentiles

are indicated by the ranges (main panels). Each combination of landscape and grid configuration

using the CS algorithm, as well as simulations with the pairwise algorithm for comparison was

simulated with 500 replicates. The landscapes were (panels A-F): random uniform, random mod-

erate clustering, random high clustering, USA, Sweden, UK. The regular grid construction

method was used for the uniform random landscape and the adaptive grid construction method

was used for the other landscapes. The black line indicates a unitless relative expected efficacy of

the different grid sizes as indicated by the grid optimum estimation method.

(TIF)

S2 Fig. Results from outbreak simulations with the conditional entry algorithm and adap-

tive gridding. Average run time in seconds for each tested grid cell size up to and including

the given outbreak stages (� indicates estimated optimal grid cell size ŷ�). The 5th and 95th

percentiles are indicated by the ranges (main panels). Each combination of landscape and grid

configuration using the CE algorithm, as well as simulations with the pairwise algorithm for

comparison was simulated with 500 replicates. The landscapes were (panels A-F): random uni-

form, random moderate clustering, random high clustering, USA, Sweden, UK. The regular

grid construction method was used for the uniform random landscape and the adaptive grid

construction method was used for the other landscapes. The black line indicates a unitless rela-

tive expected efficacy of the different grid sizes as indicated by the grid optimum estimation

method.

(TIF)

S3 Fig. Predicted optimal gridding configurations. The estimated number of average kernel

calls per cell required to simulate one time step of infection spreading from one infectious

farm in each cell to all other cells on a simplified spatially uniform representation of the origi-

nal landscapes. On the x-axis are the grid configurations as the square root of the total number

of cells in the regular grid (κ). Results shown for the two different summary statistics median

and max number of animals on each node used for calculating transmissibility and susceptibil-

ity in the estimation.

(TIF)

S4 Fig. The cumulative number of infected nodes at the indicated outbreak stages for the

different combinations of landscape and grid configurations for the CS algorithm as well

as for the pairwise algorithm for comparison. The CS algorithm consistently gives the same

number of infected nodes as the pairwise algorithm.

(TIF)

S5 Fig. The cumulative number of infected nodes at the indicated outbreak stages for the

different combinations of landscape and grid configurations for the CE algorithm as well

as for the pairwise algorithm for comparison. The CE algorithm consistently gives the same

number of infected nodes as the pairwise algorithm.

(TIF)

S6 Fig. Incidence curves for simulations with the pairwise, conditional subsample and con-

ditional entry algorithms. The x-axis shows time step and the y-axis shows the mean
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cumulative number of infected nodes over all the replicates, including the replicates for where

the epidemic had died out which is why the curve start to decline after some time.

(TIF)

S7 Fig. Results from outbreak simulations with the conditional subsample transmission

algorithm and regular grid construction method. Average run time in seconds for each

tested grid cell size up to and including the given outbreak stages (� indicates estimated opti-

mal grid cell size). The 5th and 95th percentiles are indicated by the ranges (main panels).

Each combination of landscape and grid configuration using the CS algorithm, as well as simu-

lations with the pairwise algorithm for comparison using 500 replicates. Only the landscapes

with heterogeneous node distribution are shown (panels A-E): random moderate clustering,

random high clustering, USA, Sweden and UK. The black line indicates a unitless relative

expected efficacy of the different grid sizes as indicated by the grid optimum estimation

method, note the skew away from the predicted optimum.

(TIF)

S8 Fig. Results from outbreak simulations with the conditional entry algorithm and regu-

lar gridding. Average run time in seconds for each tested grid cell size up to and including the

given outbreak stages (� indicates estimated optimal grid cell size). The 5th and 95th percentile

are indicated by the ranges (main panels). Each combination of landscape and grid configura-

tion using the CE algorithm, as well as simulations with the pairwise algorithm for comparison

was simulated with 500 replicates. Only the landscapes with heterogeneous node distribution

are shown (panels A-E): random moderate clustering, random high clustering, USA, Sweden,

UK. The black line indicates a unitless relative expected efficacy of the different grid sizes as

indicated by the grid optimum estimation method, note the skew away from the predicted

optimum.

(TIF)
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