
RESEARCH ARTICLE

Porcupine: A visual pipeline tool for

neuroimaging analysis

Tim van Mourik1, Lukas Snoek2, Tomas Knapen3,4, David G. Norris1,5

1 Radboud University Nijmegen, Donders Institute for Brain, Cognition and Behaviour, Kapittelweg,

Nijmegen, The Netherlands, 2 University of Amsterdam, Department of Brain & Cognition, Nieuwe

Achtergracht, Amsterdam, The Netherlands, 3 Cognitive Psychology & Institute for Brain & Behavior, Vd

Boechorststraat, Amsterdam, The Netherlands, 4 Spinoza Centre for Neuroimaging, Meibergdreef,

Amsterdam, The Netherlands, 5 Erwin L. Hahn Institute for Magnetic Resonance Imaging, Arendahls Wiese,

Essen, Germany

* t.vanmourik@donders.ru.nl

Abstract

The field of neuroimaging is rapidly adopting a more reproducible approach to data acqui-

sition and analysis. Data structures and formats are being standardised and data analyses

are getting more automated. However, as data analysis becomes more complicated,

researchers often have to write longer analysis scripts, spanning different tools across

multiple programming languages. This makes it more difficult to share or recreate code,

reducing the reproducibility of the analysis. We present a tool, Porcupine, that constructs

one’s analysis visually and automatically produces analysis code. The graphical represen-

tation improves understanding of the performed analysis, while retaining the flexibility of

modifying the produced code manually to custom needs. Not only does Porcupine produce

the analysis code, it also creates a shareable environment for running the code in the form

of a Docker image. Together, this forms a reproducible way of constructing, visualising

and sharing one’s analysis. Currently, Porcupine links to Nipype functionalities, which in

turn accesses most standard neuroimaging analysis tools. Our goal is to release research-

ers from the constraints of specific implementation details, thereby freeing them to think

about novel and creative ways to solve a given problem. Porcupine improves the overview

researchers have of their processing pipelines, and facilitates both the development and

communication of their work. This will reduce the threshold at which less expert users can

generate reusable pipelines. With Porcupine, we bridge the gap between a conceptual

and an implementational level of analysis and make it easier for researchers to create

reproducible and shareable science. We provide a wide range of examples and documen-

tation, as well as installer files for all platforms on our website: https://timvanmourik.github.

io/Porcupine. Porcupine is free, open source, and released under the GNU General Public

License v3.0.

This is a PLOS Computational Biology Software paper.

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006064 May 10, 2018 1 / 10

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPENACCESS

Citation: van Mourik T, Snoek L, Knapen T, Norris

DG (2018) Porcupine: A visual pipeline tool for

neuroimaging analysis. PLoS Comput Biol 14(5):

e1006064. https://doi.org/10.1371/journal.

pcbi.1006064

Editor: Andreas Prlic, UCSD, UNITED STATES

Received: October 23, 2017

Accepted: February 27, 2018

Published: May 10, 2018

Copyright: © 2018 van Mourik et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All software,

documentation, and examples may be found on

https://timvanmourik.github.io/Porcupine.

Funding: Tim van Mourik acknowledges support

from the Royal Netherlands Academy of Arts and

Sciences, from the Academy Professor Prize 2012,

awarded to professor Peter Hagoort. The funders

had no role in study design, data collection and

analysis, decision to publish, or preparation of the

manuscript.

Competing interests: The authors have declared

that no competing interests exist.

https://timvanmourik.github.io/Porcupine
https://timvanmourik.github.io/Porcupine
https://doi.org/10.1371/journal.pcbi.1006064
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1006064&domain=pdf&date_stamp=2018-05-22
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1006064&domain=pdf&date_stamp=2018-05-22
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1006064&domain=pdf&date_stamp=2018-05-22
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1006064&domain=pdf&date_stamp=2018-05-22
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1006064&domain=pdf&date_stamp=2018-05-22
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1006064&domain=pdf&date_stamp=2018-05-22
https://doi.org/10.1371/journal.pcbi.1006064
https://doi.org/10.1371/journal.pcbi.1006064
http://creativecommons.org/licenses/by/4.0/
https://timvanmourik.github.io/Porcupine


Introduction

The field of neuroimaging is rapidly adopting a more reproducible approach to data acquisi-

tion and analysis. Especially in recent years, a strong movement for conducting better docu-

mented and more reproducible science can be observed. Advances have been made in terms of

openly sharing data (e.g. OpenFmri, [1]), standardizing data formats (BIDS format [2]), and

facilitating more automated pipelines [3–5]. These initiatives facilitate increasing global scien-

tific communication and collaboration, that is paramount in the age of big data.

As a result of the increasing complexity of analyses and the wide variety of different tools,

researchers often have to write custom scripts for combining different software packages,

often in different programming languages. As an extra obstacle, many tools have external

dependencies, intricate installation procedures, or different file formats for the same type

of data. Furthermore, the sharing initiatives usually have a stronger focus on sharing data
(Human Connectome Project [6], NeuroVault [7]) instead of code, such that analysis scripts

still have to be recreated based on the method section of a paper. All these factors negatively

affect the reproducibility, documentation, and in the worst case correctness of the analysis [8].

A considerable mastery of coding is required for analysing fMRI data. The conceptual side

of understanding all preprocessing steps is not trivial, but converting this into a working pipe-

line can be an arduous journey. The necessary programming skills are not usually the prime

focus of a brain researcher’s skills or interests, but they are a necessity for completing one’s

analysis. Consequently, scripting a pipeline that covers all high-level and low-level aspects is

daunting and error prone. As a result, there is a considerable risk of ‘hacking’ an analysis pipe-

line together, sacrificing a reproducible approach. So as a researcher, how do you start an anal-

ysis? It is easiest to start with visualising the steps of your analysis pipeline.

In an increasingly complicated analysis environment there is a strong need for tools that

give a better oversight of these complex analyses, while retaining the flexibility of combining

different tools. A notable effort to integrate different tools is Nipype [4], that has a Python

interface to existing tools from all major MRI analysis packages. However, this still requires

non-trivial Python scripting. Furthermore, Nipype is only able to visualise a workflow after it

has been manually scripted [9].

Here we detail our solution to these problems, an open-source software program we call

Porcupine: ‘PORcupine Creates Ur PipelINE. Porcupine allows the creation of neuroimaging

pipelines by means of a graphical user interface (GUI). After graphical pipeline definition, Por-

cupine in turn creates the code that programmatically defines the pipeline. Additionally and

without any additional overhead, we supply a Dockerfile (https://www.docker.com) that auto-

matically builds the run environment for the pipeline. This not only facilitates sharing the

pipeline, but also ensures its reproducibility [10]. We provide an extensive list of examples and

documentation on our website, as well as the possibility to upload one’s custom pipeline to cre-

ate a community driven library of analyses.

By implementing an intermediate visual step in the generation of preprocessing workflows,

Porcupine allows the user to focus on the logical flow of the preprocessing pipeline in a graphi-

cal representation without the need for coding at this conceptual stage of development.

Because the GUI produces functional analysis code, the user can then immediately inspect,

save, and run the generated code. Thus, Porcupine provides a stepping stone that eases the

transition from concept to implementation. Because the entire pipeline and its parameters are

defined in abstracto before it is run, systems such as Nipype allow for elaborate checks and

optimisations of the pipeline’s execution. Furthermore, such systems can straightforwardly

incorporate full logging of all analysis steps, creating a paper trail of the pipeline’s execution.

This combination of a reproducible environment in which a predefined pipeline is run by

Porcupine: A visual pipeline tool for neuroimaging analysis

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006064 May 10, 2018 2 / 10

https://www.docker.com
https://timvanmourik.github.io/Porcupine/examples
https://doi.org/10.1371/journal.pcbi.1006064


means of a system that provides precise bookkeeping paves the way to new standard that will

ensure steady and reproducible progress in the field of cognitive neuroimaging [11].

In our practical experience, the use of Porcupine allows one to very quickly prototype pre-

processing pipelines. Novice users can create a pipeline de novo and quickly focus on the code

for this pipeline, greatly speeding up the learning process and thereby facilitating the use of

reproducible pipelines. We envisage Porcupine to play a role in both the education of novice

neuroimaging students and the rapid prototyping of pipelines by expert users. Here, we first

outline several Porcupine use-case scenarios of increasing complexity, after which we detail

the architecture of Porcupine.

Results

What is Porcupine?

Porcupine is a graphical workflow editor that automatically produces analysis code from a

graphically composed pipeline. By dropping ‘nodes’ (representing analysis steps) into the

workflow editor and by connecting their data inputs and outputs, a pipeline is constructed.

Analysis code is then automatically generated from the graphical representation of the pipe-

line. The code can readily be saved to a script (e.g. a Python, MATLAB, or Docker file) in

order to perform the desired analysis. Additionally, the pipeline can be shared or inspected in

visual form (PDF/SVG), or saved to a Porcupine specific (.pork) file to continue working on

the pipeline at another time.

Apart from the visual representation of the pipeline, we provide more functionality to

orderly structure one’s analysis, as outlined in Fig 1. All functions (the nodes in the graph) that

are included in the pipeline are also listed in a separate panel, listing their input parameters,

output data, as well as a link to the online documentation of the function. We also provide the

option to iterate over any input variable in order to facilitate parallelisation over subjects, ses-

sions, or other variables. All parameters may also be edited in a separate parameter panel of

the user interface. This functions as a central storage for important parameters, for example

the ones that should be reported in a methods section. Porcupine combines the graphical over-

view and the parameters to automatically create the analysis code shown in the code window.

We here focus on code generation that strictly adheres to the Nipype API [4], a Python-

based MRI analysis and pipelining package. Nipype is used for its strong focus on uniformity

in accessing functions, its link to most major MRI analysis tools, and its emphasis on repro-

ducible science. Porcupine’s architecture, however, is in principle agnostic with respect to the

specific implementation of the underlying pipelining software. Any package with a consistent

interface in the field of e.g. neuroimaging, bioengineering, or astronomy could benefit from

using Porcupine’s architecture.

We first show that we can easily generate a standard fMRI analysis pipeline. After visually

dragging and dropping modules, code is automatically created that is usually scripted manu-

ally instead. We then show how we facilitate loading data from an online repository, generate

a readily executable fMRI pipeline, but also generate a shareable and reproducible analysis

environment (using Docker), all with minimal additional effort. This allows for easily scalable

analyses that can be performed locally, but also on computational clusters or with cloud com-

puting, without manual installation of different software packages.

Usage example

We here show a simple example that constructs a pipeline for a single operation. In three steps,

data is loaded, (minimally) processed, and the output is written to disk, as shown in Fig 2. We

here show an example that links to an OpenNeuro fMRI data set, but we could load any online

Porcupine: A visual pipeline tool for neuroimaging analysis

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006064 May 10, 2018 3 / 10

https://doi.org/10.1371/journal.pcbi.1006064


data set that is set up according to the BIDS format [2]. OpenNeuro’s data sets are stored as

Amazon repositories (‘S3 buckets’) and can be loaded by dragging the appropriate module

into the workflow editor and typing the name of the bucket into the node editor. Its output

can subsequently be connected to a Nipype function node, for example FSL’s Brain Extraction

Fig 1. A screenshot of a Porcupine workflow. The editor is divided into four panels, each of them targeted at facilitating a more understandable and reproducible

analysis. The workflow editor (1) provides a visual overview of one’s analysis. The functions are all listed in the node editor (2), where the parameters for all functions

can be orderly stored. This may include links to important parameters that are listed in the parameter editor (3), such that an overview of the main analysis settings can

be easily viewed and modified. Readily executable analysis code is generated in the code window (4).

https://doi.org/10.1371/journal.pcbi.1006064.g001

Fig 2. An example of simple workflow. In three steps, this pipeline loads data, processes it, and writes it to disk. This is achieved by connecting the input and output

fields from subsequent nodes in the pipeline. The constructed workflow is then transformed in readily executable (Nipype) analysis code.

https://doi.org/10.1371/journal.pcbi.1006064.g002

Porcupine: A visual pipeline tool for neuroimaging analysis

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006064 May 10, 2018 4 / 10

https://doi.org/10.1371/journal.pcbi.1006064.g001
https://doi.org/10.1371/journal.pcbi.1006064.g002
https://doi.org/10.1371/journal.pcbi.1006064


Tool. All parameters of the function are listed and can be set in two different ways: either by

dragging a link from a previous node’s output port to an input port in the next node, or by typ-

ing in the parameter in the node editor. Subsequently, output can be written to disk by con-

necting the desired output to a Nipype DataSink node that collects and stores the data. By

pressing the ‘Generate code’ button, the code for this pipeline is automatically generated and

can immediately be saved and executed in a Python shell.

Pipeline sharing

From a simple example that reads and writes the data, a more complicated pipeline is readily

set up. More functionality, i.e. nodes, can be dragged in and connected to quickly build a cus-

tom pipeline. As it is commonplace to repeat a single analysis or function for several subjects,

sessions, or other variables, every field can be flagged as an ‘iterator’ field. This facilitates

looping over variables. Once the pipeline is set up and the code is generated, Nipype offers

functionality to construct a visual pipeline graph from custom python code. In Porcupine’s

proposed use-case, this end point of a standard Nipype pipeline represents the starting point,

as shown in Fig 3. This allows the user to focus on the desired pipeline graph first, and then

progress to the manual editing of the generated code.

Not only does Porcupine provide a way of setting up a preprocessing or analysis pipeline,

we also provide a means for executing these pipelines in a reproducible environment. In addi-

tion to the Python analysis file that is generated, we create a scaffold for a Docker file. Docker

(https://www.docker.com) is an open platform to easily build, run and share applications. The

generated Docker file describes a minimal operating system that is required to run the analysis,

based on the dependencies of the modules used in the workflow editor. With this Docker file,

an image of the full analysis can be built, shared and executed. This provides a simple platform

to reproduce results of one’s analysis, on the same data set, or on another with only a single

change in the data source module. Alternatively, one can use it as a template environment for

a new follow-up analysis. As with all generated code, the Docker code is fully customisable to a

researcher’s need, but our suggested scaffold requires only a single manual edit to be built as a

Docker image (see S1 File. Docker files). The Docker command will execute the pipeline: load

the data from an online repository, process the data, and store only the output data to a local

directory. The Docker image includes both the pipeline code and the run environment, and

Fig 3. An example of a more complicated and realistic fMRI preprocessing pipeline. Once the code is generated, this can in turn be transformed into a Nipype

graph visualisation. Whereas this is usually the end point for a pipeline in Nipype, we here propose to use a visualisation as a starting point of one’s analysis.

https://doi.org/10.1371/journal.pcbi.1006064.g003

Porcupine: A visual pipeline tool for neuroimaging analysis

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006064 May 10, 2018 5 / 10

https://www.docker.com
https://doi.org/10.1371/journal.pcbi.1006064.g003
https://doi.org/10.1371/journal.pcbi.1006064


can be shared alongside a paper via DockerHub. The above examples (and many more) as well

as extensive documentation and tutorials can be found here.

Limitations

Some features in Nipype have not been implemented. Notably, the JoinNode functionality is

not yet accessible from the Porcupine user interface, in which the results from an upstream

iterator are aggregated to a single output. Furthermore, custom extensions of Nipype functions

are not automatically supported, but we do provide a script to add one’s own custom module

to Porcupine that would make this functionality accessible. A GUI for this is still an intended

point of improvement. In general, feature requests are maintained as issues and projects in

the GitHub repository. We encourage people to contribute new ideas or implementations for

functionality in terms of modules, new toolboxes, and, most importantly, custom pipelines

that can be added to the repository. Details on how to contribute can be found on the website.

While Porcupine in principle supports all workflow operations, a specific pipeline may well

require modules that are not provided within Nipype. It is advised that the user either packages

custom code for this into a new module, or manually adds it to the produced code. We further-

more stress that Porcupine is intended to function as a front-end encapsulation of NiPype,

and does not implement the parsing of python files that contain pre-defined nipype pipelines.

It also does not perform type-matching on the input and output of a connection, nor does it

perform syntax checking of the manually edited parameters.

Design and implementation

Porcupine’s graphical user interface was written first with a general visual programming appli-

cation in mind. The initial interface to Nipype was developed at a three-day coding sprint at

BrainHack 2017, Amsterdam. This kickstarted Porcupine in its current form. The source code,

as well as the installer files for Windows, Mac, and Linux, are publicly available as a GitHub

repository. Porcupine is free, open source, and released under the GNU General Public

License v3.0. It has static digital object identifier (DOI) doi.org/10.5281/zenodo.1146653.

Visual programming is a generic way of programming to create a data flow or to perform

an ordered task with a modular structure [12]. Customarily, it allows the user to construct a

Directed Acyclic Graph (DAG) [13] of conceptualised operations that are subsequently inter-

preted or compiled as an application [14]. This format is particularly useful for workflows that

fit modular structures, such as most neuroimaging data analyses [15].

Architecture

Not only do we intend researchers to make their analyses (re-)usable and robust, our software

also adheres to all 20 simple rules that were laid out to this end [16, 17]. The updates as well as

the releases of the source code are realised by means of a GitHub repository. Installer files are

provided for all platforms and do not require administrator privilege. Users are aided in get-

ting started quickly by extensive documentation and an example gallery.

Easy cross-platform installation or compilation was achieved by programming Porcupine

as a stand-alone application in Qt Creator (https://www.qt.io) for C++. Internal file formats

were standardised to JSON dictionaries, a format native to Python, Qt, and web applications.

This provides a simple means to add new modules to Porcupine, without the need to write

additional code. Every dictionary specifies a software package (e.g. ‘Nipype’, ‘Docker’, etc.)

that is interpreted by Porcupine and creates code that is native to the package. A package-spe-

cific interpreter needs to be written just once, after which new modules that are included in

the dictionary will be automatically available in Porcupine.

Porcupine: A visual pipeline tool for neuroimaging analysis

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006064 May 10, 2018 6 / 10

https://timvanmourik.github.io/Porcupine
https://github.com/TimVanMourik/Porcupine/projects
https://github.com/TimVanMourik/Porcupine
https://github.com/TimVanMourik/Porcupine
https://doi.org/10.5281/zenodo.1146653
https://www.qt.io
https://doi.org/10.1371/journal.pcbi.1006064


Each JSON dictionary describes a list of functions (internally referred to as ‘nodes’). Each

function has a name and (optionally) a category, a web url to its documentation, and a block of

code. A code block specifies the software package for which the node is meant, the associated

piece of code for that function and optionally an additional comment. Furthermore, a node

contains any number of data/parameter ports, each of which can be input, output, or both.

Optionally, additional flags can be set for ports to be visible in the editor, whether its value is

editable, or whether the variable needs to be iterated over. Thus, JSON files for custom nodes

can easily be created and added as a dictionary to the graphical interface. We also provide a

Python script that converts a custom Python function(s) to a Nipype node dictionary.

Extending Porcupine with new toolboxes

Currently, Porcupine features Nipype and Docker support, but this could easily be extended

to other software packages. This requires no major changes to the Porcupine source code,

merely the inclusion of a single C++ class that describes the relationship between the nodes,

links, and the output code. Specifically, the ‘CodeGenerator’ class must be inherited and has

access to the full workflow: the list of nodes, their parameters, and their connections. As

long as all functions within an analysis toolbox can be accessed with a consistent interface,

they can be represented as modules within Porcupine. Apart from Nipype, support for a

laminar specific fMRI analysis toolbox in MATLAB is provided. The developers of the Fastr

framework programmed initial support for their code base [18]. Unfortunately, only few

neuroimaging packages abide by this uniformity of their functions and hence many cannot

be included into Porcupine.

Relation to existing pipeline managers

Porcupine aims to provide an extendable, transparent and flexible platform to build prepro-

cessing and analysis pipelines. Other software packages have made similar attempts at provid-

ing visual aids to build or run pipelines. Within neuroimaging, the most notable ones are the

JIST pipeline [19], extended with CBS Tools [20] and the LONI pipeline [15]. Porcupine dis-

tinguishes itself from these by not creating a run environment, but instead creating the analysis

code for the researcher. This retains the possibility of immediately running the code through a

Python interpreter, but also creates more flexibility, as researchers can modify and adjust the

script according to their needs. Lastly, our open-source framework is set up to be extendable

with new modules within existing frameworks, as well as with completely new frameworks.

This provides a future-proof set-up for current and future analysis tools in neuroimaging and

perhaps other disciplines.

Availability and future directions

We have presented a new tool to visually construct an analysis pipeline. Subsequently, Porcu-

pine automatically generates the analysis code, and provides a way of running and sharing

such analyses. We see this as an important tool and a stepping stone on the path to doing more

reproducible and open science. Additionally, this gives researchers a better oversight of their

analysis pipeline, allowing for greater ease of developing, understanding, and communicating

complex analyses.

Porcupine provides two independent functionalities that dovetail to allow users to more

easily take part in reproducible neuroimaging research. They are (1) a graphical user interface

for the visual design of analysis pipelines and (2) a framework for the automated creation of

docker images to execute and share the designed analysis.

Porcupine: A visual pipeline tool for neuroimaging analysis

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006064 May 10, 2018 7 / 10

https://doi.org/10.1371/journal.pcbi.1006064


We anticipate that the ability to design processing pipelines visually instead of programmat-

ically will cut the novice user’s learning phase by a considerable amount of time by facilitating

understanding and development. The ease of use of a Graphical User Interface (GUI) imple-

mentation extends and complements Nipype’s flexibility. Thus, it invites researchers to mix

and match different tools, and adhere less stringently to the exclusive use of the tools of any

given toolbox ecosystem. This flexibility enhances the possible sophistication of processing

pipelines, and could for instance be helpful in cross-modal research or multi-site research.

Additionally, it may nudge method developers to write new tools in a way that easily integrates

with the Nipype and Porcupine structure.

The emphasis that Porcupine puts on visual development of analyses makes it easier to

communicate a methods section visually rather than in writing. We foresee that researchers

may prefer explicity sharing the created .pork files and the Nipype pipelines that are created

from them, instead of solely relying on written descriptions of their methods. Yet another use

case for Porcupine is the easy definition of proposed processing workflows for preregistered

studies.

Importantly, Porcupine attempts to reduce the steepness of the learning curve that is inher-

ent to the use of complex analysis, by providing a more structured and systematic approach to

pipeline creation. It separates the skill of building a conceptual analysis pipeline from the skill

of coding this in the appropriate programming language. This places Porcupine in a position

to aid in the education of novice neuroimaging researchers, as it allows them to focus on the

logic of their processing instead of the creation of the code for the processing—greatly improv-

ing and accelerating their understanding of the different steps involved in the preprocessing of

neuroimaging data. At the same time, it allows more experienced researchers to spend more

time on the conceptual side than on implementational side.

Having allowed for the visual design of a pipeline for the preprocessing or analysis of a neu-

roimaging dataset, the reproducible execution of this pipeline is another step that Porcupine

facilitates. By flexibly creating a Docker image tailored to the different preprocessing steps

defined visually in the GUI, Porcupine allows the user to share not only the definition of the

pipeline but also its execution environment. This step removes the overhead of having to man-

ually install the desired operating system with the matching distribution of MRI analysis soft-

ware. This final step greatly facilitates the reproducibility of reported results, and is part of a

general evolution of the field towards easily shareable and repeatable analyses.

The generated Docker image can be made High Performance Computing aware by means

of dedicated tools such as docker2singularity. Alternatively, with only trivial additions to the

Dockerfile, it can be transformed into a BIDS app [21]. A detailed explanation for doing this

can be found on our website. An automatic and direct way of creating this has not yet been

implemented. Additionally, integrating support for standardised workflow file formats, such

as the Common Workflow Language [22] could further add to Porcupine’s aim of reproduc-

ibility. Another point of improvement is a functionality to embed pipelines within pipelines.

Currently, a complicated pipeline does full justice to the term ‘spaghetti code’, and the number

of nodes and links may easily compromise the visual aid in understanding; the very purpose

for which Porcupine was created. This may easily be solved by compartmentalising pipelines

into logical units by providing an embedded structure.

We intend Porcupine to be a strong aid for doing better, more reproducible and shareable

science. By bridging the gap between a conceptual and implementational level of the analysis,

we give scientists a better oversight of their pipeline and aid them in developing and communi-

cating their work. We provide extensive and intuitive documentation and a wide range of

examples to give users a frictionless start to use Porcupine. We look forward to adding more

functionality and supporting more toolboxes in the near future.

Porcupine: A visual pipeline tool for neuroimaging analysis

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006064 May 10, 2018 8 / 10

https://github.com/singularityware/docker2singularity
https://timvanmourik.github.io/Porcupine/documentation/advanced/make-a-bids-app
https://doi.org/10.1371/journal.pcbi.1006064


Supporting information

S1 File. Docker files.

(PDF)

Acknowledgments

We would like to thank the organisation of BrainHack Global and BrainHack Amsterdam,

specifically Pierre-Louis Bazin, for organising the platform that kickstarted Porcupine in its

current form.

Author Contributions

Conceptualization: Tim van Mourik.

Investigation: Tim van Mourik.

Methodology: Tim van Mourik, Tomas Knapen, David G. Norris.

Project administration: Tim van Mourik.

Resources: Tim van Mourik, Lukas Snoek.

Software: Tim van Mourik, Lukas Snoek.

Supervision: David G. Norris.

Validation: Lukas Snoek.

Visualization: Tim van Mourik.

Writing – original draft: Tim van Mourik, Lukas Snoek, Tomas Knapen.

Writing – review & editing: Tim van Mourik, Lukas Snoek, David G. Norris.

References

1. Poldrack R, Barch D, Mitchell J, Wager T, Wagner A, Devlin J, et al. Toward open sharing of task-based

fMRI data: the OpenfMRI project. Frontiers in Neuroinformatics. 2013; 7:12. https://doi.org/10.3389/

fninf.2013.00012 PMID: 23847528

2. Gorgolewski KJ, Auer T, Calhoun VD, Craddock RC, Das S, Duff EP, et al. The brain imaging data

structure, a format for organizing and describing outputs of neuroimaging experiments. 2016; 3:160044.

3. Fischl B, van der Kouwe A, Destrieux C, Halgren E, Segonne F, Salat DH, et al. Automatically parcellat-

ing the human cerebral cortex. Cereb Cortex. 2004; 14(1):11–22. https://doi.org/10.1093/cercor/

bhg087 PMID: 14654453

4. Gorgolewski K, Burns C, Madison C, Clark D, Halchenko Y, Waskom M, et al. Nipype: A Flexible, Light-

weight and Extensible Neuroimaging Data Processing Framework in Python. Frontiers in Neuroinfor-

matics. 2011; 5:13. https://doi.org/10.3389/fninf.2011.00013 PMID: 21897815

5. Jenkinson M, Beckmann CF, Behrens TE, Woolrich MW, Smith SM. Fsl. Neuroimage. 2012; 62

(2):782–790. https://doi.org/10.1016/j.neuroimage.2011.09.015 PMID: 21979382

6. Elam JS, Van Essen D. In: Jaeger D, Jung R, editors. Human Connectome Project. New York, NY:

Springer New York; 2015. p. 1408–1411.

7. Gorgolewski KJ, Varoquaux G, Rivera G, Schwarz Y, Ghosh SS, Maumet C, et al. NeuroVault.org: a

web-based repository for collecting and sharing unthresholded statistical maps of the human brain.

Frontiers in Neuroinformatics. 2015; 9:8. https://doi.org/10.3389/fninf.2015.00008 PMID: 25914639

8. Brian A, Nosek OSC. Estimating the reproducibility of psychological science. Science. 2015; 349

(6251). https://doi.org/10.1126/science.aac4716

9. Ellson J, Gansner E, Koutsofios L, North SC, Woodhull G. In: Mutzel P, Jünger M, Leipert S, editors.

Graphviz— Open Source Graph Drawing Tools. Berlin, Heidelberg: Springer Berlin Heidelberg; 2002.

p. 483–484.

Porcupine: A visual pipeline tool for neuroimaging analysis

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006064 May 10, 2018 9 / 10

http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1006064.s001
https://doi.org/10.3389/fninf.2013.00012
https://doi.org/10.3389/fninf.2013.00012
http://www.ncbi.nlm.nih.gov/pubmed/23847528
https://doi.org/10.1093/cercor/bhg087
https://doi.org/10.1093/cercor/bhg087
http://www.ncbi.nlm.nih.gov/pubmed/14654453
https://doi.org/10.3389/fninf.2011.00013
http://www.ncbi.nlm.nih.gov/pubmed/21897815
https://doi.org/10.1016/j.neuroimage.2011.09.015
http://www.ncbi.nlm.nih.gov/pubmed/21979382
https://doi.org/10.3389/fninf.2015.00008
http://www.ncbi.nlm.nih.gov/pubmed/25914639
https://doi.org/10.1126/science.aac4716
https://doi.org/10.1371/journal.pcbi.1006064


10. Boettiger C. An introduction to Docker for reproducible research. ACM SIGOPS Operating Systems

Review. 2015; 49(1):71–79. https://doi.org/10.1145/2723872.2723882

11. Gorgolewski KJ, Poldrack RA. A Practical Guide for Improving Transparency and Reproducibility in

Neuroimaging Research. PLoS Biology. 2016; 14(7):e1002506. https://doi.org/10.1371/journal.pbio.

1002506 PMID: 27389358

12. Myers BA. Visual Programming, Programming by Example, and Program Visualization: A Taxonomy.

SIGCHI Bull. 1986; 17(4):59–66. https://doi.org/10.1145/22339.22349

13. Thulasiraman K, Swamy M. 5.7 Acyclic Directed Graphs. Graphs: Theory and Algorithms. 1992; p. 118.

14. Myers BA. Taxonomies of visual programming and program visualization. Journal of Visual Languages

& Computing. 1990; 1(1):97–123. http://dx.doi.org/10.1016/S1045-926X(05)80036-9.

15. Rex DE, Ma JQ, Toga AW. The LONI Pipeline Processing Environment. NeuroImage. 2003; 19

(3):1033–1048. http://dx.doi.org/10.1016/S1053-8119(03)00185-X.

16. List M, Ebert P, Albrecht F. Ten Simple Rules for Developing Usable Software in Computational Biol-

ogy. PLOS Computational Biology. 2017; 13(1):1–5. https://doi.org/10.1371/journal.pcbi.1005265

17. Taschuk M, Wilson G. Ten simple rules for making research software more robust. PLOS Computa-

tional Biology. 2017; 13(4):1–10. https://doi.org/10.1371/journal.pcbi.1005412

18. Achterberg HC, Koek M, Niessen WJ. Fastr: A Workflow Engine for Advanced Data Flows in Medical

Image Analysis. Frontiers in ICT. 2016; 3:15. https://doi.org/10.3389/fict.2016.00015

19. Lucas BC, Bogovic JA, Carass A, Bazin PL, Prince JL, Pham DL, et al. The Java Image Science Toolkit

(JIST) for Rapid Prototyping and Publishing of Neuroimaging Software. Neuroinformatics. 2010; 8(1):5–

17. https://doi.org/10.1007/s12021-009-9061-2 PMID: 20077162

20. Bazin PL, Weiss M, Dinse J, Schäfer A, Trampel R, Turner R. A computational framework for ultra-high

resolution cortical segmentation at 7Tesla. Neuroimage. 2014; 93:201–209. https://doi.org/10.1016/j.

neuroimage.2013.03.077 PMID: 23623972

21. Gorgolewski KJ, Alfaro-Almagro F, Auer T, Bellec P, Capotă M, Chakravarty MM, et al. BIDS apps:

Improving ease of use, accessibility, and reproducibility of neuroimaging data analysis methods. PLOS

Computational Biology. 2017; 13(3):1–16. https://doi.org/10.1371/journal.pcbi.1005209

22. Amstutz P, Crusoe MR, TijanićN, Chapman B, Chilton J, Heuer M, et al. Common Workflow Language,

v1. 0. figshare. 2016;.

Porcupine: A visual pipeline tool for neuroimaging analysis

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006064 May 10, 2018 10 / 10

https://doi.org/10.1145/2723872.2723882
https://doi.org/10.1371/journal.pbio.1002506
https://doi.org/10.1371/journal.pbio.1002506
http://www.ncbi.nlm.nih.gov/pubmed/27389358
https://doi.org/10.1145/22339.22349
http://dx.doi.org/10.1016/S1045-926X(05)80036-9
http://dx.doi.org/10.1016/S1053-8119(03)00185-X
https://doi.org/10.1371/journal.pcbi.1005265
https://doi.org/10.1371/journal.pcbi.1005412
https://doi.org/10.3389/fict.2016.00015
https://doi.org/10.1007/s12021-009-9061-2
http://www.ncbi.nlm.nih.gov/pubmed/20077162
https://doi.org/10.1016/j.neuroimage.2013.03.077
https://doi.org/10.1016/j.neuroimage.2013.03.077
http://www.ncbi.nlm.nih.gov/pubmed/23623972
https://doi.org/10.1371/journal.pcbi.1005209
https://doi.org/10.1371/journal.pcbi.1006064

