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Abstract

Understanding the control of epigenetic regulation is key to explain and modify the aging

process. Because histone-modifying enzymes are sensitive to shifts in availability of cofac-

tors (e.g. metabolites), cellular epigenetic states may be tied to changing conditions associ-

ated with cofactor variability. The aim of this study is to analyse the relationships between

cofactor fluctuations, epigenetic landscapes, and cell state transitions. Using Approximate

Bayesian Computation, we generate an ensemble of epigenetic regulation (ER) systems

whose heterogeneity reflects variability in cofactor pools used by histone modifiers. The het-

erogeneity of epigenetic metabolites, which operates as regulator of the kinetic parameters

promoting/preventing histone modifications, stochastically drives phenotypic variability. The

ensemble of ER configurations reveals the occurrence of distinct epi-states within the

ensemble. Whereas resilient states maintain large epigenetic barriers refractory to repro-

gramming cellular identity, plastic states lower these barriers, and increase the sensitivity to

reprogramming. Moreover, fine-tuning of cofactor levels redirects plastic epigenetic states

to re-enter epigenetic resilience, and vice versa. Our ensemble model agrees with a model

of metabolism-responsive loss of epigenetic resilience as a cellular aging mechanism. Our

findings support the notion that cellular aging, and its reversal, might result from stochastic

translation of metabolic inputs into resilient/plastic cell states via ER systems.

Author summary

Cell reprogramming, a process that allows differentiated cells to re-acquire stem-like

properties, is increasingly considered a critical phenomenon in tissue regeneration, aging

and cancer. In light of the importance of metabolism in controlling cell fate, we designed

a computational model capable of predicting the likelihood of cell reprogramming in

response to changes in aging-related metabolites. Our predictive mathematical model

improves our understanding of how pathological processes that involve changes in cell
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plasticity, such as cancer, might be accelerated or attenuated by means of metabolic

reprogramming.

Introduction

Aging is associated with profound changes in the epigenome involving large disturbances of

the epigenetic landscape and genome architecture [1, 2]. Studies in model organisms have not

only revealed the complex changes occurring in chromatin structure and functioning during

aging, but also the remarkable plasticity of age-associated epigenetic marks [3–5]. Thus,

whereas epigenetic alterations in DNA methylation, post-translational modification (PTM) of

histones and chromatin remodelling are considered highly conserved hallmarks of aging [4,

6], the ability of cellular reprogramming-driven epigenetic remodelling to ameliorate age-asso-

ciated phenotypes has been described recently. This finding unequivocally supports the causa-

tive role of epigenetic dysregulation as a driver of aging [7]. The reversible nature of epigenetic

regulation of aging is receiving increasing attention as it might offer a revolutionary strategy to

simultaneously delay or reverse a spectrum of diseases, including cancer, clustered in older

individuals [8, 9]. A mechanistic understanding of the dependence and inter-relationship

between aging and the functional status of specific epigenetic modifiers, for example histone

demethylases (HDMs) and histone deacetylases (HDACs), is largely lacking.

There is an increasing awareness of the relationship between epigenetic modifiers and

metabolism. Common metabolites of intermediary metabolism, such as acetyl-CoA, NAD+,

α-ketoglutarate, succinate, FAD, ATP or S-adenosylmethionine, drive epigenetic processes by

directly regulating epigenetic modifiers. The usage of these intermediates as substrates and

regulators of chromatin-modifying enzymes provides a direct link between the metabolic state

of the cell and epigenetics [10–17]. However, it remains intriguing how aging-related changes

in cellular metabolism (e.g., loss of NAD homeostasis [18–20]) might control the layers of epi-

genetic instructions that influence cell fate without involving changes in the DNA sequence.

The capacity of the chromatin structure to affect cellular identity and cellular state transi-

tions can differ as a function of metabolic conditions that change during aging. However, the

possibility that cellular aging might result from the stochastic translation of metabolic signals

into cellular epigenetic states has not been formally evaluated.

In this paper, we explore the causative relationship between cofactor (e.g. metabolite) vari-

ability and chromatin modification state underpinning the aging-associated loss of epigenetic

resilience, which leads to a gain of more plastic cell and tissue features. This fact might predis-

pose aging tissues to cancer [21, 22]. To this end, we generated an ensemble of epigenetic

regulation (ER) systems by means of Approximate Bayesian Computation (ABC) whose het-

erogeneity reflects the inhomogeneous abundance of cofactors used by epigenetic modifiers.

By analysing the robustness of ER systems in response to the regulation of HDM and HDAC

activity, we present a model of ER capable of formulating strategies aimed at modifying the

aging process and the aging-dependency of cancer, based on the control of epigenetic resil-

ience and plasticity.

Recent advances in experimental determination of the mechanisms of ER have triggered an

interest in developing mathematical models capable of reducing their intrinsic complexity to

essential components such as ER of gene expression [17, 23–27] and epigenetic memory [24,

25, 27–32]. For comprehensive reviews, we refer the readers to [25, 27]. In order to put our

model into context, we briefly summarise the current state of the art in ER modelling.
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Models of ER were originally formulated in order to shed light onto the mechanisms of epi-

genetic memory; since DNA during cell cycle is duplicated and, therefore, the epigenetic

marks diluted, early ER models were aimed at explaining how epigenetic-regulatory states

remain stable upon cell division and transmitted to daughter cells. Such models must satisfy

two essential properties, namely, they must be bistable, i.e., each steady state corresponding to

an alternative epigenetic state, and the basin of attraction of such states must allow that large

perturbations of the ER systems undergoing DNA replication should not change the epigenetic

state thus allowing mitotic heritability [29].

Dodd et al. [28] developed the first of such ER models. The authors considered a region of

DNA consisting of N nucleosomes, each assumed to be in either of three states, namely

unmodified (U), methylated (M), and acetylated (A). Because modifying and de-modifying

enzymes carry out nucleosome modifications and removal of marks, a crucial ingredient of the

model by Dodd et al. [28] is that histone-modifying enzymes are recruited by modified nucleo-

somes, thereby providing the necessary positive feed-back for the system to be bistable. How-

ever, recruitment based on next-neighbours interactions is not enough to produce robust

bistability. Long-range correlations are necessary.

The model by Dodd et al. [28] has been modified and extended in several ways [31]. Snep-

pen and Dodd have successfully applied the same ideas [32] to modelling the patterns of epige-

netic regulation in CpG islands [33]. Another interesting feature of the model developed by

Sneppen and Dodd [31] is that medium-length correlations are provided by the size of nucleo-

somes, which allows relaxing the requirement for recruited demethylation. Angel et al. [30]

have proposed an ER model to explain quantitative epigenetic control associated with the phe-

nomenon of vernalisation, i.e. the perception and epigenetic memory of a period of cold tem-

peratures to initiate flowering later. This model is capable of reproducing both the patterns of

flowering locus C (FLC) and the quantitative dependence with respect to the duration of the

exposition to low temperatures.

Besides the issue of maintaining stable epigenetic memory, recent efforts have been dedi-

cated to the study of the regulation of epigenetic modifications by transcription factors [23,

26]. Based on the experimental observation that transcription factors (TFs) can recruit his-

tone-modifying enzymes, Sneppen et al. [23] proposed a model where transcription factors are

coupled to ER. A similar approach, although with rather significant differences, has been

recently proposed by Berry et al. [26]. An essential feature of this model is the proposed feed-

back between transcription and epigenetic chromatin modification: activation of transcription

depends on the balance between positive and negative modifications, and, in turn, each pas-

sage of RNA polymerase II, which is modelled as a discrete event, causes demethylation (see

[26] for details). An important feature that distinguishes this model from its predecessors is

the assumption of next-neighbour recruitment as exclusively opposed to long-distance

recruitment.

Bintu et al. [24] have recently proposed a more phenomenological ER model capable of

explaining experimental data obtained by using a reporter gene that expresses a fluorescent

protein with induced recruitment of a number of epigenetic-modifying enzymes. The model

by Bintu et al. [24] considers active, reversible silent, and irreversible silent states and is able to

predict the rates of transition between states.

Materials and methods

In this Section, we provide an account of our stochastic model of epigenetic regulation of gene

expression which extends our previous work [17]. Our model belongs to a family of models

which consider that single unmodified (U) loci can be modified so as to acquire positive (A) or
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negative (M) marks. A positive feedback mechanism is introduced whereby M marks help to

both add more M marks and remove A marks from neighbouring loci. The positive marks are

assumed to be under the effects of a similar positive reinforcement mechanism [27, 28].

Stochastic model of epigenetic regulation

The stochastic model of epigenetic regulation is formulated in terms of the associated Chemi-

cal Master Equation (CME), which, in general, is given by:

@PðX; tÞ
@t

¼
X

i

ðWiðX � riÞPðX � ri; tÞ � WiðXÞPðX; tÞÞ ð1Þ

where X = (X1, . . ., Xn) is the vector containing the number of molecules of each molecular

species at time t, Wi(X) is the transition rate corresponding to reaction channel i and ri is a

vector whose entries denote the change in the number of molecules of each molecular species

when reaction channel i fires up, i.e. P(X(t + Δt) = X(t) + ri|X(t)) = Wi(X)Δt. Our model (see

Table 1) is based on the stochastic models by Dodd et al. [28] and Menéndez et al. [34].

Dodd et al. [28] consider that direct transitions between M and A are very unlikely. Instead,

they assume that transitions occur in a linear sequence given by MÐ UÐ A. They further

put forward the hypothesis that such nucleosome modifications are of two types, namely,

Table 1. Random processes and their transition rates. Reaction numbers correspond to the enumeration in Section

Stochastic model of epigenetic regulation. X1, X2, X3, X4, X5, X6, and X7 are the numbers of unmodified nucleosomes,

methylated nucleosomes, acetylated nucleosomes, HDM molecules, methylated nucleosome-HDM complexes, HDAC

enzyme molecules, and acetylated nucleosome-HDAC enzyme complexes, respectively.

Transition rate r Event

W1(x) = k1X2X4 r1 = (0, −1, 0, −1, +1, 0, 0) Formation of M-nucleosome-HDM enzyme complex

(unrecruited); Reaction 1

W2(x) = k2X5 r2 = (0, +1, 0, +1, −1, 0, 0) M-nucleosome-HDM enzyme complex splits (unrecruited);

Reaction 1

W3(x) = k3X5 r3 = (+1, 0, 0, +1, −1, 0, 0) Demethylation and HDM enzyme release (unrecruited); Reaction

1

W4(x) = k4X2X3X4 r4 = (0, −1, 0, −1, +1, 0, 0) Formation of M-nucleosome-HDM enzyme complex (recruited);

Reaction 1

W5(x) = k5X3X5 r5 = (0, +1, 0, +1, −1, 0, 0) M-nucleosome-HDM enzyme complex splits (recruited);

Reaction 1

W6(x) = k6X3X5 r6 = (+1, 0, 0, +1, −1, 0, 0) Demethylation and HDM enzyme release (recruited); Reaction 1

W7(x) = k7X1 r7 = (−1, +1, 0, 0, 0, 0, 0) Methylation (unrecruited); Reaction 2

W8(x) = k8X1X2 r8 = (−1, +1, 0, 0, 0, 0, 0) Methylation (recruited); Reaction 2

W9(x) = k9X3X6 r9 = (0, 0, −1, 0, 0, −1, +1) Formation of A-nucleosome-HDAC enzyme complex

(unrecruited); Reaction 3

W10(x) = k10X7 r10 = (0, 0, +1, 0, 0, +1, −1) A-nucleosome-HDAC enzyme complex splits (unrecruited);

Reaction 3

W11(x) = k11X7 r11 = (+1, 0, 0, 0, 0, +1, −1) Deacetylation and HDAC enzyme release (unrecruited); Reaction

3

W12(x) =

k12X3X2X6

r12 = (0, 0, −1, 0, 0, −1, +1) Formation of A-nucleosome-HDAC enzyme complex (recruited);

Reaction 3

W13(x) = k13X7X2 r13 = (0, 0, +1, 0, 0, +1, −1) A-nucleosome-HDAC enzyme complex splits (recruited);

Reaction 3

W14(x) = k14X7X2 r14 = (+1, 0, 0, 0, 0, +1, −1) Deacetylation and HDAC enzyme release (recruited); Reaction 3

W15(x) = k15X1 r15 = (−1, 0, +1, 0, 0, 0, 0) Acetylation (unrecruited); Reaction 4

W16(x) = k16X1X3 r16 = (−1, 0, +1, 0, 0, 0, 0) Acetylation (recruited); Reaction 4

https://doi.org/10.1371/journal.pcbi.1006052.t001
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recruited and unrecruited. Mathematically, recruited modifications are represented by non-

linear dependence on the number of M-nucleosomes and A-nucleosomes of the correspond-

ing transition rates (see Table 1).

Specifically, the reactions involved in our model are:

1. HDM-mediated demethylation: M + HDM⇆ CM! U + HDM

2. Methylation: U!M

3. HDAC-mediated deacetylation: A + HDAC⇆ CA! U + HDAC

4. Acetylation: U! A

All these reactions can be both recruited or unrecruited. The associated reactions rates are

reported in Table 1.

We consider the scenario where both hyper-(hypo-)abundance of A (M) marks allows for

genes to be expressed, insofar the associated transcription factors are present [10]. On the con-

trary, we associate hypo-(hyper-)abundance of A (M) marks with silent states where genes are

not expressed even in the presence of the appropriate transcription factors. We here focus on

the conditions for bistability to arise and the robustness of the associated open and closed states

particularly in connection with the abundance or activity of HDMs and HDACs. Our aim is to

analyse the effects of varying the concentration of these enzymes as well as possible synergies

between them.

In more detail, we focus our analysis on plastic behaviour of the epigenetic regulatory states

when the activity of histone-modifying enzymes (HMEs) is down-regulated against the back-

ground of heterogeneity due to variability in the pool of cofactors for chromatin-modifying

enzymes. We proceed by first defining a base-line scenario (which we categorise as normal
cell) in which the associated epigenetic regulatory system is such that, for average values of

HDM and HDAC activities, the differentiation-promoting gene ER is open and the pluripo-

tency-promoting gene ER is closed. We then proceed to generate an ensemble of ER systems

that satisfy the requirements imposed by this base-line scenario; the necessary variability to

generate this ensemble is provided by heterogeneity in abundance of epigenetic cofactors.

Analysis of this ensemble reveals that the requirements of the base line scenario restrict the val-

ues of a few parameters only, leaving ample flexibility to fix the rest of them. This behaviour is

typical of the so-called sloppy models [35], where available data constrains a limited number of

parameters (or parameter combinations), the system being robust to the choice of a large num-

ber of model parameters. In our case, this feature is absolutely essential since, nested within

this heterogeneous ensemble of ER systems, there exists a sub-ensemble of plastic ER systems.

Mean-field limit and quasi-steady state approximation

In order to gain some insight into the behaviour of the stochastic ER model, we analyse its

mean-field limit regarding time scale separation and the quasi-steady state approximation. For

a full account of the technicalities we refer the reader to our previous work [36, 37].

The mean-field equations, which describe the time evolution of the ensemble average of the

variables Xi, associated to the stochastic system with rates given in Table 1 are:

dQi

dt
¼
X16

j¼1

rj;iWjðQÞ ð2Þ

where Q is a vector whose entries, Qi, are Qi� hXii. In order to proceed further, we assume

that the variables describing the system are divided into two groups according to their
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characteristic scales. More specifically, we consider the situation where the subset of chemical

species Xi, with i = 1, 2, 3, scale as Xi = Sxi, where xi = O(1), whilst the remaining species are

such that Xi, with i = 4, 5, 6, 7, scale as Xi = Exi, where xi = O(1). Key to our approach is the fur-

ther assumption that S and E must be such that � ¼ E
S � 1. The averaged variables, Qi, are sim-

ilarly divided into two groups: slow variables, i.e. Qi = Sqi (i = 1, 2, 3), and fast variables, i.e.

Qi = Eqi (i = 4, 5, 6, 7).

Under this rescaling, we define the following scale transformation for the transition rates in

Table 1: Wj(Q) = k4S2Eωj(q). We further rescale the time variable so that a dimensionless vari-

able, τ, is defined as τ = k4SEt. It is now straightforward to verify that, upon rescaling, the

mean-field equations become:

dqi
dt
¼
X16

j¼1

rj;iojðqÞ; i ¼ 1; 2; 3; ð3Þ

�
dqi
dt
¼
X16

j¼1

rj;iojðqÞ; i ¼ 4; 5; 6; 7: ð4Þ

with � = E/S.

If � = E/S� 1 holds, Eqs (3) and (4) naturally display multiple scales structure, which we

will exploit to simplify our analysis by means of a quasi-steady state approximation (QSSA)

[38], which is given by:

dq1

dt
¼ eHDM

ðk1 þ q3Þðk3 þ k6q3Þq2

ðk2 þ k3Þ þ ðk1 þ q3Þq2 þ ðk5 þ k6Þq3

þ eHDAC
ðk9 þ k12q2Þðk11 þ k14q2Þq3

ðk10 þ k11Þ þ ðk9 þ k12q2Þq3 þ ðk13 þ k14Þq2

� ðk8q2 þ k7 þ k16q3 þ k15Þq1

ð5Þ

dq2

dt
¼ � eHDM

ðk1 þ q3Þðk3 þ k6q3Þq2

ðk2 þ k3Þ þ ðk1 þ q3Þq2 þ ðk5 þ k6Þq3

þ ðk8q2 þ k7Þq1 ð6Þ

dq3

dt
¼ � eHDAC

ðk9 þ k12q2Þðk11 þ k14q2Þq3

ðk10 þ k11Þ þ ðk9 þ k12q2Þq3 þ ðk13 þ k14Þq2

þ ðk16q3 þ k15Þq1 ð7Þ

q4 ¼ eHDM
k2 þ k3 þ ðk5 þ k6Þq3

ðk2 þ k3Þ þ ðk1 þ q3Þq2 þ ðk5 þ k6Þq3

ð8Þ

q5 ¼ eHDM
ðk1 þ q3Þq2

ðk2 þ k3Þ þ ðk1 þ q3Þq2 þ ðk5 þ k6Þq3

ð9Þ

q6 ¼ eHDAC
k10 þ k11 þ ðk13 þ k14Þq2

ðk10 þ k11Þ þ ðk9 þ k12q2Þq3 þ ðk13 þ k14Þq2

ð10Þ

q7 ¼ eHDAC
ðk9 þ k12q2Þq3

ðk10 þ k11Þ þ ðk9 þ k12q2Þq3 þ ðk13 þ k14Þq2

ð11Þ

where the re-scaled parameters κj are defined in Table 2, and the conservation laws q4(τ) +

q5(τ) = eHDM and q6(τ) + q7(τ) = eHDAC hold. These conservation laws account for the fact that

the total number of enzyme molecules, i.e. the enzyme molecules in their free form and those
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forming a complex must be constant. Hence, the quantities eHDM and eHDAC are defined as

eHDM ¼
z0
E and eHDAC ¼

v0

E , respectively, where z0 and v0 are the numbers of HDM and HDAC

enzyme molecules, respectively. E is the characteristic scale (i.e. average) of abundance of the

histone-modifying enzymes which, for simplicity, has been taken to have the same value for

both HDMs and HDACs. This result opens interesting avenues to investigate, since both onco-

metabolic transformation and aging appear to reduce the number of both types of enzymes.

Our theory thus allows us in a natural manner to explore the effects of these anomalies on the

stability of epigenetic regulatory states.

Parameter values and ensemble generation

Viability conditions and reference parameter values. In order to define our viability

conditions unambigously, we restrict our discussion to the context of the gene regulatory

network used in our previous study [17], i.e. a network of mutually repressive differentiation

genes and mutually reinforcing pluripotency genes, as shown in Fig 1, with further mutual

inhibition between differentiation and pluripotency genes [39]. Within such context, the

phenotype of a normal somatic, differentiated cell demands that those genes promoting plu-

ripotent behaviour and/or proliferation should be silent, whereas genes promoting differen-

tiation and quiescent behaviour should be active. We therefore consider that our epigenetic

regulatory (ER) systems are composed of two replicas of the stochastic epigenetic regulation

model, Section Stochastic model of epigenetic regulation, with two sets of parameter values,

associated with differentiation-promoting and pluripotency-promoting genes. For the

remainder of this manuscript, an open epigenetic state will refer to a steady state of the sys-

tem where q1’ q2’ 0 and q3’ 1 (highly acetylated). A closed or silent epigenetic state is

associated with q1’ 0, q2’ 1 and q3’ 0 at equilibrium (highly methylated). The biological

rational for these definitions, based on recent experimental evidence, is as follows. PTM of

individual histones, such as acetylation and methylation, plays pivotal roles in the epigenetic

regulation of gene expression through chromatin structure changes. Histone acetylation is

generally associated with a chromatin structure that is open and therefore accessible to tran-

scription factors and, therefore, gene activation [2, 40, 41]. Histone methylation is linked to

either active or repressed genes, depending on the residue that is being modified (e.g.,

H3K4me3 mark is associated with active promoters whereas H3K27me3 and H3K9me2/3

are associated with repressed regulatory regions). Although it is likely that the sum of

numerous PTMs within regulatory regions determine the transcriptional state of a specific

set of genes, for practical reasons epigenetic studies usually involve profiling of one or a cou-

ple of well-established histone modifications. Nevertheless, the silent/closed chromatin state

is associated with low levels of acetylation and high levels of certain methylated sites. Our

computational model acknowledges not only that, during aging, the abundance and activity

of enzymes in charge of adding and removing histone changes, but also the complexity

Table 2. Mean-field limit dimensionless parameters.

Dimensionless parameters

� = E/S, κ1 = k1/(k4S), κ2 = k2/(k4S2), κ3 = k3/(k4S2)

κ5 = k5/(k4S), κ6 = k6/(k4S), κ7 = k7/(k4SE), κ8 = k8/(k4E)

κ9 = k9/(k4S), κ10 = k10/(k4S2), κ11 = k11/(k4S2), κ12 = k12/(k4)

κ13 = k13/(k4S), κ14 = k14/(k4S), κ15 = k15/(k4SE), κ16 = k16/(k4E)

https://doi.org/10.1371/journal.pcbi.1006052.t002
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arising from the fact that chromatin-modifying enzymes for both activating and repressive

histone marks require metabolites.

For each component of the ER system (differentiation and pluripotency epigenetic regula-

tion), we have set the parameters κj so that they satisfy the following general viability condi-

tions, namely, (i) when eHDM = eHDAC = 1, the regulatory system is mono-stable (stable open

chromatin state for the differentiation ER, stable closed chromatin state for the pluripotency

ER), and (ii) for eHDM< 1, eHDAC< 1 both the differentiation and pluripotency ER exhibit a

bistable regime. Reference (default) parameter values satisfying the viability conditions for the

different scenarios described later on are given in the Section II in S1 File.

Ensemble generation. Beyond the behaviour of the ER system for the reference parameter

sets (Tables A & B and Tables C & D in S1 File), we have generated an ensemble of ER systems

to analyse the robustness of the different scenarios we analyse later on in Section Results. Such

ensemble is generated using approximate Bayesian computation (ABC). Details are provided

in full in Section Heterogeneity and robustness of the refractory and plastic scenarios and in

Section III in S1 File. The generated kinetic rate constants are dimensionless, i.e. they are rela-

tive to a global scale associated to k4 (see Table 2). Such feature implies that there is an undeter-

mined time scale in our system associated with the (inverse of the) rate constant k4. This

additional degree of freedom can be used to fit our model of epigenetic (de-)activation to par-

ticular data. Furthermore, the global time scale corresponding to the differentiation ER regula-

tion (i.e. de-silencing dynamics, Fig 2(a)) need not coincide with the global time scale

associated with the pluripotency ER system (i.e. silencing dynamics, Fig 2(b)). Therefore, our

model has the capability of reproducing different systems characterised by different time scales

as previously shown by Bintu et al. [24].

Fig 1. A stochastic model of aging metabolism-regulated cell fate. Schematic representation of the minimal gene

regulatory network (GRN) considered in our stochastic model of epigenetic regulation (ER), consisting of a coupled

pluripotency and differentiation modules. The heterogeneity of epigenetic metabolites (EM), which operates as

regulator of the kinetic parameters promoting/preventing the functioning of histone modifiers, stochastically drives

phenotypic variability (epi-states). Arrows denote activation and blunt-ended lines denote inhibitory interactions.

https://doi.org/10.1371/journal.pcbi.1006052.g001
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Results

We now proceed to explore the behaviour of our system as the number of HDMs and HDACs

vary relative to their average abundance against the background of variability provided by our

ABC-ensemble approach.

Variation in the abundance of HDM and HDAC drives epigenetic switch

We first focus on a bifurcation analysis of the mean-field QSSA Eqs (5)–(11), to investigate the

qualitative behaviour of the ER system as the relative abundances of HDMs and HDACs are

varied. Results are shown in Fig 3(a) and 3(b). In particular, the phase space of both ER sys-

tems obtained by varying the parameters eHDM and eHDAC. Both these diagrams display three

differentiated regions: one in which the only stable steady-state is the one associated with a

silenced gene, another one in which the only stable steady-state is the corresponding to an

open gene, and a third one where the system is bistable. Fig 3(a) is associated with the differen-

tiation-promoting gene, and Fig 3(b) corresponds to the pluripotency-promoting gene

(parameters as per Table A, Table B in S1 File, respectively). In order to clarify the three

regions (open, closed and bistable) displayed in Fig 3(a), a 3D plot is shown in Fig 4(a), where

the vertical axis shows the level of positive marks (q3). This plot shows that the system dysplays

bistable behaviour: depending on the parameter values eHDM and eHDAC, the system may be

both in the open state (high levels of q3, top of the plot), or in the closed state. Fig 4(b) displays

the projection on the xy-plane of the plot shown in Fig 4(a), where we can clearly identify the

three regions described in Fig 3(a).

A more detailed picture of the situation illustrated in Figs 3(a) and 4 is given in Fig 3(c),

which shows the bifurcation diagram where eHDM, i.e. HDM concentration, is taken as the

control parameter, whilst keeping eHDAC constant. In particular we show the steady state value

of q3, i.e. the variable with positive marks, as a function of HDM concentration. This allows to

distinguish the three regions displayed in Fig 3(a). We observe, that a decrease in HDM makes

the corresponding gene inaccessible to the transcription machinery (corresponding to the

Fig 2. Plot (a) shows results regarding the parametric sensitivity analysis of the epigenetic regulatory system for the differentiation-regulating

gene. Plot (a) shows the comparison between the raw simulated data and the ABC ensemble average, limited to the 200 ABC parameter sets that

best fit the data. Plot (b), idem for the pluripotency-regulating gene. Raw simulated data is generated by using the SSA on the model defined by

the rates shown in Table 1 with parameter values given in Tables A and B in S1 File.

https://doi.org/10.1371/journal.pcbi.1006052.g002
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Fig 3. Plots (a) and (b) show the phase diagrams associated with the QSS approximation for the differentiation and

pluripotency promoting genes, respectively. We examine the stability properties of the QSSA as when eHDM and eHDAC are

varied. The system exhibits bistability in the region between the red and blue lines. In the region above the red line the only

stable steady state is the closed state. By contrast, in the region below the blue line only the open steady state is stable.

Parameters values are given in Table A in S1 File for the differentiation-promoting gene and Table B in S1 File for the

pluripotency-promoting gene. Plots (d) and (f) show the combined phase diagram for both the differentiation-promoting

and the pluripotency-promoting models of epigenetic regulation for two clinically relevant cases. In both plots, solid (dashed)

lines correspond to the stability limits of the pluripotency(differentiation)-promoting gene. In plot (d), the region between

the solid red line and the dashed blue line is associated with normal cell behaviour, i.e. open differentiation-promoting gene

and silenced pluripotency-promoting gene, whereas in Plot (f), the region marked as Rep. is associated with epigenetic

regulation configurations which facilitate cell reprogramming. Plot (d) shows a refractory epigenetic scenario and Plot (f)
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closed region, Fig 3(a)). As HDM concentration recovers, the system enters a bistable regime

where both the active and silent states coexist (region marked as bistable in Fig 3(a)). Further

increase of the demethylase concentration drives the system through a saddle-node bifurca-

tion, beyond which the only stable steady-state is the active state (region labelled as open in Fig

3(a)). It is noteworthy that these results are in agreement with the oncometabolic transforma-

tion scenario associated with IDH mutations proposed by Thompson and co-workers [10, 42]

in which downregulation of HDM activity locks differentiation genes into a silenced state

which favours reprogramming of the differentiated state of somatic cells into a pluripotent

phenotype [17]. The association between IDH mutations and cancer progression has been well

established in the case of glioblastomas and acute myelogenous leukaemia [43–46].

In Fig 3(e), we show the bifurcation diagram associated with fixing eHDM and varying

eHDAC. Within the scenario we are considering, i.e. the epigenetic regulation of a differentia-

tion-regulating gene, reduced HDAC concentration recovers the base-line state where the epi-

genetic regulatory machinery is set to the open state. As HDAC concentration recovers, the

system enters a bistable regime in which both the active and silent states coexist. Further

increase in HDAC activity locks the system into the close chromatin state so that the gene is

silenced. This implies that reduced HDAC activity may help to rescue differentiation-regulat-

ing genes from the effects of IDH mutation.

Numerical results which verify the predictions of the bifurcation analysis are presented and

discussed in Section I in S1 File.

depicts a plastic scenario. Parameter values for Plot (d) as per Table A in S1 File (dashed lines) and Table B in S1 File (solid

lines). Parameter values for Plot (f) are given in Table C in S1 File, and Table D in S1 File. Plots (c) and (e) show two

bifurcation diagrams, i.e. two sections of Plot (a), corresponding to the differentiation-promoting gene, of the QSS

approximation. Plot (c) corresponds to fixing eHDAC = 1 and letting HDM activity to vary. Plot (e) examines the bifurcation

properties of the system for eHDM = 0.2 as HDAC concentration changes.

https://doi.org/10.1371/journal.pcbi.1006052.g003

Fig 4. Plot (a) shows a 3D plot, where the x-axis represents eHDM, y-axis represents eHDAC and the z-axis represents the steady state value of

positive marks, q3. Depending on the q3 value, the system can be open (high value of q3), closed (low value of q3) or bistable (region where the

two states coexist, together with an unstable state). Plot (b) represents a projection of the plot shown in (a) on the xy-plane. In this plot, we can

again identify the three regions: closed (left region), bistable (middle region) and open (right region). These regions can be easily understood by

matching the color of each region to the ones shown in Plot (a), which, in turn, can be related to levels of q3.

https://doi.org/10.1371/journal.pcbi.1006052.g004
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Mean-field analysis of the stochastic epigenetic regulation model:

Refractory vs plastic scenario

We now proceed to analyse in more detail the implications of the bifurcation analysis, regard-

ing robustness of the epigenetic regulatory state. In Fig 3(d), which shows the phase diagram

of both modes of epigenetic regulation (differentiation- and pluripotency-promoting) in the

same phase space, the region between the solid red line and the dashed blue line represents the

part of the phase space where the differentiation genes are open and the pluripotency genes are

closed (region marked as Normal Cell in Fig 3(d)). This sub-space is therefore associated with

normal, differentiated somatic cells. As we have previously shown [17], efficient reprogram-

ming requires both closed differentiation genes and open pluripotency genes. Such situation is

not viable under the scenario shown in Fig 3(d) because these two conditions cannot hold

simultaneously, which we therefore dubb as the refractory scenario.

By contrast, Fig 3(f) corresponds to a plastic scenario, where, under appropriate conditions,

cells become poised for reprogramming. The main difference with the refractory scenario is

the intersection between the bistability regions of both the differentiation regulator and the

pluripotency gene. In Fig 3(f), the regime where both bistability regions overlap is the one

between the red solid line and the blue dashed line (region marked as Rep. in Fig 3(f)). Within

this region, since both genes are in the bistable epigenetic regulatory regime, it is possible to

find the differentiation gene in its closed state and the pluripotency gene in the open state.

Such situation makes reprogramming much more likely to occur [17] and therefore we iden-

tify this feature of the phase space with plastic behaviour. By driving the ER system into this

region by means of down-regulation of both HDM and HDAC activity, cells become epigenet-

ically poised to undergo reprogramming. This is consistent with evidence according to which

both oncometabolic transformation (e.g. IDH mutation leading to down-regulation of JHDM

activity [10, 42]) and aging (e.g. down-regulation of SIRT6 [5, 19, 47]) induce loss of HDM

and HDAC activity thus facilitating reprogramming.

Heterogeneity and robustness of the refractory and plastic scenarios

In order to study the robustness of the refractory and plastic scenarios with respect to varia-

tions of the model parameters, kj (see Table 1), we first generate an ensemble of parameter sets

θ = (kj, j = 1, . . ., 16) compatible with simulated data for the epigenetic regulation systems.

Such ensemble is generated using Approximate Bayesian Computation [48] (for further details

see Section III in S1 File). Our approach is as follows. For each mode of epigenetic regulation,

we have generated simulated data (denoted as “raw data” in Fig 2) using the stochastic simula-

tion algorithm on the model defined by the transition rates Table 1. This simulated data will

play the role of the experimental data, x0, to which we wish to fit our model. We consider two

different data sets x0d
and x0p

, corresponding to the differentiation gene (reaction rates from

Table A in S1 File) and the pluripotency gene (reaction rates from Table B in S1 File), respec-

tively. Each data set consists of 10 realisations and 25 time points per realisation. For each time

point, ti, we consider two summary statistics: the mean over realisations, �xðtiÞ, and the associ-

ated standard deviation, σ(ti). We then run the ABC rejection sampler method until we reach

an ensemble of 10000 parameter sets which fit the simulated data, x0, within the prescribed tol-

erances for the mean and standard deviation. Fig 2(a) & 2(b) shows results comparing the ref-

erence (raw simulated) data to a sub-ensemble average (full posterior distributions are shown

in Fig. C in S1 File, differentiation-promoting gene, and Fig. D in S1 File, pluripotency-pro-

moting gene).

The above procedure provides us with an ensemble of parameter sets that are compatible

with our raw data, i.e. such that they fit the data within the prescribed tolerances. The
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heterogeneity associated with the variability within this ensemble has a clear biological origin.

The rates kj are associated with the activity of the different enzymes that carry out the epige-

netic-regulatory modifications (HDMs, HDACs, as well as, histone methylases (HMs) and

histone acetylases (HACs)), so that variation in these parameters can be traced back to hetero-

geneity in the availability of cofactors, many of them of metabolic origin such as NAD+, which

are necessary for these enzymes to perform their function (as illustrated in Fig 1).

We first consider the differentiation ER system. In particular, we focus on the sub-ensemble

of the 400 parameter sets that best fit the raw data. Within such sub-ensemble, we proceed to

evaluate the robustness of the different scenarios we study. We consider that a particular sce-

nario is sensitive to a specific parameter, kj, if its distribution is significantly different from the

uniform distribution [49]. We first analyse the base-line scenario for the epigenetic regulation

of a differentiation-regulated gene, namely, (i) when eHDM = eHDAC = 1, the regulatory system

is mono-stable (only the open chromatin state is stable), and (ii) for eHDM< 1, eHDAC< 1

there exists a region of bistability. Out of all the parameter sets of the considered sub-ensemble,

only 94 fulfill these requirements. We refer to these as the viable set. The remaining 307 are bis-

table at eHDM = eHDAC = 1, and they will be referred to as the non-viable set. In Fig 5, we present

the cumulative frequency distributions (CFDs) of each kj within both sets. The rationale for

looking into this is that the requirements upon system behaviour associated with both sets

should reflect themselves on the corresponding CFDs.

Regarding the viable set, we seek to assess which kinetic constants have distributions which

deviate in a statistically significant manner from the uniform distribution [49]. Such parame-

ters are deemed to be the essential ones for the ER system to exhibit the behaviour associated

with the viable set. We perform this analysis by means of the Kolmogorov-Smirnov (KS) test

[50, 51], which we use to compare our samples with the uniform distribution. According to

such analysis, the kinetic constants k1, k3, k6, k7, k12, k14, and k16 are not uniformly distributed

(p-values are reported in Table E in S1 File).

Nested within the viable set, there are parameter sets which exhibit plastic behaviour, as

characterised by a phase diagram as per Fig 3(f). We thus continue by studying the plastic sub-

set regarding both its frequency within the viable subset and further restrictions imposed on

parameter variability. We first check the number of the plastic parameter sets within the viable

set relative to the pluripotency-gene ER system defined by Table D in S1 File. Somehow unex-

pectedly, the plastic scenario is rare, but not exceptional: amongst the 94 parameter sets that

we have identified as viable, 10 exhibit plasticity (see Fig 5 for their CFDs).

Further restrictions on parametric heterogeneity imposed by the plastic scenario are ana-

lysed regarding the variation of the CFDs of kinetic constants when compared to those associ-

ated with the whole viable subset. The results of KS analysis performed on the data shown in

Fig 5 show that only the distributions of k1 (associated with recruited demethylation), k9

(unrecruited deacetylation), and k14 (recruited deacetylation) are significantly modified by the

plasticity requirement (p-values reported in Table G in S1 File).

From a more mechanistic perspective, we observe that, within the plastic set, the mass of

the CFDs of k1, k9 and k14 is displaced towards the large-value end of their intervals with

respect to their behaviour within the full viable set. In other words, k1, k9 and k14 tend to be

larger for plastic ER systems than for non-plastic, viable ER systems. In essence, we observe

that ER systems exhibiting plastic behaviour tend to have increased activity in the enzymes

performing histone deacetylation. This is consistent with recent evidence that aging decreases

histone acetylation and promotes reprograming [5, 19, 47].

The same analysis has been conducted regarding the ensemble of parameter values gener-

ated using ABC for the pluripotency gene ER system (full posterior distribution in Fig. D in S1

File). The results of this analysis are shown in Fig 6. Detailed analysis using the KS test of the
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Fig 5. This figure shows the cumulative frequency distribution (CFD) for a sample consisting of the 401

differentiation gene ER parameter sets generated by ABC which best fit the synthetic data shown in Fig 2(a), i.e. SSA

simulated data for the default stochastic ER differentiation system (see Table A in S1 File). Out of these 401

parameter sets, 94 satisfy the constraints associated with the differentiation epiphenotype. Amongst these, 10 are found to

show plastic behaviour. The remaining 307 parameter sets generate bistability at eHDM = eHDAC = 1. Colour code: blue

and red lines correpond to the CFD of the plastic and refractory differentiation epiphenotypes, respectively. Green lines

correspond to the CFD of the parameters that generate bistability at eHDM = eHDAC = 1. Cyan lines correspond to the CFD

of a uniform distribution, which we add for reference.

https://doi.org/10.1371/journal.pcbi.1006052.g005
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Fig 6. This figure shows the cumulative frequency distribution (CFD) for a sample consisting of the 1401

pluripotency gene ER parameter sets generated by ABC which best fit the synthetic data, i.e. SSA simulated data for

the default stochastic ER pluripotency system (see Table B in S1 File). Out of these 1401 parameter sets, 29 satisfy the

constraints associated with the pluripotency epiphenotype. Amongst these, 11 are found to show plastic behaviour.

Another 1367 parameter sets generate bistability at eHDM = eHDAC = 1. The remaining 5 parameter sets are bistable at

eHDM = eHDAC = 1 but they are rejected since their steady states do not correspond to open/closed situations. Colour code:

blue and red lines correpond to the CFD of the plastic and refractory pluripotency epiphenotypes, respectively. Green

lines correspond to the CFD of the parameters that generate bistability at eHDM = eHDAC = 1. Cyan lines correspond to the

CFD of a uniform distribution, which we add for reference.

https://doi.org/10.1371/journal.pcbi.1006052.g006
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ensemble viable pluripotency ER systems shows that k3, k8, k12, k14, k15, and k16 are signifi-

cantly constrained by the requirements of such scenario (i.e. their CDF departs significantly

from the uniform distribution, as shown by the p-values from Table F in S1 File). We then

move on to investigate further restrictions within the plastic set. We observe that only the

CDFs associated with k2 and k6 are significantly different (p-values reported in Table H in S1

File). In both cases, values of k2 and k6 associated with plasticity are larger than in the general

viable population. Both parameters are associated with demethylation activity.

Our ensemble analysis thus provides a rationale for the coupling between variations in the

size of the pool of epigenetic cofactors and increased reprogramming in a heterogeneous cell

population. A notable case in point is provided by metabolic changes during aging: those cells

where key metabolites such as acetyl-CoA and NAD+ are less abundant lose acetylation capa-

bility (in our model, this is reflected through the dependence of histone-modifying enzyme

activity on the concentration of these cofactors), leading to cells poised for reprogramming.

This analysis provides a rationale for a strategy to interfere with the epigenetic regulatory

system, regarding the ability to either drive the system away from plastic behaviour or to

drive it to the plasticity scenario, while keeping it functional (i.e. within the restrictions of

the base-line scenario). An example illustrating the effectiveness of this strategy is shown in

Fig 7. Consider the viable set of the ER differentiation-promoting gene, Fig 5, which is neu-

tral with respect to the value of k9: k9 remains uniformly distributed within the viable subset.

By contrast, when plasticity is required, the admissible values of k9 accumulate mostly

towards the large-value end. This suggests that decreasing the value of k9 might be a viable

strategy to restore resilience. To check this, we consider the parameter set, θ = kj/k4,

j = 1, . . ., 16, that gives rise to the plastic behaviour depicted in Fig 3(f) (Table C in S1 File,

for the differentiation-promoting gene). We then analyse the effect of modifying the value of

k9 for the differentiation-promoting gene on system behaviour. The new parameter set,

Fig 7. (a)This plot shows results regarding restoration of base-line behaviour by removal of plasticity by restoring acetylation activity. It shows

the phase space corresponding to the ER system composed of a differentiation-promoting gene with parameter set given by θ0 with k0
9
¼ k9=4

(see text for details) and a pluripotency-gene with parameters given by Table D in S1 File. This result demonstrates that by reducing

deacetylation activity, we can drive the system off plastic behaviour and restore the normal situation as described by the base-line scenario. (b)

This plot shows results regarding the appearance of the plastic behaviour by increasing deacetylation activity. Parameter values for the

differentiation-promoting gene are given by θ0 with k0
9
¼ 3k9 and k0

14
¼ 3k14 (see text for details) and for the pluripotency-promoting gene are

given by Table D in S1 File. This result shows an strategy to drive the system to the plastic scenario and hence, indicates how to obtain

favourable scenarios for reprogramming.

https://doi.org/10.1371/journal.pcbi.1006052.g007
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y
0
¼ k0j=k4; j ¼ 1; . . . ; 16, is such that k0

9
¼ k9=4 and k0j ¼ kj for all j 6¼ 9 (kj values as per

Table C in S1 File). Parameter values for the pluripotency gene remain unchanged (as per

Table D in S1 File). The corresponding phase space is shown in Fig 7(a). We observe that by

reducing deacetylase activity in this fashion, the ER system reverts to resilient behaviour.

This suggests that, by regulating the abundance of cofactors associated with (de)acetylation,

we can drive the system off the plastic regime into the base-line behaviour.

Similarly, we can seek for complex, combined strategies to increase the robustness of plastic

behaviour. An example of such strategy is shown in Fig 7(b). Based on the results of the KS test

for the differentiation-promoting gene, we observe that deacetylation-related rates k9 and k14

are significantly increased in plastic scenarios. Taking parameter sets from a resilient scenario

(Tables A & D in S1 File, which lead to a combined phase diagram qualititatively similar to

that shown in Fig 3(d)) and modifying k9 and k14 for the differentiation-promoting gene so

that k0
9
¼ 3k9 and k0

14
¼ 3k14 while keeping all the others at the same value, the resulting ER

system corresponds to a plastic system. Futhermore, this combined strategy results in more

robust plasticity (as compared to e.g. the case shown in Fig 3(f)), as measured by the area of

the phase space region where reprogramming is feasible. This indicates that by combining the

strategies suggested by the statistical analysis of the plastic sub-ensemble, we can find condi-

tions for optimal conditions to achieve robust reprogramming. This, in turn, highlights the

importance of cofactor levels, since as it has been shown in Fig 7, depending on its availability,

the same ER system can be driven to the plastic or resilient state.

These strategies require close attention to be payed to the correlations between parameters.

Parameters in complex systems biology models exhibit strong correlations which confer the

system with essential properties such as sloppiness, which refers to the property exhibited by

many multi-parameter systems biology models, whereby the system’s behaviour is insensitive

to changes in parameter values except along a small number of parameter combinations [35].

In order to quantify such correlations, we have used hierarchical clustering. The results are

shown in Fig. E(a) & E(b) in S1 File for the base-line and the plastic scenarios of the differentia-

tion-regulating ER system, respectively. Not unexpectedly, we observe that, with respect to the

base-line scenario, correlations substantially change when the plastic scenario is considered.

Although the strategies illustrated in the results shown in Fig 7 changed one or two parameters

alone independently of all the others, more general situations will require to closely monitor

these correlations to understand which combinations of parameters are relevant to control the

system’s behaviour [35].

Discussion

We here provide computational evidence for the role of stochastic translation of epigenetic

cofactors into resilient/plastic cell states via ER systems as a mechanistic facilitator of cellular

aging, and its reversal. When changes in levels of such cofactors operate as regulators of the

kinetic parameters associated with chromatin-modifying enzymes such as HDMs and

HDACs, the ensemble of ER configurations reveals the occurrence of cell-to-cell phenotypic

variability in terms of different epi-states (see Fig 8). This model provides a rationale for the

responsiveness of cellular phenotypes to metabolic signals, as metabolic pools serve as epige-

netic cofactors. The metabolic control of epigenetic landscapes and cell state transitions might

therefore operate as a common hub capable of facilitating the pathogenesis of aging-related

diseases including cancer.

Several layers of molecular communication exist between cell metabolism and chromatin

remodelling [16, 52–56]. A first layer of metabolo-epigenetic regulation includes metabolites/

nutrient-responsive TF-dependent transcriptional regulation of chromatin regulators (HMT,
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HAT, DNMTS, etc), which can lead to global changes on chromatin structure. Second, metab-

olites can modulate chromatin modifications at specific genomic loci by affecting the activity/

localisation of proteins that recruit or regulate chromatin-modifying enzymes during, for

example, transcriptional activation phenomena. Third, chromatin-modifying enzymes employ

Fig 8. Epigenetic regulation of cell fate reprogramming in aging and disease: A predictive computational model. Cell

reprogramming, a process that allows differentiated cells to re-acquire stem-like properties, is increasingly considered a critical

phenomenon in tissue regeneration, aging, and cancer. In light of the importance of metabolism in controlling cell fate, we

designated a computational model capable of predicting the likelihood of cell reprogramming in response to changes in aging-

related epigenetic metabolites (EM). Our first-in-class Approximate Bayesian Computation (ABC) approach integrates the

biochemical basis of aging-driven metabolite interaction with chromatin-modifying enzymes to predict how aging-driven

metabolic reprogramming could alter cell state transitions via reorganisation of chromatin marks without affecting the shape of

the Waddingtonian epigenomic landscape. Our predictive mathematical model improves our understanding of how pathological

processes that involve changes in cell plasticity, such as tissue repair and cancer, might be accelerated or attenuated by means of

metabolic reprogramming-driven changes on the height of phenotypic transitioning barriers.

https://doi.org/10.1371/journal.pcbi.1006052.g008
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many metabolites as donor substrates and cofactors, and changes in levels of these bona fide
epigenetic metabolites can in turn lead to changes not only in the global status of chromatin

modifications but also to gene specific regulation under different metabolic conditions.

Our mathematical model only incorporates the third such layer through cofactor-induced

heterogeneity. Because any metabolic input has the potential to affect various chromatin

marks via its effects on transcription, our model ignored metabolic regulation of TF activity.

In contrast to other metabolically-regulated enzymatic activities such as phosphorylation in

which the substrate (ATP) is present in cellular concentrations far greater than the enzyme Km
values, i.e., the concentration of metabolite at half maximum velocity of enzyme-mediated

reaction, the physiological cellular concentrations of donors and cofactors that are employed

by histone-modifying enzymes (e.g., organic ketoacids such as the demethylase cofactor α-

ketoglutarate for HDMs or the NAD+ deacetylase cofactor for HDACs) are close to HDM and

HDAC Km values [16, 57]; consequently, based solely on the intrinsic biochemical characteris-

tics of chromatin-modifying enzymes such as HDMs and HDACs, small fluctuations in the

concentrations of such metabolites could significantly alter HDM and HDAC activities, either

increasing or decreasing their respective histone-modifying activities. This layer of metabolo-

epigenetic regulation is commonly viewed as a direct link from cell metabolism to chromatin-

modification status, which could be mathematically modelled and tested as has been con-

firmed in our current computational model (see Fig 8).

Evidence accumulates demonstrating that differing metabolomes can be found in distinct

cell states, thereby suggesting how changes in metabolism can impact and probably specify cell

fate via alteration of the chromatin landscape [58–63]. Yet, there is a scarcity of examples

showing that metabolic changes can restructure the epigenetic landscape and lead to different

cell states regardless of other global changes in cell physiology occurring in response to this

variation in metabolite levels. Our findings support the notion that changes in the abundances

of certain metabolites would alter specific chromatin marks, thereby determining both the sta-

bility of cell types and the probability of transitioning from one epi-state to another [64]. Our

model infers that such a change in metabolite level would be sufficient to either impede or

allow cell epi-state transitions by regulating the height of the phenotypic barriers in the context

of Waddington’s landscape (Fig 8). However, we should acknowledge that the necessary

involvement of cellular metabolism on the structure of the epigenetic landscape will require

the experimental coupling of defined metabolic conditions with epigenome editing systems

(e.g., CRISPR-Cas9) capable of targeting specific histone PTMs playing important roles in

chromatin structure [65].

Our ensemble approach provides mechanistic support to the notion that emergence of the

cellular and molecular hallmarks of aging including cancer might result from a metabolically

driven loss of epigenetic resilience. Flavahan et al. [57] have recently proposed that non-

genetic stimuli including aging and metabolic insults can induce either overly restrictive chro-

matin states, which can block tumor-suppression and/or differentiation programs, or overly

permissive/plastic chromatin states, which might allow normal and cancer cells to stochasti-

cally activate oncogenic programs and/or nonphysiologic cell fate transitions. Our ensemble

approach provides a framework that supports heterogeneity of epigenetic states as an engine

that facilitates cancer hallmarks and other aging diseases. On the one hand, the ability of resil-

ient states to maintain large epigenetic barriers refractory to non-physiologic cell fate transi-

tions might explain why the NAD+-dependent HDAC/sirtuin pathway is one of the few

mechanisms described to mediate the correction or resetting of the abnormal chromatin state

of aging cells induced by calorie restriction, the most robust life span-extending and cancer

preventing regimen [2, 66–68]. On the other hand, the ability of plastic states to lower epige-

netic barriers, and increase the sensitivity of primed cells to undergo reprogramming-like
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events leading to loss of cell identity is consistent with the ability of certain metabolites to pro-

mote oncogenesis by epigenetically blocking the HDM-regulated acquisition of differentiation

markers [17, 69–71].

The traditional view of cancer formation (i.e., the Knudson model [72]) exclusively involves

the binary acquisition and accumulation of genetic alterations as the principal driver mecha-

nism for the age-dependency of multistage cancer development. Our ensemble approach sug-

gests an alternative, namely, that oncogenic chromatin aberrations might also occur via purely

epigenetic stimuli. Our model shows that, nested within the ensemble of ER systems, those

that prime cells for reprogramming exhibit properties associated with age-induced epigenetic

dis-regulation [73, 74]. Aging-responsive ER reprogramming might thus operate in a more

progressive and graded manner to increase cancer susceptibility without the need to induce

genetic mutations. Our ensemble model is mechanistically consistent with the fact that those

cancers in which the sole presence of epigenetic metabolites (e.g., oncometabolites) suffices to

stabilise undifferentiated cellular states by preventing demethylation of genes implicated in

differentiation have accelerated models of oncogenesis [44, 75–82]. Whereas the epigenetic

signature of adult somatic cells must be partially and acutely erased to adopt a more plastic epi-

genome, such cellular plasticity, which might occur via metabolically driven epigenetic activa-

tion of promoter regions of pluripotency genes, could impose a chronic, locked gain of stem

cell-like states disabled for reparative differentiation.

The existence of metabolism-permissive resilient and plastic epigenetic landscapes might

have predictive power on the susceptibility of a cell to lose its normal cellular identity

through reprogramming-like resetting phenomena. The beneficial or deleterious decision

paths during the maintenance of cell and tissue homeostasis might be closely related to the

ability of epigenetic landscapes to modulate the intrinsic responsiveness to reprogramming

cellular identity. The incapability of finishing cellular reprogramming, or at least to increase

cellular epigenetic plasticity, might impede tissue self-repair in response to injury, stress, and

disease, thus driving the observed aging phenotypes. Accordingly, the infliction of chronic

injury and the aging phenotype have been shown to render tissues highly permissive to in

vivo reprogramming [47] while the cyclic, transient expression of reprogramming factors

has recently been shown to increase lifespan in a murine model of premature aging via

remodeling of the chromatin landscape [7]. Because our model suggests that the fine-tuning

of metabolic epigenetic cofactors might direct plastic epigenetic states to re-enter into epige-

netic resilience, and vice versa, it would be relevant to experimentally evaluate whether spe-

cific metabolic interventions might either mimic transient reprogramming and revert some

age-associated features without promoting complete undifferentiation, or prevent the occur-

rence of unrestricted/uncontrolled plasticity in chronically injured tissues such as those

occurring in aging and cancer.

In summary, by integrating the ability of chromatin epigenetic modifiers to function as sen-

sors of cellular metabolism, our ensemble model provides computational support to the notion

that a metabolism-responsive loss of epigenetic resilience might mechanistically facilitate cellu-

lar aging. The stochastic translation of metabolic signals into resilient/plastic cell states via ER

systems might be viewed as a metabolo-epigenetic dimension that not only facilitates cellular

aging, but that also offers new therapeutic and behavioural avenues for its reversal. Our find-

ings strongly suggest that the development of predictive mathematical models and computa-

tional simulation platforms capable of operatively integrate the metabolic control of epigenetic

resilience and plasticity and its combination with confirmatory lab-based testing might accel-

erate the discovery of new strategies for metabolically correcting the aberrant chromatin struc-

ture that affects cellular identity and epi-state transitions in aging and aging-related diseases.

Epigenetic regulation of cell fate reprogramming: A predictive computational model

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006052 March 15, 2018 20 / 24

https://doi.org/10.1371/journal.pcbi.1006052


Supporting information

S1 File. Online supplemental information.

(PDF)

Acknowledgments

We would like to thank Helen M. Byrne for discussion and helpful suggestions.

Author Contributions

Conceptualization: Javier A. Menéndez, Tomás Alarcón.
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