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Canada, 2 Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich Heine

Universität, Düsseldorf, Germany

* peter.donhauser@mail.mcgill.ca

Abstract

Magnetoencephalography and electroencephalography (MEG, EEG) are essential tech-

niques for studying distributed signal dynamics in the human brain. In particular, the func-

tional role of neural oscillations remains to be clarified. For that reason, imaging methods

need to identify distinct brain regions that concurrently generate oscillatory activity, with ade-

quate separation in space and time. Yet, spatial smearing and inhomogeneous signal-to-

noise are challenging factors to source reconstruction from external sensor data. The detec-

tion of weak sources in the presence of stronger regional activity nearby is a typical compli-

cation of MEG/EEG source imaging. We propose a novel, hypothesis-driven source

reconstruction approach to address these methodological challenges. The imaging with

embedded statistics (iES) method is a subspace scanning technique that constrains the

mapping problem to the actual experimental design. A major benefit is that, regardless of

signal strength, the contributions from all oscillatory sources, which activity is consistent

with the tested hypothesis, are equalized in the statistical maps produced. We present

extensive evaluations of iES on group MEG data, for mapping 1) induced oscillations

using experimental contrasts, 2) ongoing narrow-band oscillations in the resting-state, 3)

co-modulation of brain-wide oscillatory power with a seed region, and 4) co-modulation of

oscillatory power with peripheral signals (pupil dilation). Along the way, we demonstrate sev-

eral advantages of iES over standard source imaging approaches. These include the detec-

tion of oscillatory coupling without rejection of zero-phase coupling, and detection of

ongoing oscillations in deeper brain regions, where signal-to-noise conditions are unfavor-

able. We also show that iES provides a separate evaluation of oscillatory synchronization

and desynchronization in experimental contrasts, which has important statistical advan-

tages. The flexibility of iES allows it to be adjusted to many experimental questions in sys-

tems neuroscience.

Author summary

The oscillatory activity of the brain produces a repertoire of signal dynamics that is rich

and complex. Noninvasive recording techniques such as scalp magnetoencephalography
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and electroencephalography (MEG, EEG) are key methods to advance our comprehen-

sion of the role played by neural oscillations in brain functions and dysfunctions. Yet,

there are methodological challenges in mapping these elusive components of brain activity

that have remained unresolved. We introduce a new mapping technique, called imaging

with embedded statistics (iES), which alleviates these difficulties. With iES, signal detec-

tion is constrained explicitly to the operational hypotheses of the study design. We show,

in a variety of experimental contexts, how iES emphasizes the oscillatory components of

brain activity, if any, that match the experimental hypotheses, even in deeper brain

regions where signal strength is expected to be weak in MEG. Overall, the proposed

method is a new imaging tool to respond to a wide range of neuroscience questions con-

cerning the scaffolding of brain dynamics via anatomically-distributed neural oscillations.

This is a PLoS Computational Biology Methods paper.

Introduction

The role of neural oscillations in population codes of brain functions, and the possible mecha-

nisms of inter-regional communication between brain regions are not entirely understood.

Source imaging techniques with magnetoencephalography (MEG) or electroencephalography

(EEG) are time-resolved, non-invasive tools used to test a great diversity of neurophysiological

hypotheses [1]. In principle, MEG/EEG imaging can map multiple regional sources of oscil-

latory activity from external sensor data. However, spatial smearing and heterogeneous signal

strength across brain locations limits the performance of current source imaging methods.

Consequently, if nearby brain regions express an effect of interest, the area of stronger magni-

tude will mask the detection of weaker sources, as illustrated in Fig 1. The detection of multiple

oscillatory sources therefore remains challenging to MEG/EEG imaging. This limits the insight

about distributed brain dynamics that can be gained from the technique.

MEG/EEG localization of oscillatory generators typically relies on a procedure that is non

optimal in terms of signal detection. Source time-series are first reconstructed using imaging

or beamforming approaches [2]. Second, inferential statistics based on the experimental

hypothesis are tested at each voxel of the source space—e.g., using the ratio of oscillatory

Fig 1. Illustration of the field-spread effect on the detection of weak MEG sources. Point-like sources are typically

recovered using beamforming or minimum-norm estimation (MNE) imaging at the expense of exaggerated spatial

smearing in the source space. The Source 1 and Source 2 maps are examples of such effect when active separately.

When both sources are active simultaneously, their relative strengths impact the ability of source imaging to spatially

resolve between the two active regions. When both source magnitudes are similar (Source strength 1 = 2), the map can

display their respective contributions. When one source is weaker than the other (Source strength 1< 2), its presence

in the resulting source map may be masked by that of the strongest source (here Source 2).

https://doi.org/10.1371/journal.pcbi.1005990.g001
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power between two experimental conditions. Significant and spatially-distinct regional clusters

are then interpreted as distinct sources of oscillations. This approach hinders the detection of

weaker or deeper sources in the presence of stronger regional activity. We refer to this method-

ology as the standard approach.

We introduce a novel methodology to alleviate this problem. The technique performs imag-

ing with embedded inferential and group prevalence statistics (iES) altogether. With iES, the

experimental hypothesis is not deferred to the stage of statistical inference on the estimated

source values. Rather, it explicitly constrains the solution to the hypothesis tested. In essence,

iES reduces the (spatial) dimensions of the data, to detect and equalize the contribution of

source components that are consistent with the tested hypothesis. The iES methodological

apparatus is based on generalized eigen decompositions [see e.g. 3], nonparametric statistics

[4, 5] and subspace scanning [MUSIC, see 6]. The paper is organized as follows: Results: We

first give a high-level description of the iES approach, starting with the basic principles and

then illustrating a full group analysis with an MEG dataset. We then illustrate the advantages

of iES using experimental data and simulations, and show that iES 1) has key statistical advan-

tages, yielding improved detection sensitivity, 2) can be used in conjunction with the standard

approach, for complementary estimation of source strengths, 3) improves the detection of

functionally connected regions, and that 4) iES can implement a wide range of experimental

hypotheses. Discussion: We then put iES in the context of previous work and discuss limita-

tions. Materials and Methods: Finally, we provide all the experimental details and the full math-

ematical formulation of the iES approach.

Results

Overview of the approach

We describe the basic principles of iES and illustrate the steps involved using a MEG data

example. The method per se is detailed in Materials and Methods.

Basic principles. We propose to transcribe the experimental hypothesis into a quality

function f(s) over a signal s. f(s) is defined such that it returns larger values if s is consistent

with the hypothesis. In Fig 2a we show the quality functions featured as examples in this article,

with multiple possible variations, as discussed below. For example, in the case where stimulus-

induced responses in the gamma band (50-85 Hz) are expected, f(s) would be designed to

return the ratio of gamma power between time segments when the stimulus is presented vs.

when the stimulus is absent. Note that the tested design is a directed one: in the latter example,

testing for gamma power increases vs. decreases are two different hypotheses that are evaluated

separately. Fig 2a shows several use cases and signals s that are either consistent or inconsistent

with the hypothesis quantified by f(s) values.

Let x[t] denote the MEG/EEG time-series recorded from an array of channels (Fig 2b) and

X the data matrix (channels × time samples t). The quality function f is used in an optimization

problem to identify spatial filters wj and spatially-filtered signals sj½t� ¼ wT
j x½t� in the data such

that the quality function is maximized as

argmax
w

f ðwTXÞ ð1Þ

and spatial patterns pj, j = 1, . . ., D describing the spatial patterns that contribute to the

recorded time-series in the decomposition as

x½t� ¼ p1 � s1½t� þ :::þ pD � sD½t� þ � ð2Þ

(Fig 2c). The combination of spatial filters, patterns and corresponding signals is comparable
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to the notion of ‘components’ in independent component analysis [ICA, 7], which yields mix-

ing (spatial patterns pj) and unmixing (spatial filters wj) matrices as well as ICA time-series

(spatially filtered signals sj[t]). The spatial patterns of signals that conform to the tested hypoth-

esis (i.e. have high quality function values f(s)) represent a subspace of the MEG/EEG channel

space [the signal subspace, see 6].

The MEG/EEG forward model is a three-column matrix G(ρ) that describes the signal pro-

duced at the channel array by an elementary current source at location ρ with a dipole moment

m, a vector that has three values corresponding to the three directions in space (Fig 2d). There-

fore the forward fields of current sources with different dipole orientations also form a sub-

space of the MEG/EEG channel space. The iES method proceeds by scanning each elementary

brain location of the source space. The source space can be a uniform 3-D grid of the brain vol-

ume, or restricted to the cortical surface (Fig 2e). At each tested brain location, the correspon-

dence between the forward fields from this location and the data spatial patterns identified by

the quality function is evaluated using the measure of subspace correlation (subcorr). This lat-

ter quantifies the smallest principle angle between two subspaces [6]. Intuitively, the data and

the physical forward models are compared at each brain location, with respect to the experi-

mental hypothesis. The procedure generates a map of possible sources, which activity accounts

for the experimental effect of interest.

Fig 2. Basic principles of iES. a) Examples of designs: The experimental design (shown as a black trace) determines the quality function f(s), so that this

latter takes high values for signals consistent with the hypothesis (in orange; the signals that do not correspond to the tested hypothesis are shown in

blue). b) MEG data: the multichannel MEG recordings are captured in the matrix X = {x[t = 1], . . ., x[t = T]}. c) Computing the signal subspace: spatial

patterns P = {p1, . . ., pD} are extracted from the MEG data by optimizing the quality function with respect to spatial filters W = {w1, . . ., wD}. Whereas

W is used to extract the signals of interest from the multichannel MEG data, P are the forward fields of these signals as they contribute to the measured

MEG data. d) Computing the forward model: shown are the MEG spatial patterns G(ρ) generated by two tangential dipoles at location ρ in a single

subject. e) Subspace correlation as a scanning metric: The spatial patterns from c) and d) span a subspace of the MEG sensor space. A grid of source

locations is scanned with a subspace correlation metric [6], quantifying the smallest possible angle between the data and source subspaces. This yields a

distributed map of scores, which highlights possible source locations consistent with the hypothesis.

https://doi.org/10.1371/journal.pcbi.1005990.g002

Imaging of neural oscillations

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005990 February 6, 2018 4 / 33

https://doi.org/10.1371/journal.pcbi.1005990.g002
https://doi.org/10.1371/journal.pcbi.1005990


Since the effect strength is entirely captured in the quality function f(s), it does not directly

influence the subcorr values. Therefore, the contribution of the hypothesis-consistent sources

are equalized in the resulting maps, which contributes to their detection, regardless of their

respective strengths.

Extension to group-level analysis. So far, subspace scanning techniques have been mostly

used to identify equivalent dipole sources in single-subject MEG/EEG data [6, 8]. We describe

a principled approach to conduct group level analyses with the proposed method, using an

example data set. The data was obtained from a variation of the visual attention experiment in

[9], where a contracting circular grating was presented to participants in MEG. In each trial,

after 3-5 seconds following stimulus onset, a change in the contraction speed occurs and par-

ticipants had to indicate their perception of the change with a button press. To illustrate the

methodology, iES was used to identify the regions where gamma-band (50-85Hz) power was

stronger during visual stimulus presentation, with respect to baseline, prestimulus periods.

Gamma oscillations generated in occipital visual regions are expected to be reliably enhanced

by this paradigm [9]. The quality function finduced was defined as the ratio between the gamma

power during the interval [1, 3] seconds post-stimulus onset, and the gamma power during the

baseline interval [-2, 0] seconds (0s corresponds to stimulus onset).

Fig 3 shows the iES group analysis workflow in detail. First, the signal subspace estimation

described above yields components from each participant that can be interpreted similarly to

those of a principal component analysis (PCA) decomposition (Panel a). The subset of spatial

patterns retained for source-space scanning corresponds to the iES components with highest

quality function scores, exceeding a threshold f �induced. This threshold is determined by a permu-

tation procedure under the null hypothesis of exchangeability of baseline and stimulus data

segments. A permutation histogram of finduced values is obtained, and f �induced is set to the value

that is higher than nperm − pcrit/2 � nperm values of the permutation distribution, with pcrit = .05

and the number of permutations nperm = 1000 in the example presented. In our example, this

procedure yields five spatial components to be included in the definition of the signal subspace

(Fig 3a). The sensor spatial patterns suggest occipital signal origins of stronger gamma-band

activity during stimulus presentation. The iES decomposition, akin to PCA, produces orthogo-

nal signal components sj. Thus the corresponding spatial patterns do not necessarily represent

anatomically distinct sources: the spatial localization of corresponding sources is subsequently

obtained via scanning of the source space.

The computation of this subspace is performed at the individual level, resulting in different

numbers of subspace dimensions retained per subject. At the group level, our approach

acknowledges that the effect being tested may be absent in some participants. Concretely, their

data may not contain a spatial pattern whose finduced exceeds the critical value f �induced. Rather

than pretending otherwise and averaging across all participants, as in the standard approach,

we put forward the concept of population prevalence γ to account effectively for the variability

of the tested effect in the group (Fig 3b) [see also 10, for similar discussions]. This notion

enables to form a prediction on how many subjects in the sample are expected to show an

effect. A prevalence null hypothesis, H0: γ� γ0, can be tested using a simple binomial distribu-

tion. The null hypothesis can be e.g., that the effect is absent from the population (γ0 = 0, global

null hypothesis) or that it is present in less than half of the population (γ0� .5, majority null

hypothesis). The null hypothesis is rejected if observing the number of subjects presenting the

effect has a probability lower than a critical value (here pcrit = .05). In the present example of

induced gamma oscillations, all subjects in the sample show the effect of interest. This means

we can reject the majority null hypothesis (γ0� .5), and the highest γ0 that can be rejected at
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the given significance level is γ0 = .83, which can be interpreted as a lower-bound estimate on

the population prevalence.

The spatial patterns pj in Fig 3a all have corresponding spatially-filtered signals sj[t]. We

show in Fig 3c and 3d examples of time series, time-frequency decompositions and power

spectra of the signals corresponding to the largest effect (s1[t]). By construction (in terms of

Fig 3. iES group analysis: Mapping induced gamma oscillations during visual stimulation. a) Subspace computation, example subject: (left) values of

the quality function finduced for all the spatial patterns in the MEG data, ranked in decreasing order. The components with the 5 largest values of the

quality function were deemed consistent with the tested hypothesis (highlighted with black dots—left, and their sensor topographies shown to the

right). This was determined via permutation tests, which yielded f �induced , a threshold indicating the minimum value of the quality function for

significance (p< 0.05). Note that the number of significant components may vary per subject, as illustrated hereafter. b) Effect prevalence, group level:
(left) number of significant spatial components for each subject (Kobs = 17 is the number of participants in this example). The subject illustrated in Panel

A is shown in blue; (right) prevalence testing results (as detailed in Materials and Methods) showing the likelihood of the data under a population

prevalence γ. γ = .83 is the highest value that can be rejected at p< 0.05 (horizontal dashed line). c) Spatially-filtered signals, example subject: (left) three

example trials: the increase in gamma oscillations after stimulus presentation can be readily appreciated visually in the spatially-filtered signals; (right)

average time-frequency map across 220 trials: here too, the strong induction of gamma activity is clearly visible. d) Spatially-filtered signals, group level:
(left) average wavelet power of spatially-filtered signals in the two time periods of interest (baseline and visual stimulus). Values are expressed in

decibels with respect to empty-room MEG recordings, shaded regions are standard errors over subjects; (right) power spectra of the stimulus period in

decibels with respect to the baseline period. Thin lines represent single-subject data. e) Subspace correlation maps, example subject: (top) Map of subcorr
values in the 3-D source grid, indicating the location of brain regions generating stimulus-induced gamma activity, (bottom) Fisher-z transformed map.

f) Subspace correlation maps, group level: (left) a permutation procedure to determine a statistical threshold to apply on the average subcorr scores. The

figure shows the histograms of the permuted and observed subcorr values; (right) group-level average subcorr map, thresholded at p< 0.05. The effect

confirms the single-subject data shown, and localizes to the occipital visual cortex.

https://doi.org/10.1371/journal.pcbi.1005990.g003
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maximizing the finduced quality function), these signals present the largest ratio of gamma

power between stimulus and baseline periods. Strong, tonic gamma oscillations are clearly visi-

ble after stimulus onset, along with reductions in alpha/beta power [9]. A 3.2-Hz oscillatory

component is also found: it corresponds to the entrainment of lower-frequency neural compo-

nents at the pattern-repetition frequency of the contracting circular grating.

We used the subcorr metric to produce source-level maps for each effect-prone subject, i.e.

whose data features a non-null signal subspace. We show an example of an individual subcorr
map in Fig 3e, which as expected, indicates a spatial peak in occipital visual regions. The

Fisher-z transform arctanh(subcorr) can be applied to obtain a sharper map (referred to as sub-
corr-z). We then performed statistical inference at the group level, using group averaged sub-
corr maps in a permutation procedure (Fig 3f). A permutation distribution of the maximum-

statistic is computed under the null hypothesis of exchangeability of signal subspace with a

dimension-matched subspace drawn from the opposite end of the decomposition spectrum in

Fig 3a. The null hypothesis thus reflects the assumption that the effects were not localized and

spatially consistent across the tested cohort. This procedure yielded a statistically thresholded

map of average subcorr values, highlighting the brain regions spatially consistent across the

group, with an activity profile responding to the experimental question of interest. Here, the

resulting map pointed to the visual cortex as the source of the gamma oscillations induced by

the visual stimulus. This result was expected from published reports, and therefore further

strengthens the validity of the proposed approach.

Distinct evaluation of positive and negative effects improves statistical

power

The iES source maps highlight sources whose signals are consistent with a directed hypothesis

across a group of subjects. When two experimental conditions are contrasted, this implies that

two distinct source maps can be produced: for instance in the previous case example, one map

corresponding to increased oscillatory power in one condition over the other; the other map

corresponding to decreased oscillatory power. The benefit resulting from this is that mutual

interference in the detection and statistical evaluation of the two sets of sources is avoided.

We demonstrate these methodological assets using the same experimental MEG data as

above. We analyzed task-induced oscillations in the beta band (13-30 Hz), with the hypothesis

that they were strongly suppressed during attention-demanding tasks in the occipital visual

cortex [9, 11]. We also wished to test whether other brain regions would reveal a selective

increase in beta power during stimulus presentation. This contrast thus serves to illustrate how

a strong power effect (decreased beta power) can challenge the detection of weaker opposite

responses (increased beta power) with the standard approach, but not with iES.

Fig 4 shows results for the hypothesis of increased beta band power during stimulus presen-

tation. The data from an example subject (Panel a) contained one spatial component consis-

tent with that hypothesis. At the group level, only eight subjects out of 17 showed the effect of

interest. Here, we shall emphasize the importance of the notion of effect prevalence, since the

majority null hypothesis could not be rejected (Fig 4b). However, the prevalence null hypothe-

sis can be rejected up to γ0 = 0.22, which indicates there is a subgroup of the population from

which our subjects were drawn, which shows the hypothesized effect. To better illustrate the

significance of this notion, let us first assume the effect is not present in the population. With a

probability of 0.95, one may still observe out of chance an effect in up to 3 out of the 17 sub-

jects. The prevalence test therefore indicates that the observed data are unlikely under the

assumption that prevalence is 22% or less (at a false positive rate of p< .05). Thus we pursued

further the analysis of the subgroup of 8 participants (see Fig 4b), bearing in mind that the
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results may not generalize to the majority of the population. The validity of such a decision

depends on whether the scientific question is pertinent to generic vs. restricted effects among

participants. For instance, it can be particularly valuable for identifying effects that are more

specific of a sub-type of participants in terms of behaviour or clinical condition.

Fig 4c and 4d shows typical signal traces in a subject from the subgroup presenting stronger

beta and alpha oscillations building up during stimulus presentation. The sharp waveforms

and the combined alpha/beta spectral pattern were typical of the somatosensory mu rhythm

[12, 13]. The effect was localized to right postcentral regions, as shown in the example subject

and the group subcorr maps (Fig 4e and 4f). This result replicates previous observations of lat-

eralized beta oscillations during an attention-demanding task [14].

Fig 4. Effects in a subgroup of participants: Mapping induced oscillations in the beta band (13-30 Hz) during visual stimulation. The data are that

of Fig 3, and the present figure layout is identical. a) Subspace computation, example subject: in this participant, only one significant spatial dimension

was retained for the signal subspace contributing to stronger power in the beta band. b) Subspace computation, group level: γ = .22 was the highest

population prevalence that could be rejected at a p = 0.05, thus the majority null hypothesis could not be rejected. The analysis was pursued with the

subgroup (n = 8) of participants that showed the hypothesized effect. The purpose was to appreciate the spatial concordance across subjects and

compare iES to standard source imaging approaches. c) Spatially filtered signals, example subject: induced power changes in the band of interest (beta,

but also in alpha band) are clearly visible in 3 example trials. d) Spatially filtered signals, group level: induced power changes in the band of interest were

found in the participant subgroup (n = 8). e) Subspace correlation maps, example subject: the hypothesized effect localized to the right post-central/

parietal cortex. f) Subspace correlation maps, subgroup level: the effect localized to the right post-central gyrus. Note that this effect cannot be generalized

to the majority of the population that the subjects were drawn from (see b) but only to a subset, which may present interesting capacity for identifying

subtypes in participants.

https://doi.org/10.1371/journal.pcbi.1005990.g004
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To compare these findings with those from the standard approach, we obtained source

maps of log-power ratios using minimum-norm imaging kernels. We used the MNE imple-

mentation of Brainstorm, with default parameters [15, see also descriptions in Materials and

Methods]. The resulting maps were statistically thresholded following the same permutation

procedure based on the maximum statistic. Note that with this procedure, distinct maps of

positive and negative effects cannot be produced. For comparison purposes, we used the data

from the subgroup (n = 8) that showed the desired effect of higher beta power during stimulus

presentation.

Fig 5a shows the complete beta band iES results (i.e. increases and decreases). In addition to

the increased stimulus-induced beta power over right postcentral regions, we observed beta

suppression in the visual cortex. The prevalence assessment revealed that this latter effect was

observed in the entire group, and thus may generalize to the majority of the population. In the

minimum-norm map (Panel b), the suppression of beta oscillations in the visual cortex was

also readily observed, with similar spatial extension. However the increased, stimulus-induced

beta oscillations over the right central regions were absent from the minimum-norm map

Fig 5. Comparing statistical performance of iES with minimum-norm imaging for mapping induced oscillations. a) Subspace scanning results:
(left) significant average subcorr map (p< .05, see text for procedure). Note that results were obtained from the subgroup of participants that

presented the hypothesized effect (n = 8, see Fig 4). (right) histogram from observed data and permutation tests to derive a subcorr threshold

corresponding to p< .05. b) Minimum-norm imaging results: average maps of log-transformed power ratios (stimulus/baseline, p< .05). Note that

the distinction between positive and negative effects is not possible. The results were derived from the same subgroup (n = 8) to allow comparison

with a), the results obtained with the full group (n = 17) are shown as an outline. Contrary to iES, no increase in beta power could be detected over

the right post-central gyrus region, with the same subgroup of subjects. Unthresholded maps are shown in the supplementary material. (right)

histograms of observed data and permutation tests to determine significance of minimum-norm maps at p< .05. Note how the strong negative

effects inflated the permutation distribution and prevented the detection of the smaller positive effects. As shown using iES, positive and negative

effects could be evaluated separately and specifically.

https://doi.org/10.1371/journal.pcbi.1005990.g005
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produced from the 8 subjects presenting the effect in iES. The non-thresholded maps are

shown in Supplementary Material, and confirm that a positive peak was indeed present in

the minimum-norm maps, but was not deemed statistically significant. The reason for the

observed discrepancy between methods can be understood from the permutation and data his-

tograms (Fig 5, right column): By definition, the permutation histograms of the log-power

ratios were mirror images for the evaluation of positive and negative effects respectively. This

was the case because we drew exhaustive permutations from the data from the 8 subjects

(28 = 256). Thus every unique permutation of labels had a corresponding opposite permuta-

tion. The consequence was that the variance and spread of the resulting distribution were

determined by the strongest effect in magnitude—here the negative effect of beta suppression.

The histogram of the observed data indicated that the right tail of the histogram indeed did

not reach the statistical threshold. The iES allowed to test two directed hypotheses separately.

Hence the permutation distributions were distinct and adapted to each respective hypothesis,

revealing the positive effect in the iES statistical source map that was absent in the standard

approach.

Supplementary insight gained compared to standard approaches

We detail in Methods that iES requires the estimation of cross-spectral or covariance matrices,

and their decomposition in the generalized eigenvalue framework. This means that, in addi-

tion to the subcorr statistical maps produced, a corresponding map of the standard approach

can be obtained by applying a minimum-norm imaging kernel to those matrices, which allows

plotting the value of the quality function f at each location of the source grid. Fig 5 shows an

example of this approach to obtain a map of log-power ratios. We emphasize that the com-

bined use of subcorr and minimum-norm source maps enabled by the proposed method pro-

vides complementary information with respect to the experimental hypothesis of interest.

We demonstrate such benefit using the same visual-attention MEG data, to detect the ori-

gins of narrow-band oscillations (Fig 2a). The corresponding quality function fnarrow quantifies

the ratio of signal power in a frequency range of interest with respect to the total power of the

broadband signal. Such a quality function highlights signals with a peaky spectral profile [16],

which is of specific interest when studying stimulus-independent ongoing oscillations. We

used the data of the ongoing visual stimulus period ([1, 3] s after stimulus onset) to investigate

the anatomical origins of three frequency bands of interest: theta (4-8 Hz), alpha (8-13 Hz)

and beta (13-30 Hz). The reference broadband signal against which to contrast possible effects

in the narrow frequency bands of interest was taken between 2 and 100 Hz.

We compared the subcorr statistical maps with the minimum-norm maps of fnarrow (Fig 6).

The log-transform of the ratios was not applied because negative effects were of no interest to

the question, thus a symmetric measure was not required. A threshold 0 < f �narrow < 1 for

selecting relevant signal subspace patterns was computed with the bootstrap procedure

described in Materials and Methods. In the alpha and beta bands the results were similar

between our approach and standard imaging. Commonly observed brain regions as strong

sources of these ongoing rhythms were found [see e.g., 17]. Alpha activity was prominent in

medial occipital-parietal regions; beta activity was stronger over bilateral sensory-motor

regions. Alpha band oscillations were also found prominently over the right postcentral

region, which parallels the finding of enhanced alpha and beta power during the stimulus

period in the same brain area, as shown in the previous section.

We found differences between iES and minimum-norm maps in the theta band. The sub-
corr statistical map revealed involvement of the medial temporal lobes (MTL) bilaterally, and

of medial frontal/anterior cingulate regions. Theta oscillations in MTL, including the
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hippocampus and parahippocampal regions, have been extensively described [18]. Due to

their relative depth and therefore lower MEG signal-to-noise ratios (SNR), they have been con-

sidered more challenging to detect [19, 20, 21]. The MNE power-ratio maps though showed a

lateralized distribution of theta activity in the right MTL. We argue that both results are not

mutually exclusive: they indicate that both the left and right MTL were consistent sources of

theta oscillations in the tested group. However, the effect strength in the right MTL was higher

in the average power ratios of theta. Such insight could not be gained with either approach

taken separately and required the direct comparison of the iES and MNE statistical maps.

Fig 7 shows simulation results to illustrate and underline further the difference in sensitivity

between the iES and standard approach. For each simulation run (300 iterations) we generated

five minutes of data. Source time-series with a 1/f spectral profile were generated for 68 source

locations distributed evenly across the brain according to the Desikan-Killiany atlas from Free-

surfer [22]. For two of these locations (precentral left and right), we selectively amplified

power in the frequency of interest (8-13 Hz) to obtain a specified ratio fnarrow between narrow-

band and broadband power (1-100 Hz). Whereas an fnarrow of 0.6 was targeted for source 1, the

targeted fnarrow for source 2 was varied between 0.2 and 0.6. After generating MEG data from

this simulation setup, we applied iES (with a f �narrow threshold of 0.22) and the standard

approach to detect narrow-band oscillations in the frequency band of interest and computed a

metric that quantified the probability of detecting both sources of narrow-band oscillations.

Fig 7d shows that the two methods differ systematically: the sensitivity of the standard

Fig 6. Mapping of narrow-band oscillations. The sources of narrow-band signals were mapped for the theta, alpha and beta frequency bands using

a) iES subspace scanning and b) power ratios from minimum norm imaging (narrow-band over broadband 2-100Hz). iES allows for statistical

thresholding across the group using permutation procedures that are equivalent for all use cases. The theta band results showed marked differences

between the two approaches in deeper, medial temporal regions. iES revealed bilateral sources whereas MNE power ratio maps pointed at

predominant source activity in the right hemisphere.

https://doi.org/10.1371/journal.pcbi.1005990.g006
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approach scales with the differences in fnarrow between the two sources, whereas iES’ sensitivity

is not influenced by uneven source activity and detects sources above the chosen threshold

with a constant probability. This encourages using the different sensitivity profiles of the two

methods in conjunction, to obtain complementary information as shown in the data example

above. We show the results of a related simulation in S4 Fig where source 2 was a deep source

(left parahippocampal) and source 1 a cortical source (left precentral). In this challenging sce-

nario iES outperforms MNE in detecting both sources.

Assessment of functional connectivity

Because of spatial smearing, the study of functional connectivity is a challenging problem for

MEG and EEG source imaging (see Fig 1). Since the seed region is maximally correlated with

itself and neighbouring regions, with correlated time series due to field spread of the MEG/

EEG inverse operator, functional connectivity maps tend to be biased towards artificially

inflated values of connectivity measures. This issue is discussed in [23] and generally addressed

Fig 7. Simulation results comparing sensitivity of iES and standard approach. a) Examples of simulated time-series

that follow a 1/f spectral distribution (grey trace) or target a pre-specified fnarrow, which is the ratio between narrow-

band and broadband power (blue traces). b) Simulation setup: Two sources of interest in blue targeting pre-specified

fnarrow (blue traces) are embedded in background brain noise composed of 1/f signals evenly distributed across 66

locations. c) Metric of detection probability: We quantified the probability that the two sources of interest were

detected in a source map by using a range of different thresholds: the two sources were detected, if they were contained

in two separate clusters after thresholding. Here we show 4 different thresholds in two simulation scenarios using the

standard imaging approach. In the first scenario, sources were detected with 2 out of 4 (detection probability: 0.5)

threshold values. In the second scenario, sources were detected only with 1 out 4 (detection probability: 0.25) threshold

values. This configuration illustrates the issue of concurrent sources with different strengths on the detection of

separate clusters of activity. d) Comparison of methods: the maps from each simulation run were thresholded using 50

different values to estimate a detection probability as in c). Since the range of data values for both MNE and iES were

different, we normalized the detection probability by the maximum value obtained in each method. Thus we did not

compare the absolute detection probability between the two methods, but rather how it varied with respect to the

difference in fnarrow, between the sources of interest.

https://doi.org/10.1371/journal.pcbi.1005990.g007
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with methods that discard all contributions of zero phase-lag time series, either by orthogonal-

izing signals [23] or via measures of the imaginary part of coherence [24]. However, zero-lag

coherence between distant regions is plausible theoretically [25] and was observed physiologi-

cally [26]. We demonstrate the relevance of iES to address this issue, by studying amplitude

correlations in the alpha band (8-13 Hz) with respect to an anatomical seed placed in the sen-

sorimotor cortex. The tested hypothesis was to reveal amplitude correlations with homologous

contralateral brain regions [23, 27, 28].

Fig 8 shows results from resting-state data obtained during the same recording session as

the visual stimulus experiment. a) shows example time series of co-occurring oscillatory bursts,

which form the basis of amplitude correlations between two distant brain regions. The time

series were extracted from bilateral central regions. We show occurrences of 270˚/90˚ phase

differences during alpha bursts—note that the phase estimation of MEG source signals has a

180˚ ambiguity due to arbitrary conventions on source direction [29]—and of 180˚/0˚ phase

differences, which would be discarded by other methods [23, 24]. We argue that the zero-lag

correlations shown here are not spurious, as evidenced by their differences in waveform and

amplitude dynamics. This data example provides a proof of principle that studying zero-lag

connectivity using MEG is achievable. We next proceeded to map significant inter-regional

amplitude correlations in the presence of field spread.

We extracted the source time series yref from the left central sulcus location that was the

closest to the activation peak (MNI coordinates [-39, -27, 55] mm) corresponding to the search

term ‘finger’ in the Neurosynth meta-analysis tool [30]. We defined the iES quality function

Fig 8. iES mapping amplitude correlations of a seed region with the rest of the brain during rest. a) We show example traces of co-occurring

oscillatory bursts in the alpha band (8-13 Hz) in the resting-state, from the same MEG sessions as presented in previous sections. The two

examples have different phase lags, around 270˚ and 180˚ respectively [which would be discarded in other approaches, see e.g., 23]. b)
Correlation of alpha amplitudes between the seed region (circle) and the rest of the brain, using minimum-norm imaging in an example subject.

c) (left) iES subcorr map showing source locations whose amplitudes correlated with the seed region’s at r> .4. The homologous contralateral

region is emphasized in this map. (right) the same map with the data projected away from the spatial pattern of the seed region. d) Same as b)

but averaged over the group e) same as c) but averaged over the group and statistically thresholded using the permutation approach explained

above.

https://doi.org/10.1371/journal.pcbi.1005990.g008
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fampcorr(s, yref) as the correlation between the amplitude of other source time series s and yref.

The outcome to this optimization process is the third use case of iES and is illustrated in Fig

2a. The optimization is done using a solution described in [31] and involved splitting the data

in epochs of one second length. We set a correlation threshold of r> 0.4 for spatial compo-

nents to be included in the signal subspace for the subcorr analysis.

Fig 8b and 8c shows—in a single subject example—that iES was able to reveal the contralat-

eral anatomically-homologous region as the primary distant connected region with the refer-

ence brain location. The conventional minimum-norm based map of correlation values was

dominated by spurious crosstalk correlation surrounding the seed region. The performance of

iES is explained by the equalized contribution of spatial components that are consistent with

the embedded hypothesis (r> 0.4). To further limit the contribution of the seed region to the

data, it is possible to project the signal subspace and forward fields away from the spatial for-

ward field of the seed region, as illustrated in Fig 8c. The group analysis further reveals that

connectivity maps were dominated by crosstalk effects from the seed reference signal, both in

the minimum-norm based maps and in the raw subcorr map (Fig 8d and 8e). Projecting away

the seed’s contribution before computing every subject’s maps was necessary to confirm the

hypothesized contralateral coupling. Note that with iES and in contrast with other approaches

[23], the temporal dynamics of the seed region are not projected away from the data; only the

spatial topography of the seed region is subtracted from the sensor data. Thus iES does not

exclude the detection of physiological zero-lag coupling.

We provide a simulated example in S2 and S3 Figs that illustrates this point. If there is a

source that is correlated in amplitude with the seed and the underlying oscillations have a zero

phase difference, the two sources will be captured by only one subspace pattern. In this case

the coupled region will be picked up by the iES procedure only after the signal subspace and

forward fields are projected away from the contribution of the seed topography.

Applicability to a wide range of experimental questions

As summarized in Fig 2a, iES can be used for a greater variety of experimental designs: when-

ever a reference signal yref defined 1) on a trial-by-trial basis or 2) as a continuous signal is con-

sidered, fampcorr is used to obtain subcorr maps of sources, whose source dynamics correlate

with yref. We illustrate such case in Fig 9, using simultaneous MEG and pupil diameter

recordings.

Fig 9. Mapping correlation of a peripheral signal with neural oscillation amplitudes. a) video frames from an eye

tracker camera during a MEG recording at rest, pupil diameter was extracted using a fitted ellipse. b) pupil diameter

time-series time-locked to a visual stimulus onset (overlaid trials). The gray bar indicates the baseline time period for

analysis. c) subcorr map showing sources whose amplitudes correlate with pupil diameter across trials during the visual

task. The signal subspace for this analysis contained one significant component which signal correlated at r = −0.44

with changes in pupil diameter. The maps were threshold at 75% of the maximum value).

https://doi.org/10.1371/journal.pcbi.1005990.g009
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We first formed the iES hypothesis based on recent demonstrations in mice [32] that con-

tinuous pupil diameter fluctuations correlated with alpha power at rest. Measures of pupil

diameter were extracted from continuous video eye-tracking recordings by fitting an ellipse to

the pupil on a frame-by-frame basis. We demonstrate the case of trial-by-trial correlations by

analyzing pupil diameter changes prior to visual stimulus presentation from data presented in

Fig 3. The signal subspace was defined with spatial components who were deemed significant

below a p-value of 0.05 computed by a shuffling procedure across trials. The iES maps indi-

cated brain regions in the occipital cortex, consistent with the upcoming onset of a visual

stimulus.

We emphasize that a specific strength of the iES approach is its versatility: it can be

extended to a great variety of experimental designs and research hypotheses, since the experi-

mental question is formulated as an optimization problem. We derive in Methods the mathe-

matical formulation for iES coherence with a reference signal, as an additional experimental

use case. The experimental hypotheses discussed here all have corresponding quality functions

that can be solved analytically. An identical framework can be used for hypotheses that require

numerical optimization of the corresponding spatial filters. We foresee that the introduction

of the iES approach will establish a generic framework for an increasing number of experimen-

tal contexts related to a growing diversity of research questions.

Discussion

We developed the imaging with embedded statistics (iES) method to produce image maps of

the sources of neural oscillations from MEG/EEG sensor data. In this article, we showed with

ground-truth simulations and experimental data, that iES identifies source patterns that are

challenging to standard approaches, especially when masked by field-spread from other

sources in the volume. Specifically: 1) iES generates separate maps for event-related increases

and decreases in oscillatory power, which facilitates statistical inference; 2) iES can be used in

pair with standard approaches such as wMNE, with iES identifying source regions and wMNE

extracting their respective amplitudes. We also showed that 3) detection of functionally con-

nected sources presents an extreme case of source strength imbalance that can be solved using

iES, without rejecting the possibility of zero-phase delay coupling between regions. And

finally: 4) iES can be flexibly extended to a greater variety of experimental designs, by defining

quality functions suitable with the neuroscience hypothesis to be tested with the collected data.

The iES method builds on previous methodological work. In particular, we acknowledge

inspiration from previous subspace scanning approaches adapted to MEG/EEG, such as the

multiple signal classification (MUSIC) [6] and RAP-MUSIC [8] methods. These previous

approaches produced subspace correlation maps, which were subsequently pruned to sets of

discrete equivalent dipoles. These methods have inspired an abundant literature, with multiple

extensions covering different experimental questions [16, 31] and the estimation of time series

interdependencies in functional connectivity [33, 34, 35, 36]. We wish to emphasize however

that MUSIC-type methods do not provide a clear path to determine the dimensionality of the

signal subspace for each subject. With iES, we propose novel solutions using nonparametric

statistics for each use case described. Previous suggestions for component selection [37, 38] are

applicable mostly for the original MUSIC solution, which performed principal component

analysis of the event-related fields. It is also unclear how previous methods could indicate how

many elementary dipole sources could be adjusted to the data, e.g., how many iterations of

RAP-MUSIC were required. With iES, subspace correlation maps are used to perform statisti-

cal inference at the group level, thus circumventing the necessity of registering heterogeneous

discrete elementary dipole models across participants. The goal of iES thus is to produce a
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distributed and statistically thresholded map. Depending on the data, experimental context

and hypothesis embedded in iES, such maps can reveal one spatial peak—e.g., in the visual cor-

tex in the example illustrated in Fig 3 or more source regions, as for example in Fig 6, which

highlights sources of beta-band oscillatory activity over bilateral sensorimotor regions. The iES

methodology also explicitly addresses the recurrent issue of heterogeneity in the expression of

an effect of interest across individuals in a tested group of participants. We propose to use an

innovative approach in the field, based on prevalence statistics. We acknowledge that preva-

lence testing was used in multivariate decoding analyses [10], but the strategy used in iES is

quite distinct.

In sum, iES has broad, practical value to research using M/EEG imaging, where group-level

inferences are very common. In addition, iES features single-subject analysis and group-based

evaluation through the concept of effect prevalence, which can lead to new insights on subject

stratification. We consider this feature has great potential value in identifying subgroups of

participants e.g., responding differently to a specific paradigm manipulation in experimental

psychology and cognitive science, or a therapeutic intervention in clinical trials. A further

interesting property of iES is that we separate two steps of the analysis, namely 1) evaluating

the presence of a hypothesized effect in single subjects (as well as its prevalence across the

group), e.g. increased oscillatory power in a frequency band of interest during stimulus presen-

tation; and 2) the spatial consistency of this effect across the group/subgroup. Standard MNE

imaging would not be able to detect an effect that is present in all the subjects of a given study,

but is not spatially consistent across the group. In contrast, with iES we would detect that the

effect is present in all subjects, even if the group spatial maps do not show peaks that exceed

the statistical threshold. Again, we see this as a strong asset of iES, since it could prompt a

more in-depth analysis of spatial patterns in individuals. This, in turn, could lead to the discov-

ery of subgroups that differ in the spatial patterns they produce in a given experimental

paradigm.

Limitations of iES in its present form are essentially in the definition of hyper-parameters

in an ad-hoc manner. This is not specific of iES, as even the standard approaches do not pro-

vide, in practice, hyper-parameter estimation from the data or based on strong theoretical

background. For instance, the estimated covariance matrices in the first step of iES are regular-

ized using a fixed regularization parameter (see Fig 10 for the two variants used in this paper).

Recently, automatic methods [39] for selecting those regularization parameters have been pro-

posed, via maximization of the likelihood of unseen data (under the cross-validation princi-

ple). We acknowledge that these methods can be easily used for hyper-parameter selection

within the iES framework presented. Another iES hyper-parameter is the p-value threshold

used when selecting the spatial patterns to define the signal subspace. We used one of the com-

mon thresholds (e.g., 0.001 in the bootstrap procedure for the results in Fig 6), and this cer-

tainly lacks theoretical foundations. To improve the rationale on this selection, a more

established theoretical framework on the physiological mechanisms explaining the relative

power ratios observed between the typical frequency bands of electrophysiology would be

required. Some recent work is going in that direction and could inform the selection of iES

hyper-parameters, for example by modelling power spectra as a mixture of 1/f spectral noise,

as well as narrowband oscillations [see e.g., the discussion in 40, 41]. This open scientific ques-

tion is beyond the scope of the methodological advances we propose, and models embedded in

iES can be improved as advances are made.

There is a fast growing literature on supervised learning methods for M/EEG that test

specific questions regarding encoding or decoding of e.g., stimulus features [42, 43]. For the

most part, these latter are framed as regression or classification problems and, as purely data-

driven methods, they don’t have a model of how a specific spatial pattern was obtained. Our
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contribution with iES is strongly related to these aspects: iES reframes an experimental ques-

tion into an optimization problem, which can be seen as a supervised-learning objective to

identify spatial patterns of interest from the data. We also propose with iES to interpret these

patterns using the physical forward model of MEG/EEG, which yields group-level maps in

source space. In principle, iES can be used in studies using supervised learning to find physio-

logical sources of a discriminative pattern, provided the learning procedure is aimed at opti-

mizing linear channel weights. This would not be possible if non-linear methods are used, e.g.

with support vector machines with radial basis functions. Finally, we described iES with use

cases that have quality functions yielding closed-form solutions. Future work should reveal

how iES can be used with non-convex quality functions (i.e. presenting multiple local minima)

solved with the typical apparatus of numerical optimization.

Materials and methods

MEG data

Participants and ethics statement. 17 healthy participants were recruited (21-45 years; 5

female). The study was approved by the Montreal Neurological Institute’s ethics committee

(NEU-11-036), in accordance with the Declaration of Helsinki. All participants gave written

informed consent and were compensated for their participation.

Stimuli. Subjects were presented with a variation of the visual stimulation paradigm in

[9]: A circular sine wave grating (diameter of 5 with 100% contrast) contracts towards the fixa-

tion point (velocity: 1.6 deg/s). The contraction accelerated (velocity step to 2.2 deg/s) at an

unpredictable moment between 3-5 seconds after stimulus onset. Subjects had to indicate with

an index-finger button press that they detected the velocity change. The button press ended

one trial and the stimulus was turned off. Inter-trial intervals were 5 seconds long with a jitter.

Fig 10. Regularization methods for covariance estimates. For illustration we show GEP results from the single-

subject data of Fig 3a comparing gamma power between stimulus and baseline periods. The top panels display the

power ratio finduced, the bottom panels display the power associated with each component, computed as wT
j Ca=bwj in the

baseline and stimulus period. In a) component-wise power computed from regularized and unregularized covariance

matrices are compared using the diagonal loading method. In b), regularized results using the truncated SVDmethod,

which results in a smaller number of components.

https://doi.org/10.1371/journal.pcbi.1005990.g010
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During the inter-trial interval subjects were presented with a central fixation cross. Stimuli

were generated using the Psychophysics Toolbox [44].

Experimental procedure. Participants received both oral and written instructions on the

experimental procedure and the task. The recording session started with a 5-minute resting

state run with eyes open. The participants were presented with 10 test trials, to become familiar

with the task. They were then presented with a total of 240 stimulus sequences (trials). Partici-

pants performed 60 trials per acquisition block. After each block, they received a feedback on

the accuracy of their responses. A trial was considered correct if subjects responded within 500

ms after the actual velocity change occurred. Between each block, the participants were given a

break of self-determined length. After completion of the 240 trials, subjects were given a

15-minute break. A further 5-minute resting-state recording concluded the session.

Figs 3, 4, 5 and 6 are based on the visual experiment phase of the recording sessions,

whereas Fig 8 is based on the two resting-state sessions. Fig 9 is based on the visual experiment

phase of one subject, during which eye videos were recorded concurrently with MEG. For this

we used a Point Grey Flea3 camera, capturing at 15 frames per second, with an infrared filter

and infrared illumination of the subject’s face to improve the contrast for pupil segmentation.

Data acquisition. The participants were measured in a seated position using a 275-chan-

nel VSM/CTF MEG system with a sampling rate of 2400 Hz (no high-pass filter, 660 Hz anti-

aliasing online low-pass filter). Three head positioning coils were attached to fiducial anatomi-

cal locations (nasion, left/right pre-auricular points) to track head movements during record-

ings. Head shape and the locations of head position coils were digitized (Polhemus Isotrak,

Polhemus Inc., VT, USA) prior to MEG data collection, for co-registration of MEG channel

locations with anatomical T1-weighted MRI. Eye movements and blinks were recorded using

2 bipolar electro-oculographic (EOG) channels. EOG leads were placed above and below one

eye (vertical channel); the second channel was placed laterally to the two eyes (horizontal chan-

nel). Heart activity was recorded with one channel (ECG), with electrical reference at the

opposite clavicle.

A T1-weighted MRI of the brain (1.5 T, 240 x 240 mm field of view, 1 mm isotropic, sagittal

orientation) was obtained from each participant, either at least one month before the MEG ses-

sion or after the session. For subsequent source analyses, the nasion and the left and right pre-

auricular points were first marked manually in each participant’s MRI volume. These were

used as an initial starting point for registration of the MEG activity to the structural T1 image.

An iterative closest point rigid-body registration method implemented in Brainstorm [15]

improved the anatomical alignment using the additional scalp points. The registration was

visually verified and adjusted manually, if necessary.

MEG data preprocessing

All MEG data analysis steps were performed with Brainstorm [15], with the novel approaches

described in this paper implemented as a Brainstorm plug-in written in MATLAB (available

through: https://github.com/pwdonh/ies_toolbox).

Artifact removal and rejection. Eye-blink and heart-beat artifacts were removed from

MEG data using a PCA-based signal source projection (SSP) method, using recommended

procedures [45]. The ECG and EOG channels were used to automatically detect artifact events.

Noisy MEG channels were identified by visually inspecting their power spectrum and remov-

ing those who showed excessive power across a broad band of frequencies. The raw data were

further visually inspected to detect time segments with excessive noise e.g., from jaw clenching

or eye saccades. When epoching the data, we automatically excluded all trials that overlapped

with these noisy time segments. Sinusoid removal at the power line frequency and harmonics
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(60, 120, 180 Hz) was applied to the continuous data. A high-pass filter above 1 Hz was also

applied to reduce slow sensor drifts. The MEG data were centered around the baseline mean

after epoching. All the filters used in the current study are zero phase shift non-causal finite

impulse filters coded and documented in Brainstorm.

MEG data were epoched to the interval [-2, 3] seconds around the visual stimulus onset.

We refer here to the stimulus period as the interval [1, 3] seconds, and the baseline period as

[-2, 0] seconds with respect to visual stimulus onset. The intervals were chosen to focus on the

steady-state part of the oscillatory response, as opposed to the transient at stimulus onset [9].

Intra-subject coregistration. Prior to the computation of signal subspaces, we performed

a between-run coregistration of the MEG data based on recorded head positions, using the

movement correction method similar to [46] available in Brainstorm. Briefly, we computed

forward models Gk based on the head positions of different runs k and Gavg using the average

head position. Then we computed coregistration operators Ok to project the MEG data from

different runs into the same space as OkXk. Ok was computed as Ok ¼ GavgVnS� 1

n UT
n , using the

singular value decomposition (SVD) Gk = USVT truncated corresponding to the largest n
singular values. The index n is set so as to preserve 99.99% of the squared singular value spec-

trum. We additionally took into account that different runs had slightly different SSP projec-

tors applied (see above). We thus apply these projectors to the forward fields of individual runs

before computing the coregistration operators.

Source models. We defined a volumetric source grid on the MNI152 2009c nonlinear

anatomical template [47], using an adaptive procedure: an outer layer of 4000 grid points was

produced based on a brain envelope covering cortical and subcortical structures. This outer

layer was then shrunk and downsampled by a factor of 2.2. This procedure was repeated to

result in a total number of 20 layers containing 25,740 grid points. For each subject, we com-

puted a linear transform of individual anatomy to MNI coordinates using affine coregistration

as implemented in SPM12 [function spm_maff, 48]. We applied the inverse linear transform

to project the default source grid onto each subjects’ individual anatomy. Thus a source grid

consisting of 25,740 points was produced for each subject, with one-to-one correspondence

between points across subjects, as produced by Brainstorm volume source grids.

Forward modeling of neural magnetic fields was performed using the overlapping-sphere

model [49]. Conventional MEG source imaging was obtained by linearly applying the

weighted-minimum norm operator [2]. The wMNE was obtained as follows (using default

hyperparameters in Brainstorm): First, a regularized version of the noise covariance matrix,

estimated from same-day empty-room MEG recordings, was produced by adding a diagonal

matrix to the original noise covariance array. The additive diagonal elements were channel-

specific regularization weights set to 10% of the average of the noise variance observed across

MEG channels from the empty-room recording. Second, the regularized noise covariance

array was subsequently whitened, following its eigendecomposition. Third, the lead-field

matrix obtained from forward-field modelling of the elementary current dipoles in the distrib-

uted source model was whitened, by applying left multiplication with the whitened and regu-

larized noise-covariance estimate. Fourth, compensation for uneven source depth was applied

by computing source-specific depth-compensation weights as the minimum between the

inverse of the norm of each source’s forward field and 10 times the smallest source forward

field norm in the model (for regularization purposes). Fifth, the source covariance matrix was

assembled from the cross-product between all depth-weighted source forward fields. Sixth, the

wMNE linear kernel was obtained via a regularized version of the source covariance matrix,

with a hyperparameter set to 3. Note that the code of this implementation of wMNE is open-
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access (bst_wmne.m) in the distribution of Brainstorm and is consistent with that of the

MNE software.

For the extraction of a seed time-series for functional connectivity analysis in Fig 8 we

found the optimal dipole direction at the seed location using SVD of the filtered 3 component

time-series extracted with the MNE kernel K(ρ).

iES formulation

The iES method described in this paper is based on subspace scanning, which processes the

entire spatio-temporal MEG data matrix X, instead of reconstructing neural activity indepen-

dently at each time point for the whole source space [see e.g. MUSIC, 6]. The method features

two steps, as shown in Fig 2: 1) extraction of the relevant spatial patterns from the data (signal

subspace identification), and 2) scanning of the source space for contributions that explain the

identified spatial patterns (subspace scanning step per se).

Subspace scanning. Here we describe how subspace scanning was used in the original

MUSIC approach [6]. First a set of MEG topographies is identified that captures the signal

components of the MEG data matrix. We define the notion of signal in the following section.

In [6], this first step was equivalent to performing a PCA of the event-related average MEG sig-

nals. The D components corresponding to the largest PCA eigenvalues spanned the signal sub-

space: span(Ps). Ps is a full column-rank M × D matrix where M is the number of sensors and

D is the dimensionality of the signal subspace. A particular MEG topography v lies within the

signal subspace, if there exists a linear combination t of the columns of Ps such that v = tTPs. A

geometric measure quantifies how close a particular MEG topography lies to the signal sub-

space. For instance, the cosine of the angle between v and the projection of v onto Ps is a suit-

able measure [6].

A dipolar source at location ρ is described by an orientation (θ) and an amplitude (a)

parameter. All the MEG topographies that can be generated by this source are described by a

linear combination of the forward fields of dipoles along the three orthogonal spatial direc-

tions [2]. The resulting 3-column forward field matrix G(ρ) thus also spans a subspace. A

MEG topography produced by this dipole lies within the signal subspace if there exist linear

combinations u and t such that uTG(ρ) = tTPs. Due to noise in measurements and inevitable

approximations in the forward model metric, a perfect match cannot be expected. Thus we

use the subspace correlation metric as the cosine of the smallest principal angle between sub-

spaces

subcorrðGðrÞ;PsÞ ð3Þ

as defined in [6]. This metric quantifies how close the two subspaces lie to each other, and thus

how well a dipole source at the scanned location fits the signal subspace. This metric is applied

at each possible location across the anatomical volume.

Computing the signal subspace. We now describe how finding the signal subspace can

be seen as the solution to an optimization problem, which opens to a wide range of new possi-

ble applications. In the standard MUSIC case, the first column of the signal subspace p1 is a

vector/topography that, when applied to the event-related average of the MEG data X, results

in a signal that has maximum variance (broadband power): it is a solution to the optimization

problem

argmax
p

pTXXTp ð4Þ

subject to a norm constraint on p. The next subspace column p2 is the solution to the
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optimization problem

argmax
p

pTP?XXTPT
?

p ð5Þ

where P? is the orthogonal projector away from the first subspace column P? ¼ I � p1pT
1
.

This corresponds essentially to a PCA of the event-related average X. More generally, the signal

subspace could be constructed by the solution of an optimization problem

argmax
w

f ðwTXÞ ¼ argmax
w

f ðsÞ ð6Þ

where the function f is chosen according to the experimental question of interest. The time-

series s is the signal obtained by applying the spatial filter to the data as s = wT X. In standard

MUSIC, the experimental question of interest is to find the sources that have the strongest con-

tribution to the event-related responses, thus the quality function is

f ðsÞ ¼ Var ð�sÞ ð7Þ

where �s is the event-related trial average of s. However, many other experimental questions

can be expressed as an optimization problem. For example we might be interested in finding

sources whose power is correlated with a reference signal y (such as an EMG recording or an

audio stimulus envelope). In that case we would set the quality function as

fampcorrðs; yÞ ¼ Corrðjsj2; yÞ ð8Þ

where Corr(a, b) is the correlation of signals a and b. While, in principle, it is possible to use

any quality function and proceed with numerical optimization, the subspace method is specifi-

cally attractive for quality functions that can be solved analytically for computationally efficient

implementations. Here we focus on a set of quality functions that can be solved using the gen-

eralized eigenvalue problem (GEP). We show solutions for four different experimental use

cases, three of which are illustrated in Fig 2a.

Subspace computation using the GEP.

The generalized eigenvalue problem [GEP, see e.g. 50] Aw = λBw, for symmetric matrices

A and B, arises in optimization situations like

argmax
w

wTAw
wT Bw

ð9Þ

or equivalently

argmax
w

wTAw; subject to wT Bw ¼ 1 ð10Þ

To show how the GEP can be used to define a subspace, we focus on a) induced responses

as a first use case (see Fig 2a). Here we are interested in finding sources whose power in a fre-

quency band of interest [f1, f2] differs between two conditions or time periods, e.g. stimulus

and baseline periods. Thus the quality function becomes

finducedðsa; sbÞ ¼
Pf2

f¼f1
PowðsaÞ½f �

Pf2
f¼f1

PowðsbÞ½f �
ð11Þ

where Pow(sa,b)[f] is the power of a signal s at frequency f in time periods a and b. The power

of a signal in a given frequency band [f1, f2] can be approximated by the variance of the signal
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filtered in that frequency band. The quality function can thus also be written as

finducedðsa; sbÞ ¼
Var ðsfilta Þ

Var ðsfiltb Þ
ð12Þ

where superscript filt indicates that the signal was filtered in the frequency band of interest.

For readability, we will drop this superscript in the following. Since the bandpass-filtered sig-

nal is zero mean, we can compute the variance using the dot product 1

L� 1
sTs where L is the

number of time samples. The quality function thus becomes

finduced ¼
sTa sa
sTb sb
¼

wTXaXT
a w

wTXbX
T
b w
¼

wTCaw
wTCbw

ð13Þ

where C is the estimated covariance matrix of the filtered MEG signals X and w is a spatial fil-

ter topography. This is now in the form of the GEP shown above and has been used in the field

of brain-computer interfaces as Common Spatial Patterns [CSP, e.g. 3, 51]. Alternatively, one

can define the quality function directly in the frequency domain, and compute C(a,b) as the

average of the real part of the estimated cross-spectral density matrices in the frequency band

of interest

Ca ¼
Xf2

f¼f1

ReðCXaXa
½f �Þ

Cb ¼
Xf2

f¼f1

ReðCXbXb
½f �Þ

ð14Þ

where CXX[f] is the estimated M × M MEG cross-spectral density matrix at frequency f.
The GEP can now be solved by defining a whitening projector

P? ¼ S� 1=2UT ð15Þ

from the SVD: USVT = Cb, which equalizes the variance along the principal axes of Cb, as

required in the constraint of Eq 10. We then solve the ordinary eigenvalue problem

P?CaP
T
?
� ¼ lCb� ð16Þ

where the eigenvector ϕ is now a spatial filter in the whitened data space. The eigenvalue λ pro-

vides the ratio of power in the two conditions, thus is equal to finduced. This means that the sig-

nals of interest, which maximize the quality function in Eq 12, can be estimated from the MEG

data as

ŝa;b ¼ �
T
S
� 1=2UTXa;b ¼ �

T
P?Xa;b ¼ wTXa;b ð17Þ

where w combines the two steps of whitening (P?) and filtering in whitened space (ϕT) to

obtain a spatial filter in the data space as in Eq 13. The data generated by a specific source sig-

nal can in turn be estimated by

X̂ ¼ US
1=2� s ¼ p s ð18Þ

where p is the spatial pattern vector, or forward field, of the source signal in sensor space, since

an inverse whitening step (US1/2) is applied to the forward pattern in whitened space (ϕ). [see

52, for further discussion on the distinction between spatial patterns and filters].

Solving the GEP this way, one obtains M spatial patterns pj that can be ordered according

to their corresponding quality function scores finduced = λ. The columns of the signal subspace
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matrix Ps are then defined by the spatial patterns that exceed a threshold f �induced, yielding an M
by D subspace matrix, where D is the number of spatial patterns exceeding the threshold. We

discuss the estimation of this threshold below. As described above, the anatomical source

space can then be scanned by computing subspace correlations with the forward fields at each

source location, using

subcorrðGðrÞ;PsÞ ð19Þ

where we obtain the left singular vectors of the two matrices such that GðrÞ ¼ UGSGVT
G and

Ps ¼ UPSPVT
P and the squared subspace correlation corresponds to the maximum eigenvalue

obtained as

subcorrðGðrÞ;PsÞ
2
¼ lmaxðUG

TUPUP
TUGÞ ð20Þ

Additional use cases based on the GEP.

We describe three other use cases that can be solved using an appropriate quality function

in combination with the GEP (see Fig 2a). The solutions are convenient in that they only

require to change the definition of Ca and Cb in Eq 13.

We define a signal showing b) narrowband oscillations as a signal that has increased rela-

tive power in a frequency band of interest with respect to broadband power. We thus define a

signal frequency band of interest ½f s
1
; f s

2
� and a broad noise frequency band ½f n

1
; f n

2
�. The quality

function then becomes

fnarrowðsÞ ¼

Pf s
2

f¼f s
1
PowðsÞ½f �

Pf n
2

f¼f n
1
PowðsÞ½f �

ð21Þ

Analogously to Eq 13, this quality function can be expressed in the form of the GEP as

wTCaw
wTCbw

ð22Þ

where

Ca ¼
Xf

s
2

f¼f s
1

ReðCXX½f �Þ

Cb ¼
Xf

n
2

f¼f n
1

ReðCXX½f �Þ

ð23Þ

Solving the GEP, we obtain spatially filtered signals that are ordered according to their

ratios of power fnarrow in the signal and noise frequency bands. This approach is similar to

what has been described in [16] as spatio-spectral decomposition.

As next use case, we consider the case of c) amplitude modulation using a solution

described in [31]. Here we wish to find sources whose amplitude fluctuations in a frequency

band of interest covary with the value of a reference variable. This might be a slow time-vary-

ing signal yref, or a variable that is defined on a trial-by-trial basis such as reaction time or task

difficulty. Here we describe the former case, but the latter follows easily [31].

The data are split into epochs denoted by the index e. Epoch length needs to be short

enough to allow capturing fluctuations in the reference signal yref, and long enough to estimate

the power of data signals X filtered in the frequency band of interest. The results in Fig 8 were
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obtained with an epoch length of one second. The quality function can then be expressed as

fampmodðs; yÞ ¼ fampmodðwTX; yÞ ¼
CovðVar ðwTXðeÞÞ; yref ðeÞÞ

Var ðwTXÞ
ð24Þ

where X(e) denotes the data matrix in epoch e. We thus maximize the covariance between the

power of s = wTX(e) and the value of yref ðeÞ normalized by the power of s = wTX = 1. Assum-

ing that yref is a zero-mean and unit-variance signal, this can be solved in the GEP framework

by setting

Ca ¼
X

e

CXðeÞyðeÞ

Cb ¼
X

e

CXðeÞ
ð25Þ

where CX(e) is the estimated covariance matrix of the filtered MEG signals in epoch e. Ca thus

represents a weighted (by yref ðeÞ) average, and Cb the unweighted average of the single epoch

covariance matrices. Please refer to [31] for a derivation of these results. We can obtain the

correlation values from the above as

fampcorrðs; yÞ ¼ CorrðVar ðwTXðeÞÞ; ^yref ðeÞÞ ¼
wTCaw

Var ðwTCXðeÞwÞ
ð26Þ

In the analysis examples we used fampmod to compute the spatial filter basis using the GEP in a

computationally efficient manner. Ordering and selecting the components to be included in

the signal subspace was then based on fampcorr.

When the research hypothesis requires testing for source dynamics that are d) coherent

with a reference signal yref at a specific frequency, the quality function becomes

fcohðs; yÞ ¼ Cohðs; yÞ½f � ð27Þ

The reference signal yref can be an external stimulus such as the envelope of an audio signal, a

simultaneously measured peripheral signal such as EMG, or a neural time-series extracted

using source imaging.

Magnitude squared coherence is computed as the ratio of cross-spectral to auto-spectral

densities as

Cohðs; yÞ½f � ¼
jCsy½f �j

2

Css½f �Cyy½f �
ð28Þ

where Csy[f] is the estimated cross-spectral density between signals s and y at frequency f, and

Cyy[f] is the auto-spectral density of signal y. Since Cyy[f] is constant, we can leave it out of the

quality function and remain with

jCsy½f �j
2

Css½f �
¼

Csy½f �Csy½f �
�

Css½f �
ð29Þ

Now setting s = wTX we get

jwTCXy ½f �j
2

wTCXX½f �w
¼

wTCXy ½f �C
H
Xy ½f �w

wTCXX½f �w
ð30Þ

where CXy[f] is the column vector containing the estimated cross-spectral densities between

the reference signal and the MEG signals, and the H superscript stands for conjugate
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transpose. The optimization problem can be solved by invoking the GEP as in Eq 22 and set-

ting

Ca ¼ ReðCXy ½f �C
H
Xy ½f �Þ

Cb ¼ ReðCXX½f �Þ
ð31Þ

Note that, as the matrix CXy ½f �C
H
Xy ½f � is Hermitian, wTCXy ½f �C

H
Xy ½f �w will be a real number and

thus be equal to wTReðCXy ½f �C
H
Xy ½f �Þw. Hence we only need to keep the real part for Ca.

Covariance regularization.

As described above, at the core of our approach lies the computation of a subspace using

the GEP. This requires the inversion of matrix Cb, which can be numerically unstable if some

of its singular values are small (see Eq 15 for its influence on the whitening projector). We thus

regularize matrices Ca and Cb by adding values to the diagonal as

Creg ¼ ð1 � aÞCþ aTr ½C�M� 1I ð32Þ

where α is a regularization parameter. We refer to this technique as diagonal loading.

Fig 10 shows the effect of regularization on the power of individual components, illustrated

using the data from Fig 3 (induced responses, stimulus vs. baseline). Regularization affects

mostly the components with smallest power values, which would have detrimental effects dur-

ing inversion. Their power ratios fj (the quality function values for a given component) after

regularization will be very close to

f̂ j ¼

X

j
saj

X

j
sbj

ð33Þ

where s(a,b)j are the singular values of the narrow-band covariance matrices C(a,b) computed

from stimulus (a) and baseline (b) periods, respectively. This can be understood as the expected
f based on the overall power across sensors in both time periods. Because these components do

not carry physiological information, we make sure to never include them in the signal sub-

space. They were detected using a simple bootstrap procedure: a confidence interval on the

mean power of each component (saj and sbj) is estimated from the unregularized data by

sampling with replacement from epochs e = 1, . . ., E. We then verify whether saj and sbj com-

puted from the regularized data lie within the 99.9% confidence interval, and discard the com-

ponents where this is not the case. We used this approach in the analysis examples on induced

responses and narrow-band oscillations (Figs 3, 4, 5, 6 and 7) and set α = 0.05.

We also describe an alternative regularization approach, referred to as truncated SVD. This

entails removing the columns associated with the smallest singular values from U during the

computation of the whitening projector in Eq 15. We define the regularization parameter �

and keep the singular values making up 100(1 − �)% of the cumulated singular value spectrum.

We see in Fig 10b that this results in a smaller number of components extracted from the GEP,

however yielding similar f values at both ends of the spectrum. We used this approach in the

analysis examples on amplitude modulation (Figs 8 and 9) and set � = 0.001.

Estimating the dimensionality of the signal subspace.
All the methods described above result in a matrix P where each column pj is a spatial pat-

tern associated with a quality function score fj. We now need to determine which of these spa-

tial patterns to include in the signal subspace Ps that will be used for scanning. This can be

done by setting a threshold on the quality function scores fj in a hypothesis-driven way. These

scores are readily interpretable as e.g., the power ratio between conditions (induced responses)

or the correlation between a reference signal and neural amplitude time-series (amplitude
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modulation). In the following we show how we can set a threshold based on approaches from

non-parametric statistical testing, including permutation and bootstrap procedures. The result

is a M × D signal subspace matrix Ps, with dimensionality D being the number of significant

spatial patterns. In the case of permutation tests, spatial patterns pj are included in the signal

subspace matrix Ps if the associated quality function score fj is inconsistent with the null

hypothesis. In the case of the bootstrap, spatial patterns are included in Ps if the associated

bootstrap distribution of fj is consistent with the alternative hypothesis. We describe these pro-

cedures in the following.

For a) induced responses we compare oscillatory power between two conditions using per-

mutation testing. We describe the case of stimulus-baseline contrast where, for each epoch e, a

data matrix for baseline and stimulus periods is available to perform a paired test. Other cases

can be derived easily using standard approaches in non-parametric statistics [see e.g. 4, 5].

Under the null hypothesis of no difference, the condition labels are exchangeable with respect

to the statistic of interest f (here finduced), which is the ratio of power between the two condi-

tions

fj ¼
wT

j Cawj

wT
j Cbwj

ð34Þ

which is defined for each of the potential columns j of the signal subspace matrix Ps.

The data are divided in e = 1, . . ., E epochs, from which we compute empirical covariances

Ca(e) and Cb(e). We run O permutations, where at each iteration, a binary permutation vector

ω of length E is drawn. At each permutation we solve the GEP based on the permuted condi-

tion labels and compute a maximum statistic as

fmax ¼ max
w

wTC�aw
wTC�bw

ð35Þ

where

C�a;b ¼
1

E

X

e

Ca;bðeÞ; if oe ¼ 1

Cb;aðeÞ; if oe ¼ 0

8
<

:
ð36Þ

and the fmax values are logged at each iteration. We then obtain a null distribution of fmax

(assuming exchangeability of the condition labels) against which to test the observed fj’s to

obtain a permutation p-value. In this paper we use O = 1000 permutations.

In the second use case b) narrowband oscillations the power ratios fj (fnarrowband) will differ

depending on the frequency band of interest. Due to 1/f in electrophysiology power spectra,

low-frequency bands have higher fj’s than high-frequency bands. To find spatial patterns pj

whose relative power stands out from the rest of the activity, we define an expected f̂ , as the

ratio of overall power in the narrow- and broad frequency bands

f̂ ¼
P

jsaj
P

jsbj
ð37Þ

where s(a,b)j are the singular values of the estimated narrow- and broadband cross-spectral den-

sities C(a,b) as defined in Eq 23. We use a bootstrap procedure to find the dimensions j that reli-

ably lie above this expected power ratio. A large number of bootstrap samples can be obtained

by sampling with replacement from the epoched data, and logging the mean values over the

fj(e) of each selected epoch. A confidence interval based on the obtained bootstrap distribution
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is obtained and a dimensionality D up to which the confidence interval does not contain the

expected power ratio is therefore defined. In Fig 6, we used a confidence interval of 99.9% to

define the signal subspace.

Use cases c) amplitude correlation and d) coherence compute a measure of temporal asso-

ciation between time-series. The temporal ordering between the reference signal y and the

data X can be scrambled under the null hypothesis of no association. Since the computation of

fampmod involves splitting the data into epochs e (see Eq 24), we can compute a null distribution

of the respective f values by randomly re-assigning epochs between the reference signal y(e)
and the MEG data X(e). At each iteration the GEP is solved resulting in a single null distribu-

tion of f� against which to test all the observed fj.
Projection of the seed topography for functional connectivity analyses.
We can project out the topographic contribution of the seed location ρs in a functional con-

nectivity analysis as shown in Fig 8. Using subspace correlation we define the topography g at

location ρs with orientation θ that maximizes the fit with the signal subspace as

g ¼ Gðrs; yÞ; where y ¼ argmax
y

subcorrðGðrs; yÞ;PsÞ ð38Þ

Then we find the orthogonal projector

P? ¼ I � ðggTÞ=ðgTgÞ ð39Þ

to be applied to both the signal subspace and the leadfield matrices, so that we can scan the

source space as

subcorrðP?PsPT
?
;P?GðrÞPT

?
Þ ð40Þ

Group analysis. Testing the effect prevalence.
We have derived the dimensionality of each subject’s subspace using tests described in the

previous section. The subspace matrix Pi of subjects i = 1, . . ., N has an estimated dimensional-

ity of D̂i. If D̂i > 0, one can claim that subject i shows the effect of interest, i.e. there is a spatial

dimension in which the null hypothesis can be rejected. For example, the effect of interest

could be that the power of gamma oscillations in one spatial dimension of the subject’s sensor

data is stronger during presentation of a stimulus than during rest. As a first step for group-

level analyses, we test if the mere presence of the effect is generalizable to the population. If the

effect is deemed generalizable, we run a procedure to test if there exist consistent source spatial

locations across the group, where the effect originates from (see next section).

The first step requires formulating a prevalence hypothesis [see e.g. 10, 53, 54]. In this

framework, a true effect is assumed to be present in a proportion γ of the population. Hence if

a subject i is randomly selected from the population

Di ¼ 0 with probability 1 � g;

Di > 0 with probability g
ð41Þ

We then specify a prevalence null hypothesis that γ is smaller than or equal to a certain propor-

tion γ0. In order to claim that the effect is generalizable to the population, an intuitive value for

γ0 is 0.5, i.e. the effect would be present in the majority of the population. If we observed that K
out of N subjects showed an effect ðD̂i > 0Þ, we can define a p-value for the likelihood of K or

more out of N subjects showing an effect, if the prevalence across the population is smaller

than or equal to γ0:

pðk � Kjg � g0;NÞ ð42Þ
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If this p-value is below a specified significance level, the effect is deemed generalizable to the

population.

A certain subject i can show an effect both if the effect is actually present (with sensitivity

β), or because of a false positive (at the specified α for the single-subject tests). The probability

to pick a subject i from the population that shows an effect, assuming a population prevalence

of γ, is thus

pðD̂i > 0jgÞ ¼ gbþ ð1 � gÞa ð43Þ

The probability to pick a subject from the population that shows no effect is

pðD̂i ¼ 0jgÞ ¼ gð1 � bÞ þ ð1 � gÞð1 � aÞ ð44Þ

Thus the probability to observe K out of N subjects with an effect (see top panel) is

pðKjg;NÞ ¼
N
K

� �

ðgbþ ð1 � gÞaÞ
K
ðgð1 � bÞ þ ð1 � gÞð1 � aÞÞ

N� K
ð45Þ

The sensitivity β is usually not known, and therefore is fixed at 1, to remain conservative. Com-

puting the p-value as in Eq 42 to test the prevalence null hypothesis requires to sum over these

values for K and higher and then to maximize over the range of γ values covered by the null

hypothesis

pðk � Kjg � g0;NÞ ¼

maxg�g0
pðk � Kjg;NÞ ¼ pðk � Kjg0;NÞ ¼

XN

k¼K

pðkjg0;NÞ
ð46Þ

As discussed in [10], one can also report the largest γ0 value under which the null hypothe-

sis can be rejected at the given significance level. This can be interpreted as the lower bound of

a one-sided confidence interval about the true population prevalence γ, which can be of inter-

est to the research question.

Statistical thresholding of subcorr maps across subjects.
In the previous section we tested the null hypothesis that an effect is present e.g. in only half

of the population or less. We did not test the spatial consistency of the effect. This might be suf-

ficient for a given research question: e.g. whether beta-band oscillations can be used to dis-

criminate between two different conditions in a majority of subjects. The inference procedure

on the spatial consistency of the effect is described in the following.

In order to derive spatial inferences across the group, we specify a new null hypothesis with

respect to the subcorr values as the statistic of interest used to localize effects in individual sub-

jects. The average subcorr value across the group at a source location ρ is computed as

subcorrðrÞ ¼
1

N

XN

i¼1

subcorrðGðrÞ;Ps
iÞ ð47Þ

where Ps
i is the signal subspace of subject i in a group of i = 1, . . ., N subjects. Note that Ps

i con-

sists of the Di first columns (the significant spatial patterns) from the M × M matrix Pi. If there

is no spatially consistent effect across subjects, we can randomly flip the ordering of spatial pat-

terns in Pi and select the Di spatial patterns associated with the smallest quality function values:

We refer to this subspace as the noise subspace Pn
i . Under the null hypothesis, signal and noise

subspaces are exchangeable with respect to the average subcorr statistic. We now run O permu-

tations, where at each iteration we draw a binary permutation vector ω of length N. Then we
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compute the average subcorr value based on shuffled subspaces, where for each subject we use

subcorr�ðrÞ ¼
1

N

XN

i¼1

subcorrðGðrÞ;Pp
i Þ where Pp

i ¼
Ps

i ; if oi ¼ 1

Pn
i ; if oi ¼ 0

(

ð48Þ

and keep the maximum subcorr�(ρ) over the volume at each iteration to obtain a null distribu-

tion against which to test the observed subcorrðrÞ values across the volume.

Note that there can be subjects that show no effect, i.e. whose signal subspace Ps has

dimensionality of D = 0 (as discussed in the previous section). Since their subcorr will be zero

everywhere (whether using the signal or noise subspace) they will not change the result of the

statistical inference. Hence they are omitted in this part of the analysis. We want to emphasize

that this does not constitute a case of circular analysis [55], since we use two independent sta-

tistics for the two analysis steps. Inference on the quality function value f is used to determine

whether a subject shows an effect. This does not tell us anything about the spatial consistency

of the effect in the subgroup, or whether we expect higher subcorr values from scanning the

signal vs. scanning the noise subspace (which would violate the null hypothesis tested here).

Supporting information

S1 Fig. Additional contrasts and unthresholded maps for Fig 5. All analysis parameters are

equivalent as described in the main part of the paper.

(TIF)

S2 Fig. Simulation of sources with correlated amplitudes (variable lags). We simulated 300

seconds of source signals in 68 regions of interest with a 1/f spectral profile (same as Fig 7 in

the main text). We added oscillatory bursts to four of these ROIs (precentral left/right and ros-

tralmiddlefrontal left/right) modelled by a Morlet wavelet at 12 Hz with a FWHM of 250 ms.

These were set to occur at the same time in left/right homologous regions in 50% of the time,

such that the resulting amplitude correlation in the alpha band (8-13 Hz) was above 0.4. Panel
a) shows such a signal pair. The phase delay between these oscillatory bursts was uniformly

random (see enlarged signal parts). We then performed an iES analysis as shown in Fig 8 of

the main text (functional connectivity) with a left precentral seed. We can see in panel b) the

obtained subspace patterns for a threshold of r> .4. Note that we obtained two spatial patterns

that corresponded to the leadfields of the two regions correlated to the seed (precentral left/

right). Panel c) shows that the iES maps revealed the correlated contralateral source with or

without the projection step explained in the main text. We can also see that only the correlated

sources were present in the map (precentral left/right) and not the sources that had oscillatory

bursts in this frequency band (rostralmiddlefrontal left/right) but were not correlated to the

seed.

(TIF)

S3 Fig. Simulation of sources with correlated amplitudes (zero lag). We simulated the same

setup as in S2 Fig with the difference that the co-occuring oscillatory bursts in left/right homol-

ogous regions had zero phase delay (see enlarged signal parts in panel a). Even though the

amplitude correlations were still above 0.4, a linear combination of the leadfields of both

sources was captured in one subspace pattern (panel b). This is because the decomposition

produces subspace patterns whose corresponding signals are orthogonal. We see in panel c)
that the iES map without projection applied did not reveal the contralateral correlated region.

However when projecting out the seed topography, the peak in the contralateral region was

revealed, as expected. This illustrates the difference between iES and other approaches that
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orthogonalize signals, which would remove the correlated oscillatory bursts in this scenario.

(TIF)

S4 Fig. Simulation results analogous to Fig 7, with a superficial and a deep source. a) Two

sources of interest (precentral left and parahippocampal left, according to the Desikan-Killiany

atlas, [22]) targeting pre-specified power ratios are embedded in background brain noise com-

posed of 1/f signals evenly distributed across 66 locations. The superficial source is simulated

at a fixed power ratio (narrowband vs. broadband power) of 0.6, the power ratio of the deep

source is varied between 0.2 and 0.6. b) Normalized detection probability is calculated as in

Fig 7 and shows that, while the scenario is more challenging for iES (higher power ratio of the

deep source is needed to detect both sources), it outperforms MNE, which did not detect both

sources in this scenario.

(TIF)
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