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Abstract

Epilepsy is one of the most common neurological disorders affecting about 1% of the world

population. For patients with focal seizures that cannot be treated with antiepileptic drugs,

the common treatment is a surgical procedure for removal of the seizure onset zone (SOZ).

In this work we introduce an algorithm for automatic localization of the seizure onset zone

(SOZ) in epileptic patients based on electrocorticography (ECoG) recordings. The proposed

algorithm builds upon the hypothesis that the abnormal excessive (or synchronous) neuro-

nal activity in the brain leading to seizures starts in the SOZ and then spreads to other areas

in the brain. Thus, when this abnormal activity starts, signals recorded at electrodes close to

the SOZ should have a relatively large causal influence on the rest of the recorded signals.

The SOZ localization is executed in two steps. First, the algorithm represents the set of elec-

trodes using a directed graph in which nodes correspond to recording electrodes and the

edges’ weights quantify the pair-wise causal influence between the recorded signals. Then,

the algorithm infers the SOZ from the estimated graph using a variant of the PageRank algo-

rithm followed by a novel post-processing phase. Inference results for 19 patients show a

close match between the SOZ inferred by the proposed approach and the SOZ estimated

by expert neurologists (success rate of 17 out of 19).

Author summary

Epilepsy is a common neurological disorder characterized by abnormal electrical distur-

bances in the brain that result in transient occurrence of signs and/or symptoms, also

known as seizures. In focal epilepsy, this electrical activity originates from a limited area

in the brain, commonly referred to as the seizure onset zone (SOZ). For patients with focal

epilepsy that cannot be treated with medications, the common treatment is a resective sur-

gery to remove the SOZ. This work presents an algorithm for SOZ localization based on

electrocorticography recordings. Such an automatic solution has the potential to increase

the localization accuracy, to provide a validation of the neurologist’s SOZ region, and to

ultimately reduce or eliminate the analysis time of the neurologist. Inference results for 19

patients show a close match between the SOZ inferred by the proposed algorithm and the

SOZ estimated by expert neurologists.
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Introduction

Epilepsy is one of the most common neurological disorders affecting about 70 million people

worldwide. It is characterized by recurrent episodes of abnormal neural activity in the central

nervous system [1]. This activity leads to transient occurrence of signs and/or symptoms, also

known as epileptic seizures. The clinical symptoms of epileptic seizures range from auras, to

spasmodic muscular contractions, up to loss of consciousness [2, 3]. Epileptic seizures can be

roughly divided into two groups, based on the location in the brain from which the abnormal

neural activity originates and how it propagates. In partial, or focal, seizures the abnormal neu-

ral activity originates from a limited area in the brain, commonly referred to as the seizure
onset zone (SOZ). On the other hand, primary generalized seizures begin with a widespread

electrical discharge that involves most of the brain. In this work we consider focal epilepsy and

present an algorithm for SOZ localization, that is, determining the area in the brain where the
abnormal neural activity leading to a focal seizure originates (a guiding hypothesis throughout

our work is that in focal seizures there is a singular focal point, from which this activity

originates).

The common and simplest approach to treat epilepsy is using antiepileptic drugs. Yet, in

about 25–33% of the patients this approach is not effective [4], and a patient is diagnosed with

refractory epilepsy. A possible treatment approach for refractory epilepsy is a resective surgery

procedure to remove the areas in the brain that are necessary and sufficient to generate the

abnormal neural activity that leads to epileptic seizures. Currently, it is not known how these

areas, also referred to as the epileptogenic zone (EZ), can be mapped. Therefore, in clinical prac-

tice, the SOZ is used as an approximation for the EZ [5], and in the resective surgery the esti-

mated SOZ is removed (assuming this region is not responsible for indispensable brain

functions). Recent longitudinal trials indicate that long-term seizure freedom can be achieved

in up to two thirds of the patients who undergo surgery [6]. The main tool for SOZ identifica-

tion (localization), in cases where the SOZ is not evident in a non-invasive electrocorticogra-

phy (EEG) or in an MRI, is invasive EEG (also known as electrocorticography (ECoG)). In

ECoG grids or strips of electrodes are placed on the cortex [2], allowing a direct measurement

and recording of the brain’s electrical activity (local field potentials). These recordings,

together with video monitoring, are used by expert neurologists to approximate the electrodes

associated with the area within which the SOZ lies. In this paper we describe an algorithm that

localizes the SOZ based on the ECoG recordings. Such an automated solution will provide a

valuable tool for neurologists to assist in SOZ localization and perhaps increase localization

accuracy over current methods.

The algorithm proposed in this paper builds upon a fundamental property of focal seizures

reported in [7]: the abnormal neural activity associated with focal seizures starts in the SOZ and
spreads to other areas in the brain. Therefore, at the beginning of such activity, signals recorded

at electrodes located in vicinity of the SOZ should have a relatively large causal influence on

the rest of the recorded signals. This calls for an algorithm that estimates and incorporates the

causal influence between the different recorded signals into its SOZ localization. Since the elec-

trodes in an ECoG grid are relatively close together [8], the signals recorded in the different

electrodes are statistically dependent. In such a case, to fully quantify the statistical causal influ-

ence between two electrodes, one must evaluate this influence when conditioning on the rest of
the electrodes [9, 10]. Unfortunately, even for moderate-size grids with 16 electrodes, this task

is too computationally demanding and requires a huge amount of data per each seizure. There-

fore, in this paper we take a different path and approximate the underlying causal influence

structure. Instead of (statistically) conditioning on the rest of the recordings, the proposed

algorithm applies a practical approximation by considering the electrodes as nodes in a
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directed graph, where the edges’ weights are estimations of the pair-wise causal influences. In

this work we focus on the following question: how should the SOZ be inferred from the esti-
mated graph? The procedure for estimating the graph is discussed in S1 Text.

The method of representing causal influences among a set of random variables using

directed graphs is not new. In [11] this approach was used while adding the constraint that the

graph should be acyclic. In this case it is assumed that the joint density follows a causal Markov

condition [11]. However, with ECoG recordings the Markovian structure of the underlying

density is not known, and it must be estimated from the recordings. A possible approach for

estimating this structure is via minimizing the KL divergence [12, Sec. 8.5] between the true

density and an approximated density induced by a spanning tree. As shown in [13], the best

tree (in terms of minimizing the KL divergence) can be found using the maximum-weight

spanning tree algorithm (Edmonds’ algorithm) [14]. Moreover, the underlying hypothesis for

localization based on this approach is that the root of the spanning tree should correspond to

the origin of the causal activity. This localization approach was taken in [15], which our work

improves upon in multiple dimensions. In particular, [15] assumes that the underlying density

follows a specific structure in order to apply Edmonds’ algorithm. However, it is not clear if

this structural assumption accurately describes the observed signals. In addition, the algorithm

of [15] localizes the SOZ using only the outgoing weights, whereas other works [16, 17] use

both incoming and outgoing node weights. Hence, our work contrasts with [15] by using the

PageRank algorithm to account for the structure of the estimated graph rather than assuming

a specific structure, and basing our localization on both the incoming and outgoing weights to

each node.

Another approach for inferring the SOZ from the estimated graph was proposed in

[16, 17]: based on the findings of [7], the nodes in the SOZ should have properties of “sources

of causal influence” with large outgoing flow and small incoming flow (the total incoming flow

subtracted from the total outgoing flow is referred to as the net-flow). The two main draw-

backs of this approach is that it ignores the structure of the estimated graph, and ranks the

nodes (electrodes) based only on their one-step neighbors. Our study shows that for some of

the patients this approach works well, while for others the results can be improved by a more

sophisticated inference approach.

To account for the structure of the graph (and for multi-step neighbors), we propose to use

a variant of Google’s famous PageRank algorithm [18, 19]. The PageRank algorithm, initially

designed for ranking web pages, is based on the following thesis [20]: A web page is important if
it is pointed to by other important pages. Motivated by this thesis, the PageRank algorithm

views the web as a directed graph with pages as nodes and hyperlinks as edges, and ranks the

web pages based on the steady-state probability of a random surfer visiting each page. Using

terminology taken from another web ranking algorithm, the hyperlink-induced topic search

(HITS) algorithm [21], the PageRank algorithm can also be viewed as assigning authority
scores to the nodes. A high authority score is given to a page that is linked by many other pages
with high authority scores. Thus, we use PageRank to calculate an in-flow (authority) score for

each node in the graph. To calculate an out-flow score we use the Reverse PageRank algorithm

[22]. As PageRank ranks based on the dominant right eigenvector of the directed graph, it

accounts for its structure. We emphasize that in our algorithm the PageRank does not model
the propagation of the abnormal neural activity. Instead, it is used to evaluate the importance of

a node in terms of its causal influence on the rest of the network. It should further be noted

that the PageRank algorithm was already used in the context of neuroscience problems. For

example, [23] studied the network architecture of functional connectivity within the human

brain connectum, and used four centrality measures, of which PageRank was one, to provide

insights on this connectivity.
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Numerous works have studied the problem of localizing the SOZ using ECoG recordings.

We refer the reader to [2, 16] and references therein for background on this topic. Many of the

algorithms proposed in previous studies are based on some form of a (causal) connectivity

graph and use the following three main steps: i) Pre-processing the ECoG recorded signals; ii)
Estimating the connectivity graph from the processed ECoG signals; and iii) Inferring the SOZ

from the estimated connectivity graph. While the algorithm proposed in the current paper fol-

lows a similar approach, it uses an improved method to estimate the connectivity graph and

applies a novel method to infer the SOZ from it. Specifically, the proposed algorithm analyzes

two types of 10 seconds blocks: at the beginning of a seizure (an ictal block) as well as blocks

randomly sampled when the patient is resting (rest blocks). By using information from both

types of blocks, the proposed algorithm accounts for the structure of the estimated network

when no seizure is evolving. The value of 10 seconds was chosen to provide a good tradeoff

between the number of samples in a block and the stationarity of the observed signals over a

block. When the block is much longer than 10 seconds the data may not be stationary, while

when the block is much shorter than 10 seconds the number of samples available for estimat-

ing the pair-wise causal influences is too small (the estimation may not be accurate enough).

In contrast to the proposed algorithm, previous studies used significantly longer blocks

[16, 17]. To quantify the pair-wise causal influences between the recordings, the proposed

algorithm uses a combination of a parametric causality measure, Granger causality [24], and a

non-parametric measure, directed information [25]. Our results show that this combined pro-

cedure improves upon using each of the above approaches (parametric or non-parametric)

separately. Finally, the proposed algorithm uses a novel approach to infer the SOZ from the

estimated graph. In particular, by using a variation of the PageRank algorithm, a score is

assigned to each node. The algorithm then selects the SOZ nodes as the nodes that have high

scores compared to other nodes, as well as compared to scores calculated based on the rest
blocks. We emphasize that previous studies [16, 17] did not account for the rest blocks as part

of the localization procedure. Our analysis, on the other hand, suggests that rest block should

be taken into account when localizing the SOZ in order to avoid biased results.

Results

Despite the advances in automated SOZ localization described above, the gold standard is still

considered to be the localization performed by expert neurologists. Hence, to evaluate the per-

formance of our proposed localization algorithm, we compare its inferences with the inference

made by these experts. We show that for 17 out of 19 patients with refractory epilepsy, all listed

in the International Epilepsy Electrophysiology (iEEG) portal [26], the inferences of our algo-

rithm closely align with the inference performed by the neurologists (see the exact definitions

below for the success rate and average false positive detection rate of the proposed algorithm).

Moreover, even for the two patients for which we do not have a complete match, the inference

made by the proposed algorithm is strongly correlated with the SOZ estimated by expert neu-

rologists or with the seizure evolution (see the discussion at the end of this section). Hence,

these inferences can be viewed as a partial success. In the Discussion section we test our algo-

rithm against other algorithms to demonstrate its superior performance.

Description of the tested data

The proposed algorithm was tested on 19 data-sets, taken from patients undergoing surgical

treatment for medically refractory epilepsy. These data-sets are listed on the online iEEG portal

[26] (http://www.ieeg.org). The patient-specific information is detailed in Table 1. The ECoG

signals were sampled at rates between 500 Hz and 5 KHz: data-set I001_P034_D01was
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sampled at 5 KHz (Mayo Clinic, Rochester, MN). Data-sets Study_004-2—Study_037
were sampled at 500 Hz (Mayo Clinic, Rochester, MN), and data-sets HUP64_phaseII—

HUP87_phaseII (Hospital of the University of Pennsylvania, Philadelphia, PA) were sam-

pled at 512 Hz.

Each of the data-sets contains ECoG recordings, as well as annotations indicating which

time intervals in the recordings correspond to seizures. The video recordings are used to gener-

ate these annotations. The data-sets also include reports describing the spatial locations, on the

cortex, of the electrodes, and comments by expert neurologists as to where the seizures originate

from. We refer to an electrode that is highlighted in these comments as an electrode of interest
(EOI). Some of these data-sets contain recordings from several strips and grids. In these cases,

the proposed algorithm analyzed the largest grid of electrodes (in all considered cases the largest

grid was located over the suspected SOZ). The name of the analyzed grid and its size are speci-

fied in Table 1. Table 1 also specifies the surgical outcome (class) for each patient. Note that

three patients were not resected, and there is no follow-up for three other patients.

Summary of the localization results

We summarize the localization results using the following two metrics:

1. Success rate: We say that an inference is successful if more than 50% of the inferred elec-

trodes (nodes) overlap with the EOI (for the specific patient), or with the nodes strictly adja-
cent to the EOI. For instance, node 5A in Fig 1-(a) is adjacent to the EOI, while nodes 3A or

2B are not. Using this definition the success rate of the proposed algorithm is 17 out of 19.

2. Average false positive detection rate: We say that an inferred node is a false-positive detec-
tion if it is not part of the EOI or adjacent nodes. For example, node 5B in Fig 1-(c) is a

Table 1. Patient information. ALT—Anterior left temporal, BL—Bilateral left, RF—Right frontal, RT—Right temporal, LO—Left occipital, LF—Left frontal, LP—Left

perirolandic, MTS—Mesial temporal sclerosis, CP—complex-partial, CPG—complex partial with secondary generalization, GA—Generalized atonic, SP—Simple partial,

NF—No follow-up, NR—No resection.

Patient (iEEG Portal) Sex Age (Onset/Surgery) Seizure Onset Seizure Type #Seizures Grid Size Grid Name Outcome Class

I001_P034_D01 F Unknown RF CPG 16 6 × 6 GRID NF

Study_004-2 F 14/27 RT ccipital CPG 3 6 × 6 RG IV

Study_006 M 22/25 RF CP 5 6 × 8 LG NR

Study_010 F 00/13 LF CP 3 6 × 8 GRID NF

Study_016 F 05/36 RT orbitofrontal CPG 4 4 × 6 RTG IV

Study_017 F Unknown Unknown CPG 5 1 × 8 RTD IV

Study_020 M 05/10 RF CPG 8 4 × 6 RAG IV

Study_021 M Unknown RF CPG 13 6 × 8 RFG I

Study_022 F Unknown Unknown CPG 7 4 × 6 TIG V

Study_023 M 01/16 LO CP 4 8 × 8 LTG I

Study_027 M Unknown Unknown CPG 6 3 × 8 LG NF

Study_033 M 00/03 LF GA 17 8 × 8 LG V

Study_037 F Unknown Unknown CP 8 8 × 8 RPG NR

HUP64_phaseII F 03/20 LF CPG 1 8 × 8 LG I

HUP65_phaseII M 02/36 RT CPG 3 8 × 8 RG I

HUP68_phaseII F 15/26 RT CP, CPG 5 8 × 8 RG I

HUP70_phaseII M 10/32 LP SP 8 8 × 8 RG NR

HUP78_phaseII M 00/54 ALT CP 5 8 × 8 LG III

HUP87_phaseII M 21/24 Frontal CP 2 8 × 8 LG I

https://doi.org/10.1371/journal.pcbi.1005953.t001
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false-positive detection. To calculate the false-positive detection rate for a patient p, denoted

by Vp, we count the number of detected false-positive inferences, and divide it by the num-

ber of nodes that are not part of the EOI or its adjacent nodes. Extending the example, in Fig

1-(c) nodes {1E–1F, 2D–2G, 3E–3H, 4F–4H, 5F–5H, 6T–6H} constitute the set of EOI and

adjacent nodes. Therefore, as our algorithm inferred 2 nodes out of this group (see 3A and

5B), the false-positive detection rate is 0.069. The average false-positive detection rate is the

false-positive detection rate averaged over all patients. The proposed algorithm achieves

average false-positive detection rate of 0.03.

Next, we provide a detailed description of our localization results.

Fig 1. Localization results for data-sets I001_P034_D01 to Study_010. The EOI nodes are marked by a bold annulus, whereas

the nodes detected by our proposed algorithm are marked by solid brown circles. (a) (Top left) Localization results for data-set

I001_P034_D01. This is a successful localization, with Vp = 0. Note that in in this data-set, even though node 6A–6B are

mentioned in the report, their recordings are missing from the data-set. (b) (Top right) Localization results for data-set Study_004-
2. This is a successful localization, with Vp = 0. (c) (Bottom left) Localization results for data-set Study_006. This is a successful

localization, with Vp = 0.069. (d) (Bottom right) Localization results for data-set Study_010. This is a successful localization, with Vp

= 0.071.

https://doi.org/10.1371/journal.pcbi.1005953.g001
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Detailed localization results

The localization results for the patients detailed in Table 1 are presented in Figs 1–5. As a

ground truth we use the EOIs indicated by the neurologists and detailed in the data-sets

reports. In Figs 1–5, the EOI electrodes (nodes) are marked by a bold annulus, whereas the

nodes detected by our proposed algorithm are marked by solid brown circles. The reports in

the iEEG portal contain a unique numbering for each electrode in each of the grids. This

Fig 2. Localization results for data-sets Study_016 to Study_027. The EOI nodes are marked by a bold annulus, whereas the

nodes detected by our proposed algorithm are marked by solid brown circles. (a) (Top left) Localization results for data-set

Study_016. This is a successful localization, with Vp = 0.064. (b) (Top right) Localization results for data-set Study_017. This is a

successful localization, with Vp = 0. (c) (Middle left) Localization results for data-set Study_020. This is a successful localization,

with Vp = 0. (d) (Middle right) Localization results for data-set Study_021. This is a successful localization, with Vp = 0. (e) (Bottom
left) Localization results for data-set Study_022. This is a successful localization, with Vp = 0. (f) (Bottom right) Localization results

for data-set Study_027. This is a successful localization, with Vp = 0.

https://doi.org/10.1371/journal.pcbi.1005953.g002
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numbering is also included in the grids presented in Figs 1–5. For instance, in Fig 1-(a), node

1F is marked by 1 which corresponds to the numbering used in the report. This, together with

the fact that node 2F is marked by 7, implies that node 3A corresponds to node 18 in the

report.

The proposed algorithm applies a variant of PageRank on the estimated causal influence

graph to calculate a rank (score) for each of the nodes. Then, natural candidates for the SOZ

are the nodes with the top p0 percentile of scores. In order to verify that the calculated ranks

are not due to chance and indeed capture an evolving abnormal neural activity that leads to a

Fig 3. Localization results for data-sets Study_023 to HUP64_phaseII. The EOI nodes are marked by a bold annulus, whereas

the nodes detected by our proposed algorithm are marked by solid brown circles. (a) (Top left) Localization results for data-set

Study_023. This is a non-successful localization, with Vp = 0.143. (b) (Top right) Localization results for data-set Study_033.

This is a successful localization, with Vp = 0.02. (c) (Bottom left) Localization results for data-set Study_037. This is a successful

localization, with Vp = 0.051. (d) (Bottom right) Localization results for data-set HUP64_phaseII. This is a non-successful

localization, with Vp = 0.071.

https://doi.org/10.1371/journal.pcbi.1005953.g003
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seizure, the proposed algorithm also calculates similar scores for an ensemble of recordings

taken while the patient is resting. From this ensemble the algorithm creates an empirical distri-
bution of the scores for each electrode, and requires electrodes in the SOZ to have a score in

the top p1 percentile of the calculated empirical distribution. A detailed description of the

inference procedure is provided in the Methods section.

The results in Figs 1–5 were obtained using p0 = 10 and p1 = 5. The values of p0 and p1 con-

trol the tradeoff between the false positives (identifying electrodes not in the SOZ) and the false
negatives (SOZ electrodes not identified). Note that the number of indicated EOIs can be

Fig 4. Localization results for data-sets HUP65_phaseII to HUP78_phaseII. The EOI nodes are marked by a bold annulus,
whereas the nodes detected by our proposed algorithm are marked by solid brown circles. (a) (Top left) Localization results for data-

set HUP65_phaseII. This is a successful localization, with Vp = 0. (b) (Top right) Localization results for data-set

HUP65_phaseII. This is a successful localization, with Vp = 0. (c) (Bottom left) Localization results for data-set HUP70_phaseII.

This is a successful localization, with Vp = 0. (d) (Bottom right) Localization results for data-set HUP78_phaseII. This is a

successful localization, with Vp = 0.053.

https://doi.org/10.1371/journal.pcbi.1005953.g004
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relatively large, for instance, in Fig 1-(b), 10 nodes out of 36 are indicated as EOIs. This num-

ber also differs between data-sets. The value of p0 was selected to provide a good balance

between the success rate and the FPR, namely, inferring at most 10% of nodes in the grid as

SOZ candidates. The value of p1 controls the significance level (enables the algorithm avoiding

the possible bias caused by an inherent property of the patients’ brain). We discuss the implica-

tions of this parameter in the Discussion section (see the The structure of the estimated causal

influence graph subsection and the A comparison with different inference approaches

subsection).

Closely examining the localization maps in Figs 1–5, it can be observed that our algorithm

successfully localized the SOZ (using the terminology defined above) in 17 out of the 19 data-

sets. The two exceptions are data-set study_023 in Fig 3-(a) and data-set HUP64_phaseII
in Fig 3-(d). Regarding data-set study_023 (Fig 3-(a)), it can be observed that the localiza-

tion concentrates in the lower left corner of the grid. While the reports for this data-set clearly

indicate that the SOZ is nodes 2H–3H (electrodes 58–59), they also state the following: “The
EEG showed fast activity at LTG #59 at 01:20:59, which then evolves into spike activity in LTG
#58 and 59. At 01:21:10, there was spread of spike and wave activity to LTG #2, 3, 10, 11, 18, and
19”. Thus, our algorithm accurately inferred the area to which the activity spread. By analyzing

a time interval that significantly precedes the seizure start point marked in the reports (see the

Methods section for a discussion regarding the analyzed time intervals), the inference can be

significantly improved.

Regarding data-set HUP64_phaseII (Fig 3-(d)), it can be observed that four of the

inferred nodes are concentrated around the EOI while the other four are spread over the grid.

The reason for marking this inference as non-successful is the fact that exactly 50% of the

Fig 5. Localization results for data-set HUP87_phaseII. The EOI nodes are marked by a bold annulus, whereas

the nodes detected by our proposed algorithm are marked by solid brown circles. This is a successful localization, with

Vp = 0.037.

https://doi.org/10.1371/journal.pcbi.1005953.g005
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electrodes overlap with the EOI, or with the nodes strictly adjacent to the EOI. Thus, this local-

ization can be viewed as a partial success.

Discussion

The structure of the estimated causal influence graph

As mentioned above (see also the Methods section), the (statistical) significance of the calcu-

lated scores is evaluated in order to preclude scores which were obtained by chance or which

are not a result of the evolving seizure activity. In other words, the objective of the post-pro-

cessing is to verify that the high scores are due to the evolving activity of an epileptic seizure and

not an inherent property of the patients’ brain. To test this hypothesis, the algorithm generates

an empirical distribution of the scores calculated over random blocks recorded while the

patient is resting, see the Methods section for a detailed description of this procedure. Our

study shows that, for a specific patient, the estimated causal influence graph has patterns that

are common between a rest state and the beginning of a seizure, namely, the beginning of the

ictal state. This implies that onemust account for rest blocks in order to avoid having the local-

ization results biased by the inherent structure of the causal influence graph.

Figs 6 and 7 demonstrate that the causal influence graph estimated in rest blocks and in a

block at the beginning of a seizure indeed have a common structure. Each of the sub-figures in

Figs 6 and 7 is a heat map of an estimated graph (the entries are the estimations of the pair-

wise causal influences). The procedure for creating (estimating) this graph is briefly discussed

in the Methods section, while a detailed description is provided in S1 Text. The left column

corresponds to the ictal blocks (beginning of a seizure), while the middle and right columns

correspond to random blocks used as part of the post-processing procedure. Each row

Fig 6. Heat maps illustrating the estimated causal influence graph for data-sets HUP65_phaseII and HUP70_phaseII. The left column

corresponds to the first 10 seconds in the ictal blocks, while the two right columns correspond to two random 10 seconds rest blocks. (a)-(c) Heat

maps of data set HUP65_phaseII. (d)-(f) Heat maps of data set HUP70_phaseII.

https://doi.org/10.1371/journal.pcbi.1005953.g006
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corresponds to a different data-set: HUP65_phaseII,HUP70_phaseII,HUP78_pha-
seII, and HUP87_phaseII. In each sub-figure, a yellow in the (i, j) location implies high

estimated causal influence from node i to node j in the respective graph. The main dark blue

diagonal in each of the heat maps corresponds to the causal influence between an electrode to

itself that is set to zero.

It can be observed that, per data-set, i.e., in the same row in Fig 6 or in Fig 7, the heat

maps follow a similar structure. On the other hand, this structure is different from one data-set

to another (between different rows). In the first row of Fig 6, corresponding to data-set

HUP65_phaseII, one can observe hot super and sub diagonals. In the second row of Fig 6,

corresponding to HUP70_phaseII, one can observe a small hot region in the bottom right

of the map. In the first row of Fig 7, corresponding to data-set HUP78_phaseII, one can

also observe a hot region in the bottom right of the map, yet, this region is significantly smaller

than the one in the second row of Fig 6. Finally, in the second row of Fig 7, that corresponds to

HUP87_phaseII, one can observe small hot squares at the upper-left part of the map. These

findings indicate that an inference procedure that ignores the structure during rest times, e.g.,

[16, 17], may not be aware of the structure that is present when there is no neural activity lead-

ing to a seizure. This may result in a biased inference.
One may conjecture that the structural resemblance demonstrated in Figs 6 and 7 is due to

epileptic activity in a rest state, commonly referred to as interictal discharges [27, 28]. Yet, we

note here that the starting point of the evaluated rest block is randomly selected (see the Meth-

ods section for details). Moreover, the patterns depicted in Figs 6 and 7 appear in all analyzed

rest blocks. Thus, as interictal discharges are relatively sparse, we conjecture that this structure

Fig 7. Heat maps illustrating the estimated causal influence graph for data-sets HUP78_phaseII and HUP87_phaseII. The left column

corresponds to the first 10 seconds in the ictal blocks, while the two right columns correspond to two random 10 seconds rest blocks. (a)-(c) Heat maps of

data set HUP78_phaseII. (d)-(f) Heat maps of data set HUP87_phaseII.

https://doi.org/10.1371/journal.pcbi.1005953.g007
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is not due to the interictal discharges. At the same time, we note that interictal discharges can be

used to assist in localizing the SOZ [29]. Designing a robust method to incorporate the interic-

tal discharges in our algorithm is part of our future research plans.

A comparison with different inference approaches

A natural question is how good are the results reported in the Results section compared to the

performance of other inference algorithms. To answer this question we tested two alternative

inference approaches as well as two methods for estimating the pair-wise causal influences.

Before discussing the alternative inference approaches we first provide some background on

the problem of estimating the causal influence graph.

Estimating the causal influence graph. Recall that the weight of each edge in the graph

quantifies the causal influence between a pair of recorded sequences. Generally speaking, cau-

sality measures can be divided into two groups: parametric and non-parametric, and can be

estimated in the time domain or in the frequency domain. Parametric measures implicitly

assume that the observed time-series follow a specific model (this makes estimation more effi-

cient and simpler), however, a mismatch between the observed time-series and the assumed

model usually leads to poor estimation results. Examples for parametric causality measures are

Granger causality (GC) in the time domain [24], and its counterpart in the frequency domain,

direct transfer function [30] (see [31] for a detailed review). As an accurate statistical model

for ECoG recordings is not known, the proposed algorithm combines estimation of GC and

the non-parametric causality measure of directed information (DI) [25], taken from the field

of information theory [12]. The DI measure is closely related to the transfer entropy measure,

see [32]. To estimate the pairwise DI, we use an estimator based on the k-nearest-neighbor (k-

NN) principle [33], that extends the mutual information (MI) estimator derived in [34]. Our

analysis indicates that this estimator is more accurate than other known non-parametric esti-

mation approaches such as estimation of the causal conditional likelihood via kernel density

estimation [16], or estimation via correlation integrals [17]. In the Methods section we briefly

discuss the main ideas and techniques used to estimate the causal influence graph, a detailed

description can be found in S1 Text.

As our algorithm combines both k-NN estimation of DI as well as estimation of GC, one

may wonder about the inference performance when only one of these methods is used. Table 2

details a summary of the localization results when the causal influence graph is estimated

using only GC or using only DI with k-NN estimation. The numbers of the inferred electrodes

are provided in S2 Text. When obtaining the results specified in Table 2, the inference from

the graph was based on PageRank followed by the post-processing step. The values of p0 and

p1 were optimized for both GC only and DI Only, and in both cases the optimized values were

very close to p0 = 10 and p1 = 5. It is clear that the proposed algorithm achieves significantly

higher success rate while maintaining the same low average false positive detection rate.

Inferring the SOZ from the graph. We now consider alternative approaches to infer the

SOZ from the estimated graph (the graph is estimated using the methodology of the proposed

Table 2. Summarized localization results for different graph estimation methods. GC refers to estimating the graph

using only Granger causality, DI refers to estimating the graph using only k-NN DI estimation, and Proposed Algo-

rithm refers to the algorithm proposed in the current paper. FPR refers to average false positive detection rate.

Method Success Rate FPR

GC only 0.63 0.039

DI only 0.737 0.03

Proposed Algorithm 0.895 0.03

https://doi.org/10.1371/journal.pcbi.1005953.t002
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algorithm). The first approach is the net-flow inference [16, 17] where the rank of a node is the

sum of the weights of its incoming edges subtracted from the sum of the weights of the outgo-

ing edges. The second approach does not use post-processing and simply selects the SOZ to be

the nodes with the highest scores (top 5%). This comparison indicates the effectiveness of the

PageRank ranking approach as well as the importance of the post-processing step. These locali-

zation results are summarized in Table 3. The numbers of the inferred electrodes are provided

in S2 Text. The superiority of the proposed algorithm relative to the alternative inference

approaches can be clearly observed.

Seizure evolution through causal influence graphs

The proposed algorithm uses ECoG signals from two types of intervals (blocks): 10 seconds at

the beginning of a seizure (an ictal block) and 10 seconds randomly selected from a period in

which the patient is resting. Intuitively, in ictal blocks the seizure activity has not spread out
across the brain yet, and therefore these blocks should give clear insights as to the SOZ location.

The length of the analyzed blocks is chosen to be 10 seconds. This follows as these blocks are

used to estimate the weights in the causal-influence graph, and this places two contradicting

constraints on their length. On the one hand, the analyzed ECoG signals should be approxi-

mately stationary. According to [35], ECoG signals are approximately stationary only for a few

seconds. On the other hand, the considered blocks should be long enough to facilitate non-

parametric accurate estimation of the causal influence. Our study shows that blocks of 10 sec-

onds provide a good tradeoff between the above two constraints (see the detailed discussion in

the Description of the setup subsection).

The heat maps in Figs 6 and 7 indicate that the causal influences in rest blocks (the middle

and right column) are lower compared to those in the ictal blocks (depicted on the left col-

umn), namely, the graphs are more blue and less yellow. Extending this observation, our study

shows that the seizure evolution process can be examined in terms of the causal influence

graph, as depicted in Fig 8 for data-set HUP65 phaseII. Similarly to Figs 6 and 7, each of the

sub-figures in Fig 8 is a heat map of an estimated graph (the entries are the estimations of the

pair-wise causal influences), where in each sub-figure the graph was estimated from a different

time window. The procedure for estimating these graphs is briefly discussed in the Methods

section, while a detailed description is provided in S1 Text. It can be observed that in Fig 8-(a)

(which corresponds to a rest state), the causal influence is relatively low (yet the pattern of hot

super and sub diagonals is apparent). The causal influence is higher in Fig 8-(b) that shows the

graph estimated from the recordings of pre-ictal state (10 seconds before the seizure starting

point). The causal influence increases in Fig 8-(c)–8-(e), corresponding to the first 10 seconds

(ictal block), 10 to 20 seconds after the seizure starts, and 20 to 30 seconds after the seizure

starts, respectively. Finally, in Fig 8-(f), that corresponds to 30 to 40 seconds after the seizure

starts, there is a decrease in the causal influence compared to Fig 8-(e). A possible explanation

Table 3. Summarized localization results for different inference methods. Net-flow refers to the inference algorithm

used in [16, 17]. Top 5% refers to choosing the nodes with the highest scores (top 5%). In both cases the graph is esti-

mated using the methodology of the proposed algorithm. Proposed Algorithm refers to the algorithm proposed in the

current paper. FPR refers to average false positive detection rate.

Method Success Rate FPR

Net-flow 0.684 0.053

Top 5% 0.789 0.035

Proposed Algorithm 0.895 0.03

https://doi.org/10.1371/journal.pcbi.1005953.t003
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for this decrease is that after 30 seconds from the seizure starting point it already spread

throughout the grid. Indeed, the reports corresponding to data-set HUP65_phaseII indicate

that after about 30 seconds from the seizure starting point the activity was apparent in the

whole grid: “rhythmic sharps of variable amplitudes are recorded throughout the grid diffusely
(generalized seizure electrographically)”.

High frequency oscillations

High frequency oscillations were recently suggested as good bio-markers for the epileptogenic

zone [36–38]. Yet, as stated in [36], to record high frequency oscillations, the ECoG recordings

must be sampled at a minimum rate of 2 KHz. The oscillatory events can then be visualized by

applying a high-pass filter and increasing the time and amplitude scales. As 18 of the 19 data-

sets were sampled at approximately 500 Hz, analysis of high frequency oscillations cannot be

applied. Moreover, as discussed in S1 Text, to efficiently estimate the pair-wise causal influence

graph we down-sample the recorded signals, see the discussion about the impact of the sam-

pling rate on the signals memory order and the resulting number of samples required for accu-

rate estimation. While the analyzed signals can represent any limited frequency band (not

necessarily the low frequencies), the results presented in this work were obtained by analyzing

the activity in frequencies below 100 Hz. We note that filtering out the high frequencies was

also applied in [39].

Fig 8. Heat maps illustrating the estimated causal influence graph for data-set HUP65_phaseII in different time intervals. (a) Heat map of the

causal influence graph estimated from a rest block. (b) Heat map of the causal influence graph estimated from 10 seconds before a seizure (pre-ictal block).

(c) Heat map of the causal influence graph estimated from a 10 seconds at the beginning of a seizure (ictal block). (d) Heat map of the causal influence

graph estimated from 10-20 seconds after the beginning of a seizure. (e) Heat map of the causal influence graph estimated from 20-30 seconds after the

beginning of a seizure. (f) Heat maps of the causal influence graph estimated from 30-40 seconds after the beginning of a seizure.

https://doi.org/10.1371/journal.pcbi.1005953.g008
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Incomplete representation of the causal influence network

On top of the sampling frequency limitations described in the previous section, it must be

noted that the ECoG recordings in general, and the estimated causal-influence graph in partic-

ular, do not provide a complete representation of the epileptic network. Since it is not possible

to record the electrical activity from the whole brain (the grids’ size is limited), the true SOZ

may not be covered by the recording grid. In this work, we assume that the preceding analysis

was executed, e.g., using EEG or MRI imaging, and that the grid was located based on a good

(yet rough) estimation of the SOZ location. Another source of inaccuracy is the fact that the

recorded signals might be influenced by (or correlated with) a strong signal originating from a

location out of the grid. This may call for analysis of causal influence graphs in the presence of

latent variables, see, for example, [40–42] and references therein. However, these works either

assume a linear model, or derive estimation methods which require a very large number of

samples. As discussed in S1 Text, the number of available samples for estimating the causal

influences is inherently small, and thus these techniques cannot be used. Finally, as discussed

above, since the electrodes in an ECoG grid are closely located, the recorded signals might be

statistically dependent. In this case, to fully quantify the statistical causal influence between

two electrodes, one must evaluate this influence when statistically conditioning on the rest

of the electrodes. However, even for small grids, this task is too computationally demanding

and requires a huge number of samples. Despite the incomplete representation of the causal-

influence network via the pair-wise causal influence graph, the inference results presented

above suggest that the used approximation is accurate enough for the purpose of localizing the
SOZ.

Computational aspects

A major concern regarding any automatic localization algorithm is the computational aspects

[16, 17]. In particular, for large grids, the computational complexity of estimating the causal

influence graph is high since N(N − 1) values must be estimated. This leads to the question:

can the proposed algorithm be executed in real-time to yield results within minutes from the time
that the recording session ends?

We assert that it can, given that the main computational load of our algorithm is the estima-

tion of the causal-influence graphs of the random rest blocks, see the Methods section. This fol-

lows as the number of seizures per patient is relatively small (see Table 1 where data-set

Study_033 is the largest with 17 seizures), while in order to create the empirical distribu-

tions we estimate the causal influence graph for 200 rest blocks. Note that there is no need to

wait until the end of the recording session to execute this estimation task. In fact, estimation of

the causal influence graphs for the rest blocks can be executed in parallel to the recording pro-

cedure, thus, significantly reducing the computational load at the end of the procedure. We

further note that estimating the graph can be performed using a dedicated hardware (Graphics

Processing Unit) and in parallel over several processors [43], reducing the required time even

further. Finally, we emphasize that from the perspective of graph theory, the estimated graphs

are very small (compared to graphs with thousands or even millions of nodes). Therefore, the

computational complexity of the inference procedure based on the PageRank algorithm is

negligible.

The impact of the proposed algorithm and future research

The impact of an automatic localization algorithm could be significant, in particular in view of

the improved inference performance reported in Tables 2 and 3. First, it can provide an objec-

tive point of view regarding the SOZ location. Second, the proposed algorithm can save
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analysis time for the neurologists by providing a pointer to a set of electrodes suspected to be

located over the SOZ. Third, while the proposed algorithm focuses on inferring the SOZ, the

techniques developed in this work can be used to learn other mechanisms and dynamics of the

brain. For instance, understanding modifications in the neural network due to learning [44],

or extending the above discussion on seizure evolution. Finally, we note that the proposed

PageRank-based analysis of the graph can be applied after any procedure for developing a
weighted directed graph indicative of causal influences. While due to computational complexity

constraints, and the limited number of available samples, the proposed algorithm uses the

pair-wise DI, in principle, any procedure that estimates a weighted directed graph (for

instance, estimating the causally conditioned DI) can be used before applying the PageRank

algorithm.

In terms of future research, we currently have three main directions: First, the proposed

algorithm uses the rest periods to create the empirical distributions used in the post-processing

stage. An interesting question is how to use these blocks to learn about the epileptic activity of

the patient, thus improving the inference accuracy. We believe that by identifying rest blocks

with interictal discharges, it will be possible to further take advantage of the recorded rest

blocks. Second, the similarity between the structure of the graphs estimated in rest and pre-

ictal blocks motivates analyzing these structures also during the seizure itself. Such an analysis

can shed light on the transition from rest to seizure and on the propagation of the seizure

activity over the network. Third, an important aspect in estimating the pair-wise causal influ-

ences (or any statistical functional that involves memory) is estimating the length of the auto-

time-dependence of the ECoG recordings (for Gaussian signals this reduces to the actual

length of the auto-correlation function). The parameter can also be interpreted as the Markov

order of the sequence. Using tools from the theory of machine learning, namely, a data-driven

estimator of the Markov order, in [45] we are studying the empirical distribution of the esti-

mated Markov order over different states (rest and ictal) and different patients.

Methods

Ethics statement

The patients included in this study (listed in the iEEG portal [26]) provided a written and

informed consent in accordance with the University of Pennsylvania Institutional Review

Board and Mayo Clinic Institutional Review Board for inclusion in the current study.

Description of the setup

We begin the Methods section with a formal description of the setup. In particular, we specify

what parts of the ECoG recordings are analyzed by the algorithm, and formally define its out-

put. In the subsequent subsections we discuss the application of the PageRank algorithm, and

the method used to infer the SOZ.

The input to our algorithm are ECoG recordings from an epileptic patient (diagnosed to

have a refractory epilepsy), as well as annotations information that indicates about the state of

the patient in a given time interval (resting, pre-ictal, ictal, etc.). The labeling of these time

intervals is done based on video recording of the patients. The annotations information also

includes a report, composed by the expert neurologists, that specify the EOIs. The recordings

and annotations information for all patients are listed in the International Epilepsy Electro-

physiology (iEEG) portal [26], see Table 1 for the specific patient information. The objective of

the algorithm is to localize the SOZ, namely, to find a (small) subset of electrodes that are

located close to (above) the SOZ. We emphasize that the proposed algorithm takes as input the
time intervals of the seizures, it does not detect them.
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Fig 9 provides a high-level block diagram of the proposed algorithm. As discussed in the A

comparison with different inference approaches subsection, the algorithm combines estima-

tion of the causal influence graph quantified using the DI metric (DI-Graph), with estimation

of the causal influence graph quantified using the GC measure (GC-Graph). Specifically, as the

DI measure does not assume any parametric model for the data, the algorithm first infers the

SOZ from the DI-Graph. While this works in most cases, it is possible that this inference will

not lead to any candidate (electrode) to be part of the SOZ (this is discussed in the sequel). In

this case, the algorithm infers the SOZ from the GC-Graph. As stated above, a detailed descrip-

tion of the procedure for estimating the DI-Graph and the GC-Graph is provided in S1 Text.

The procedure for inferring the SOZ from the estimated graph is discussed below.

As indicated in Fig 9, the inputs to the proposed algorithm are the ECoG recordings. This

leads to the following natural question: which parts of the ECoG recordings are analyzed? In

contrast to [16] and [17] that focused only on the ECoG recordings corresponding to seizures,

the proposed algorithm uses the annotations’ information and analyzes two types of time

intervals (blocks):

1. A time interval at the beginning of the seizure, referred to as an ictal block. It is assumed

that in these blocks the seizure activity has not spread out across the brain yet, and therefore

these blocks should give a clear insight as to the SOZ location.

2. Rest blocks are randomly sampled from intervals that exclude seizures, artifacts, and blocks

just before and after seizures. In this time, the patient is resting (awake).

The length of the analyzed blocks is chosen to be 10 seconds. An example of the recorded

signals (ictal as well as rest blocks), for data-set Study_016, is depicted in Fig 10. The block

length is chosen to be 10 seconds as these blocks are used to estimate the pair-wise causal influ-
ences, which places two contradicting constraints on the length of the analyzed blocks. On the

one hand, as a statistical measure is estimated, the analyzed ECoG signals should be approxi-

mately stationary. According to [35], ECoG signals are approximately stationary only for a few

seconds. On the other hand, the considered blocks should be long enough (contain enough

samples) to facilitate accurate estimation of the statistical measure. Our study shows that

blocks of 10 seconds provide a good tradeoff between the above two constraints. In particular,

executing the proposed algorithm for several block lengths (5, 10, and 20 seconds) revealed

that 10 seconds provides the best localization performance, as indicated in Table 4. A detailed

description of the electrodes inferred to be part of the SOZ is given in S2 Text.

Fig 11 depicts a block diagram of the processing applied to estimate SDI (or SGC). This pro-

cessing consists of two main parts: estimation of the causal influence graph, and inference of

Fig 9. High-level block diagram of the proposed algorithm. SDI and SGC are the inferences (set of electrodes) from the DI-Graph and the GC-Graph,

respectively; ϕ denotes the empty set; and S is the final set of inferred electrodes.

https://doi.org/10.1371/journal.pcbi.1005953.g009

SozRank: A new approach for localizing the epileptic SOZ

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005953 January 30, 2018 18 / 26

https://doi.org/10.1371/journal.pcbi.1005953.g009
https://doi.org/10.1371/journal.pcbi.1005953


SDI (SGC) from the estimated graph. In this section we focus on the right part of Fig 11

(emphasized in dark red). Let the sampling rate in recording the ECoG signals be Fs Hz, and

let the number of recorded electrodes be N (recall that typical values are Fs = 500 Hz and

N = 64). The input to the first block in Fig 11 is a 10 � Fs ×Nmatrix denoted by Victal. This

matrix contains the recordings from the first 10 seconds of a seizure. The ith column in Victal

corresponds to recordings from the ith electrode. The output of this block is an N ×Nmatrix

G, representing a complete directed graph with N nodes, where the ith node corresponds to the

ith recording electrode. The graph G does not contain self loops. The element in the ith row

and jth column of (the matrix representation) G, ½G�i;j, is the weight of the edge between nodes

i and j; it quantifies (via DI or GC) the causal influence of the signal recorded in the ith elec-

trode on the signal recorded in the jth electrode. The values of Gi;i are set to zero. A detailed

description on how these quantities are estimated is provided in S1 Text.

To infer the nodes corresponding to the SOZ from the graph, we first note that a common

problem in network analysis is to identify the most important nodes in the network. As the

exact interpretation of importance is often application dependent, it can be quantified using

many different measures [46]. In the current work we evaluate the importance of a node by

quantifying the amount that this node serves as a source of information flow, i.e., causal influ-

ence, in the graph. The objective of the dark red part in Fig 11 (denoted by “SOZ Inference”) is

to find these important nodes in G. A related problem is to rank the nodes in a network, and

similarly to the case of importance, there are many definitions and algorithms for computing

Table 4. Summarized localization results for different window lengths. FPR refers to average false positive detection

rate.

Window length Success Rate FPR

5 seconds 0.579 0.03

20 seconds 0.631 0.03

Proposed Algorithm (10 seconds) 0.895 0.03

https://doi.org/10.1371/journal.pcbi.1005953.t004

Fig 10. Exemplary recorded signals for data-set Study_016. The sampling rate is 500 Hz, while the block length is 10 seconds. (a) An ictal block. (b)

A (randomly sampled) rest block.

https://doi.org/10.1371/journal.pcbi.1005953.g010

SozRank: A new approach for localizing the epileptic SOZ

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005953 January 30, 2018 19 / 26

https://doi.org/10.1371/journal.pcbi.1005953.t004
https://doi.org/10.1371/journal.pcbi.1005953.g010
https://doi.org/10.1371/journal.pcbi.1005953


rankings [47]. One of these algorithms is the famous PageRank algorithm. Next, we discuss

how the PageRank algorithm can be used to infer the SOZ from the graph G.

Ranking the nodes in G via the PageRank algorithm

Recall our underlying hypothesis that the abnormal neural activity starts at the SOZ and then

spread to the other electrodes. Hence, in terms of causal information flow, nodes in the SOZ

should have high outgoing flow and low incoming flow. This reasoning led to the net-flow met-

ric. The PageRank algorithm quantifies the importance of a node based on its incoming links

(while accounting for the structure of the whole graph). A detailed description of the “vanilla”

version of the PageRank algorithm (in the context of ranking web pages) is available in [48].

To quantify the importance of a node based on its outgoing links we propose to use the Reverse

PageRank algorithm [22].

Using terminology taken from the hyperlink-induced topic search algorithm [21], PageR-

ank assigns authority scores to the nodes. In a recursive manner, a high authority score is

given to a node that is linked by many other nodes with high authority scores. Thus, the author-

ity score can be seen as an in-flow score that accounts for the structure in the graph. To obtain

an equivalent to the out-flow score, Reverse PageRank is used to calculate hub scores. Again,

in a recursive manner, a high hub score is given to a node that is linked to many other nodes
with high hub scores. Motivated by the arguments that led to the net-flow metric, we propose

to use the difference between the hub and authority scores as the metric for ranking the nodes.

Before formally describing how to calculate these metrics, we emphasize that in our algorithm

the PageRank does not model the propagation of the seizure. Instead, it is used to evaluate the
importance of a node in terms of its causal influence on the rest of the network.

To calculate the authority scores we apply a (modified) PageRank on the graph G (G can be

either the DI-Graph or the GC-Graph). Let the matrix �P j;i be defined as:

�P j;i ¼
Gi;j

PN
k¼1

Gi;k

: ð1Þ

Note that the elements of �P are positive, while its columns sum to one. Therefore, the column

vectors in �P are in fact probability vectors. Further note that, in contrast to the PageRank

described in [48] where the column vectors correspond to the uniform distribution, in (1) the

elements in a given column of �P can be different from each other. Next, the matrix P is gener-

ated from the matrix �P by replacing any zero column in �P with a vector containing entries

Fig 11. A block diagram of the procedure for calculating SDI (or SGC). Victal is a 10 � Fs ×Nmatrix of the ECoG recordings; X is a matrix of the pre-

processing output; G is the estimated causal-influence graph (of sizeN ×N); s is the vector of scores generated by the (variant of the) PageRank ranking

process; Vrest is a 2000 � Fs ×Nmatrix used to create the empirical distributions; and, S is a set of electrodes inferred to be the SOZ.

https://doi.org/10.1371/journal.pcbi.1005953.g011
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that are all equal to 1

N. Finally, the authorities (column) vector a is calculated as the solution of:

ðaPþ ð1 � aÞvae
TÞa ¼ a; ð2Þ

where e denotes the unity column vector, 0< α< 1, and va is a column probability vector, i.e.,

a vector with positive elements that sum to unity. The vector va is commonly referred to as the

teleportation distribution. The addition of this vector ensures that there is always a unique a

that solves (2). Generally speaking, there are two main approaches for choosing va. When va is

close to uniform, it is common that PageRank is used to calculate a network centrality measure,
thus calculating the importance of each node based on the structure of the entire graph. On

the other hand, va can be a fixed personalization vector that is exploited to bias the result of the

towards certain parts of the graph. This can be viewed as a localizedmeasure of importance.

The parameter α, commonly referred to as the dumping factor, controls the teleporation proba-

bility. Finally, the importance of a node is its corresponding probability in the vector a, which

leads to the following two comments:

1. When solving (2) a is restricted to have a unit sum. Thus, letting I denote the identity

matrix, solving (2) is equivalent to solving:

ðI � aPÞa ¼ ð1 � aÞva: ð3Þ

2. The proposed algorithm uses a soft personalization vector va that weights the nodes accord-

ing to their total incoming flow, namely:

va;i ¼

PN
k¼1

Gk;i
PN

i¼1

PN
j¼1

Gi;j

: ð4Þ

This approach biases the ranking procedure towards the initial guess which is based on the

total inflow metric. Note that by choosing α� 0, the obtained authority scores are approxi-

mately the normalized inflow. By using a larger value of α, the ranking further accounts for

the structure of G. Following the detailed discussions in [20, 48], and based on the analyzed

data sets, in this work we use α = 0.85.

As indicated above, to calculate the hub scores (that quantify the importance of a node

based on its outgoing links) we propose to use the Reverse PageRank. This can be easily done

by applying (1)–(4) with G replaced by its transpose G
T

and va replaced by vh, where the ele-

ments of vh are calculated via:

vh;i ¼

PN
k¼1

Gi;k
PN

i¼1

PN
j¼1

Gi;j

: ð5Þ

The resulting vector of hub scores is denoted by h. Finally, the score of node i is given by:

si ¼ hi � ai: ð6Þ

Thus, si quantifies the amount of total flow (of causal influence) for node i, while accounting for
the graph structure.
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Post-processing, graph selection, and SOZ inference

Before discussing how to infer the SOZ, we note that it is common that neuronal activities

associated with several seizures are recorded in each recording session (most data sets contain

data associated with multiple seizures, see Table 1). Based on the assumption that there is a sin-
gle focus, we combine these instances by averaging the estimated graphs (the DI-Graph or the

GC-Graph). Slightly abusing the notation, this results in the graph G that is then used as the

input to the PageRank algorithm. This approach was also taken in [16].

We now describe the method for selecting the set of nodes corresponding to the SOZ. Recall

that the algorithms calculates both the DI-Graph and the GC-Graph. As there is no known sta-

tistical model for ECoG recordings, the algorithm first uses the DI-Graph for inferring the

SOZ. As will be clear shortly, for some data-sets the inference based on the DI-Graph results in

no candidate electrodes to be declared as part of the SOZ. In such a case the algorithm uses the

GC-Graph to infer the SOZ.

Let s ¼ fsig
N
i¼1

be the vector of scores calculated from the estimated DI-Graph, and let

SðDIÞ
0
2 f1; 2 . . . ;Ng be the set of nodes that constitute the top p0 percentile of s. Thus, SðDIÞ

0
is

a natural candidate to be declared as the SOZ. Yet, one better first verify that:

1. The calculated scores SðDIÞ
0

are statistically significant, namely, they were not obtained by

chance.

2. The calculated scores SðDIÞ
0

are a result of the evolving epileptic activity and not an inherent

property of the brain (see for example Figs 6 and 7).

A possible method to verify the above two points is via a comparison of the estimated scores

si to their null-distribution. This null-distribution (specific for each score) should reflect the

distribution of si when there is no abnormal neural activity leading to a seizure, such that a high

si value will reflect a strong total flow due to the abnormal activity (that leads to a seizure). As

the true null-distributions are not known, we calculate an empirical distribution based on the

recorded rest blocks. The rest blocks used to generate these empirical distributions are selected

at random, and therefore, with high probability, satisfy the assumption that they do no include

an evolving epileptic activity (see the discussion preceding Figs 6 and 7).

The procedure for creating the empirical distributions is illustrated in Fig 12. Let NS� 1

denote the number of analyzed seizures (number of seizures in the data set). To create the

empirical distributions we randomly choose NS blocks (10 seconds time intervals) recorded

while the patient is in a rest state. We emphasize that the starting point of these blocks is ran-

dom, and the only constraint is that these blocks contain valid recordings (non-corrupted volt-

age traces). We apply the presented inference procedure (estimating the graphs, averaging,

and calculating the sources scores) on the NS blocks to obtain the scores f~sig
N
i¼1

that corre-

spond to the currently sampled random rest blocks. By repeating this procedure 200 indepen-
dent times we create an empirical null-distribution for each ~si. Note that an empirical

distribution is generated for each si, separately.

The algorithm now uses the generated empirical distributions as part of the SOZ inference.

Let SðDIÞ
1
2 f1; 2 . . . ;Ng denote the set of nodes for which si is in the top p1 percentile of the

generated empirical distribution of ~si. Therefore, for a small value of p1, the scores of the nodes

in the set SðDIÞ
1

are significant. The algorithm now calculates the set SDI ¼ SðDIÞ
0
\ SðDIÞ

1
, i.e., the

set of nodes that have high scores for being sources in the graph, and simultaneously are statis-

tically significant compared to their calculated empirical distributions. If this set is not empty,

it is declared to be the SOZ. In case the set SDI is empty, the above procedure is repeated

using the GC-Graph instead of the DI-Graph. The empirical distributions are generated by
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estimating the GC-Graph from the rest blocks, and the corresponding sets SðGCÞ
0

and SðGCÞ
1

are

obtained. The SOZ is now declared to be SGC ¼ SðGCÞ
0
\ SðGCÞ

1
. The algorithm terminates at this

point even if the set SGC is empty.

The localization results detailed in the Results section were obtained using p0 = 10 and p1 =

5. In three out of the 19 data-sets detailed in Table 1 the set SDI was empty: Study_006,

Study_021, and Study_033. In these data-sets, using the GC-Graph lead to a successful

localization. Interestingly, in the two data-sets with non-successful localization (study_023
and HUP64_pahseII) the inference results based on the DI-Graph and the GC-Graph are

very similar. Finally, we note that the results in Table 3, the “Top 5%” row, were obtained

using p0 = 5 and p1 = 100 (no comparison to the empirical distributions).

Supporting information

S1 Text. Contains a detailed description of the methods for estimating the causal influence

graphs.

(PDF)

S2 Text. Contains the numbers of inferred electrodes for all the discussed configurations.

(PDF)
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