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Abstract

Cloud computing has revolutionized the development and operations of hardware and soft-

ware across diverse technological arenas, yet academic biomedical research has lagged

behind despite the numerous and weighty advantages that cloud computing offers. Biomedi-

cal researchers who embrace cloud computing can reap rewards in cost reduction,

decreased development and maintenance workload, increased reproducibility, ease of shar-

ing data and software, enhanced security, horizontal and vertical scalability, high availability,

a thriving technology partner ecosystem, and much more. Despite these advantages that

cloud-based workflows offer, the majority of scientific software developed in academia does

not utilize cloud computing and must be migrated to the cloud by the user. In this article, we

present 11 quick tips for architecting biomedical informatics workflows on compute clouds,

distilling knowledge gained from experience developing, operating, maintaining, and distrib-

uting software and virtualized appliances on the world’s largest cloud. Researchers who fol-

low these tips stand to benefit immediately by migrating their workflows to cloud computing

and embracing the paradigm of abstraction.

Author summary

Cloud computing has revolutionized the tech sector, but academia is slow to adopt. These

11 quick tips are geared towards helping academic researchers and their teams harness the

power of cloud computing by utilizing the design patterns that have evolved in the past

decade. Cloud computing can increase reproducibility, scalability, resilience, fault-toler-

ance, security, ease of use, cost- and time-efficiency, and much more.

This is a PLOS Computational Biology Education paper.

Introduction

Cloud computing is the on-demand use of computational hardware, software, and networks

provided by a third party [1]. The rise of the internet allowed companies to offer fully internet-

based file storage services, including Amazon Web Services’ Simple Storage Service, which

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005994 March 29, 2018 1 / 11

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPENACCESS

Citation: Cole BS, Moore JH (2018) Eleven quick

tips for architecting biomedical informatics

workflows with cloud computing. PLoS Comput

Biol 14(3): e1005994. https://doi.org/10.1371/

journal.pcbi.1005994

Editor: Francis Ouellette, Genome Quebec,

CANADA

Published: March 29, 2018

Copyright: © 2018 Cole, Moore. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Funding: This work was supported by National

Institutes of Health AI116794 and LM010098

(https://www.nih.gov/). The funders had no role in

study design, data collection and analysis, decision

to publish, or preparation of the manuscript.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pcbi.1005994
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1005994&domain=pdf&date_stamp=2018-03-29
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1005994&domain=pdf&date_stamp=2018-03-29
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1005994&domain=pdf&date_stamp=2018-03-29
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1005994&domain=pdf&date_stamp=2018-03-29
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1005994&domain=pdf&date_stamp=2018-03-29
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1005994&domain=pdf&date_stamp=2018-03-29
https://doi.org/10.1371/journal.pcbi.1005994
https://doi.org/10.1371/journal.pcbi.1005994
http://creativecommons.org/licenses/by/4.0/
https://www.nih.gov/


launched in 2006 [2]. Throughout the past decade, cloud computing has expanded from sim-

ple file and object storage to a comprehensive array of on-demand services ranging from bare

metal servers and networks to fully managed databases and clusters of computers capable of

data processing at a massive scale [3,4].

Modern cloud computing providers and the customers that utilize their services share

responsibility for computer systems, with the cloud provider managing the physical hardware

and virtualization software and the consumer utilizing the cloud services to architect work-

flows which may include applications, databases, systems and networks, storage, web servers,

and much more [5,6]. In this way, cloud computing allows users to offload the burden of man-

aging physical systems and focus on building and operating solutions.

Cloud computing has revolutionized the way businesses operate. By using a cloud provider

instead of operating private data centers, companies can reduce costs by paying for only the

hardware they use and only when they use it. In addition, cloud-based technological solutions

offer many important advantages when compared to conventional enterprise data centers,

including the ability to dynamically scale up under increased load, recover from disaster inci-

dents automatically, remotely monitor application states, automate hardware and software

deployments, and manage security through code. In addition, many cloud providers operate

multiple data centers across continents, providing redundancy across different locations in the

world to increase fault tolerance and reduce latency. Finally, cloud computing has evolved a

new paradigm of microservice-centric application design, wherein the traditional monolithic

software stack is replaced with loosely coupled components which can each be scaled individu-

ally, updated individually, and even replaced with fully managed cloud services such as mes-

sage passing services, serverless function execution services, managed databases and data lakes,

and even container management services. Businesses have exploited these advantages of cloud

computing to gain an edge in a competitive landscape, ushering in a new era of computing

that emphasizes abstraction, agility, and virtualization.

Scientific computing in academic research environments still mostly utilizes in-house

enterprise compute systems such as High Performance Compute (HPC) clusters [7]. In these

systems, all software, hardware, data storage, networking, and security are the responsibility of

the institution, including compliance with applicable state and federal laws such as HIPAA

and other regulations which govern data storage for protected health information and human

genetic data. The fact that scientific institutions manage their own separate compute systems

poses serious problems for reproducibility due to differences in hardware and software across

institutions [8–10]. Additionally, the HPC model fails to allow researchers to capitalize on the

innovations offered by cloud computing. For these reasons, we have compiled a set of eleven

quick tips to help biomedical researchers and their teams architect solutions using cloud com-

puting. We provide a high-level overview of some best practices for cloud computing with an

emphasis on reproducibility, cost reduction, efficiency of development and operations, and

ease of implementation.

Templatize infrastructure with version control

Cloud computing providers such as Microsoft Azure, Google Cloud Platform, Amazon Web

Services, and others have developed templating systems that allow users to describe a set of

cloud infrastructure components in a declarative manner. These templates can be used to cre-

ate a virtualized compute system in the cloud using a language such as JSON /or YAML, both

of which are human-readable data formats [11]. Templates allow developers to manage infra-

structure such as web servers, data storage, and fully configured networks and firewalls as

code. These templates may be version-controlled and shared, allowing lateral transfer of full
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compute systems between academic institutions. Templatized infrastructure makes it is easy to

reproduce the exact same system at any point in time, and this provides an important benefit

to researchers who wish to implement generalizable solutions instead of simply sharing source

code. Templates allow researchers to develop virtual applications that provide a control over

hardware and networking that is difficult or impossible to achieve when researchers use their

institutional HPC systems. Additionally, templates themselves are lightweight documents that

are amenable to version control, providing additional utility. Finally, templates can be modi-

fied programmatically and without instantiating the computational stack they describe, allow-

ing developers to modify and improve templates without invoking costs.

Version-control systems such as Git give developers immense control over software

changes, including branching and forking mechanisms, which allow developers to safely

implement new features and make modifications [8]. Additionally, repository hosting services

such as GitHub allow researchers to share workflows and source code, aiding in reproducibil-

ity and lateral transfer of software.

In cloud computing, infrastructure of entire complex systems can be templatized. These

templates can then be version-controlled, allowing researchers and developers to keep a record

of prior versions of their software and providing a mechanism to roll back to an earlier version

in the event of a failure such as an automated test failure. Version control therefore plays a

vital role in architecting workflows on cloud computing because it applies not only to the soft-

ware, but also to templates that describe virtualized hardware and networks.

Academic scientists who work in isolated compute environments such as institutional HPC

clusters might not employ version control at all, instead opting to develop and operate applica-

tions and workflows entirely within the cluster. This practice is undesirable in that it fails to

keep a record of code changes, fails to provide a mechanism for distribution of source code to

other researchers, and fails to provide a mechanism by which collections of code can be

migrated to other systems. It is strongly encouraged that absolutely every piece of code and

infrastructure template be version-controlled, and further, that version control becomes a first

step in all bioinformatics workflow development. Cloud computing providers often offer fully

managed services for version-control hosting, allowing researchers, teams, and even whole

institutions to maintain private collections of repositories without the need to manage a ver-

sion-control server or use a third-party version-control service like GitHub.

An example of a cloud-based virtual appliance which uses a version-controlled template to

recreate infrastructure is EVE [12]. EVE is a cloud application that utilizes snapshots of software

and reference data to perform reproducible annotation of human genetic variants. The appli-

ance’s infrastructure is declared in a CloudFormation template which can be shared, modified

offline, and used to instantiate an exact copy of the same hardware–software stack for annota-

tion, a bioinformatics workflow which is difficult to reproduce across varying compute environ-

ments that are not controlled for software and reference data versions across space and time.

EVE is an example of how templatized infrastructure and imaged software and reference data

allow cloud computing to enhance reproducibility of biomedical informatics workflows.

Embrace ephemerality: Image data and software

The on-demand nature of cloud computing has driven innovation in imaging technology as

well as templating technology. In contrast to local data centers, cloud computing encourages

users to expand computational capacity when needed, and users do not need to leave a server

running all the time. Instead, users can instantiate the hardware they need only when they

need it and shut it down afterwards, thus ending the operational expense. This ephemeral

approach to computing has spurred development of imaging and snapshotting services.
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An important element of cloud providers is their ability to take snapshots and images of

data storage volumes which can be used to later recreate the internal state of a server. A user

can install software and data onto a virtual server and then create an image of the block storage

devices that server uses, including the operating system, file system, partitions, user accounts,

and all data. The ability to image data and software provides tremendous utility to biomedical

researchers who wish to develop reproducible workflows. External data sources upon which

biomedical workflows depend may change over time; for example, databases of genetic poly-

morphisms are updated regularly, and genome assemblies are revised as more genotype data is

accrued. Imaging the reference data that is used in a particular biomedical workflow is an

excellent way to provide a snapshot in time which will not mutate, providing a reproducible

workflow by controlling software and data. When combined with templatized infrastructure,

snapshots and images can fully recreate the state of a virtual appliance without the requirement

that the end user copies data or installs and configures any software whatsoever.

Use containers

Containers are software systems that provide the ability to wrap software and data in an iso-

lated logical unit that can be deployed stably in a variety of computing environments [13].

Containers play an important role in the development of distributed systems by allowing tasks

to be broken up into isolated units that can be scaled by increasing the number of containers

running simultaneously. Additionally, containers can be leveraged for reproducible computa-

tional analysis [14]. Importantly, cloud providers often offer integration with containers such

as Docker, allowing developers to manage and scale a containerized application across a cluster

of servers.

A compelling example of containerized applications for biomedical informatics workflows

is presented by Polanski et al., who implement 14 useful bioinformatics workflows as isolated

Docker images that are provided both directly and integrated into the CyVerse Discovery

Environment [15], which is an NSF-funded cyberinfrastructure initiative formerly known as

iPlant [16]. These images, shared on both GitHub and DockerHub, are useful not only within

the CyVerse Discovery Environment but also via managed Docker services including Amazon

Web Services (AWS) Elastic Container Service, Microsoft Azure Container Service, Google

Kubernetes Engine, and others.

Manage security and privacy as code

Cloud providers often operate under a shared responsibility model for security, in which the

cloud providers are responsible for the physical security of the cloud platform and the users

are responsible for the security of their applications, configurations, and networks [17]. While

this imposes new responsibilities on users who otherwise would operate entirely within an

institutional compute system such as an HPC, it also creates opportunities to take control of

security as code. Much like servers and storage volumes, firewalls and account control in cloud

computing are expressed as code, which may be version-controlled and updated continuously.

Cloud computing and the infrastructure-as-code paradigm allow developers to configure and

deploy firewalls, logical networks, and authentication/authorization mechanisms in a declara-

tive manner. This allows developers to focus on security in the same way as hardware and soft-

ware and pushes security into a central position in the process of development and operations

of cloud applications. Cloud computing also allows automated security testing, an important

component of agile software development.

In addition, privacy settings are also amenable to programmatic and automated manage-

ment in cloud computing. Access to specific cloud resources is controlled by provider-specific
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mechanisms, including role-based account management and resource-specific access control.

Users are encouraged to manage privacy by a principle of minimum privilege, complying with

all applicable regulations. Cloud computing providers make it easy to control which users can

access which resources, including sensitive datasets. In addition, access logs for cloud-based

data storage and built-in encryption mechanisms offer fine-grained auditing capabilities for

researchers to demonstrate compliance.

Use managed services instead of reinventing them

Cloud providers compete with each other to offer convenient and cost-saving managed services

to perform common tasks without the user having to implement them [18]. These include mes-

sage passing, email, notification services, monitoring and logging, authentication, managed

databases and data lakes, cluster management tools such as for Apache Spark and Hadoop, and

much more. Utilizing these services is not only cost-effective but also offloads the burden of

development and maintenance. Additionally, these services are often implemented in a distrib-

uted and highly available manner, utilizing redundancy and cross-data center replication tech-

nology. All of this is provided and maintained by the cloud service provider, and effective

utilization of managed services can yield tremendous gains for very little investment.

Some crucial examples of managed services which can greatly accelerate the pace of develop-

ment for biomedical workflows include managed data analysis clusters such as Apache Spark.

Apache Spark is a powerful and easy-to-use distributed data processing engine that has found

use cases in bioinformatics, especially when working with very large datasets. Multiple major

cloud providers offer a managed Apache Spark service, allowing users to skip over installing and

configuring Apache Spark and even spin up an entire cluster of preconfigured Spark nodes with

a few clicks. This allows scientists to go directly from raw data to distributed processing, and

these services often additionally offer convenient integration with cloud storage. Another exam-

ple comes in the form of managed database services, most notably Google’s BigTable and Ama-

zon Web Service’s DynamoDB, which are both NoSQL databases that the user accesses directly

through an application programming interface (API). This means that cloud users can simply

put data into a database table without having to spin up a server for the database and install and

manage the database itself; instead, the database is already running as a managed service in the

cloud, and the user can directly call it to store and retrieve data. BigTable and DynamoDB are

implemented in a distributed manner behind the scenes, providing the advantages of a high-

availability system with built-in redundancy and the accompanying low latency and high dura-

bility. Using managed services like distributed computing systems and databases reduces devel-

oper burden and provides a technologically advanced solution that need not be reinvented.

An example of a cloud-based biomedical informatics workflow which benefits from man-

aged services is Myrna, which is a pipeline for alignment of RNA-seq reads and investigation

of differential transcript expression [19]. Myrna utilizes Elastic MapReduce (EMR), a managed

Hadoop service offered by Amazon Web Services, as a distributed computing engine. While

users could install and configure their own Hadoop environments starting from raw cloud

resources, the managed service offloads the burden of configuring and managing Hadoop clus-

ters, and has convenient features for automatic or manual scaling. Services such as EMR are

great examples of ways in which cloud computing services can reduce management burden

while simultaneously providing useful features that users do not need to reimplement.

Develop serverless applications

The advent of cloud computing has spawned the creation of a new paradigm for web applica-

tions: serverless computing. Serverless computing is a model in which the user does not create
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and operate a web server but instead creates abstract functions that are logically connected to

each other to perform all of the logic of the application. Instead of the user managing a server

which runs the application’s logic, the cloud provider dynamically manages each function in

real time, allocating resources and executing code. The user only pays for code that is executed

and does not need to keep a web server running continuously. Additionally, serverless applica-

tions are easier to scale up because the functions which define the application’s logic are exe-

cuted in isolated containers. This means that there can be many functions executing

simultaneously and asynchronously without overwhelming any one server or saturating any

one network environment. Serverless computing can also be blended with traditional servers

instead of purely serverless applications that do not utilize any provisioned servers.

Serverless computing is a new paradigm for application development and operations that is

considerably more abstract than creating and operating an application on a provisioned cloud

server. In designing serverless applications, developers do not need to manage memory, appli-

cation state on disk, or software dependencies. Instead, programmers define pure logic in the

form of functions and the events that trigger them. This way of thinking is a challenge to

adopt, but the rewards are incredible in that applications can scale without autoscaling policies

that allow conventional server-bound applications to scale. Additionally, serverless applica-

tions do not continuously bill the user’s account in the way that continuous operation of a

server would. Finally, serverless computing may reduce development time and cost by remov-

ing the responsibility of managing servers and their resources from the developer.

As an example, Villamizar et al. recently implemented a real-world web application in a tra-

ditional monolithic design, a user-managed microservice design, and a fully serverless design

which uses AWS Lambda functions [20]. Cost comparisons showed that the serverless imple-

mentation reduced costs by over 50% while simultaneously providing agility and fine-grained

scalability within the application. While serverless computing is a new paradigm that has yet to

see widespread adoption in biomedical informatics, this example illustrates the capability of

serverless applications to transform the way biomedical informatics workflows are developed

and operated.

Be agile: Iterate with small releases

Agile development is an emerging set of principles for software development and deploy-

ment that emphasizes flexibility, small releases, and adaptivity to change. Instead of focus-

ing on large releases with monolithic changes to large features in a software application,

agile teams focus on a nearly continuous stream of small updates. This allows teams to

respond to changes in project scope, design criteria, and process changes more effectively

than while building toward a major release. Additionally, agile development has brought

special emphasis to techniques such as automated testing, continuous integration and deliv-

ery, and test-driven development.

Cloud computing is a great fit for agile development, and agile development is a great fit

for cloud computing. With cloud computing, deploying new servers and calling new man-

aged services is fast, allowing developers and teams to iterate quickly. Cloud computing

offers developers fast and on-demand access to a variety of different testing environments,

which can aid in automated testing and blue-green deployments for uninterrupted services

during updates. In addition, many cloud providers offer managed services for continuous

integration and continuous delivery. These services can automatically build, test, and

deploy software every time a change to the source code is made. In many ways, the agile par-

adigm can enhance productivity for biomedical research teams, and cloud computing offers

many avenues for agile development.
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Embrace abstraction: Decouple components

Decoupling is the process by which separate components of a system are rendered less

interdependent. For example, an application which utilizes a database and a web server can

benefit from migrating the database to a different virtualized server. The decoupled data-

base and web server can then be individually updated and maintained without affecting

each other. In addition, the database and web server components can be individually scaled

and extended, imparting elasticity into the entire application. Finally, the decoupled system

is less fault-tolerant and less prone to resource competition, including processors, memory,

disk read/write, and network throughput.

Decoupled systems are modular in their nature, and cloud computing provides the ability

to decouple components through message passing, virtualized networking capabilities, and

managed services. For example, database tiers can be replaced by managed database services.

This allows total decoupling of the database and the web server in the above example, so if one

experiences a fault, the other is not affected. Additionally, a conventional database tier can be

maintained but on a separate server or group of servers than the web server itself, and virtua-

lized networking can allow these two components to access each other over the same subnet.

Some cloud providers even offer managed services to design and operate decoupled systems,

allowing developers to focus on the components without having to design message passing

and handling logic. Decoupled systems are an important part of design best practice for highly

available cloud architectures and as such are an active area of development.

Utilize built-in sharing mechanisms provided by cloud providers

Cloud providers often offer mechanisms by which researchers can share components of cloud

systems simply by making them public instead of private. For example, images of servers and

snapshots of storage volumes can be made public by changing their permissions. Additionally,

single users can be added without making the image or snapshot public, for example to pro-

vide the ability for a peer reviewer to access components of a cloud system without opening it

to the general public. In another example, datasets stored in cloud-based object storage can be

shared with specific user accounts or made generally public. Examples of this include the Can-

cer Genome Atlas and the 1000 Genomes Project, both of which offer publicly available data

which utilizes cloud storage.

Researchers and developers can also develop templates of cloud systems which utilize snap-

shots and images that are then made public, allowing other users to instantiate perfect copies

of a reproducible computing environment. An example is a researcher who architects a work-

flow, then saves a snapshot of the storage volume that contains installed and configured soft-

ware alongside any reference datasets used. The researcher can then create a template that

references these images and make that public, thereby creating a fully reproducible virtual

application that has tremendous advantages over simply disseminating source code and refer-

ring to versions of publicly available datasets. The ability for components of cloud systems to

be shared simply by changing settings to allow specific or general access is an advantage of

cloud computing.

Proactively manage costs and budgets

In contrast to traditional academic compute systems which are constructed under large, up-front

capital expenses, cloud computing requires little or no up-front cost and is billed as a recurring

operational expense. Users of cloud computing services are billed for what they use, often on a

monthly cycle. This shift in billing methods can lead to researchers being shocked with a bill that

is much higher than anticipated. It is the responsibility of the user to track expenses in real time,
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manage costs, and adhere to budgets, which is often not a concern that academic compute users

have had to monitor, especially when academic compute systems are entirely covered by indirect

costs. In addition, cloud computing providers often charge for services that academics are not

used to paying for, such as data transfer and storage. These unexpected costs, coupled with the

operational expense nature of cloud computing, can result in researchers receiving “bill shock” at

the end of the first period of active cloud computing utilization.

Cloud providers have developed several mechanisms by which users can manage costs and

budgets. First, most major cloud providers have services that provide a real-time breakdown of

expenses categorized by service type, including data transfer, data storage, networking

expenses, compute time, managed services, and more. In addition, cloud providers offer bud-

get calculators such as the AWS Simple Calculator that allow users to estimate costs before

launching any services. Finally, some cloud providers offer full budget management suites

such as AWS Budgets which allows users to set custom alerts for budget thresholds and pro-

vides usage-to-date monitoring functionalities to maintain a tight command over spending.

While the use of cloud services to monitor budgeting and expenses requires extra effort on

behalf of the user, new features such as daily and per-minute quotas offered by Google Cloud

Platform’s App Engine offer fine-grained control over cost management by setting hard limits

on resource utilization.

While academic computing is often covered under indirect costs of grant funding, cloud

computing invokes expenses as it is used, providing the opportunity for users to lose track of

their spending rate. However, diligent and regular utilization of built-in budget and cost-man-

agement tools is a necessary part of cloud computing. In addition to cost-management and

budget tools, government research sponsors such as NIH and NSF have launched cloud com-

puting initiatives such as CyVerse to speed adoption of cloud computing in academia [16].

Finally, cloud providers themselves often provide free credits for researchers, such as the AWS

Cloud Credits for Research award and the Microsoft Azure for Research program.

Dive into new cultures

Much of the activity in the cloud computing ecosystem takes place outside of the realm of aca-

demic research. The tech community hosts a diverse series of conferences ranging from mas-

sive international gatherings such as re:Invent to distributed, local meetups such as Python

User Groups, data science groups, and DevOps Days. The latter is an example of a conference

in which scientists have the opportunity to present their research and development and simul-

taneously interact with leading technologists, from whom scientists and researchers can bene-

fit by exposure to the latest tools and design patterns that are driving innovation in the tech

sector but have yet to reach adoption in academia. In addition to conferences and meetups,

much of the discussion of technological advances in cloud computing takes place on social

media platforms. In both cases, scientists stand to benefit by interfacing and interacting with

the tech sector and may find a lot more common ground than expected. Developers and engi-

neers in the tech sector are often keenly interested in scientific research, and if scientists and

academics can immerse themselves into the tech culture instead of merely attending scientific

conferences and meetings, substantial mutual benefit may be obtained. Finally, tech meetups

and conferences are a great way to network and source new talent with accompanying new

ideas and cutting-edge skills.

Limitations and future directions

Cloud computing offers the potential to completely transform biomedical computing by fun-

damentally shifting computing from local hardware and software to on-demand use of
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virtualized infrastructure in an environment which is accessible to all other researchers. How-

ever, many challenges and barriers to adoption remain pertinent to biomedical informatics

and other scientific disciplines. Existing software and code bases might not easily migrate from

academic computing centers to cloud providers, and performance of existing software might

be negatively impacted by deployment in the cloud; for example, network latency between file-

system and CPU and network bandwidth between database and application tiers could be con-

siderably slower in a cloud deployment when compared to a single data center. To mitigate

this and ease transition from local to cloud deployment, containerization systems such as

Docker and Kubernetes are promising candidates for software deployment in diverse environ-

ments. In addition to migration, cloud computing utilizes a different billing model when com-

pared to academic computing centers, which are often funded by large, up-front capital

expense with recurring expenses that might be covered by indirect costs. In contrast, cloud

computing providers frequently require no up-front capital expense, and instead, users are

billed for on-demand uses purely as operational expenses. This can result in surprise “billing

shock” when users are taken off-guard with a monthly bill that is much higher than expected.

While use of cloud computing services for cost management is an advisable use pattern, it’s the

user’s responsibility to proactively manage costs and maintain a budget in real time. Finally,

while academic computing centers are often compliant with government regulations concern-

ing sensitive data such as protected health information, cloud computing can present a consid-

erable privacy and security risk when used in a manner which compromises data privacy, for

example by accidentally making data publicly accessible by changing privacy settings via a

cloud provider’s web console. In academic computing, users have no control over the firewall

and authentication/authorization of the compute system, but in the cloud the user is entirely

responsible for data privacy and security for systems they create and utilize. This shift in

responsibility is a grave concern for users with sensitive, protected, and regulated data, and

users of cloud computing must manage their own compliance with international, federal,

state, and local laws. An example of this is the Database of Genotypes and Phenotypes, which

recently has added cloud computing to the Authorized Access mechanism for research use of

deidentified genotype and phenotype data [21].

As cloud computing technology continues to innovate at a rapid pace, the future holds

exciting possibilities for biomedical informaticians. The pace of data acquisition in biology

and medicine continues to increase at an unprecedented rate, and the vertical and horizontal

scaling capabilities of cloud computing are an ideal fit. Despite this, the concerns for privacy

and security in biology and medicine demand the advent of managed services specifically tai-

lored to clinicians and researchers. While cloud providers are responsible for security of the

physical hardware and the underlying software used to provide cloud computing services to

the end user, users are responsible for data security and privacy for infrastructure they provi-

sion and use. For this reason, advances in cloud security and privacy for sensitive data are

needed to bridge the gap between on-premise academic compute environments, which often

have their own dedicated IT staff, and cloud environments, where no such staff currently exists

at many institutions and universities. In addition to security and privacy concerns for the

future of biomedical cloud computing, education and academic support for cloud computing

is an area which can benefit from increased investment and development on behalf of cloud

providers, academic institutions, grant-funding agencies, and individual research groups.

Conclusion

Cloud computing holds the potential to completely change the way biomedical informatics

workflows are developed, tested, secured, operated, and disseminated. By following these 11

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005994 March 29, 2018 9 / 11
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quick tips, researchers can ease their transition to the cloud and reap the rewards that cloud

computing offers.

Supporting information

S1 Text. Glossary of terms. Terminology used in the manuscript is defined.

(DOCX)

References
1. Charlebois K, Palmour N, Knoppers BM. The Adoption of Cloud Computing in the Field of Genomics

Research: The Influence of Ethical and Legal Issues. PLoS ONE [Internet]. 2016; 11(10):e0164347.

Available from: http://dx.plos.org/10.1371/journal.pone.0164347 PMID: 27755563

2. Fusaro VA, Patil P, Gafni E, Wall DP, Tonellato PJ. Biomedical Cloud Computing With Amazon Web

Services. Lewitter F, editor. PLoS Comput Biol [Internet]. 2011 Aug 25 [cited 2017 Jun 15]; 7(8):

e1002147. Available from: http://dx.plos.org/10.1371/journal.pcbi.1002147 PMID: 21901085

3. Schadt EE, Linderman MD, Sorenson J, Lee L, Nolan GP. Cloud and heterogeneous computing solu-

tions exist today for the emerging big data problems in biology. Nat Rev Genet [Internet]. 2011 Mar 8

[cited 2017 Jun 15]; 12(3):224–224. Available from: http://www.nature.com/doifinder/10.1038/nrg2857-

c2

4. Muth T, Peters J, Blackburn J, Rapp E, Martens L. ProteoCloud: A full-featured open source proteomics

cloud computing pipeline. J Proteomics [Internet]. 2013 Aug [cited 2017 Jun 15]; 88:104–8. Available

from: http://linkinghub.elsevier.com/retrieve/pii/S1874391913000134 https://doi.org/10.1016/j.jprot.

2012.12.026 PMID: 23305951

5. Grossman RL, White KP. A vision for a biomedical cloud. J Intern Med [Internet]. 2012 Feb [cited 2017

Jun 15]; 271(2):122–30. Available from: http://doi.wiley.com/10.1111/j.1365-2796.2011.02491.x PMID:

22142244

6. Stein LD, Knopers BM, Campell P, Getz G, Korbel JO. Create a cloud commons. Nature. 2015;

523:149–51. https://doi.org/10.1038/523149a PMID: 26156357

7. Jackson KR, Ramakrishnan L, Muriki K, Canon S, Cholia S, Shalf J, et al. Performance Analysis of High

Performance Computing Applications on the Amazon Web Services Cloud. In: 2010 IEEE Second Inter-

national Conference on Cloud Computing Technology and Science [Internet]. IEEE; 2010 [cited 2017

Nov 3]. p. 159–68. Available from: http://ieeexplore.ieee.org/document/5708447/

8. Sandve GK, Nekrutenko A, Taylor J, Hovig E, Vilo J. Ten Simple Rules for Reproducible Computational

Research. Bourne PE, editor. PLoS Comput Biol [Internet]. 2013 Oct 24 [cited 2017 Nov 3]; 9(10):

e1003285. Available from: http://dx.plos.org/10.1371/journal.pcbi.1003285 PMID: 24204232

9. Begley CG, Ioannidis JPA. Reproducibility in science: Improving the standard for basic and preclinical

research. Vol. 116, Circulation Research. 2015. p. 116–26. https://doi.org/10.1161/CIRCRESAHA.

114.303819 PMID: 25552691

10. Peng RD. Reproducible Research in Computational Science. Science (80-). 2011; 334(6060):1226–7.

11. Yamato Y, Muroi M, Tanaka K, Uchimura M. Development of template management technology for

easy deployment of virtual resources on OpenStack. J Cloud Comput [Internet]. 2014 Dec 14 [cited

2017 Nov 3]; 3(1):7. Available from: http://www.journalofcloudcomputing.com/content/3/1/7

12. Cole BS, Moore JH. EVE: Cloud-Based Annotation of Human Genetic Variants. In: Applications of Evo-

lutionary Computation [Internet]. Springer, Cham; 2017 [cited 2017 Dec 19]. p. 83–95. Available from:

http://link.springer.com/10.1007/978-3-319-55849-3_6

13. Boettiger C. An introduction to Docker for reproducible research. ACM SIGOPS Oper Syst Rev [Inter-

net]. 2015; 49(1):71–9. Available from: http://arxiv.org/abs/1410.0846 [cited 2017 Dec 19]

14. Beaulieu-Jones BK, Greene CS. Reproducible Computational Workflows with Continuous Analysis

[Internet]. bioRxiv. 2016. Available from: http://biorxiv.org/lookup/doi/10.1101/056473 [cited 2017 Dec

19]

15. Polański K, Gao B, Mason SA, Brown P, Ott S, Denby KJ, et al. Bringing numerous methods for expres-

sion and promoter analysis to a public cloud computing service. Bioinformatics [Internet]. 2017 Nov 6

[cited 2017 Dec 19]; Available from: http://www.ncbi.nlm.nih.gov/pubmed/29126246

16. Merchant N, Lyons E, Goff S, Vaughn M, Ware D, Micklos D, et al. The iPlant Collaborative: Cyberin-

frastructure for Enabling Data to Discovery for the Life Sciences. PLOS Biol [Internet]. 2016 Jan 11

[cited 2017 Dec 14]; 14(1):e1002342. Available from: http://dx.plos.org/10.1371/journal.pbio.1002342

PMID: 26752627

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005994 March 29, 2018 10 / 11

http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1005994.s001
http://dx.plos.org/10.1371/journal.pone.0164347
http://www.ncbi.nlm.nih.gov/pubmed/27755563
http://dx.plos.org/10.1371/journal.pcbi.1002147
http://www.ncbi.nlm.nih.gov/pubmed/21901085
http://www.nature.com/doifinder/10.1038/nrg2857-c2
http://www.nature.com/doifinder/10.1038/nrg2857-c2
http://linkinghub.elsevier.com/retrieve/pii/S1874391913000134
https://doi.org/10.1016/j.jprot.2012.12.026
https://doi.org/10.1016/j.jprot.2012.12.026
http://www.ncbi.nlm.nih.gov/pubmed/23305951
http://doi.wiley.com/10.1111/j.1365-2796.2011.02491.x
http://www.ncbi.nlm.nih.gov/pubmed/22142244
https://doi.org/10.1038/523149a
http://www.ncbi.nlm.nih.gov/pubmed/26156357
http://ieeexplore.ieee.org/document/5708447/
http://dx.plos.org/10.1371/journal.pcbi.1003285
http://www.ncbi.nlm.nih.gov/pubmed/24204232
https://doi.org/10.1161/CIRCRESAHA.114.303819
https://doi.org/10.1161/CIRCRESAHA.114.303819
http://www.ncbi.nlm.nih.gov/pubmed/25552691
http://www.journalofcloudcomputing.com/content/3/1/7
http://link.springer.com/10.1007/978-3-319-55849-3_6
http://arxiv.org/abs/1410.0846
http://biorxiv.org/lookup/doi/10.1101/056473
http://www.ncbi.nlm.nih.gov/pubmed/29126246
http://dx.plos.org/10.1371/journal.pbio.1002342
http://www.ncbi.nlm.nih.gov/pubmed/26752627
https://doi.org/10.1371/journal.pcbi.1005994


17. Sabahi F. Cloud computing security threats and responses. In: 2011 IEEE 3rd International Conference

on Communication Software and Networks [Internet]. IEEE; 2011 [cited 2017 Nov 3]. p. 245–9. Avail-

able from: http://ieeexplore.ieee.org/document/6014715/

18. Grossman RL. The Case for Cloud Computing. IT Prof [Internet]. 2009 Mar [cited 2017 Nov 3]; 11

(2):23–7. Available from: http://ieeexplore.ieee.org/document/4804045/

19. Langmead B, Hansen KD, Leek JT. Cloud-scale RNA-sequencing differential expression analysis with

Myrna. Genome Biol [Internet]. 2010 [cited 2017 Jun 15]; 11(8):R83. Available from: http://

genomebiology.biomedcentral.com/articles/10.1186/gb-2010-11-8-r83 PMID: 20701754

20. Villamizar M, Garces O, Ochoa L, Castro H, Salamanca L, Verano M, et al. Infrastructure Cost Compar-

ison of Running Web Applications in the Cloud Using AWS Lambda and Monolithic and Microservice

Architectures. In: Proceedings—2016 16th IEEE/ACM International Symposium on Cluster, Cloud, and

Grid Computing, CCGrid 2016 [Internet]. IEEE; 2016 [cited 2017 Dec 19]. p. 179–82. Available from:

http://ieeexplore.ieee.org/document/7515686/

21. Mailman MD, Feolo M, Jin Y, Kimura M, Tryka K, Bagoutdinov R, et al. The NCBI dbGaP database of

genotypes and phenotypes. Nat Genet [Internet]. 2007 Oct 30 [cited 2017 Dec 18]; 39(10). Available

from: http://www.nature.com/doifinder/10.1038/ng1007-1181

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005994 March 29, 2018 11 / 11

http://ieeexplore.ieee.org/document/6014715/
http://ieeexplore.ieee.org/document/4804045/
http://genomebiology.biomedcentral.com/articles/10.1186/gb-2010-11-8-r83
http://genomebiology.biomedcentral.com/articles/10.1186/gb-2010-11-8-r83
http://www.ncbi.nlm.nih.gov/pubmed/20701754
http://ieeexplore.ieee.org/document/7515686/
http://www.nature.com/doifinder/10.1038/ng1007-1181
https://doi.org/10.1371/journal.pcbi.1005994

