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Abstract

Studies of nervous system connectivity, in a wide variety of species and at different scales

of resolution, have identified several highly conserved motifs of network organization. One

such motif is a heterogeneous distribution of connectivity across neural elements, such that

some elements act as highly connected and functionally important network hubs. These

brain network hubs are also densely interconnected, forming a so-called rich club. Recent

work in mouse has identified a distinctive transcriptional signature of neural hubs, character-

ized by tightly coupled expression of oxidative metabolism genes, with similar genes charac-

terizing macroscale inter-modular hub regions of the human cortex. Here, we sought to

determine whether hubs of the neuronal C. elegans connectome also show tightly coupled

gene expression. Using open data on the chemical and electrical connectivity of 279 C. ele-

gans neurons, and binary gene expression data for each neuron across 948 genes, we com-

puted a correlated gene expression score for each pair of neurons, providing a measure of

their gene expression similarity. We demonstrate that connections between hub neurons

are the most similar in their gene expression while connections between nonhubs are the

least similar. Genes with the greatest contribution to this effect are involved in glutamatergic

and cholinergic signaling, and other communication processes. We further show that cou-

pled expression between hub neurons cannot be explained by their neuronal subtype (i.e.,

sensory, motor, or interneuron), separation distance, chemically secreted neurotransmitter,

birth time, pairwise lineage distance, or their topological module affiliation. Instead, this cou-

pling is intrinsically linked to the identity of most hubs as command interneurons, a specific

class of interneurons that regulates locomotion. Our results suggest that neural hubs may

possess a distinctive transcriptional signature, preserved across scales and species, that

is related to the involvement of hubs in regulating the higher-order behaviors of a given

organism.
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Author summary

Some elements of neural systems possess many more connections than others, marking

them as network hubs. These hubs are often densely interconnected with each other,

forming a so-called rich-club that is thought to support integrated function. Recent work

in the mouse suggests that connected pairs of hubs show higher levels of transcriptional

coupling than other pairs of brain regions. Here, we show that hub neurons of the nema-

tode C. elegans also show tightly coupled gene expression and that this effect cannot be

explained by the spatial proximity or anatomical location of hub neurons, their chemical

composition, birth time, neuronal lineage or topological module affiliation. Instead, we

find that elevated coexpression is driven by the identity of most hubs of the C. elegans con-

nectome as command interneurons, a specific functional class of neurons that regulate

locomotion. These findings suggest that coupled gene expression is a highly conserved

genomic signature of neural hubs that may be related to the specific functional role that

hubs play in broader network function.

Introduction

Neuronal connectivity provides the substrate for integrated brain function. Recent years have

seen several systematic and large-scale attempts to generate comprehensive wiring diagrams,

or connectomes, of nervous systems [1] in species as diverse as the Caenorhabditis elegans [2,

3], Drosophila melanogaster [4, 5], zebrafish [6, 7], mouse [8, 9], rat [10], cat [11], macaque

[12, 13], and human [14, 15]. One of the most striking findings to emerge from analyses of

these diverse data, acquired using different measurement techniques and at resolution scales

ranging from nm to mm, is of a strong conservation of certain topological properties of net-

work organization (reviewed in [1, 16–19], see also [20]). These properties include a modular

organization, such that subsets of functionally related (and usually spatially adjacent) elements

are densely interconnected with each other; a hierarchy of modules, such that modules contain

nested sub-modules and so on over multiple scales [21, 22]; economical connectivity, such that

wiring costs (typically measured in terms of wiring length) are near-minimal given the topo-

logical complexity of the system [22, 23]; a heterogeneous distribution of connections across

network nodes, such that most nodes possess relatively few connections and a small propor-

tion of nodes have a very high degree of connectivity [3, 24]; and stronger interconnectivity

between hub nodes than expected by chance, leading to a so-called rich-club organization (i.e.,

the hubs are rich because they are highly connected and form a club because they are densely

interconnected) [5, 25–28].

The rich-club organization of hub connectivity is thought to play a central role in integrat-

ing functionally diverse and anatomically disparate neuronal systems [26, 29–32]. Consistent

with this view, experimental data and computational modeling indicates that hub nodes, and

the connections between them, are topologically positioned to mediate a high volume of signal

traffic [33–36]. This integrative role comes at a cost, with connections between hubs extending

over longer distances, on average, than other types of connections, a finding reported in the

human [33], macaque [34], rat [37], mouse [38], and nematode [28]. Human positron emis-

sion tomography also suggests that hub nodes consume greater metabolic resources and have

higher levels of blood flow than other areas [39–41]. This high metabolic cost may underlie the

involvement of hub regions in a broad array of human diseases [17, 29, 31].

Recent studies in mice and humans suggest that the high cost of hub connectivity is associ-

ated with a distinct molecular signature, as inferred from brain-wide transcriptomic data. This
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work has focused on how patterns of expression across many thousands of genes covary

between pairs of brain regions. Such patterns of covariation are variously referred to as tran-

scriptional coupling [38], gene coexpression [42] or correlated gene expression [43–45]. The

goal of this work is to understand how pair-wise coupling of gene expression corresponds to

the pairwise connection topology of the brain, thus drawing a link between molecular function

and large-scale network organization. For example, Fulcher and Fornito [38] combined viral

tract tracing data on connectivity between 213 regions of the right hemisphere of the mouse

brain [8] with in situ hybridization measures of the expression of 17 642 genes in each of those

regions. They found that transcriptional coupling, across all genes, is stronger for connected

compared to unconnected brain regions and that, in general, this coupling decays with

increasing separation distance between brain regions. Countering this general trend, however,

connected pairs of hubs (i.e., the “rich club” of the brain) show the highest levels of transcrip-

tional coupling (compared to hub-nonhub and nonhub-nonhub pairs), despite being sepa-

rated by larger distances, on average, and being distributed across diverse anatomical brain

divisions. Moreover, this coupling is driven predominantly by genes regulating the oxidative

synthesis and metabolism of adenosine triphosphate (ATP), the primary energetic currency of

neuronal signaling [46, 47]. Vértes et al. [48] later combined gene expression data of 20 737

genes through 285 cortical areas of the human brain and found evidence that inter-modular

hubs in resting state fMRI connectivity networks also have local transcriptional profiles

enriched in oxidative metabolism and mitochondria.

Together, the analyses of Fulcher and Fornito [38] and Vértes et al. [48], which were per-

formed using measures of mesoscale (μm to mm) and macroscale (mm to cm) connectivity,

respectively, suggest that the molecular signature of hub connectivity, characterized by ele-

vated coupling of genes regulating oxidative metabolism, may be conserved across species and

resolution scales. Here, we sought to test this hypothesis by examining the link between gene

expression and microscale connectivity in the nematode C. elegans. C. elegans is the only spe-

cies to have its connectome mapped almost completely at the level of individual neurons and

synapses using electron microscopy [2, 3]. It comprises 302 neurons and around 5600 chemi-

cal and electrical synapses [2]. We combined these data on neuronal connectivity with curated

information on the binary expression patterns of 948 genes across neurons to examine the

relationship between gene expression and the large-scale topological organization of the nema-

tode nervous system. We also used detailed information on neuron spatial positions, birth

times, neuronal lineage as well as the functional and chemical composition of each neuron to

understand the mechanisms through which gene expression might influence network topol-

ogy. Paralleling findings in humans and mouse, we find that hub neurons of C. elegans are gen-

omically distinct, with connected hub neurons showing the most similar patterns of gene

expression. Genes that contribute most to this effect are involved in regulating glutamate and

acetylcholine function, and neuronal communication. We demonstrate that this effect cannot

be explained by factors such as neuronal birth time, lineage, neurotransmitter system or spatial

position, but may instead be related to the functional specialization of hub neurons in mediat-

ing higher order behaviours of the organism.

Materials and methods

We first describe the neural connectivity data used to construct a connectome for C. elegans
and the methods used to quantify network connectivity and other properties of individual neu-

rons, including their neurochemical composition, birth times, and lineage relationships. We

then describe the gene expression data, how we measure expression similarity between pairs of

neurons, and our method for scoring the contribution of individual genes to patterns of
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correlated gene expression. Note that all data used for analysis in this work were obtained

from publicly available sources, and can be downloaded from an accompanying figshare

repository (figshare.com/s/797199619fbabdab8c86). Code to process this data and

reproduce all figures and analyses presented here is on github (github.com/BMHLab/

CElegansConnectomeGeneExpression).

Neuronal connectivity data

The nervous system of C. elegans comprises 302 neurons, divided into the pharyngeal nervous

system (20 neurons) and the somatic nervous system (282 neurons). While research detailing

the genetic underpinnings that guide the formation of C. elegans nervous system is still ongo-

ing, the spatial positions of neurons, and their interconnections, are known to be stereotypical

across organisms [49]. Neuronal connectivity data for the adult hermaphrodite C. elegans was

first mapped by White et al. [2] through detailed electron microscopy, and then revised by

Chen et al. [50] and Varshney et al. [3]. Here we analyze the larger somatic nervous system

using data from Varshney et al. [3], who mapped connectivity between 279 neurons (282

somatic neurons, i.e., excluding CANL/R, and VC6, which do not form synapses with other

neurons), which we obtained from WormAtlas [51] (www.wormatlas.org/neuronalwiring.

html#NeuronalconnectivityII).

Connectivity data are available for both electrical gap junctions and chemical synapses. The

chemical synapse network is both directed (i.e., the pre-synaptic and post-synaptic neurons

are identified) and weighted (as the number of synapses from one neuron to another), while

gap junctions are conventionally represented as weighted (as the number of electrical synapses

connecting two neurons), undirected connections. Previous investigations of C. elegans neuro-

nal connectivity have used differently processed versions of these data, including: (i) only

chemical synapses [52]; (ii) a combination of chemical and electrical synapses as a directed net-

work (electrical synapses represented as reciprocal connections) [53, 54]; (iii) a combination of

chemical and electrical synapses as an undirected network (representing unidirectional and

reciprocal chemical connections equivalently) [28, 55–57]; or (iv) comparing multiple connec-

tome representations [58]. Our analysis here focuses on the combined directed, binary net-

work, treating gap junctions as bidirectional connections. We chose to focus on a binarized

network to follow previous studies on C. elegans connectome data [28, 56, 59–61] and to

enable a more direct comparison to our previous analysis of the relationship between (binary)

connectivity and gene expression in mouse [38]. The resulting connectome contains 279 neu-

rons, with 2 990 unique connections linking 2 287 pairs of neurons.

Note that the qualitative results presented here are not highly sensitive to the types of con-

nections included in the connectome. For example, neuron degree is highly correlated between

networks generated using: (i) combined chemical and electrical synapses and (ii) chemical syn-

apses only (Spearman’s ρ = 0.9, p = 3 × 10−107). We also obtained qualitatively similar results

for rich-club organization and trends in CGE when excluding gap junctions from our analysis

(see S1 Fig).

In addition, we assembled a range of data characterizing other properties of C. elegans neu-

rons. To examine the effect of physical distance between pairs of neurons, we obtained two

dimensional spatial coordinates for each neuron as celegans277.mat from www.

biological-networks.org/?page_id=25 [62]. Coordinates for three neurons (AIBL, AIYL,

SMDVL) were missing in this dataset, and were reconstructed by assigning identical coordi-

nates to the corresponding contralateral neurons (AIBR, AIYR, SMDVR) [59]. To examine

the influence of anatomical location, each neuron was labeled by its anatomical location,

as: (i) ‘head’, (ii) ‘tail’, or (iii) ‘body’, using data from release WS256 of WormBase [63],

C. elegans connectome and gene expression
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(ftp://ftp.wormbase.org/pub/wormbase/releases/WS256/ONTOLOGY/anatomy_association.

WS256.wb). These annotations were assigned to individual neurons using the anatomical hier-

archy defined in WormBase, which we retrieved using the WormBase API (WormMine: inter-

mine.wormbase.org) [63], propagating each term down the hierarchy to individual neurons.

We manually corrected the assignment of twelve head neurons (ALA, AVFL, AVFR, AVG,

RIFL, RIFR, RIGL, RIGR, SABD, SABVL, SABVR, SMDVL), which were assigned as ‘head’ in

WormAtlas [51] but not on WormBase. To examine the influence of neuronal subtype, all

neurons were labeled to one (or multiple) of the following three categories: (i) ‘sensory’ (have

clear sensory specializations), (ii) ‘motor’ (make synaptic contacts onto muscle cells), or (iii)

‘interneuron’ (receive synapses from and send synapses onto other neurons) [2]. A total of 79

neurons are annotated as sensory, 121 annotated as motor, and 97 annotated as interneurons

(including eighteen neurons assigned to two categories: five are both ‘interneuron’ and ‘sen-

sory’, seven are ‘interneuron’ and ‘motor’, and six are both ‘sensory’ and ‘motor’ neurons). To

examine the neurotransmitter systems used by each neuron, neurons were labeled by match-

ing to Table 2 of Pereira et al. [64]. In order to determine the influence of neuron birth time,

we obtained neuronal birth time information in minutes from the Dynamic Connectome Lab

website (https://www.dynamic-connectome.org/?page_id=25), [59]. To assess the influence of

lineage similarity, we obtained a measure of lineage distance for all pairs of neurons from pre-

viously published embryonic and post-embryonic lineage trees [65, 66], using data down-

loaded from WormAtlas (http://www.wormatlas.org/neuronalwiring.html#Lineageanalysis)

[51]. In this dataset, the closest common ancestor neuron was identified for each pair of neu-

rons, and then the lineage distance was calculated as the number of cell divisions from the clos-

est common progenitor neuron.

Network analysis

In this section we describe the network analysis methods used to characterize the C. elegans
connectome.

Degree. Neuronal connectivity is most simply quantified by counting the number of neu-

rons that a given neuron projects to, known as its out-degree, kout, or by counting the number

of neurons that a given neuron receives projections from, known as its in-degree, kin. These

quantities can be summed to give the total number of connections involving a given neuron,

ktot = kin + kout, which we refer to as simply the degree, k, throughout this work. At a given

degree threshold, k, each neuron was classified as either a ‘hub’ (degree > k) or a ‘nonhub’

(degree� k). All connections were subsequently classified in terms of their source and target

neurons as either ‘rich’ (hub ! hub, or hub $ hub), ‘feed-in’ (nonhub ! hub), ‘feed-out’

(hub ! nonhub), or ‘peripheral’ (nonhub ! nonhub, or nonhub $ nonhub).

Rich-club organization. We used the rich-club coefficient, ϕ(k), to quantify the intercon-

nectivity of hub neurons:

�ðkÞ ¼
2E>k

N>kðN>k � 1Þ
; ð1Þ

where N>k is the number of nodes with degree > k, and E>k is the number of edges between

them [67]. Thus, ϕ(k) measures the link density in the subgraph containing nodes with

degree> k. Because ϕ(k) invariably increases with k (as nodes with higher degree make more

connections, yielding a higher expected link density in the subgraph containing nodes with

degree> k), we compared ϕ(k) measured from the C. elegans connectome to the mean value

of an ensemble of randomized null networks, ϕrand(k) [67]. An ensemble of 1000 null networks

was generated by shuffling the links in the empirical network while retaining the same degree

C. elegans connectome and gene expression
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sequence [68] (rewiring each edge an average of 50 times per null network) using the

randmio_dir function from the Brain Connectivity Toolbox [69]. The normalized rich-

club coefficient, Fnorm(k), was computed as the ratio of the rich-club coefficient of the empiri-

cal network to the mean rich-club coefficient of the ensemble of randomized networks:

FnormðkÞ ¼
�ðkÞ
h�randðkÞi

: ð2Þ

Values of Fnorm > 1 indicate rich-club organization of the network, with statistically signifi-

cant deviations assessed by computing a p-value directly from the empirical null distribution,

ϕrand(k), as a permutation test [25].

Modularity. Another important topological property of neural systems is modularity,

whereby network nodes coalesce into tightly connected subsystems that are thought to serve a

common function [70]. To investigate whether our results were influenced by the well-known

modular organization of the C. elegans connectome [22, 55, 56, 58, 71], we decomposed the

network into modules using two methods. The first method involved applying the Louvain

community detection algorithm [72] using the community_louvain function in the Brain

Connectivity Toolbox [69]. To identify the optimal modular assignment, neurons were

assigned to modules using consensus clustering across 1000 repeats of the Louvain algorithm

[73], weighting each partition by its modularity, Q, using the agreement_weighted and

consensus_und functions of the BCT [69]. The second modular decomposition was taken

from a previously-reported nine-module partition derived from an Erdös-Rényi Mixture

Model (ERMM) [56].

Gene expression

Gene expression is represented as a binary indicator of which genes are expressed in a given

neuron using data from many individual experiments compiled into a unified data resource

on WormBase [63]. We use release WS256 of this dataset (ftp://ftp.wormbase.org/pub/

wormbase/releases/WS256/ONTOLOGY/anatomy_association.WS256.wb) and analyze anno-

tations made ‘directly’ to individual neurons, excluding ‘uncertain’ annotations (see S1 Text).

We denote the expression of a gene in a neuron as a ‘1’, and other cases as a ‘0’. Note that a

value of ‘0’ indicates either: (i) ‘gene is not expressed’ or (ii) ‘there is no information on

whether the gene is expressed’. Expression data are sparse, in part due to incomplete annota-

tions—an average of 30 genes are expressed in each neuron (range: 3 to 138 genes), and each

gene is expressed in an average of 9 neurons (range: 1 to 148 neurons). A total of 948 genes are

expressed in at least one neuron, allowing us to represent the full expression dataset as a binary

279 (neurons) × 948 (genes) matrix, shown in Fig 1C.

Correlated gene expression

Our primary aim in this work is to understand how pairwise patterns of neuronal connectivity

(shown in Fig 1A) relate to coupled expression across 948 genes between pairs of neurons (i.e.,

pairs of rows of Fig 1C). To estimate the coupling between neuronal gene expression profiles,

we required a similarity measure for pairs of neurons that captures their similarity of gene

expression profiles, or correlated gene expression (CGE). We used a binary analogue of the lin-

ear Pearson correlation coefficient, the mean square contingency coefficient [74]:

r� ¼
n11n00 � n10n01
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffin1�n0�n�0n�1
p ; ð3Þ

for two vectors, x and y, of length L(= 948), where nxy counts the number of observations of

C. elegans connectome and gene expression
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each of the four outcomes (e.g., n10 = ∑i δxi,1
δyi,0

counts the number of times x = 1 and y = 0),

and the symbol • sums across a given variable (e.g., n•0 = ∑i δyi,0
counts the number of times

y = 0). The coefficient assumes a maximum value rϕ = 1 when x and y are identical (such that

n11 + n00 = L), and a minimum value rϕ = −1 when x and y are always mismatched (such that

n10 + n01 = L). Note that we use the notation rϕ to denote the phi coefficient, Eq (3); this nota-

tion should not be confused with the rich-club coefficient, ϕ(k).

One concern about applying this measure to sparsely annotated data is that it may be biased

by differences in the number of expressed genes in a neuron, which ranged from 3 (0.3% of

948 genes analyzed here) to 138 (14.6%). To explore this further, we compared rϕ with several

other commonly used metrics of association between binary vectors including Yule’s Q and

the Jaccard index. While these other binary similarity metrics exhibited strong bias with the

proportion of gene expression annotations made to a given neuron, rϕ was not biased (see

S2 Fig and S2 Text).

The 92 bilateral pairs of neurons (e.g., AVAL/AVAR, CEPVL/CEPVR, etc.) exhibit

highly correlated gene expression patterns: all bilateral pairs of neurons have rϕ > 0.8,

and 96% of bilateral pairs have rϕ > 0.95. Although including bilateral pairs of neurons do

not change the main results of this paper, we excluded CGE values of bilateral pairs of neu-

rons from all analyses to ensure that our results are not driven by high CGE between these

pairs.

Fig 1. Schematic representation of the data used in this study. All plots show neurons (rows) ordered by anterior-posterior along the longitudinal axis, from the top

of the head (upper, left) to the bottom of the tail (lower, right). (A) Connectivity matrix summarized 2990 directed chemical and electrical connections between 279

neurons from neuron i (row) to neuron j (column). Connections are colored according to how they connect hubs (k> 44) and nonhubs (k� 44), as ‘rich’ (hub!

hub), ‘feed-in’ (nonhub! hub), ‘feed-out’ (hub! nonhub), and ‘peripheral’ (nonhub! nonhub). (B) Neurochemistry (types as labeled), anatomical location (as

labeled), birth time (from early born neurons, black, to late-born neurons, white), hub assignment (hubs labeled red), and functional type (as labeled). (C) Binary

gene expression indicated as a green dot when a gene (column) is expressed in a neuron (row).

https://doi.org/10.1371/journal.pcbi.1005989.g001
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Gene scoring and enrichment

Our CGE measure, rϕ, quantifies the similarity between the expression profiles of two neurons

across all 948 genes. To further investigate the role of individual genes in producing different

CGE patterns, we developed a method for scoring the contribution of each individual gene to

the overall correlation coefficient, following prior work using continuous gene expression data

[38]. Performing similar analyses with C. elegans data poses additional challenges due to: (i)

binary expression data, making robust quantification difficult; (ii) sparse and incomplete data,

posing statistical problems for quantifying a signal in genes with limited expression; and (iii)

low genome coverage (less than 5% of the protein coding genes in C. elegans), constraining our

ability to perform a comprehensive enrichment analysis, e.g., using the Gene Ontology (GO)

[75].

Given that rϕ treats mutual gene expression (i.e., cases in which a gene is expressed in pairs

of neurons, n11) the same as mutual absence of gene expression (n00), we started by developing

a new analytic measure of the probability of mutual gene expression, given its clearer biological

interpretation (see S3 Text). This measure was not biased by differences in the relative number

of expressed genes (S2D Fig) and yields qualitatively similar outputs to rϕ on our data. Thus,

while we use rϕ throughout this work for its ease of interpretation (as an analogue of the con-

ventional correlation coefficient), our new probability-based CGE measure allowed us to moti-

vate a method for quantifying the contribution of individual genes (and functional groups of

genes) to patterns of CGE that addresses some of the above-mentioned challenges. Note that

our main findings, obtained using rϕ, are replicated using our new CGE measure (cf. S3 Fig).

As a starting point, we quantified the contribution of individual genes to differences in

CGE for different categories of neuron pairs, specifically for (i) increased CGE in connected

compared to unconnected pairs of neurons, and (ii) increased CGE in rich and feeder com-

pared to peripheral connections. Note that our method scores genes on their contribution to

differences in CGE between categories of pairwise connections. We first scored each gene for

whether it is more likely to be expressed in a given class of neuron pair over another as the

probability of obtaining at least as many matches (defined as expression in both neurons of a

pair) as observed under a random CGE null model using the binomial distribution:

pðaÞ ¼ 1 �
Xm� 1

i¼0

n
i

� �
pi

classð1 � pn� i
classÞ; ð4Þ

where m is the number of matches (a match indicates that a given gene was expressed in both

neurons) on the class of neuron pairs of interest, n is the total number of matches across all

neuron pairs considered in the analysis, pclass = nclass/M is the probability of the given class of

inter-region pairs, as the total number of neuron pairs of that class, nclass, divided by the maxi-

mum number of possible neuron pairs, M, for a given gene, indexed with a. This score, p(a),

can be interpreted as a p-value under the null hypothesis that the number of expression

matches of gene a is consistent with a purely random pattern of matches/mismatches across

edges, giving lower values to genes with more matches in the edge class of interest (compared

to an alternative set of edges) than expected by chance. For reasons described earlier, bilateral

pairs of neurons were excluded from all scoring procedures and, to ensure that each gene con-

tributes a meaningful score, we imposed a data quality threshold on the number of possible

matches, n� 10.

Our first analysis compares two mutually exclusive types of neuron pairs: (i) all pairs of

neurons that are connected by at least one chemical or electrical synapse, and (ii) all pairs of

neurons that are unconnected. For this analysis, pclass = 0.059 is the proportion of neuron pairs

that are connected, n is the total number of neuron pairs that both exhibit expression of gene

C. elegans connectome and gene expression
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a, and m is the number of neuron pairs that are structurally connected for which both neurons

express gene a. A total of 414 (/948) genes had n� 10 for this analysis. Our second analysis

compares pairs of connected neurons for which at least one is a hub (i.e., rich, feed-in, or feed-

out connections), to pairs in which both neurons are nonhubs (i.e., peripheral connections).

In this case, pclass = 0.35 is the proportion of connected pairs of neurons that involve hubs, n is

the number of connected neuron pairs for which gene a is expressed in both, and m counts the

number of connected neuron pairs involving hubs for which gene a is expressed. A total of 168

(/948) genes had n� 10 for this analysis.

As well as interpreting the list of individual genes that were significant after correcting for

multiple hypothesis comparison, we performed an over-representation analysis (ORA) using

the genes that contribute most to a given connectivity pattern to assess whether any gene sets

(GO categories) were statistically over-represented in this list. To obtain the gene list, we used

the false discovery rate correction of Benjamini and Hochberg [76] on p-values computed

using Eq (4), which were thresholded at a stringent level of p = 10−4 (corresponding to approx-

imately the top 20% of genes in each analysis). Over-representation for each biological process

GO category with 5 to 100 genes available was quantified as an FDR-corrected p-value (across

around 700 GO categories) using version 3.0.2 of ErmineJ software [77]. Biological process GO

annotations [75] were obtained from GEMMA [78] (using Generic_worm_noParents.
an.txt.gz downloaded on March 31, 2017). Gene Ontology terms and definitions were

obtained in RDF XML file format downloaded from archive.geneontology.org/latest-termdb/

go_daily-termdb.rdf-xml.gz on March 31 2017.

Results

A schematic overview of our data is in Fig 1, including the directed binary connectome

(Fig 1A), additional anatomical data gathered for each neuron (Fig 1B), and binary gene

expression across 948 genes (Fig 1C). Our analysis is presented in five parts: (i) given past evi-

dence for a major effect of physical distance on connection probability and CGE [38], we first

characterize the spatial dependency of connection probability and CGE; (ii) we confirm the

rich-club organization of the C. elegans connectome; (iii) we show that CGE is increased in

connected pairs of neurons relative to unconnected pairs, in electrical synapses relative to

chemical synapses, and in connected hub neurons relative to other types of connected neuron

pairs (mirroring previous results in the mesoscale mouse connectome [38]); (iv) we demon-

strate that high CGE between connected hub neurons is not driven by factors like stereotypical

interneuron expression, birth time, lineage similarity, neuromodulator types or expression

similarity within modules, but may be driven by the high CGE of command interneurons; (v)

we characterize the contribution of specific genes, and broader gene ontology categories, to

the observed patterns.

Spatial dependency

Previous work has demonstrated the importance of spatial effects in driving patterns of gene

expression, with more proximal brain areas [38, 53, 79–84] having both a increased connection

probability and more similar gene expression profiles [38, 42, 85, 86] than more distance brain

areas. Unlike network analyses of mammalian brains, where all neurons are confined to a spa-

tially contiguous organ, neurons of the C. elegans nervous system are distributed throughout

the entire organism, forming a dense cluster of 147 neurons in the head (all within 130 μm),

105 sparser neurons in the body (spanning 1.02 mm), which are predominantly motor neu-

rons (75%), and another dense cluster of 27 neurons in the tail (all within 90 μm of each

other), as plotted in Fig 2. In order to examine the relationship between connectivity and CGE,

C. elegans connectome and gene expression
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we need to understand the spatial dependence of both connectivity and CGE to characterize

the extent to which previously reported spatial dependencies of these measurements apply to

the microscale nervous system of C. elegans.
We first characterize the probability that two neurons will be connected given their source

and target types, labeling each neuron as being in either the ‘head’, ‘body’, or ‘tail’ of C. elegans.
Connection probability is plotted as a function of Euclidean separation distance in Fig 3 for

each combination of source and target neuron labels, across 10 equiprobable distance bins

(with exponential fits added for visualization). Distinguishing connections by source and

target neuron types uncovers clear spatial relationships (that are obscured when all connec-

tions are grouped, as in [53]), that differ across connection classes. From the very short dis-

tance scale of ⪅ 100 μm of head!head and tail!tail connections to the very longest-range

head!tail and tail!head connections (⪆ 1 mm), connection probability decreases with sepa-

ration distance (Fig 3A). For connections between pairs of neurons located in the body, rang-

ing up to� 1 mm, a near-exponential trend is exhibited, mirroring results in other species and

across longer length scales [80], including mouse [38, 87], and in rodents and primates [79].

Other connections do not exhibit strong spatial connectivity relationships, i.e., connections

between the body and head or between the body and tail, shown in Fig 3B.

We next investigate the dependence of CGE, rϕ, on the separation distance between neuron

pairs, shown in Fig 4. CGE decreases slightly with separation distance for the spatially close

neurons within the head (Fig 4A) and within the tail (Fig 4B), but not for pairs of neurons

involving the body (Fig 4C). The decreasing trend in CGE with distance within the head and

tail is primarily driven by a subset of nearby neurons with high rϕ. It may therefore represent

a relationship specific to particular functionally related neurons, rather than a general, bulk

spatial relationship seen in macroscopic mammalian brains [38]. Accordingly, attempting to

correct for a bulk, non-specific trend by taking residuals from an exponential fitted to the rela-

tionship produced artifactual reductions in the CGE of many neuron pairs (shown in S4 Fig).

Fig 2. Hub neurons are contained within the head and tail of C. elegans. Neurons are positioned along the anterior–posterior (horizontal), and dorsal–ventral

(vertical) axes, and are colored by type: (i) interneuron (85 neurons, orange), (ii) sensory (68 neurons, blue), (iii) motor (108 neurons, green), or (iv) multiple

assignments (18 neurons, yellow). Hub neurons (i.e., neurons with k> 44, see Fig 5) are shown as larger circles and outlined in black. ‘Rich-club’ connections

between hub neurons are shown (red), and all other connections are also shown in the upper plots (gray). Axes of each subplot are to scale with each other, and the

upper zoomed-in plots of the head and tail are shown as dotted rectangles in the lower plot.

https://doi.org/10.1371/journal.pcbi.1005989.g002
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Thus, we found no evidence for bulk spatial relationships of rϕ in the neuronal connectome of

C. elegans.

Hub connectivity

Next we analyze the topological properties of the C. elegans connectome, represented as a

directed, binary connectivity matrix between 279 neurons, combining directed chemical syn-

apses and undirected electrical gap junctions (Fig 1). The degree distribution is shown in

Fig 3. Connection probability decreases with separation distance within and between the head and tail, and within the body. The connection probability

for a pair of neurons as a function of their Euclidean distance is estimated in 10 equiprobable distance bins, shown as a circle (bin centers) and a horizontal line

(bin extent). There is a decreasing relationship for connections: within the head (aqua), from head!tail (brown) and from tail!head (stone blue), within the

tail (red), and within the body (dark purple). Exponential fits of the form f(x) = A exp(−λx) + B, some of which appear approximately linear across the range of

the data, are shown as dotted lines. (B) Plots as in (A), but for connection classes between the body and head/tail: from body!head (forest green), from

body!tail (dirt green), connections from head! body (purple), and from tail!body (dark brown). Apart from a small effect at short range for tail!body

connections, these connection classes show minimal distance dependence.

https://doi.org/10.1371/journal.pcbi.1005989.g003

Fig 4. Dependence of correlated gene expression, rϕ, on spatial separation between pairs of neurons. Correlated gene expression, rϕ (excluding bilateral

homologous pairs of neurons), is shown as a function of the pairwise separation distance between pairs of neurons (shown as the mean (solid) ± standard

deviation (dotted) in seven equiprobable distance bins, with extent shown as horizontal bars), for (A) all pairs of neurons in the head, (B) all pairs of neurons

in the tail, and (C) all other pairs (labeled). Scatters for all neuron pairs are added in (A) and (B). An exponential relationship, f(x) = A exp(−λx) + B, is fitted

in (A) and (B). The weak decreasing trend in rϕ with distance, is primarily driven by a small subset of nearby neurons with high rϕ, and may therefore

represent a more specific relationship between particular neurons, rather than a general, bulk spatial relationship observed in macroscopic mammalian

brains [38, 42].

https://doi.org/10.1371/journal.pcbi.1005989.g004
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Fig 5A, where neurons are labeled as sensory neurons, interneurons, motor neurons, or neu-

rons with multiple functional assignments. Consistent with the results of Towlson et al. [28],

who used an undirected version of the connectome (by ignoring the directionality of chemical

synapses), we found a positively-skewed degree distribution containing an extended tail of

high-degree hub interneurons. Hub interneurons of C. elegans are mostly command interneu-

rons and mediate behaviors like coordinated locomotion and foraging [88].

Using the normalized rich-club coefficient, Fnorm, to quantify the extent to which hubs are

densely interconnected, we confirmed the results of Towlson et al. [28], finding rich-club orga-

nization in the connectome, as shown in Fig 5B. The figure plots the variation of Fnorm across

degree thresholds, k, at which hubs are defined (as neurons with degree> k), with red circles

indicating a significant increase in link density among hubs relative to 1000 degree-preserving

nulls (permutation test, p< 0.05). The plot reveals rich-club organization (Fnorm > 1) at the

upper tail of the degree distribution, particularly across the range 44 < k< 63, shaded gray in

Fig 5B. Similar results were obtained using weighted representations of the connectome (i.e.,

using information about the number of synapses in the connectivity network) for two different

definitions of the weighted rich-club coefficient [89], shown in S5 Fig. Throughout this work,

Fig 5. Rich-club organization of the C. elegans connectome. (A) Degree distribution of neurons, labeled to four categories: (i) interneuron (85 neurons, orange),

(ii) motor (108 neurons, green), (iii) sensory (68 neurons, blue), or (iv) multiple assignments (18 neurons, yellow). The distribution features an extended tail of

high-degree interneurons. (B) Normalized rich club coefficient, Fnorm (red), as a function of the degree, k, at which hubs are defined (as neurons with degree> k).

Also shown is the mean Euclidean separation distance, d (purple) between connected hub regions (across degree thresholds, k). Fnorm > 1 indicates that hubs are

more densely interconnected among each other than expected by chance, with red circles indicating values of Fnorm that are significantly higher than an ensemble

of 1 000 degree-matched null networks (p< 0.05). Purple circles indicate where the Euclidean distance between connected pairs of hubs is significantly greater than

the Euclidean distance for all other pairs of connected regions (right-tailed Welch’s t-test, p< 0.05).

https://doi.org/10.1371/journal.pcbi.1005989.g005
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we define a set of hubs as the sixteen neurons with k> 44, which corresponds to the lowest

degree threshold at which the network displays a contiguous region of significant rich-club

organization at high k. Our list of hubs includes all of the 11 hub neurons of Towlson et al.

[28] at 3σ (see S1 Table), with five additional hubs identified in our analysis of the directed

connectome.

The rich-club connectivity of the C. elegans connectome is accompanied by an increase in

mean hub-hub connection distance [28], with a significant increase through the topological

rich-club regime (right-tailed Welch’s t-test, p< 0.05), shown in Fig 5B. This can be attributed

to a relative increase in long-distance hub-hub connections between the head and tail, shown

in Fig 2 (cf. S6 Fig). The high connection density and long mean anatomical distance between

pairs of hub neurons counters the general trend in the C. elegans connectome, where the prob-

ability of connectivity between two neurons decays with their separation distance (Fig 3).

These results are consistent with previous findings across diverse neural systems and suggest

that the rich club may provide a central yet costly backbone for neuronal communication in

C. elegans [28, 33].

Correlated gene expression and connectivity

We next investigate how the network connectivity properties of C. elegans relate to patterns of

CGE, using the mean square contingency coefficient, rϕ. To test whether CGE varies as a func-

tion of connectivity, we compared the distribution of rϕ between (i) all connected pairs of neu-

rons, and (ii) all unconnected pairs of neurons. Connected pairs of neurons have more similar

expression profiles than unconnected pairs (Wilcoxon rank-sum test, p = 1.8 × 10−78). Fig 6A

(left) shows distributions of rϕ for: (i) all pairs of neurons that are connected via electrical gap

junctions (474 pairs, after excluding bilateral pairs), (ii) all pairs of neurons that are connected

via reciprocal (291 pairs) and, (iii) unidirectional chemical synapses (1721 pairs) as well as (iv)

all pairs of neurons that have neither connection (36 450 pairs). Note that 175 pairs of neurons

are connected by both chemical synapses and gap junctions, and are thus included in both

chemical and electrical categories. Amongst connected pairs of neurons, those connected via

gap junctions exhibit more similar gene expression profiles than those connected via chemical

synapses (Wilcoxon rank-sum test, p = 5.4 × 10−22). We found no difference in CGE between

pairs of neurons connected reciprocally by chemical synapses (N1 $ N2 for two neurons

N1 and N2) versus those connected unidirectionally (N1 ! N2) (Wilcoxon rank-sum test,

p = 0.99).

We next investigated whether CGE varies across different types of connections defined in

terms of their hub connectivity. For a given hub threshold, k, we first labeled each neuron as

either a ‘hub’ (nodes with degree > k) or a ‘nonhub’ (degree� k), and then labeled each con-

nection as either ‘rich’ (hub ! hub), ‘feed-in’ (nonhub ! hub), ‘feed-out’ (hub ! nonhub),

or ‘peripheral’ (nonhub ! nonhub). The median CGE, ~r�, of each of these four connection

types is plotted in Fig 6B, with circles indicating statistically significant increases of a given

connection type relative to all other connections (one-sided Wilcoxon rank-sum test,

p< 0.05). Correlated gene expression in rich connections increases with degree, k, particularly

in the topological rich-club regime where hubs are densely interconnected (shaded gray in

Fig 6B). In this topological rich-club regime, both feed-in and feed-out connections exhibit

increased CGE relative to peripheral connections, which show the lowest levels of CGE. Full

distributions of rϕ for each edge type at a hub threshold of k> 44 are in Fig 6A (right). This

plot shows that, compared to all different types of pairs of neurons, connected pairs of hubs

showed the highest CGE.
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Fig 6. Correlated gene expression varies as a function of connectedness and connection type. (A) Left: distribution of CGE for (i) pairs of neurons connected by

gap junctions, (ii) pairs of neurons connected by reciprocal chemical synapses, (iii) pairs of neurons connected by unidirectional chemical synapses, (iv) pairs of

neurons that are unconnected, shown as a violin plot, with the median of each distribution represented by a horizontal line. CGE is increased in connected (electrical

or chemical; reciprocally or unidirectionally) pairs of neurons relative to unconnected pairs (p = 1.8 × 10−78, Wilcoxon rank sum test). Among connected pairs of

neurons neurons connected via gap junctions have more similar CGE than connected via chemical synapses (Wilcoxon rank-sum test, p = 5.4 × 10−22). Right: GCE for

pairs of neurons labeled as peripheral, feed-in, feed-out, and rich, where hubs are neurons with degree k> 44. The median of each distribution shown as a horizontal

line. CGE is significantly higher between hubs (rich links) compared to feeder (p = 5 × 10−22, Wilcoxon rank sum test) and peripheral (p = 3.9 × 10−19, Wilcoxon rank

sum test) links. Feed-out links show significantly higher CGE than both feed-in (p = 1.9 × 10−6, Wilcoxon rank sum test) and peripheral links (p = 4.5 × 10−12,

Wilcoxon rank sum test). (B) Top: Degree distribution, k, of the C. elegans connectome. Middle: proportion of connections that are: ‘rich’ (hub!hub, red), ‘feed-in’

(nonhub!hub, yellow), ‘feed-out’ (hub!nonhub, orange), or ‘peripheral’ (nonhub!nonhub, blue) as a function of the degree threshold, k, used to define hubs. Note

that at high k most neurons are labeled as nonhubs and hence the vast majority of connections are labeled ‘peripheral’. Bottom: Median CGE, ~r�, for each connection
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In summary, our results reveal: (i) increased CGE in connected pairs of neurons; (ii) the

highest CGE in rich connections; and (iii) lowest CGE in peripheral connections. These

results, obtained using incomplete binary annotations of gene expression across 948 genes in a

microscale neuronal connectome, are consistent with a prior analysis of the expression of over

17 000 genes across 213 regions of the mesoscale mouse connectome [38].

Potential drivers of elevated correlated gene expression between hubs

The sixteen hub neurons in C. elegans (k> 44): are all interneurons, are all located in either

the head or tail, are mostly contained within a single topological module of the network, are

mostly cholinergic (13/16), and are all born prior to hatching. We therefore investigated

whether the similarity of gene expression profiles between hubs is specific to their high levels

of connectivity, or whether it could instead be driven by these other characteristics.

Interneurons. The sixteen hubs in C. elegans are all interneurons. To determine whether

the increase in CGE in rich connections was specific to interneurons, we plotted the median

CGE for hub-hub connections, ~r�, as a function of the degree threshold, k, separately for con-

nections involving interneurons, sensory neurons, and motor neurons, as shown in Fig 7B.

For the curve labeled ‘sensory’, for example, each point is the median ~r� across connections

involving sensory neurons (i.e., at least one neuron of a connected pair is a sensory neuron),

for which both neurons have degree > k. The increase in median hub-hub CGE is strongest

for connections involving interneurons. Motor neurons show a smaller increase with k,

although the absence of motor and sensory neurons with high k makes it difficult to draw firm

conclusions. However, we do find that CGE is higher for hub-hub pairs of interneurons com-

pared to connections between all pairs of nonhub interneurons (Wilcoxon rank sum test,

p = 5 × 10−21), indicating that the high CGE of rich pairs cannot simply be related to the fact

type as a function of k. The median CGE across all network links is shown as a dotted black line; the topological rich-club regime (determined from the network

topology, cf. Fig 5) is shaded gray. Circles indicate a statistically significant increase in CGE in a given link type relative to the rest of the network (one-sided Wilcoxon

rank-sum test, p< 0.05).

https://doi.org/10.1371/journal.pcbi.1005989.g006

Fig 7. Correlated gene expression is highest for hub interneurons. (A) The number of connected neuron pairs involving interneurons (orange), sensory neurons

(blue), and motor neurons (green) across degree threshold, k, represented as log10(number of links). (B) Median CGE as a function of degree for connections

involving different types of neurons. Circles indicate a statistically significant increase in CGE in a given link type relative to the rest of the network (one-sided

Wilcoxon rank-sum test, p< 0.05). (C) CGE distributions for connected pairs of hub interneurons (red) and connected pairs of non-hub interneurons (dark yellow)

(Wilcoxon rank sum test, p = 5 × 10−21). � represents statistically significant difference.

https://doi.org/10.1371/journal.pcbi.1005989.g007
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that all hub neurons are interneurons (Fig 7C). We next investigated whether greater CGE of

hub-hub pairs of neurons could be driven by specific anatomical properties of hub interneu-

rons. Specifically, we selected a subset of nonhub interneurons that most closely resemble the

anatomical properties of hub interneurons in terms of their position and projection pattern;

that is, the cells are in similar locations in the head and their axons project to similar targets in

the tail. These neurons were AVFL, AVFR, AVHL, AVHR, AVKR, AVJL, and AVJR. Pairs of

hub interneurons show higher median CGE than pairs of anatomically-matched nonhub inter-

neurons, with the difference being at the threshold of statistical significance (Wilcoxon rank

sum test, p = 0.051), suggesting that the increase in CGE amongst hub interneurons is not a

consequence of their classification as interneurons.

Modular organization. Prior work in humans has shown that functional networks in the

brain have elevated transcriptional coupling [45]. The C. elegans connectome has a modular

organization, with prior work decomposing it into: (i) modules of neurons with dense intra-

module connectivity (and relatively sparse connectivity between modules) [22, 55, 58], or (ii)

groups of neurons with more similar connectivity patterns within groups than between groups

[56, 71]. We therefore examined the association between topological modularity of the C. ele-
gans connectome and CGE. We used the Louvain community detection algorithm [72] to

extract modules from the C. elegans connectome using consensus clustering (see Methods).

Four modules were extracted, with eleven hubs in module one (which contains 111 neurons),

four hubs in module two (96 neurons), one hub in module three (40 neurons), and no hubs in

module four (32 neurons). We also compared the results of this modular partition of neurons

to a previously reported nine-module partition derived from an Erdös-Rényi Mixture Model

(ERMM) [56]. For the Louvain consensus modules, CGE, rϕ, was significantly increased for

connected neurons in the same module (1552 pairs) relative to connected pairs in different

modules (687 pairs) (Wilcoxon rank sum test, p = 6.6 × 10−4), but there was no significant dif-

ference between intra-modular connected neurons and inter-modular connected neurons for

the nine-module ERMM partition (Wilcoxon rank sum test, p = 0.46). The resolution and type

of modular decomposition thus affects the relationship between CGE, connectivity, and mod-

ular network structure in C. elegans.
We then tested whether connected hubs exhibit more similar CGE within and between

modules (for both the consensus Louvain and ERMM modular decompositions). For pairs of

connected neurons within the same module, rϕ is higher for pairs of hubs than pairs of non-

hubs (Wilcoxon rank sum test, p = 6.9 × 10−17 for consensus Louvain modules, shown in

Fig 8A; 9.3 × 10−7 for ERMM partition). We found a similar result for connected neurons in

different modules: pairs of connected hubs exhibit increased CGE than other types of con-

nected pairs of neurons (Wilcoxon rank sum test, p = 1.6 × 10−5 for consensus Louvain

modules, shown in Fig 8B; p = 1.6 × 10−16 for ERMM). Thus, for both types of modular decom-

positions considered, intra-modular and inter-modular connections involving hub neurons

exhibit more correlated gene expression patterns than other intra-modular and inter-modular

connections.

Lineage distance. The lineage distance between a pair of neurons is defined as the sum of

total divisions that have taken place since the most recent common ancestor cell [56, 65, 66].

In the mammalian brain, neuronal lineage has been associated with both functional properties

[90, 91] as well as connectivity [92]. Moreover, tissue distance (resembling lineage distance on

a cellular scale) correlates with gene expression divergence, meaning that tissues from the

same branch on the fate map share more similar gene expression patterns in both human and

mouse mesoderm as well as ectoderm tissues [93]. Given that the ectoderm eventually differ-

entiates to form the nervous system, this finding suggests a possible relationship between line-

age distance and CGE in a microscale neuronal system such as that of C. elegans. However, we
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find no significant correlation between lineage distance and CGE in C. elegans (Spearman’s

ρ = −0.027, p = 0.2). As shown in Fig 8C, there was only a weak tendency for the meadian line-

age distance to be increased in non-rich pairs (Wilcoxon rank sum test, p = 0.079). Thus, we

can not attribute the transcriptional similarity of connected hub neurons to their neuronal

lineage.

Birth time. The genesis of neurons in C. elegans is separated into two distinct time

periods: before hatching (birth time < 550 min—‘early-born’) and after hatching (birth

time > 1200 min—‘late-born’), with no neurons formed during intermediate times [59]. As a

broad group, connected pairs of early-born neurons do not exhibit significantly different CGE

compared to connected pairs of late-born neurons (Wilcoxon rank sum test, p = 0.64), but

connected pairs of early-born neurons do exhibit significantly higher CGE relative to pairs of

connected neurons for which one neuron is born prior to hatching and the other is born after

hatching (Wilcoxon rank sum test, p = 4.2 × 10−3). Since all C. elegans hub neurons are born

prior to hatching [28] and neurons born at similar times may share similar connectivity prop-

erties [28, 59], we investigated whether the increase in CGE between hub neurons of C. elegans
may be driven by their similar birth times. Focusing on the 201 neurons born prior to hatching

Fig 8. Increased CGE of hub neurons is not driven by modularity, neuronal birth time, or cell lineage distance. (A) Distributions of CGE, rϕ, for intra-modular

rich (red) non-rich (blue) connections, shown as violin plots with the median shown as a horizontal bar (Wilcoxon rank sum test, p = 6.9 × 10−17). (B) Distributions of

CGE, rϕ, for inter-modular rich (red) and non-rich (blue) connections, shown as violin plots with the median shown as a horizontal bar (Wilcoxon rank sum test,

p = 1.6 × 10−5). (C) Distributions of lineage distance between rich links (red) and non-rich links (blue), plotted as histograms due to a discrete nature of this measure

(Wilcoxon rank sum test, p = 0.079). (D) Distributions of CGE, rϕ, between early born hubs (rich links, red) and nonhubs (non-rich links, blue) shown as violin plots

with the median shown as a horizontal bar (Wilcoxon rank sum test, p = 3.9 × 10−22). (E) Distributions of CGE between hub command interneurons (red) and hub

non-command interneurons (blue) shown as violin plots with the median shown as a horizontal bar (Wilcoxon rank sum test, p = 3.3 × 10−8). � represents statistically

significant differences.

https://doi.org/10.1371/journal.pcbi.1005989.g008
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(16 hub and 185 nonhub neurons), connected pairs of hub neurons exhibit significantly

increased CGE, rϕ, relative to other pairs of connected early-born neurons (Wilcoxon rank

sum test, p< 10−22), as shown in Fig 8D.

Neurochemistry. Hub neurons (k> 44) consist of thirteen cholinergic neurons, two glu-

tamatergic neurons, and one neuron of unknown neurotransmitter type [64]. We find that

neuron pairs show different CGE relationships as a function of their neurotransmitter type,

e.g., pairs of GABAergic neurons have high median CGE, ~r� ¼ 0:59, while pairs of glutamater-

gic neurons exhibit a relatively low median CGE, ~r� ¼ 0:08. To determine whether the simi-

larity in CGE between pairs of hub neurons is associated with their neurotransmitter types, we

constructed 108 random sets of sixteen neurons of the same neurotransmitter types as hubs

(e.g., thirteen random cholinergic neurons, two random glutamatergic neurons, and one ran-

dom neuron of an unknown neurotransmitter type) and compared the distribution of median

CGE of each group to the median CGE of hub neurons as a permutation test. Neurochemical

identity is not associated with the elevated CGE of hub neurons, with hubs displaying a signifi-

cant increase in median CGE relative to random sets of neurons with the same neurotransmit-

ter types as hubs (permutation test, p = 3 × 10−4).

Anatomical location. Of the sixteen hub neurons, thirteen are in the head and three are

in the tail; none are located in the body. CGE varies as a function of anatomical location (i.e.,

‘head’, ‘body’, and ‘tail’), with pairs of neurons in the same anatomical class exhibiting the

highest median CGE (e.g., pairs of neurons within the body have a median ~r� ¼ 0:14, pairs of

neurons within the tail have ~r� ¼ 0:12, and pairs of neurons within the head have ~r� ¼ 0:07),

than pairs of neurons in mixed classes (e.g., head-body pairs of neurons have ~r� ¼ 0:01).

Given this variation, we tested whether the increased CGE between hub neurons could be

explained by their anatomical distribution using the permutation testing procedure described

above for neurochemistry. That is, we compared the distribution of CGE between hubs to a

null distribution formed from 108 random permutations of thirteen head neurons and three

tail neurons. The median CGE, ~r�, between hub neurons is significantly increased relative to

random sets of thirteen head neurons and three tail neurons (permutation test, p = 8 × 10−8).

Furthermore, CGE is significantly increased amongst hub neurons relative to other pairs of

head neurons (Wilcoxon rank sum test, p = 4.1 × 10−11 for 46 hub-hub pairs and 1 186 others),

and also amongst head/tail pairs of neurons (Wilcoxon rank sum test, p = 1.6 × 10−14 for 23

hub-hub pairs, 174 others), but not for the three hub neurons in the tail (Wilcoxon rank sum

test, p = 0.15 for three hub-hub pairs, 53 others). Thus, anatomical location does not explain

the high CGE of hub neurons.

Functional class. C. elegans neurons can be divided into distinct groups that each perform

a specialized behavioral function [94]. One of the best-characterised functional classes that is

particularly relevant for our analysis is the set of ‘command interneurons’—a functional group

of ten neurons that govern forward (AVBL, AVBR, PVCL, PVCR) and backward (AVAL,

AVAR, AVDL, AVDR, AVEL, AVER) locomotion [95]. All of these neurons are hubs. Given

the overlap between hub neurons and command interneurons, we investigated whether com-

mand interneurons exhibit more similar expression than other hub interneurons, and may

therefore drive the increase in CGE amongst hubs as a whole. We compared CGE, rϕ, between

all pairs of hub command interneurons (ten neurons), and between all pairs of hubs that are

not command interneurons (six neurons), shown in Fig 8E. Correlated gene expression

between command interneurons is significantly greater than between other hub neurons (Wil-

coxon rank sum test, p = 3.3 × 10−8), indicating that command interneurons play a major role

in driving the increased CGE amongst hub neurons. Moreover, there is no difference in CGE

between pairs of hubs that are not command interneurons (DVA, RIBL, RIBR, AIBR, RIGL,
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AVKL) and a set of seven anatomically matched nonhub head interneurons (AVFL, AVFR,

AVHL, AVHR, AVJL, AVJR, AVKR) (Wilcoxon rank sum test, p = 0.13), indicating that the

status of many hub neurons as command interneurons makes a significant contribution to the

elevated CGE between hubs.

Genes driving correlated gene expression patterns

Having characterized a robust relationship between CGE and (i) connectivity, and (ii) hub

connectivity, we next investigated which specific genes contribute most to this relationship.

Despite challenges with the incomplete binary expression measurements in a small proportion

of the genome, we developed a method to score genes according to their contribution to a

given CGE pattern (see Methods). We characterized individual high-scoring genes, with

pcorr < 10−4 (approximately 20% of genes with the highest scores in each analysis), and

attempted to summarize functional groups of genes as biological process categories of the gene

ontology (GO) that were enriched in high scoring genes using overrepresentation analysis

(ORA) [75, 77].

We first investigated which genes drive increased CGE in connected pairs of neurons rela-

tive to unconnected pairs. Previous studies in mouse have indicated that genes driving an

increase in CGE between connected pairs of brain regions are enriched in GO categories

related to neuronal connectivity and communication [38, 96–98]. First, we manually investi-

gated individual high-scoring genes (i.e., those with pcorr < 10−4, see Supplementary Data File

(S1 File)). Given that glutamate is a prevalent neurotransmitter in C. elegans (26% of neurons

with known neurotransmitter type are glutamatergic [64]), it is appropriate that many high

scoring genes are related to glutamate receptors (including glr-1, glr-2, glr-4, glr-5, nmr-1, and

nmr-2). Consistent with the importance of innexins in forming electrical synapses [99], our list

contained the following innexin genes: unc-9, unc-7, inx-7, inx-19, inx-13. Genes encoding cell

adhesion molecules related to axon outgrowth and guidance, cell migration and locomotion

(sax-3, cam-1, unc-6, rig-1, unc-5), learning (casy-1) [63, 100–103], as well as genes involved in

determining cell polarity (vang-1, prkl-1) [104, 105] were also amongst the top scoring genes

for connectivity. These genes have been implicated in neuronal connectivity in both flies

and humans [106–108], with our results predicting that they may play a similar role in C. ele-
gans. In addition, transcription factors regulating neuronal development, fate specification

(lin-11, unc-3, unc-42, ceh-14, ast-1, cfi-1) [109–114], and locomotion (unc-3) [110]) were

also implicated in driving increased CGE amongst connected pairs of neurons. Both adhesion

molecules and transcription factors are candidates for facilitating signal transduction and

communication.

In order to summarize the above mentioned results and determine if any particular func-

tional groups of genes drive this effect, we performed an enrichment analysis. Top scoring bio-

logical process GO categories from ORA analysis (of 85 genes relative to the 414 genes with

sufficient data for this analysis) are listed in S2 Table. Although no GO categories are signifi-

cant at a false discovery rate of 0.05, the top categories are consistent with a connectivity

profile, including ‘glutamate receptor signaling’, ‘cell surface receptor signaling’, and ‘ion

transport’, with other categories involved in regulation of growth rate and several related to

catabolic processes. Thus, despite incomplete gene expression data that do not provide suffi-

cient coverage to detect statistically significant effects, these results indicate that our data-

driven gene scoring method is able to yield sensible, biologically relevant insights into the

genetic basis of neuronal connectivity in C. elegans connectome.

Having characterized genes that contribute to the increase in CGE between connected

pairs of neurons, we next investigated whether particular functional groups of genes drive
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differences in CGE between connections involving hub neurons (i.e., in rich, feed-in, and

feed-out connections) relative to connections between pairs of nonhub neurons (i.e., periph-

eral connections). In order to investigate which specific genes contribute most to the increase

in CGE for connections involving hubs, we first investigated the highest-scoring genes, with

pcorr < 10−4 (corresponding to approximately the top 20% of genes in the analysis). In addition

to glutamate receptor genes (glr-5, nmr-1, nmr-2, glr-1, glr-2, grld-1) and acetylcholine related

genes (ace-2, cho-1, unc-17, deg-3), we again find a high number of genes regulating cell adhe-

sion (cam-1, rig-1, rig-6, unc-6, grld-1, dbl-1, ncam-1) and relevant transcription factors (unc-3,

unc-42, ast-1). The implication of glutamate and acetylcholine may be attributable to the

importance of glutamate in the regulation of locomotion in command interneurons [115,

116], with acetylcholine being the dominant neurotransmitter in hubs (13 out of 16 hubs are

cholinergic). We also find a high overlap between adhesion molecule and transcription factor

encoding genes found in the previous analysis and the implication of human orthologs (rig-1,

ncam-1, grld-1, corresponding to human genes ROBO4, NCAM2, and RBM15 respectively

[63]) for genes regulating cell migration, differentiation and neuron cell adhesion.

While previous work implicated genes regulating oxidative metabolism for connections

involving hubs in mouse [38], and for hub regions in human [48], the gene expression dataset

used here was not sufficiently comprehensive to investigate these processes. For example, only

one of the 948 genes annotated to the GO categories related to hub connectivity in mouse is

present in our gene expression dataset (unc-32 is annotated to the GO category: ‘ATP hydroly-

sis coupled proton transport’). Thus, although a direct test of the metabolic hypothesis for neu-

ral hubs is not possible from current data, we investigated whether other biological process

GO categories were overrepresented in pairs of connected hubs using ORA (of 30 genes rela-

tive to the 168 genes with sufficient data for this analysis), with results listed in S3 Table. Even

though no categories are statistically significant at a false discovery rate of 0.05, the list of top

categories includes both ‘glutamate receptor signaling pathway’ as well as more general ‘cell

surface receptor signaling pathway’ in addition to several ion transport related gene groups

(’ion transport’, ‘ion transmembrane transport’, ‘transmembrane transport’). Other top-

ranked GO categories include regulation of locomotion, and various metabolism and biosyn-

thesis related processes. Our gene scoring method again yields interpretable insights into the

types of genes that contribute to differences in CGE between different classes of neuronal con-

nections in C. elegans. While current data are limited, more comprehensive expression annota-

tions in the future would allow more systematic and statistically powered inferences across GO

categories.

Discussion

Highly connected hubs of neural systems play an important role in brain function, with their

dense rich-club interconnectivity integrating disparate neural networks [24, 27, 29, 30]. Here,

our analysis linking hub connectivity of the microscale connectome of C. elegans to patterns of

neuron-specific gene expression has identified a transcriptional signature that appears to be

highly conserved, given recent findings reported in a mesoscale investigation of the mouse

[38] and a macroscale study of humans [48]. Specifically, we show that: (i) CGE is higher for

connected pairs of neurons compared to unconnnected pairs; (ii) the neuron connection prob-

ability decays as a function of spatial separation, and; (iii) connected pairs of hub neurons,

which are generally separated by longer anatomical distances, show the highest levels of CGE.

This association between CGE and hub connectivity followed a gradient, such that CGE was

lowest for connected nonhubs, intermediate for hub-nonhub pairs, and highest for connected

hubs, consistent with results reported in the mouse brain [38]. Amongst the genes considered
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here, many of those with the greatest contribution to connectivity are biologically plausible

genes related to receptors, neurotransmitters, and cell adhesion, and those with the greatest

contribution to hub connectivity are related to glutamate receptors, acetylcholine signaling,

and other neuronal communication related genes. The methods we develop here for quantify-

ing CGE, and for scoring the contribution of individuals genes to overall CGE, yield biologi-

cally interpretable results from incomplete binary gene expression data. With improvements

in gene annotation quality and specificity, and increases in genome coverage, similar methods

could be used in future work to characterize the biological basis of a range of neuronal connec-

tivity patterns.

The availability of spatial maps of gene expression with genome-wide coverage has allowed

the relationship between gene expression and connectivity to be investigated in species ranging

from C. elegans through to mouse and human. For example, Krienen et al. [42] showed that

the topography of transcriptional expression of a small number of human supragranular

enriched genes mirrors the large-scale brain network organization of rs-fMRI in the healthy

human brain, and Romme et al. [117] showed that schizophrenia-related structural disconnec-

tivity is significantly correlated to the expression profiles of schizophrenia risk genes. Recent

work has demonstrated a relationship between spatial gene expression maps and cortical

hierarchy using structural MRI imaging in macaque and human [118]. Spatial maps of gene

transcription will continue to play a key role in uncovering species-conserved mechanisms

underlying brain connectivity.

Computational methods to extract relationships between network organization and gene

expression can help understand the molecular processes underlying neuronal connectivity.

Previous research has related gene expression data in C. elegans to axonal connectivity pat-

terns, focusing on pairwise relationships of genes that might underpin axonal connectivity.

Both Kaufman et al. [60] and Baruch et al. [119] developed statistical models to predict the

postsynaptic partners of individual neurons in C. elegans (using k-nearest neighbors and

boosted decision tree models, respectively). This research found that the targets of some neu-

rons are easier to predict than others [60], and that the prediction can be done with good accu-

racy using only a small subset of genes [119]. Our results demonstrate differences in CGE

across different topological classes of connections, and highlight genes that make the biggest

contribution to these differences. More detailed investigations of these relationships (e.g.,

across C. elegans development) may shed light on the molecular logic underlying the establish-

ment and maintenance of neuronal connectivity.

It is reasonable to expect that the principles of neural organization may differ from the scale

of individual neurons to the scale of macroscopic brain regions (in which each brain region

contains millions of neurons). However, many of our results in C. elegans suggest a striking

conservation of many fundamental spatial trends in neural connectivity and CGE across scales

and species. For example, connection probability decreases with spatial separation between

brain areas in rodents and primates [79, 80] (including in macaque [81], human [82], mouse

[38], and rat [83]), for individual neurons in mouse primary auditory cortex [84], and between

neurons in C. elegans (cf. Fig. S1 of [53]). Unlike mammalian brains, where all neurons are

confined to a spatially contiguous organ, neurons are distributed across nearly the entire

length of C. elegans, including a dense cluster of neurons in the head and in the tail. Despite

these distinct morphologies, we report a qualitatively similar spatial dependence of connection

probability with separation distance for many classes of connections in C. elegans, including

those within the head, body, and tail, indicating that this distance-dependence may be a

generic property of evolved neuronal systems that must balance the energetic cost of long-

range connections with their functional benefit [17, 23, 33, 55]. Less frequently characterized is

the spatial dependence of CGE, with available evidence indicating that more proximal brain
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areas exhibit more similar gene expression patterns than more distant brain areas in the

mouse brain [38] and human cortex [42, 85, 86]. Some of the spatial trends in CGE found in

the 948 genes analyzed here mirror these trends of bulk regions of macroscopic mammalian

brains. It is therefore possible that these spatial dependences of connectivity and CGE may not

be simply due to bulk spatial trends in macroscopic brains containing millions of neurons, but

may reflect conserved organizational principles that hold across species and spatial scales. Our

results highlight the importance of treating nervous systems as spatially embedded objects, as

many seemingly non-trivial properties of brain organization may be well approximated by

simple, isotropic spatial rules [22, 50, 79, 82, 120] (see also [17, 23]).

Our analysis indicates that CGE patterns in C. elegans show many surprising similarities to

previous work in the mesoscale mouse connectome [38], despite: (i) involving different gene

expression annotation data (comprehensive in situ hybridization expression data across

*20000 genes in mouse versus literature-curated annotations across *1000 genes in C. ele-
gans), (ii) being a different type of neural system (from the spatially continuous macroscopic

brain of mouse, to the spatially separated nervous system of C. elegans); (iii) orders of magni-

tude differences in spatial scale. The findings were also robust to a range of data processing

choices, including different representations of the connectome (e.g., directed/undirected, or

excluding electrical synapses), and across alternative metrics for quantifying transcriptional

similarity.

What could drive this highly conserved association between CGE and hub connectivity?

Here, we took advantage of the rich and diverse information available for each neuron of the

C. elegans connectome to begin to address this question. We show that CGE between hub neu-

rons is not determined by their neuronal type (i.e., the fact that all hubs are interneurons rather

than sensory or motor neurons), since CGE between hub neurons is higher than between

other pairs of interneurons. The effect cannot be attributed to the modular organization of the

network either, since CGE between hubs in the same module is higher than between other

pairs of neurons in the same topological module, with a similar increase in CGE for pairs of

hubs in different modules. We also show that the effect is not driven by similarities in the birth

time nor lineage distance of hub neurons, which exhibit higher CGE than other early-born

neurons (prior to hatching) and are not closer in their lineage. Moreover, the abundance of

cholinergic signaling of hub neurons cannot explain the effect. Rather, the CGE between

pairs of hub neurons in C. elegans may be related to the specific functional role of these cells.

Namely, 60% of them are command interneurons, which play a vital role in coordinating for-

ward and backward locomotion in C. elegans [54]. The overlap between command interneu-

rons and hub neurons has interesting parallels with the human cortex, where polymodal

association areas tend to be the most highly connected network elements [1]. Association

areas sit at atop the cortical hierarchy and support complex behaviors by integrating informa-

tion from diverse neural systems [121]. Locomotion is arguably one of the most complex

behaviors expressed by C. elegans. Thus, the association between hub status and command

interneurons may reflect the specialization of these neurons for supporting higher-order func-

tions in the behavioral repertoire of C. elegans.
It is as yet unclear whether CGE between network hubs, regardless of species and scale, is

simply a byproduct of tightly coupled hub activity, or some shared morphological or develop-

ment characteristic between hubs that we have not captured in the present analysis. More

comprehensive transcriptomic data (e.g., obtained through systematic single-neuron RNA

sequencing), measured through development and coupled with measures of neuronal activity,

would allow us to address these questions. Additionally, we cannot rule out the possibility that

gene annotations have been influenced by the nature of the curated data that we have used

here. Given their functional similarity, command interneurons might have been tested as a
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group in a set of experiments for the expression of particular genes and consequently assigned

similar expression signatures. More precise and systematic measurement of neuron-specific

gene expression patterns would be required to address this question. Studies of gene expression

often assume that expression levels correspond to protein abundance, but this assumption does

not always hold [122–124]. Thus, analyses of transcriptomic data can be viewed as a relatively

efficient approach for investigating potential links between molecular function and nervous

system organization, that can be more strongly verified using subsequent proteomic analysis.

In this work we developed methods to relate correlations in binary gene expression data to

pairwise connectivity and subsequently score and evaluate the contribution of individual

genes to these patterns. Compared to continuous in situ hybridization measurements of

the expression of> 17000 genes in the mouse brain [125], or microarray measurements

of> 20000 genes in the human brain [126, 127], which permit more detailed analysis [38, 48,

96–98, 128], working with C. elegans gene expression data is challenging due to its low cover-

age (< 5% coverage of the worm genome), binary indications of expression, and incomplete-

ness (an inability to distinguish missing data from lack of expression). Moreover, the data have

different qualifiers related to the certainty of gene expression annotations (see S1 Text), requir-

ing choices to be made to appropriately balance sensitivity and specificity. Although gene

enrichment analyses did not have enough power to detect significant effects here, top GO cate-

gories point us towards biologically relevant categories related to neuronal connectivity, neu-

rotransmitters, and metabolism. We note, however, that the incomplete coverage of the

genome in our annotated dataset may mask many true GO associations. Our single gene analy-

sis identified specific genes contributing to increases in CGE for connected pairs of neurons

and for connections involving hub neurons. In line with our expectations, genes regulating

both chemical and electrical signaling, namely glutamate receptor and innexin genes, were

implicated in general connectivity. In addition, we also find multiple cell adhesion molecule

genes and transcription factors that regulate neuronal development and fate specification—

both groups are important for forming neuronal connections. High overlap between genes

encoding adhesion molecules and transcription factors implicated in regulating both general

and hub connectivity highlights that related mechanisms might be used in both cases. While

we were not able to test GO categories related to neurotransmitter signaling comprehensively,

due to insufficient coverage of gene expression annotations, single gene analysis revealed the

importance of acetylcholine genes, which may be related to the fact that acetylcholine is the

dominant neurotransmitter in hub neurons.

Supporting information

S1 Text. Expression annotations from WormBase.

(PDF)

S2 Text. Sensitivity of correlated gene expression measures.

(PDF)

S3 Text. Correlated gene expression matching index.

(PDF)

S1 Table. Hub neurons of the C. elegans connectome. Hubs are defined as neurons with

degree k> 44. For each hub, we list (i) the neuron name, (ii) its degree, k, (iii) location (‘head’,

‘body’, or ‘tail’), and function based on information presented in the wormatlas website http://

www.wormatlas.org/. Neurons are sorted (descending) by degree.

(PDF)
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S2 Table. Enrichment results for connected vs unconnected neurons. Top 15 biological pro-

cess GO categories enriched in genes with the highest mean increase in CGE for connected

neurons compared to unconnected neurons. Categories are sorted by p-value (ascending).

(PDF)

S3 Table. Enrichment results for links involving hubs. Top 15 biological process GO catego-

ries enriched in genes with the highest increase in CGE for connections involving hub neurons

(i.e., rich, feed-in and feed-out connections) compared to connections between nonhub neu-

rons (i.e., in peripheral connections). Categories are sorted by p-value (ascending).

(PDF)

S1 Fig. Rich club organisation and correlated gene expression in synaptic connectivity

matrix. (A) Rich-club organization of the synaptic C. elegans connectome. Top: Degree distri-

bution of neurons, labelled to four categories: (i) interneuron (85 neurons, orange), (ii) motor

(108 neurons, green), (iii) sensory (68 neurons, blue), or (iv) multiple assignments (18 neu-

rons, yellow). The distribution features an extended tail of high-degree neurons. Bottom: Nor-

malized rich club coefficient, Fnorm (red), as a function of the degree, k, at which hubs are

defined (as neurons with degree> k). Also shown is the mean Euclidean separation distance,

d (purple) between connected hub regions (across degree thresholds, k). Fnorm > 1 indicates

that hubs are more densely interconnected among each other than expected by chance, with

red circles indicating values of Fnorm that are significantly higher than an ensemble of 1 000

degree-matched null networks (p< 0.05). Purple circles indicate where the Euclidean distance

between connected pairs of hubs is significantly greater than the Euclidean distance for all

other pairs of connected regions (right-tailed Welch’s t-test, p< 0.05). (B) Top: Degree distri-

bution, k, of the synaptic C. elegans connectome. Middle: proportion of connections that are:

‘rich’ (hub! hub, red), ‘feed-in’ (nonhub! hub, yellow), ‘feed-out’ (hub! nonhub,

orange), or ‘peripheral’ (nonhub! nonhub, blue) as a function of the degree threshold, k,

used to define hubs. Note that at high k most neurons are labeled as nonhubs and hence the

vast majority of connections are labeled ‘peripheral’. Bottom: Median CGE, ~r�, for each con-

nection type as a function of k. The median CGE across all network links is shown as a dotted

black line; the topological rich-club regime (determined from the network topology, cf. A) is

shaded gray. Circles indicate a statistically significant increase in CGE in a given link type rela-

tive to the rest of the network (one-sided Wilcoxon rank-sum test, p< 0.05).

(TIF)

S2 Fig. Dependence of correlated gene expression measures on the proportion of positive

annotations. We plot the mean value of each metric across 1000 different pairs of random,

binary vectors of length 948, which vary only in their proportion of ‘1’s (between 0–0.15; corre-

sponding to a number of ‘1’s ranging from 1 to 150). This is repeated for: (A) mean square

contingency coefficient, rϕ, (B) Jaccard index, (C) Yule’s Q, and (D) our developed positive

match measure, pmatch, (see S3 Text). Any systematic trend in correlation values indicates a

bias driven by the proportion of positive annotations for a pair of vectors, as is seen for the Jac-

card index and Yule’s Q. By contrast, rϕ, which is used through this work, and our probability-

based measure, pmatch, used to motivate individual gene scoring for enrichment analysis, show

no evidence of systematic bias (note the color axis scales).

(TIF)

S3 Fig. Correlated gene expression measured using the positive matching probability

index. The matching probability index, pmatch, as introduced in S3 Text. Top: Degree distribu-

tion. Middle: Proportion of connections that are ‘rich’ (hub!hub, red), ‘feed-in’ (non-

hub!hub, yellow), ‘feed-out’ (hub!nonhub, orange), and ‘peripheral’ (nonhub!nonhub,
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blue) as a function of the degree threshold, k, used to define hubs. Note that at high k, most

neurons are labeled as nonhubs, and hence the vast majority of connections are ‘peripheral’.

Bottom: Mean CGE calculated using similarity index from only positive matches, pmatch, for

each connection type as a function of k. The mean CGE across all network links shown as a

dotted black line; the topological rich-club regime (determined from the network topology, cf.

Fig 5) is shaded gray. Circles indicate a statistically significant increase in CGE in a given link

type relative to the rest of the network (one-sided Welch’s t test; p< 0.05).

(TIF)

S4 Fig. Correcting for spatial effects in CGE data using a bulk exponential trend. Here we

consider correlated gene expression in the head, where the strongest spatial relationship exists

(cf. Fig 4. (A) CGE values, rϕ, plotted as a function of Euclidean separation distance for all

pairs of neurons within the head (gray dots), with a fitted exponential trend shown in black,

f(x) = A exp(−λx) + B. (B) Taking residuals from this trend does not adequately correct the

spatial trend. Note the artifactual negative correlations indicated with an arrow. This indicates

that the trend is not a bulk, isotropic effect, but may instead be driven primarily by a small

number of neuron pairs with high rϕ at short distances (⪅ 50μm), indicated with a circle in

(A). For example, neuron pairs with rϕ> 0.8, are all between the following classes of head neu-

rons: CEP, IL1, OLQ, RMD, RME, RMF, SAAD, SAAV, SAB, SIA, SIB, SMB, SMD, URA,

URY.

(TIF)

S5 Fig. Weighted and unweighted rich-club analyses yield similar results. (A) Degree dis-

tribution of the C. elegans connectome. Neurons are labeled to four types as in the legend.

(B) Normalized weighted rich-club coefficient, Fweighted
norm (i.e., topology fixed and weights ran-

domized in the null model, shown orange), and normalized mixed rich-club coefficient,

Fmixed
norm (i.e., both topology and weights mixed in the null model, shown green) are plotted as a

function of the degree, k, at which hubs are defined (as neurons with degree > k) [129]. Cir-

cles indicate values of Fnorm that are significantly higher than an ensemble of 1 000 degree-

matched null networks (Welch’s t-test, p< 0.05). Compared to topological rich-club analysis

presented in the main text, here the weights of the connections are also accounted for when

calculating the rich club coefficient. In the case of the weighted rich-club coefficient, the

topology for the null models was kept stable and only the weights of the connections ran-

domized. Results presented here show that connections between higher degree nodes are

stronger than expected by chance. On the other hand, in the mixed rich club coefficient both

the topology and weights are randomized, therefore we see the combined effect of both

types. Distinction between the different null models is discussed in detail in [129]. These

results show that connections between high degree nodes are both denser and stronger than

expected by chance.

(TIF)

S6 Fig. Rich and non-rich connections in the C. elegans connectome, categorized by the

anatomical location of the source and target neurons. Hub-hub connections (‘rich’) are

shown red, and all other connections (‘non-rich’, i.e., feeder and peripheral) are shown gray,

where hubs are defined as neurons with degree, k> 44. Anatomical locations are labeled as

‘head’, ‘body’, and ‘tail’, and each connection is labeled according to its source and target neu-

rons, listed on the vertical axis in the form ‘Source-Target’. The plot shows that the increased

separation distance between connected hubs relative to other types of connected neurons is

driven by a relative increase in long-range connections between the head and tail.

(TIF)
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S1 File. Genes controbuting towards increased CGE. A list of genes that contributed towards

the (i) increased CGE in connected compared to unconnected pairs of neurons, and (ii)

increased CGE in rich and feeder compared to peripheral connections.

(XLSX)
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32. Crossley NA, Mechelli A, Vértes PE, Winton-Brown TT, Patel AX, Ginestet CE, et al. Cognitive rele-

vance of the community structure of the human brain functional coactivation network. Proc Natl Acad

Sci USA. 2013; 110(28):11583–11588. https://doi.org/10.1073/pnas.1220826110 PMID: 23798414

33. van den Heuvel MP, Kahn RS, Goñi J, Sporns O. High-cost, high-capacity backbone for global brain

communication. Proc Natl Acad Sci USA. 2012; 109(28):11372–11377. https://doi.org/10.1073/pnas.

1203593109 PMID: 22711833

34. Harriger L, van den Heuvel MP, Sporns O. Rich Club Organization of Macaque Cerebral Cortex and

Its Role in Network Communication. PLoS ONE. 2012; 7(9):e46497. https://doi.org/10.1371/journal.

pone.0046497 PMID: 23029538
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