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Abstract

Metabolomics studies use quantitative analyses of metabolites from body fluids or tissues in

order to investigate a sequence of cellular processes and biological systems in response to

genetic and environmental influences. This promises an immense potential for a better

understanding of the pathogenesis of complex diseases. Most conventional metabolomics

analysis methods exam one metabolite at a time and may overlook the synergistic effect of

combining multiple metabolites. In this article, we proposed a new bioinformatics framework

that infers the non-linear synergy among multiple metabolites using a symbolic model and

subsequently, identify key metabolites using network analysis. Such a symbolic model is

able to represent a complex non-linear relationship among a set of metabolites associated

with osteoarthritis (OA) and is automatically learned using an evolutionary algorithm.

Applied to the Newfoundland Osteoarthritis Study (NFOAS) dataset, our methodology was

able to identify nine key metabolites including some known osteoarthritis-associated metab-

olites and some novel metabolic markers that have never been reported before. The results

demonstrate the effectiveness of our methodology and more importantly, with further inves-

tigations, propose new hypotheses that can help better understand the OA disease.

Author summary

Biomedical research has entered a new era where a large number of molecules and differ-

ent components in biological systems can be quantitatively examined to investigate the

causes of common human diseases. However, given the complexity of biological systems,

those causes may not contribute to diseases individually but through interactions. The

identification of those interactions, or the synergy of multiple factors, is a very challenging

task due to the computational limitation, as well as the lack of effective methodologies for

investigating multiple factors simultaneously. In this study, we proposed to model such an

interaction effect through a self-learning algorithm using mechanisms inspired by natural
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evolution. Moreover, by constructing a synergy network using those evolved models, we

were able to identify a set of interacting factors associated with a particular disease.

Introduction

Systems biology is an emerging research direction that takes a holistic approach to modeling

complex biological systems [1–3]. It requires multidisciplinary efforts from research fields

including biomedicine, statistics, and computer science. Systems biology approaches embrace

the complexity of biological systems and focus on modeling the interactions among multiple

components in biological systems including genome, transcriptome, proteome, and metabo-

lome [4–8]. By integrating a variety of omics data, systems biology for human disease studies

aims at better understanding the etiology of common diseases, discovering biomarkers that

can help predict early disease onset, progression and severity, and identifying new drug targets

[9, 10].

Integrative data analysis and mining for systems biology often include hundreds to thou-

sands of variables such as genes, proteins, and metabolites [11]. Most conventional tools adopt

a univariate analysis strategy and may overlook the intertwined relationships among multiple

variables. However, the high dimensionality has imposed a computational challenge for multi-

variate analyses since searching combinations of variables becomes prohibitive as the search

space grows exponentially with the number of variables.

It has brought about the realization that the development and application of powerful infor-

matics and data mining methodologies for systems biology are critical and hold great poten-

tials for the next generation of biomedical research [12, 13]. Machine learning and heuristic

search algorithms, including principal component analysis [14], artificial neural networks

[15], and random forest [16], have seen increasing and successful applications in omics data

mining for biomarker discovery. However, such interdisciplinary research direction is still in a

preliminary stage, and more learning and modeling algorithms are yet to be explored and

developed in future investigations.

In this article, we developed a new bioinformatics framework for high-dimensionality

omics data analysis where we used an evolutionary learning algorithm to discover key metabo-

lites and their combinations for an osteoarthritis (OA) metabolomics study. The non-linear

synergistic effects of combining multiple metabolites were inferred using symbolic models that

were trained through improving classification accuracies to predict the disease status. The key

individual and combinations of synergistic metabolites are further visualized and analyzed

using networks.

Evolutionary algorithms define a collection of meta-heuristic optimization and modeling

algorithms inspired by natural evolution [17–20]. An evolutionary algorithm maintains a pop-

ulation of diverse candidate solutions, which are compared with the desired outcome. Then,

through multiple generations of variation, selection, and reproduction, the population adapts

to the selection criterion (the relative distance from the desired outcome), and produces fitter

solutions. Evolutionary algorithms are highly robust and powerful in tackling imprecise and

incomplete problems, thanks to their automated search mechanisms. They are also extremely

parallelizable, due to their distinguishing feature of population-based search, which also allows

them to scale to solve large and complex problems. Evolutionary algorithms have been success-

fully applied to modeling problems, where they can automatically derive a symbolic model of

an aggregation of interrelated attributes through an evolutionary training process.

Evolutionary learning and network analysis for osteoarthritis
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OA is the most common form of arthritis. It causes substantial morbidity and disability in

the elderly populations and imposes a great economic burden on our society [21, 22]. Despite

a high prevalence and societal impact, there is no medication that can cure it, or reverse or halt

the disease progression, partly because its pathogenesis is still unclear and there is no reliable

method that can be used for early OA diagnosis. Recent developments in the field of metabolo-

mics provide an array of new tools for the study of OA. Metabolites are intermediate and end

products of various cellular processes and their levels of concentration serve as a good indica-

tor of a sequence of biological systems in response to genetic and environmental influences. A

large number of small-molecule metabolites from body fluids or tissues can be quantitatively

detected simultaneously, which promises an immense potential for early diagnosis, therapy

monitoring and understanding the pathogenesis of complex diseases [23–25].

Our evolutionary algorithm and network analysis were able to identify nine key metabolites

that appear most frequently in the best evolved models for predicting the disease outcome,

four of which also serve as hubs and bottlenecks in the metabolite synergy network. Some of

the nine metabolites were previously found highly associated with OA, and the rest are novel

findings that could be very useful proposing new hypothesis to better understand the disease.

Methods

Ethics statement

The study protocol was approved by the Health Research Ethics Authority (HREA) of the

province of Newfoundland and Labrador, Canada, with reference number 11.311 and a writ-

ten consent was obtained from all the participants.

Osteoarthritis metabolomics data

In the OA dataset used for the current study, knee OA patients were selected from the New-

foundland Osteoarthritis Study (NFOAS) initiated in 2011 [26]. The NFOAS aimed at identi-

fying novel genetic, epigenetic, and biochemical markers for OA. The NFOAS recruited OA

patients who underwent a total knee replacement surgery due to primary OA between Novem-

ber 2011 and December 2013 at the St. Clare’s Mercy Hospital and Health Science Centre Gen-

eral Hospital in St. John’s, the capital city of Newfoundland and Labrador (NL), Canada.

Healthy controls were selected from the CODING study (The Complex Diseases in the New-

foundland population: Environment and Genetics), where participants were adult volunteers

[27].

Both cases and controls were from the same source population of Newfoundland and

Labrador. Knee OA diagnosis was made based on the American College of Rheumatology clin-

ical criteria for the classification of idiopathic OA of the knee [28] and the judgment of the

attending orthopedic surgeons. Controls were individuals without self-reported family doctor

diagnosed knee OA based on their medical information collected by a self-administered ques-

tionnaire. We collected 153 OA cases and 236 healthy controls.

Blood samples were collected after at least 8 hours of fasting and plasma was separated from

blood using the standard protocol. Metabolic profiling was performed on plasma using the

Waters XEVO TQ MS system (Waters Limited, Mississauga, Ontario, Canada) coupled with

Biocrates AbsoluteIDQ p180 kit, which measures 186 metabolites including 90 glyceropho-

spholipids, 40 acylcarnitines (1 free carnitine), 21 amino acids, 19 biogenic amines, 15 sphin-

golipids and 1 hexose (above 90 percent is glucose). The details of the 186 metabolites and the

metabolic profiling method were described in our previous publication [29]. Over 90% of the

metabolites (167/186) were successfully determined in each sample.

Evolutionary learning and network analysis for osteoarthritis
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Prior to performing the informatics analyses, several steps of preprocessing were applied to

the dataset. Batch correction was performed by multiplying each metabolite concentration value

by the ratio of the overall mean and the batch mean for that metabolite. Then, covariate adjust-

ment was performed to remove the variation due to individual’s age, gender, and body mass

index (BMI). The samples were randomly assigned to either a discovery or replication dataset,

such that cases and controls were divided evenly between the two datasets. Finally, each metabo-

lite concentration value was normalized to zero mean and unit variance across the population.

Evolutionary learning algorithm

In this study, the algorithm used to model the non-linear synergy among multiple metabolites

associated with OA is a branch of evolutionary computation, termed genetic programming

[30]. A population of diverse candidate prediction models is generated randomly in the step of

initialization and will evolve to improve prediction accuracy gradually through a number of

generations. After evolution halts, the best model of the population in the final generation will

be the output.

Each candidate prediction model takes the form of a symbolic computer program com-

prised of a set of sequential instructions. An instruction can be an assignment statement or a

conditional statement. The conditional if instructions affect the program flow such that the

instruction immediately following the if instruction is not executed if the condition is false.

In the case of nested if instructions, each of the successive conditions needs to be true in

order for the instruction following the chain of if instructions to be executed.

A register r stores the value of a feature, a calculation variable, or a constant. A feature can

be a predictor or an attribute used to make a prediction of the outcome. In the context of the

current study, features are concentration levels of metabolites in the samples. A calculation

variable serves as a temporary buffer that enhances the computation capacity. In an assign-

ment instruction, only registers storing calculation variables can serve as the return on the left

side of the assignment symbol “=”, but any register can serve as an operand on the right-hand

side. This is to prevent overwriting the feature values. When a prediction model is evaluated

on a given sample, feature registers take all the values of the sample, and the set of instructions

are executed sequentially. The sigmoid transformation of the final value stored in the desig-

nated calculation register r[0] is used to predict the outcome of the sample, i.e., if S(r[0]) is

greater than or equal to 0.5, the sample is predicted as diseased (class one), otherwise the sam-

ple is predicted as healthy (class zero).

An example of classification model with eight instructions is given below. Here, the output

register r[0] and calculation registers r[4] and r[5] are all initialized with ones. Feature

registers r[1-3] take input values from three metabolite concentration levels m[1-3] respec-

tively. For instance, when a sample with m[1-3] values as {0.2, 0.01, 0.085} is input to this clas-

sification model, the conditional statement r[1]>r[3] in instruction I1 becomes true, so in

instruction I2, r[0] changes its value to 0.51. The rest of the instructions are executed sequen-

tially, and the final value of r[0] is set to 1.0039. Its sigmoid transformation S(1.0039) is

greater than 0.5, so this sample will be classified by this model as class one, i.e., diseased.

I1: if r[1]> r[3]
I2: then r[0] = r[2] + 0.5
I3: r[4] = r[2] / r[0]
I4: if r[0] > 4
I5: then if r[3] < 10
I6: then r[5] = r[3]—r[4]
I7: r[4] = r[4] � r[1]
I8: r[0] = r[5] + r[4]

Evolutionary learning and network analysis for osteoarthritis
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At the initial generation, a population of diverse classification models was generated ran-

domly. The fitness of each model was evaluated using mean classification error (MCE), com-

puted as the average number of incorrectly classified training samples. A set of models were

chosen as parents based on their fitness, and variation operators, including mutation and

recombination, were applied to them. A mutation alters an element of a randomly picked

instruction, i.e., replacing a return or an operand register by a randomly generated one or

replacing the operator. Recombination swaps segments of instructions of two parent models.

Survival selection picks fitter models to form the population for the next generation. Such an

evolution process iterates for a certain number of generations, and the model with the lowest

MCE at the end is output as the final best model of a run.

This evolutionary modeling algorithm was implemented using the Julia programming lan-

guage [31]. The main parameters used in the implementation are shown in Table 1. A five-fold

cross-validation was used to prevent overfitting so that each run of the algorithm produced

five best classification models as its output.

For the first round of analysis, the evolutionary learning algorithm was run on the discovery

dataset using 200 distinct seed values for the random number generator. As a result of the

cross validation, our implementation gave five different best classification models for each

seed value, resulting in a total of 1000 best classification models.

We investigated the resulting classification models by calculating various statistics of the fit-

ness (MCE) values, sensitivity, specificity and area under the curve (AUC) as computed on the

testing fold for each run. In addition, we inspected the models by counting how often each of

the 167 metabolites appeared as predictive variables in the set of 1000 best models.

Metabolite synergy network

In addition to looking at the individual occurrence of single metabolites in the best classifica-

tion models, the co-occurrence of metabolites in the models was studied by counting the num-

ber of times each metabolite pair appeared together in the same model. The top 1% of the

resulting metabolite pairs, ranked by decreasing frequency, were used to construct a metabolite

synergy network. Network science has seen increasing applications in biomedical research

[32–34], where biological entities are represented as vertices and their relationships can be

modeled using edges linking pairs of vertices. Network modeling is a powerful tool to study

interconnections among a large number of biological entities. In this study, vertices represent

metabolites and an edge links two metabolites if they have a co-occurrence frequency in the set

Table 1. Parameters used in the evolutionary modeling algorithm.

Fitness function Mean classification error (MCE)

Program initialization Random

Program length [1, 500]

Population size 500

Number of parents 500

Parent selection Tournament with size 16

Survival selection Truncation

Number of generations 500

Operator set {+, −, ×,�, xy, if <, if >}

Constant set {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}

Calculation registers 150

Mutation operators Effective instructions only

https://doi.org/10.1371/journal.pcbi.1005986.t001
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of 1000 best prediction models greater than the given cutoff. The network was rendered and

analyzed using the Cytoscape software [35].

For the second round of a more focused analysis, only the subset of metabolites appearing

in the metabolite synergy network was used as a restricted feature set in a repeated model

learning implementation, allowing the evolutionary algorithm to only use these more impor-

tant metabolites to construct the classification models. The analysis was performed on both

the discovery and replication datasets, each resulting in another set of 1000 best classification

models. The intersection of the top 20 most common metabolites from the discovery and repli-

cation runs was reported, and such metabolites are regarded interacting metabolites with high

potential associations to the disease of OA.

To evaluate the classification power of the best models found using our evolutionary algo-

rithm, we trained logistic regression on both the discovery and replication datasets using the

reduced feature set and compared its classification performance with our evolutionary

algorithm.

Results

Classification models evolved on the full feature set

In the first round of analysis on the discovery dataset, the full feature set of 167 metabolites

was used for the evolutionary algorithm to search for the best classification models. The classi-

fication performance of those best models was then evaluated using testing samples. Statistics

for the results are shown in Table 2. It can be seen that the best results, among them the lowest

MCE and the highest AUC value, suggest that some of the classification models found with the

evolutionary algorithm during this first full feature scenario already achieve a reasonably high

prediction accuracy.

Although a feature register can be any of the full set of 167 metabolites in the NFOAS dataset,

the final best models usually only contain a subset of those features, given the nature of the evo-

lutionary algorithm. Moreover, recall that since the final value stored in the designated output

register is used to compute the classification outcome, some instructions can be redundant and

not have any effect on the output value. Those input features that appear in effective instruc-

tions, that is, instructions which do contribute to the outcome, are considered effective features.

We looked into the number of effective features in the 1000 best models. A visualization of

the distributions for fitness (MCE) and the number of effective features can be seen in Fig 1.

Most best models have their MCE values between 0.3 and 0.5, while some runs can yield mod-

els with a classification error less than 0.1. Most best models include around 20 to 40 effective

features, about 10% to 20% of the total feature set. In addition, there turns out to be no correla-

tion between the fitness and number of effective features of the classification models, with

Pearson’s correlation coefficient being 0.044 and the associated p-value 0.16 (S1 Fig).

Table 2. Statistics of the results on the full feature set (discovery).

MCE Sensitivity Specificity AUC

Mean 0.367 0.684 0.584 0.663

Median 0.367 0.667 0.600 0.667

Min 0.067 0.200 0.200 0.320

Max 0.667 1.000 0.933 0.947

Std dev 0.095 0.146 0.142 0.110

5% confidence 0.181 0.398 0.305 0.447

95% confidence 0.553 0.970 0.862 0.879

https://doi.org/10.1371/journal.pcbi.1005986.t002

Evolutionary learning and network analysis for osteoarthritis

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005986 March 1, 2018 6 / 18

https://doi.org/10.1371/journal.pcbi.1005986.t002
https://doi.org/10.1371/journal.pcbi.1005986


The top 20 metabolites and metabolite pairs most commonly contained in the 1000 best

models are shown in Fig 2. The top two individual metabolites taurine and arginine appear in

about 30% of the models, with threonine and ornithine also being found in over 25% of the

models. In addition to the highest individual appearance, taurine pairs up with threonine in

about 10% of the best models, and with ornithine or arginine in about 9% of the best models.

Network of the top co-occurring metabolites

The top 1% metabolite pairs out of all ð
167

2
Þ possible combinations were used to construct the

network of Fig 3. Here each vertex is a metabolite and an edge links two metabolites if they

Fig 1. Distributions of the (a) fitness (MCE) and (b) number of effective features for the 1000 best models, full feature set (discovery).

https://doi.org/10.1371/journal.pcbi.1005986.g001

Fig 2. Most common (a) individual metabolites and (b) pairs appearing in the 1000 best models, full feature set (discovery).

https://doi.org/10.1371/journal.pcbi.1005986.g002
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have a high pairwise occurrence (top 1%) in the best models. The vertex size denotes the fre-

quency of the individual metabolite’s occurrence in the best models, while the edge width

shows the frequency of the occurrence of the corresponding metabolite pair. The network has

70 metabolites and 156 edges. There is one connected component and each vertex has an aver-

age of 4.5 connected neighbors.

The vertex degree of the network follows a heavy-tail distribution (Fig 3 inset). The metabo-

lites that are individually most common in the best models also make up the vertices with the

highest degree in the network, due to the methodology being used. Taurine has the highest

degree of 44, followed by arginine with a degree of 43. Threonine and ornithine have degrees of

27 and 19 respectively. These four metabolites are also connected to each other in the network,

Fig 3. Network of the top 1% most common metabolite pairs, full feature set (discovery). Each vertex is a metabolite and its size is

proportional to its corresponding metabolite’s individual occurrence frequency in the best models. An edge links two metabolites if their co-

occurrence frequency in the best models is among the top 1% of all the pairs. The edge width is proportional to the co-occurrence frequency.

The inset figure shows the degree distribution of this network, and the inset table lists the metabolites that have degrees higher than ten.

https://doi.org/10.1371/journal.pcbi.1005986.g003
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forming a dense core of the network. In contrast, most peripheral vertices have degrees less

than four. Those four vertices not only have the highest degrees but also the highest closeness

and betweenness centralities, i.e., they serve as essential hubs and bottlenecks of the network.

Classification models evolved on the reduced feature set

The 70 metabolites appearing in the network of Fig 3, which make up 1% of the most common

metabolite pairs in the models for the first round of analysis, were used as the feature set for

repeated evolutionary algorithm runs on both of the discovery and replication datasets. The

statistics for the discovery dataset run are shown in Table 3, and for the replication dataset in

Table 4. Comparing these statistics to those for the full feature set runs in Table 2, it can be

seen that the AUC value for the reduced feature set is higher on both the discovery and replica-

tion datasets. Thus the corresponding models achieve better performance in predicting the

presence of OA based on the metabolite data.

The 20 most common metabolites and metabolite pairs for the discovery and replication

datasets, using the reduced feature set, are shown in Figs 4 and 5 respectively. The overlap

between the 20 most common metabolites from the analysis using the full feature set is notable,

with 14/20 and 10/20 metabolites being the same when comparing the full feature set runs to

the reduced feature set runs on the discovery and replication datasets respectively. There are 9

metabolites that appear within the 20 most common ones on all three rounds of analyses: argi-
nine, C16, C18:1, isoleucine, nitrotyrosine, ornithine, taurine, threonine, and tyrosine. This

set also includes the four top hub and bottleneck metabolites in the previous network (Fig 3).

The best model based on the AUC value was selected from the models found on each of the

discovery and replication datasets. The ROC curves, as computed on the testing fold, for two

sample best models are shown in Figs 6 and 7. Both of these models achieved a perfect AUC

value of 1.

Pseudocode representations of these two best models are shown in Listings 1 and 2. Here

each line contains one instruction, and the instructions are executed one after another like in

Table 3. Statistics of the results on the reduced feature set (discovery).

MCE Sensitivity Specificity AUC

Mean 0.325 0.723 0.628 0.704

Median 0.333 0.733 0.600 0.709

Min 0.100 0.267 0.200 0.362

Max 0.600 1.000 1.000 1.000

Std dev 0.089 0.135 0.141 0.103

5% confidence 0.151 0.459 0.353 0.503

95% confidence 0.498 0.987 0.904 0.906

https://doi.org/10.1371/journal.pcbi.1005986.t003

Table 4. Statistics of the results on the reduced feature set (replication).

MCE Sensitivity Specificity AUC

Mean 0.295 0.733 0.678 0.725

Median 0.300 0.733 0.667 0.739

Min 0.033 0.267 0.200 0.380

Max 0.600 1.000 1.000 1.000

Std dev 0.098 0.139 0.162 0.120

5% confidence 0.102 0.460 0.361 0.491

95% confidence 0.488 1.005 0.995 0.959

https://doi.org/10.1371/journal.pcbi.1005986.t004
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any imperative language. The r[N] notation denotes calculation register at index N, and

r[0] is treated as the output register. Calculation registers do not take input from feature val-

ues of training or testing data samples, but serve as buffers in the program to enhance its

computational capacity. All calculation registers and the output register are initialized with

ones at the start of the program’s implementation.

After the program has been run on a data sample, the value contained in the register r[0]
is converted to either zero or one, representing the prediction of healthy and diseased

Fig 4. Most common (a) individual metabolites and (b) pairs appearing in the best models, reduced feature set (discovery).

https://doi.org/10.1371/journal.pcbi.1005986.g004

Fig 5. Most common (a) individual metabolites and (b) pairs appearing in the best models, reduced feature set (replication).

https://doi.org/10.1371/journal.pcbi.1005986.g005
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individuals respectively, by using the Sigmoid function and rounding to the nearest integer.

This value is the classification prediction of the program.

Listing 1 Pseudocode representation for the best model found on the reduced feature set

(discovery).
if r[106] > Orn

if PC aa C24:0 < r[65]
r[68] = PC ae C40:5 + PC ae C44:5

r[108] = r[130] / Asn
if PC ae C44:5 > SM (OH) C24:1

r[108] = lysoPC a C24:0 - r[18]
if r[108] < r[133]

r[98] = r[87] - Arg
r[51] = PC ae C44:3 + Arg
if Leu > Kynurenine

r[68] = C5:1 ^ Taurine
r[131] = Nitro-Tyr + r[6]
r[125] = r[68] + r[51]
if C5-DC (C6-OH) > r[33]

r[98] = r[130] + C4
if PC ae C38:0 > r[131]

r[98] = PC aa C32:1 � PC ae C40:1
if PC aa C34:3 < 4.0

r[0] = r[98] - r[125]

Fig 6. ROC curve for the best model found on the reduced feature set (discovery).

https://doi.org/10.1371/journal.pcbi.1005986.g006
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Listing 2 Pseudocode representation for the best model found on the reduced feature set

(replication).
r[15] = SM C16:1 ^ r[19]
if PC aa C40:4 < r[15]

if r[36] > C4
r[96] = r[125] � SM (OH) C24:1

r[59] = r[80] + Orn
if r[61] < C4

r[59] = r[72] / r[127]
if C5-DC (C6-OH) > Orn

r[31] = r[59] - r[117]
r[0] = r[31] - Arg
r[59] = 10.687 / Nitro-Tyr
if Ac-Orn > r[96]

r[0] = r[59] - 10.595

Comparison with logistic regression

To compare the classification power of the best models found using our evolutionary algo-

rithm with a more widely used method, logistic regression was trained on the data. We used

the logistic regression implementation from the scikit-learn Python library [36]. The same

five-fold cross validation scheme and partitioning of data into the folds were used as with the

Fig 7. ROC curve for the best model found on the reduced feature set (replication).

https://doi.org/10.1371/journal.pcbi.1005986.g007
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evolutionary algorithm. ROC curves for the two best classification models found with logistic

regression, one for each of the discovery and replication datasets, are shown in Figs 8 and 9. As

is apparent from the curves, the AUC values for these models are lower than of those evolved

using the evolutionary algorithm.

Discussion

The fast developing biomedical and computing technologies have brought research to a new

era where multi-omics data are produced and mined in order to search for biomarkers of com-

mon human diseases. These omics data usually include hundreds to thousands of attributes

and such high dimensionality has imposed a great computational challenge for bioinformatics

studies. Most existing analyses look at one attribute at a time since the exponential increase of

the possible combinations of attributes renders the exhaustive search prohibitive. Such a strat-

egy, however, may overlook important interactions among multiple attributes with limited

individual marginal effects.

In this study, we developed an informatics framework that uses an evolutionary algorithm

and network analysis to identify both the individual and combinations of metabolites associ-

ated with the risk of osteoarthritis (OA). The evolutionary algorithm automatically searches

for the models that can best predict the clinical outcome of OA using a feature set of metabolite

concentration levels in healthy and diseased samples. Such an automatic learning algorithm

Fig 8. ROC curve for logistic regression, the best model found on the reduced feature set (discovery).

https://doi.org/10.1371/journal.pcbi.1005986.g008
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performs feature selection systematically through the search for the best classification models

and requires minimal prior assumptions on the models. The stochastic and population-based

nature of the evolutionary algorithm produces a set of best models. Based on those best mod-

els, we constructed a metabolite network where vertices are high association metabolites and

vertex sizes reflect their frequencies of occurrences in the best classification models. Edges link

pairs of metabolites and their widths represent the co-occurrence frequencies of metabolite

pairs. Such a network captures both the most important individual and combinations of

metabolites associated with the disease. Moreover, it depicts the interconnected structure and

patterns of multiple metabolites, and helps identify metabolic functions that may play a key

role in explaining the OA disease.

In the first round of analysis, the entire set of 167 metabolites in the metabolomics study

was used for the evolutionary algorithm to search for the models that can best predict the dis-

ease outcome. The algorithm was run 200 times and a five-fold cross validation was used to

avoid overfitting. Each run produced five best classification models on the five testing datasets,

and thus a total number of 1000 best models were generated. The most frequent individual

and pairs of metabolites that appear in those best models were reported (Fig 2). In the con-

structed metabolite network (Fig 3), four key metabolites taurine, arginine, threonine, and orni-
thine were identified as hubs and bottlenecks of the network, which indicates their important

role in explaining the disease of OA.

Fig 9. ROC curve for logistic regression, the best model found on the reduced feature set (replication).

https://doi.org/10.1371/journal.pcbi.1005986.g009
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In the second round of analysis, we performed a more focused model search by using only

the 70 metabolites included in the network as the reduced feature set. The evolutionary algo-

rithm was executed again on the reduced feature set on both of the discovery and replication

datasets. This round of analysis yielded improved classification models with higher prediction

accuracies (Tables 3 and 4). Nine metabolites, arginine, C16, C18:1, isoleucine, nitrotyrosine,

ornithine, taurine, threonine and tyrosine, were found most frequently appearing in the best

models in the discovery dataset as the result of both rounds of analyses and were successfully

replicated using the replication dataset, including the previous four key metabolites identified

in the network.

The results are interesting as arginine and its pathway related metabolites, such as ornithine,

have been identified as being associated with OA in our previous analysis using traditional

methods including pairwise comparison and regression technique [37]. Similarly, isoleucine
was also previously identified as OA-associated metabolite [38]. The current analyses applied a

novel analytic method, the evolutionary algorithm, which confirmed our previous findings

and also identified additional novel metabolic markers for OA. These included four amino

acids and two acylcarnitines, which could have potential utility in the clinical management of

OA. For example, taurine is the most abundant free amino acid in humans, and may play an

important role in inflammation associated with oxidative stress [39]. It has been reported to be

associated with rheumatoid arthritis [40]. Nitrotyrosine is also associated with oxidative dam-

age and has been found associated with aging and the development of OA in cartilage samples

from both monkeys and humans [41]. The findings in the current study certainly warrant fur-

ther investigation of the role of those novel metabolic markers in OA.

Our bioinformatics framework, which uses an evolutionary algorithm and network analysis

to identify key biomarkers for metabolomics studies, demonstrates the great potential of apply-

ing advanced computational techniques to biomedical data mining and model searching prob-

lems. Comparing to logistic regression, one of the most commonly used algorithms for such

problems, our method was shown to be able to achieve better classification accuracies. Apart

from most existing algorithms where metabolites are evaluated individually, our algorithm is

able to examine which combinations of multiple metabolites can best predict the disease out-

come. Some of the nine key metabolites reported in this study have very limited individual

marginal effects, and could be overlooked using the traditional univariate analyses (S2–S10

Figs). In addition, feature selection is embedded in our algorithm, so the search for the most

relevant metabolites is systematically performed while evolving the best classification models.

Classification models are represented as symbolic relationships between the metabolite con-

centration levels and the prediction outcome. Such a representation requires minimal prior

assumptions on the models and can describe highly complex non-linear relationships. This

can be even more important when multiple types of omics data are used in integrated analyses.

Our methodology can be a very useful addition to the toolkit for bioinformatics research, and

we expect to extend the applications of our methodology to a large range of data and problems

in systems biology research.
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