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Abstract

Neuronal representation and extraction of spatial information are essential for behavioral

control. For flying insects, a plausible way to gain spatial information is to exploit distance-

dependent optic flow that is generated during translational self-motion. Optic flow is com-

puted by arrays of local motion detectors retinotopically arranged in the second neuropile

layer of the insect visual system. These motion detectors have adaptive response character-

istics, i.e. their responses to motion with a constant or only slowly changing velocity

decrease, while their sensitivity to rapid velocity changes is maintained or even increases.

We analyzed by a modeling approach how motion adaptation affects signal representation

at the output of arrays of motion detectors during simulated flight in artificial and natural 3D

environments. We focused on translational flight, because spatial information is only con-

tained in the optic flow induced by translational locomotion. Indeed, flies, bees and other

insects segregate their flight into relatively long intersaccadic translational flight sections

interspersed with brief and rapid saccadic turns, presumably to maximize periods of transla-

tion (80% of the flight). With a novel adaptive model of the insect visual motion pathway we

could show that the motion detector responses to background structures of cluttered envi-

ronments are largely attenuated as a consequence of motion adaptation, while responses to

foreground objects stay constant or even increase. This conclusion even holds under the

dynamic flight conditions of insects.

Author summary

Insects, with their limited brain resources and high performance in a wide behavioral rep-

ertoire, are exquisite model systems for studying parsimonious signal processing. They

extract spatial information by actively shaping their self-motion (e.g. when performing

peering movements or during flight segments with fixed gaze) and estimate distance

according to the speed of the resulting retinal displacements. The computation of retinal

speed is accomplished by arrays of motion detector circuits retinotopically arranged in the

second neuropile layer of the visual system. Sharing general adaptive response characteris-

tics with other neurons and neuronal circuits, the responses of motion detectors depend
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on stimulus history. In the present study, we developed a novel adaptive model of the

visual motion pathway of insects and analyzed the consequences of motion adaptation for

computing spatial information about the 3D environment. We found that motion adapta-

tion facilitates the segregation of nearby objects from their cluttered background during

dynamic locomotion. The functional significance of motion adaptation is likely to gener-

alize to optic flow-based spatial vision in other animals, and the motion adaptation mech-

anism implemented in our model could also be useful for artificial visual systems.

Introduction

Spatial vision is a fundamental challenge for animals moving in cluttered environments, and

there is no exception for flying insects. Because of their small brains insects have to rely on par-

simonious principles to compute spatial information about their environment. Possessing eyes

that are close together, binocular spatial vision is no option in the spatial range that is behav-

iorally relevant for flight control. Alternatively, optic flow, i.e. the displacement of projections

of surrounding objects on the retina during an animal’s locomotion, may provide the informa-

tion needed about the surrounding depth structure. However, optic flow cues only provide

depth information during translational self-motion, i.e. self-motion with the gaze direction

kept constant over time. During pure rotations the retinal images of surrounding objects are

displaced with the same angular velocity irrespective of distance [1]. Insects, such as flies and

bees, shape their flight into rapid saccadic turns of head and body and translational segments

where the gaze is largely kept constant [1–6]. This behavioral strategy ‘purifies’ the transla-

tional flow by separating it from the rotational one and potentially serves the function of sim-

plifying the computation of depth information.

Optic flow is not readily available at the input level of the visual system. Rather, motion

detectors are required to compute optic flow information from the spatiotemporal retinal

brightness changes induced during locomotion. In the visual systems of insects retinal inten-

sity changes are encoded in membrane-potential changes by arrays of photoreceptors. The

photoreceptor responses are band-pass filtered in the first visual neuropile, the lamina. The

output of lamina cells is then used to compute local motion in the next neuropile, the medulla

(e.g. [7]). Several variants of a particular model of motion detection, the correlation-type ele-

mentary motion detector (EMD), have been suggested to account for the functional properties

of the insect motion detection circuit [8–10]. As a common feature of all these model variants,

motion is detected by correlating the non-delayed signal originating from one retinal input

with a temporally delayed signal originating from a neighboring input. This model can suc-

cessfully explain not only a wide range of electrophysiological data on the large-field motion

sensitive lobula plate tangential cells (LPTCs), which spatially pool over arrays of EMDs, but

also motion-induced behavior such as optomotor following (review: [9, 11]). With genetic

tools, more and more details about the neuronal basis of the motion detector circuits are being

unraveled [12–20]. It has been shown in modeling studies that signals represented at the out-

put of EMD arrays correlate well with the contrast-weighted nearness during behaviorally

shaped translational self-motion [21, 22].

Like photoreceptors, which adaptively encode light intensities, the neuronal circuits for

motion detection are adaptive to motion. Adaptation is a general feature of neurons encoding

information about the environment and allows to encode physical parameters that can vary

over several decades by neurons with a limited operating range. Moreover, adaptive coding

can also reduce redundancies in the sensory input, enhance changes in the signals, and may
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support energy efficiency of the neural computations [23–25]. Since local motion detectors are

difficult to access in electrophysiological experiments, most experimental evidence for adapta-

tion of the motion detection pathway was obtained in LPTCs that are post-synaptic to the local

motion detection circuits [26–32]. One major adaptive feature observed in LPTCs is the reduc-

tion of the cell responses during constant-velocity motion with retained or even enhanced sen-

sitivity to brief velocity changes [26, 27]. This adaptive feature has been concluded to be

generated, to a large extent, pre-synaptically to the LPTCs by a local retinotopic mechanism,

although the exact location of this mechanism is still an open question [26].

Cluttered environments cause fluctuations in velocity across the retina under natural flight

conditions, especially during translational flight at a constant velocity because of discontinui-

ties in the depth structure of the surroundings. Therefore, we hypothesize that motion adapta-

tion may enhance the representation of spatial information at the level of arrays of motion

detectors. Following the same idea, Liang et al. [30] simulated the optic flow experienced by a

free-flying fly in a box covered with photographs of a meadow scenery and a black cylinder

positioned close to the loop-shaped flight trajectory. By repeatedly presenting this behaviorally

generated optic flow to a fly, while recording from an LPTC, the consequences of motion

adaptation for representing the cylinder in the neural response could be analyzed. Whereas

responses to the walls of the flight arena were reduced by adaptation, the responses to the cyl-

inder remained large [30]. Hence, the wide-field motion sensitive neuron became more sensi-

tive to a nearby object relative to its background as a consequence of adaptation.

In the present study, this hypothesis was systematically tested and validated by model simu-

lations. First, we developed an adaptive model of the visual motion pathway of insects that cap-

tures benchmark features of motion adaptation as analyzed in previous electrophysiological

studies on LPTCs [26–28]. Our adaptive EMD model is based on an adaptation mechanism

similar to the mechanisms previously proposed for light adaptation by photoreceptors [22],

here however, operating on the output of EMDs and with much larger time constants. Based

on this adaptive model of the visual motion pathway, our intention was to understand how

motion adaptation affects the signal representation at the output of arrays of motion detectors

and, in particular, the representation of the spatial layout of the environment during transla-

tional self-motion in 3D environments. With simulations of an insect model translating in

both simple virtual and naturally cluttered 3D environments, we show that by reducing the

response to background motion and maintaining large responses to nearby objects, motion

adaptation can make nearby objects more salient. The conclusion that motion adaptation facil-

itates the segregation of nearby objects from their background during translational flight was

further validated by taking the natural flight dynamics of insects into account.

Materials and methods

Following the columnar and layered structure of the visual system of flies, our model of the

visual motion pathway is composed of successive layers of retinotopic arrays of model photo-

receptors (PRs), large monopolar cells (LMCs), EMDs, and of an LPTC integrating the output

of large arrays of EMDs (Fig 1). The model parameters were tuned to qualitatively capture

adaptive features revealed in previous electrophysiological studies (Fig 2; [26, 27]). The model

parameters were determined by systematic search in the chosen parameter range and by select-

ing the parameter combinations that correspond best to the electrophysiological benchmark

data. The model was not only validated for the benchmark data, but also for a wider range of

stimulus parameters (Fig 3) and also by using other types of stimuli that were not used for its

optimization (Fig 4).

Motion adaptation facilitates optic flow-based spatial vision
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The overall goal of our model analysis was to find out how motion adaptation affects the

representation of optic flow-based spatial information by arrays of EMDs. Therefore, we ana-

lyzed the responses to optic flow experienced in both virtual and natural 3D environments

during constant-velocity motion (Figs 5–7) and by taking the natural flight dynamics of flies

into consideration (Fig 8). The structure of the model as well as the stimuli are described in the

following.

Adaptive model of the visual motion pathway

Adaptive model of the peripheral visual system. The peripheral visual system consisting

of PRs and LMCs was modeled according to Li et al. [22] (Fig 1B). In each input line, the

Fig 1. Adaptive model of the visual motion pathway. (A) Schematic illustration of the organization of the insect (fly

as an example) visual motion pathway (left), and the retinotopic structure of its model counterpart (right). (B)

Computations performed in two neighboring channels of the model. Input light intensity (I) is processed at successive

stages of (1) the adaptive photoreceptor (PR) model, which is realized by dividing a fast signal channel (low-pass

filtered with small time constant PR.τLP1) by a slow signal channel (low-pass filtered with large time constant PR.τLP2)

in a saturation-like Lipetz transformation; (2) LMC model, which consists of a high-pass filter, a half-wave rectification

stage that splits the signal into an ON and an OFF channel, and a saturation-like Lipetz transformation; and (3)

adaptive EMD model, which is composed of a basic Hassenstein-Reichhardt detector with a low-pass filter in its cross-

channels, the output of which is adapted by dividing a fast branch (low- pass filtered by EMD.τLP1) by a slow one

representing motion direction-independent motion energy (average half-detector output low-pass filtered by EMD.

τLP2) in a saturation-like Lipetz transformation with adaptive exponent a to each component of the transformation

(components involved in motion adaptation are overlayed by gray aera); and (4) a simple LPTC model pooling the

half-detector output of ON and OFF pathway to preferred and anti-preferred direction over the entire receptive field.

Parameters for the PR model: PR.τLP1 = 9ms; PR.τLP2 = 250ms; CPR = 10. Parameters for LMC model: LMC.τHP = 10ms;
CLMC = 0.03. Parameters for EMD model: EMD.τLP = 50ms; EMD.τLP1 = 20ms; EMD.τLP2 = 4000ms; CEMD = 0.8. a is

adaptive to the average EMD response before adaptation (i.e. the output of “ave” icon) according to Eq (3). In this

equation, amax = 3; amin = 0.5; p1 = 30; p2 = 150.

https://doi.org/10.1371/journal.pcbi.1005919.g001

Motion adaptation facilitates optic flow-based spatial vision

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005919 December 27, 2017 4 / 23

https://doi.org/10.1371/journal.pcbi.1005919.g001
https://doi.org/10.1371/journal.pcbi.1005919


brightness signal is split into two signal branches. One branch is low-pass filtered with a small

time constant of 9 ms, leading to a signal that follows even high-frequency intensity fluctua-

tions; the other branch is low-pass filtered with a large time constant of 250 ms, leading to a

signal that indicates the current light condition on a much slower timescale. By adding a con-

stant to the latter branch and dividing the output of the fast branch by this signal, a saturation-

like transformation function is obtained that shifts adaptively over time according to the cur-

rent light condition.

PRresp ¼
LP1PRðIÞ

LP2PRðIÞ þ CPR
ð1Þ

In Eq (1), I is the input intensity, PRresp is the photoreceptor response, LP1PR and LP2PR are

first-order low-pass filters with small and large time constants, and CPR is a constant. This

adaptive photoreceptor model allows the visual system to operate over eight to ten decades of

light intensities [22].

The photoreceptor output is then fed into the LMC model. The LMC model is a first-order

high-pass filter that eliminates the information about the average brightness level. This high-

pass filtering has been shown to be essential for extracting depth information by the motion

Fig 2. Responses of a model LPTC to constant-velocity motion superimposed by brief velocity transients. (A)

LPTC model response (red) to constant motion of a sine-wave grating interspersed with incremental temporal

frequency transients (inset, above the LPTC response), in comparison to electrophysiologically determined LPTC

response (inset, from Figure 1 of [27]) to the same type of stimulus. (B) Same as (A), however, the velocity transients

were decrements. In contrast to (A, B), in which the constant velocity is at the rising slope of the bell-shaped steady-

state velocity tuning curve of motion detectors, in (C) the constant background velocity is at the falling slope of the

velocity tuning curve, and (D) in the peak region of the bell-shaped tuning curve of motion detectors (red: high

brightness contrast of grating, green: low contrast).

https://doi.org/10.1371/journal.pcbi.1005919.g002
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detectors at the next processing stage [22]. As an elaboration of our earlier model [22], the

LMC output is half-wave rectified and split into an ON and an OFF pathway according to its

biological counterparts [33–35]. Furthermore, a saturation-like non-linearity was introduced

to the LMC output by dividing the LMC output by the sum of the LMC output and a constant

(Fig 1B).

Adaptive elementary motion detector model. The LMC output of the ON and OFF

pathway, respectively, is fed into the adaptive motion detector model (Fig 1B). This motion

detector model is composed of a correlation-type motion detector and an adaptive processing

of each half-detector output. The correlation-type motion detector is composed of two mirror-

symmetric half-detectors sensitive to motion in opposite directions. Each half-detector detects

motion by multiplying the delayed signal from one LMC output with the non-delayed signal

from the corresponding neighboring LMC output. This leads to four EMD outputs for each

column, two for preferred-direction (PD) motion of ON and OFF signals, respectively, and

two for null-direction (ND) motion of ON and OFF signals. Each of the EMD outputs is pro-

cessed by an adaptive mechanism similar to that of brightness adaptation of the photoreceptors

(Eq (1), [22]), namely by dividing a fast signal branch following the fluctuations in the motion

signal by a slow signal branch representing pattern velocities on a much slower timescale and

embedding in a saturation-like Lipetz-transformation. Since motion adaption takes place on a

much longer timescale than brightness adaptation in the peripheral visual system, the ‘fast’

Fig 3. Enhancement of response contrast by motion adaptation over a wide range of stimulus parameters. (A) An

example (corresponding to the condition marked by black frame in B) of model response to the same stimulus scheme

as in Fig 2 (black), in which the peak response to the temporal frequency transient (red) and the response to the

constant background temporal frequency (green) of the first and the last temporal frequency decrements were used to

assess whether the response contrast to temporal frequency transients is enhanced by adaptation. (B) The changes of

response contrast to temporal frequency transients (see Eq (5), red: enhancement and blue: reduction of response

contrast with adaptation) assessed over a wide range of brightness contrasts of the sine-wave grating and the constant

temporal frequencies (smaller plots: the same analysis for light conditions brighter by eight decades). (C, D) Same as

(A, B), however, with transient temporal frequency increments rather than decrements superimposed on the

background motion.

https://doi.org/10.1371/journal.pcbi.1005919.g003
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and ‘slow’ time constants are much larger, 20 ms and 4 s, respectively, than the ‘fast’ and ‘slow’

time constants characteristic of brightness adaptation (see above). While the fast branches are

the different half-detector outputs after being low-pass filtered with a small time constant, the

slow branch is the average of all four half-detector outputs being low-pass filtered with a large

time constant (Fig 1B). Adaptation of all four branches by the same slow signal was essential

for achieving direction-independent motion adaptation. Moreover, to account for the increase

of response transients to velocity changes an adaptive exponent is implemented in each com-

ponent of the adaptation equation.

EMDadpt ¼
LP1EMDðEMDnadptÞ

a

LP2EMDðEMDaveÞ
a
þ Ca

EMD

ð2Þ

In Eq (2), EMDadpt is the adapted EMD response of each branch, EMDnadpt is the unadapted

EMD response corresponding to the response after the multiplication, and EMDave is the aver-

age EMDnadpt of all four branches. LP1EMD and LP2EMD are low-pass filters, CEMD is a constant,

and a is an adaptive exponent adjusted according to EMDave:

da
dt
¼ � ða � aminÞ � p1 þ ðamax � aÞ � p2 � LP2EMDðEMDaveÞ ð3Þ

Fig 4. Direction-independent motion adaptation and contrast gain reduction. (A-C) Model responses (red) to 1 s

of sine-wave grating motion before and after 4 s of motion adaptation (corresponding LPTC responses to the same

type of stimulus, see Figure 2 and 5 in [28]). During the motion adaptation period the sine-wave grating with high

contrast and velocity moved in (A) the preferred direction (PD), (B) the null-direction (ND), or (C) an orthogonal

direction. (D) For the same stimulus scheme, the brightness contrast of the grating during the reference and test period

was systematically varied, and contrast gain was assessed by calculating the normalized response for the first 300 ms of

the reference and test period (solid line: contrast gain before motion adaptation, dotted and dashed lines: contrast gain

after PD and ND adaptation, see Figure 2 in [28] for corresponding experimental data).

https://doi.org/10.1371/journal.pcbi.1005919.g004
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In Eq (3), amax and amin are the upper and lower boundaries of exponent a, p1 and p2 are

constants determining the speed of recovery and the strength of adaptive modification.

LP2EMD(EMDave) is the unadapted EMD response of all four branches after they were averaged

and low-pass filtered. Note that, the temporal frequency tuning of this correlation-type motion

detector as well as its adaptive version are bell-shaped (Supplementary S2 Fig), i.e. with

increasing stimulus temporal frequency the EMD response first increases, while with a further

increase in temporal frequency the EMD response reaches an optimum and then decreases

again.

LPTC model. For simplicity, we assume that the outputs of the local motion detectors are

linearly summated at the next stage of signal processing corresponding to the level of LPTCs

(Fig 1B). Here, both half-detectors, i.e. ON and OFF, responding best to preferred-direction

motion contribute to the sum with a positive sign, whereas both half-detectors responding best

to null-direction motion contribute with a negative sign. The simplification of linearly sum-

mating the motion detector outputs instead of implementing a dynamic gain control at this

processing stage [36, 37] is justified in the context of the current paper, since the pattern size in

all model simulations was kept constant. (Note that, the LPTC model is only used for the

model development and characterization (Figs 2–4), while the impact of motion adaptation on

spatial vision is being analyzed at the level of adaptive EMD arrays (Figs 5–8)).

Fig 5. Impact of motion adaptation on spatial vision during translation in an artificial 3D environment. (A) Schematic illustration of spatial layout of the artificial

3D environment and the flight trajectory of an artificial agent translating parallel to a row of bars and a wall behind the bars. (B) The projection of the environment on

the left hemisphere of a spherical eye. (C) The EMD response profile before adaptation (as the first bar passing by, left sub-Figure) and after adaptation (as the eighth

bar passing by, right sub-Figure). (D) Motion energy averaged across elevation at 90˚ azimuth as a function of time; the response to the background wall is shown in

the inset on a finer scale (red and green: section of response used to assess peak responses to bars and background for the purpose of assessing response contrast). (E)

Response contrast between bar and background responses during the passage of each of the eight bars.

https://doi.org/10.1371/journal.pcbi.1005919.g005
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Stimuli for model development and characterization

Stimulus set 1. The first stimulus set was characterized by a sine-wave grating moving at a

constant velocity (7420 ms) superimposed by eight short (50 ms) velocity transients at regular

time intervals (780 ms) (Fig 2 upper panel of insets). Before and after this motion stimulus the

grating was stationary for 500 ms, as in the corresponding experiments by Kurtz et al. [27] and

Maddess and Laughlin [26]. For convenience, we used in many places the term ‘velocity’

instead of ‘temporal frequency’, i.e. the ratio between the velocity and spatial wavelength. This

is justified, because the spatial wavelength was kept constant throughout our simulations and,

thus, velocity and temporal frequency are proportional. The transients are either increments

in temporal frequency (Fig 2A, from 2 Hz to 4 Hz) or decrements in temporal frequency

(Fig 2B, from 4 Hz to 2 Hz); the temporal frequency of the constant background motion was

selected to be either smaller (Fig 2A and 2B) or larger (Fig 2C, 8 Hz background to 12 Hz

Fig 6. Enhancement of motion detector response contrast with adaptation for different fore- and background depth differences. (A) Schematic of the spatial

layout of a 3D environment and the flight trajectory of an artificial agent, the same environmental design as in Fig 5A, however, for three different wall distances in

different scenarios (black: wall distance 0.55 m, green: 2 m, red: 4 m). (B) The average motion energy across elevations at 90˚ azimuth over time as assessed in Fig 5D,

however, averaged over 50 different wall and bar patterns. (C) Response contrast between each bar and background response with adaptation. Results obtained from

50 different random wall and bar patterns summarized in box plots (mid-line: median; box: 25–75 percentile: red cross: outlier). (D-G) Same as (B, C), however, with

wall distances of 2 m and 4 m, respectively. (H) Averaged response contrast between bar and background as a function of time for all three scenarios with different wall

distances over 50 different random wall and bar patterns.

https://doi.org/10.1371/journal.pcbi.1005919.g006
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transients) than the optimum of the bell-shaped, steady-state velocity tuning curve of EMDs,

or it matched the optimum (Fig 2D, 6 Hz background to 3 Hz transients); the brightness con-

trast was either high (Fig 2 red, c = 0.88) or low (Fig 2 green, c = 0.3). For all scenarios (Fig

2A–2D) the sine-wave grating was a 3 × 360 pixel2 matrix with average intensity Imean = 1000

a.u., and spatial wave length λ = 19 pixel. (See [27] for the corresponding parameters used in

the electrophysiological experiments.)

Fig 7. Impact of motion adaptation on the representation of spatial information by arrays of motion detectors

during translational flight in a natural cluttered environment. (A) Middle frame from an image sequence

mimicking the retinal input during a translational motion in a forest. The whole stimulus sequence is composed of

eight repetitions of a 900-ms-translational optic flow sequence. (B) EMD response profile before motion adaptation (in

the middle of the first repetition, t = 450 ms) and (C) after motion adaptation (in the middle of the eighth repetition,

t = 6750 ms). (D) Assessment of local response contrast changes with adaptation by subtracting the local response

contrast of the EMD profile after adaptation (C) from that before adaptation (B) (red: enhancement and blue:

attenuation of local EMD response contrast).

https://doi.org/10.1371/journal.pcbi.1005919.g007
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In order to assess under which conditions the sensitivity to velocity discontinuities is

enhanced by motion adaptation we used the same stimulation scheme as described above and

systematically varied the temporal frequency (0.1, 0.2, 0.4, 0.8, 1.6, 3.2, 6.4, 12.8, and 25.6 Hz)

and brightness contrast (0.05, 0.25, 0.45, 0.65, and 0.85) of the grating. For each combination

of temporal frequency and contrast, the temporal frequency of the transients was either half

(Fig 3A and 3B) or twice as large (Fig 3C and 3D) as the background temporal frequency. The

model response was calculated for each of these conditions to assess whether the response con-

trast between the responses to the temporal frequency transients and the responses to constant

background motion is enhanced by adaptation. The same stimulus scheme and response anal-

ysis was also done at a light level being brighter by eight decades (Imean = 1012 a.u. in Fig 3B

and 3D smaller plots in contrast to Imean = 103 a.u. in Fig 3B and 3D main plots) to test model

performance for a wide range of light intensities.

Stimulus set 2. Stimulus set 2 was used to test the responses of model LPTCs to a moving

grating before and after adaptation with constant-velocity motion of a grating, as used by Har-

ris et al. [28]. Stimulus set 2 was characterized by the following sequence: a homogeneous

screen of average brightness (500 ms), a reference stimulus consisting of motion of a sine-wave

grating (1 s, c = 0.3, 3 Hz), a homogeneous screen of average brightness (50 ms), a long motion

adaptation stimulus consisting of a grating of high contrast and constant velocity (4 s, c = 0.95,

5 Hz), immediately followed by a test stimulus of the same stimulus parameters as the refer-

ence stimulus, followed by a homogeneous screen (500 ms) (Fig 4A–4C). During the

Fig 8. Impact of motion adaptation on spatial vision for semi-natural flight dynamics. Schematic of the spatial layout of a 3D environment and the flight trajectory

of an artificial agent with (A) only translational movement or (C) with semi-natural flight consisting of eight cycles of a decagonal trajectory. (B) The same side view as

the agent passes by a bar shared between conditions (A) and (C) for all three wall distances tested (black: 0.55 m, green: 2 m, and red: 4 m distance between wall and

trajectory). (D) Average motion energy at 90˚ azimuth over time for the wall distance of 2 m averaged over 50 different wall and bar patterns (same as Fig 6D). (F)

Average response contrast (over 50 different wall and bar patterns) between bar and background responses over time for all three wall distances (same as Fig 6H). (E,

G) The same analysis as in (D, F), however, under semi-natural flight conditions in the environment as illustrated in (C).

https://doi.org/10.1371/journal.pcbi.1005919.g008
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adaptation phase the grating moved either in the preferred direction (PD) (Fig 4A), in the null

direction (ND) (Fig 4B) or in the orthogonal direction (Fig 4C). The sinewave grating was a

90 × 90 pixel2 matrix with average brightness Imean = 1000 a.u. and spatial wave length of 18

pixels.

Furthermore, under the same stimulus scheme as in Fig 4A and 4B, the contrast of the grat-

ing of the reference and test stimulus was varied systematically (20 logarithmically and equally

distributed contrast levels between 0.005 and 1) in order to analyze how motion adaptation

modifies the contrast gain (Fig 4D, see also Figure 2a in [28]).

Stimuli for analyzing the role of motion adaptation for representing depth

information

Visual stimuli generated by translational motion in virtual 3D environments. We used

a virtual 3D environment consisting of a wall (1.1 m high, 16 m long, 0.55 m away from the

flight trajectory) and a row of bars (5 cm wide, 1 m high, 1 m spacing, 0.5 m away from the

flight trajectory) in front of the wall. An agent with one spherical eye (2˚ spatial resolution)

moved parallel to the wall and the row of bars. It passed 1 bar/s during its 8 seconds of transla-

tional motion (Fig 5A). The wall and the bars were textured with a random cloud pattern with

1/f2 statistics (f is the spatial frequency). The 3D environments were generated with Open

Inventor 1.0 and the visual stimuli experienced by the agent were generated by Cyberfly

toolbox developed by Lindemann et al. ([38]; Fig 5B).

The spatial discontinuities between the bars and the background cause discontinuities in

retinal velocities during translational motion. In order to compare the impact of motion adap-

tation on different depth differences we increased the distance between the objects and the

wall without changing the distance between the bars and the agent (Fig 6A). If we assume a

flight speed of 1 m/s, the distance between the flight trajectory of the agent and the row of bars

correspond to 0.5 m, and the walls in different scenarios to 0.55 m, 2 m, and 4 m. We adjusted

the size of the wall accordingly to have the same-sized projection of the wall on the retina

(Fig 6A). As a result, different spatial scenarios were characterized by the same retinal size of

wall texture elements and the bars, but a lower background velocity with increasing wall dis-

tance. In order to distinguish the influence of depth transients on the responses from the influ-

ence of a specific pattern texture 50 different random cloud walls and bar patterns were

included in our analysis.

Visual stimuli during translational motion in a natural 3D environment. We also

tested a stimulus mimicking what flies experience during translational motion in a cluttered

natural environment. By taking a sequence of panoramic photographs along a linear track

with the help of a hyperbolic mirror in natural environments (for example in a forest) and

applying corresponding rendering methods, image sequences mimicking the retinal image

flow during translational motion at 1 m/s in a forest were generated (for details see [21] and

published data [39]). The available image sequences recorded in natural environments were

too short for investigating the effect of motion adaptation (if we assume a flight speed of 1 m/s,

the image sequences correspond to only 900 ms, whereas motion adaptation has a timescale of

several seconds [27]). Therefore, we repeated the same image sequence eight times via concate-

nation. The concatenated image sequences were then fed into our adaptive model of the visual

motion pathway. A potential influence of the discontinuity in the scenery due to concatenation

was minimized by analyzing the influence of motion adaptation for the frames in the middle

of the individual image sequences (Fig 7A).

Visual stimuli based on semi-natural flight dynamics. Natural flight of flies consists of

segments of translation interspersed with quick saccadic rotations. In order to investigate the
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impact of motion adaptation on spatial vision under conditions of natural flight dynamics we

designed an artificial 3D environment and an artificial flight trajectory taking the dynamics of

real flight of flies into account. According to [2] the saccade frequency of free blowfly flights in

a cubic box is approximately 10/s; the yaw angle of saccadic turns varies by up to 90˚, and the

corresponding yaw velocity can reach up to several thousands of degrees per second. Consider-

ing these features of real flight dynamics, we generated a semi-realistic flight trajectory by

bending each second of the linear translational flight trajectory of a total duration of 8 s, as

described, for the pure translational scenario (Fig 8A) into a decagon (Fig 8D). This trajectory

was centered in a decagonal flight arena, and the distance from the flight trajectory to the bar

and the wall as well as the size of the bar and the height of the wall were kept the same as for

the straight trajectory. The bar and the walls were also textured with a random cloud pattern,

and the frequency at which a bar was passed by (1 bar/s) was also kept the same. One cycle of

the decagonal trajectory was composed of a sequence of 80-ms-pure-translations along the

walls of the decagon and 20-ms-pure-rotations that led to a 36˚ saccadic turn in the corners of

the decagon. During the saccadic turns in the corners roll and pitch were kept constant, and

the dynamics of yaw-velocity was based on recorded free flight data [3, 38] following the equa-

tion:

vyaw ¼
36p

180

GðtÞ
X20

t¼1
GðtÞ

; where

GðtÞ ¼
1

s
ffiffiffiffiffiffi
2p
p exp �

1

2

t � tc

s

� �2
� �

; tc ¼ 10:5;s ¼ 3:5; 1 � t � 20ms

ð4Þ

In this way, the saccade frequency, the yaw angle and velocity during saccades were within a

realistic range and the total length and duration of the trajectory were identical to the pure

translational trajectory.

Results

Characterization of motion adaptation by modeling the responses to

benchmark stimuli

The adaptive model of the fly visual motion pathway was first tested with visual stimuli that

were used in previous electrophysiological studies on fly LPTCs [26–28]. The characteristic

responses of the LPTCs were used as a benchmark to adjust the model parameters of our adap-

tive model.

When presenting a sine-wave grating moving at a constant velocity superimposed by short-

velocity increments as in Kurtz et al. [27], both model and LPTC responses decayed over time

(Fig 2A). However, the short response increments induced by the increments in velocity were

not reduced, but even slightly increased over time (Fig 2A). Both model and cell responses

revealed similar adaptive features when the constant-velocity motion was superimposed by

velocity decrements: While the overall response amplitude considerably decreased, the

response decrements evoked by the velocity decrements were even enhanced over time

(Fig 2B). A characteristic feature of both biological and model motion detectors is the bell-

shaped steady-state velocity tuning: i.e. the motion detector response increases with velocity

up to a certain velocity and then decreases again if the velocity further increases. Similar adap-

tive features as just described for the rising phase of the velocity-response characteristic

(Fig 2A and 2B) were observed when the constant background velocity was on the downward-

sloping side of the bell-shaped velocity-response characteristic (Fig 2C) as well at its optimum

(Fig 2D). Note that, in Fig 2C transient velocity increments evoked transient response
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decrements, while in Fig 2D transient velocity decrements evoked fluctuations around back-

ground response level. In conclusion, while motion adaptation leads to a reduction of motion-

induced responses on a slow timescale, it enhances the relative sensitivity of both LPTCs and

the adaptive model of the visual motion pathway to velocity transients under a wide range of

stimulus conditions. Since peripheral brightness adaptation implemented in our model, which

is in a steady state already within several hundreds of milliseconds [22], it does not much con-

tribute to the described adaptive decay of the background activity and the enhancement of

transient response on a timescale of several seconds as is characteristic of motion adaptation.

In order to systematically assess under which conditions the relative sensitivity to velocity

increments (Fig 3A and 3B) and decrements (Fig 3C and 3D) is enhanced by adaptation we

used the same stimulus scheme as in Fig 2 and systematically varied the velocity and the

brightness contrast of the grating (Fig 3B and 3D). The sensitivity to each velocity transient

was quantified by calculating the response contrast between the response to the velocity tran-

sient and the response to the constant background velocity:

Cresp ¼
jRbg � Rpkj

Rbg þ Rpk
ð5Þ

In Eq (5) Cresp is the response contrast; Rbg represents the LPTC model response to the con-

stant background velocity calculated as the average response over 200 ms before the transient

response (Fig 3A and 3C, color-coded in green); and Rpk is the peak response within the tran-

sient response range (Fig 3A and 3C, color-coded in red). To assess whether the response con-

trast was enhanced with adaptation we subtracted the response contrast to the first transient

from the last one and used this value as an enhancement score (Fig 3B and 3D, color code in

black square frames). A positive enhancement score (Fig 3B and 3D, warm colors) indicates an

enhancement of response contrast to velocity transients, whereas a negative score (Fig 3B and

3D, cold colors) indicates an attenuation of the response contrast. An enhancement of

response contrast to velocity decrements (Fig 3B) as well as increments (Fig 3D) is evident

under most examined stimulus conditions of brightness contrast and velocity as revealed by

the dominantly warm-colored heat maps. As a consequence of brightness adaptation in the

peripheral visual system, this performance was maintained even if the overall pattern bright-

ness was increased by up to 8 decades (Fig 3B and 3D smaller plots).

We tested the model with another type of stimulus as used in a previous electrophysiologi-

cal study on motion adaptation. As Harris et al. [28] tested the adaptive performance of fly

LPTCs, we tested how the response to a velocity step of our adaptive model was affected by

adaptation stimuli moving in the preferred direction (PD), the null direction (ND), as well as

orthogonal to these directions (Fig 4A–4C). The LPTC model response resembled that of

LPTCs in the following qualitative features: The responses after adaptation were considerably

smaller than the reference responses before adaptation irrespective of the direction of motion

during adaptation (Fig 4A, 4B and 4C). Even if orthogonal pattern motion was used for adap-

tation, the adaptive effect was present, although both model and LPTCs almost did not

respond to the adaptation stimulus (Fig 4C). In the electrophysiological recordings the initial

part of the test phase after PD adaptation was less depolarized for a short time interval than

that after ND adaptation (see Figure 2a in [28]). This was not the case in the corresponding

model response (Fig 4A and 4B). The observed difference between model and experimental

data is mainly due to the after-hyperpolarization, which occurs at the LPTC level after a strong

depolarization of the cell. Since our present study focuses on the impact of motion adaptation

on the EMD-level, the after-hyperpolarization generated in the postsynaptic LPTC has not

been taken into account.
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Harris et al. [28] further assessed the modulation of contrast gain by motion adaptation (see

Figure 2a in [28]) by systematically varying the brightness contrast of the reference and test

stimulus and comparing response amplitudes before and after motion adaptation. Part of the

response characteristics revealed in their study can be explained by our model, such as the

rightward-shift of the contrast-gain curve after motion adaptation (Fig 4D). Our model suc-

cessfully accounts for the reduction of the contrast gain after both PD adaptation and ND

adaptation. However, our model does not explain two other response characteristics described

by Harris et al. [28], namely the after-hyperpolarization following PD motion adaptation and

the corresponding reduction of the output range of the cell (Fig 4D). Both response character-

istics have been concluded to occur at the LPTC level [40] which is not covered by our current

model.

Potential significance of motion adaptation for spatial vision

The above model was used to investigate the impact of motion adaptation on the representa-

tion of spatial information at the level of arrays of motion detectors. This was done by simulat-

ing the visual input as experienced during translational motion in both virtual 3D

environments (Figs 5 and 6) and cluttered natural 3D environments (Fig 7), employing pure

translational motion (Figs 5, 6 and 7) or mimicking natural flight dynamics of flies (Fig 8).

Translational motion in virtual and natural 3D environments. According to available

electrophysiological data and our model simulations, motion adaptation can enhance the rela-

tive sensitivity to discontinuities in the motion stimulus, while reducing the overall response

to sustained motion (Fig 2). This feature can potentially favor optic flow-based spatial vision,

since during translational motion depth contours generate discontinuities in the optic flow

profile, which might be enhanced as a consequence of motion adaptation. In order to test this

hypothesis we first moved a virtual agent parallel to a row of bars in front of a wall (Fig 5A).

The environment projected on the left eye is illustrated in Fig 5B.

We used the resulting motion sequence as the input to our model of the visual motion path-

way and compared the response profile of the retinotopic EMD arrays before (Fig 5C left) and

after (Fig 5C right) motion adaptation, i.e. when the first bar vs. when the last bar was passing

the lateral part of the visual field. The responses to both the bars and the background wall were

generally reduced after adaptation. However, as a consequence of motion adaptation, the

response to the background wall pattern was much more reduced in comparison with the

response to the bars making the bars more salient in the overall response profile of the EMDs

(Fig 5C).

In order to quantify this impression we assessed the sensitivity to the depth discontinuities

in the following way: First, we combined the temporal development of EMD responses to bars

and background wall to one variable. To this end, we chose the lateral (azimuth = 90˚) part of

the visual field for our response analysis, because for geometric reasons bars passing the visual

field at 90˚ azimuth led to the strongest responses and covered most of the vertical extent of

the visual field. We then calculated the average of the motion energy (i.e. absolute value of

EMD responses) at 90˚ azimuth over time (Fig 5D), which represents both bar and wall

responses over time. Finally, based on these time-dependent bar and wall responses we calcu-

lated the response contrast according to Eq (5) for each of the eight consecutive bars and the

corresponding wall sections (Fig 5E). Due to the strong reduction of background activity (Fig

5D inset), the response contrast increased almost monotonically with adaptation (Fig 5E).

To investigate the impact of the distance (and consequently retinal velocity) differences

between the bars and the wall the wall was placed at a distance of 0.55 m, 2 m and 4 m from

the flight trajectory in different scenarios, while the bars were kept unchanged at 0.5 m from
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the flight trajectory (Fig 6A). Moreover, to reduce potential effects of a specific cloud pattern

we assessed the bar and wall responses (Fig 6B, 6D and 6F) and the response contrast between

the bars and the wall (Fig 6C, 6E and 6G) as in Fig 5D and 5E for 50 random wall and bar pat-

terns and averaged across textures (Fig 6B, 6D, 6F and 6H). The response contrast evoked by

the bars increased for all wall distances tested (Fig 6H) as a consequence of a strong reduction

of background wall responses with adaptation (Fig 6B, 6D and 6F insets). This effect was the

more pronounced the closer the wall was to the bars and, thus, the smaller the response con-

trast was before motion adaptation (Fig 6H). Thus, motion adaptation enhances the sensitivity

of the motion detection system to depth discontinuities.

This conclusion was further corroborated with more realistic stimuli mimicking the visual

input during translational motion in a forest (Fig 7A). Because the original image sequence

has a duration of only 900 ms (assuming 1 m/s flight speed) which is too short for investigating

motion adaptation, the original image sequence was concatenated eight times. In order to see

how motion adaptation affects the representation of the environment by arrays of motion

detectors the response profiles of EMDs before adaptation (i.e. in the middle of the first repeti-

tion of a translational trajectory, Fig 7B) was compared with that after adaptation (i.e. in the

middle of the eighth repetition, Fig 7C). Similar, but less prominent effects as in Fig 5C can be

observed here: Motion adaptation led to a larger reduction of the responses to background

structures than to the contours of nearby tree trunks, which makes the nearby tree trunks

more salient. In order to better assess the influence of motion adaptation on signal representa-

tion by EMD arrays we calculated the local response contrast of the EMD response profile

before and after motion adaptation and subtracted the local response contrast profile after

adaptation from that before adaptation (Fig 7D). The red color indicates regions in the envi-

ronment where the local response contrast was enhanced by adaptation, which corresponds

mainly to the contours of nearby tree trunks.

During semi-natural flight. According to our simulation results, motion adaptation

enhances the segregation of foreground objects from their background if an agent performs

pure translational motion (Figs 5–7). However, the translational periods of insect flight are

never as long, but frequently interspersed with fast saccadic turns. To test whether the image

flow induced by saccadic turns affects our conclusion that the representation of nearby con-

tours is enhanced by motion adaptation, we designed a semi-natural flight trajectory that takes

several features of natural flight dynamics into account [2]. Furthermore, we shaped the trajec-

tory and the virtual 3D environments into decagons, so that the visual stimulus was as similar

as possible to that used to obtain the results shown in Fig 6 (Fig 8A–8C). The same response

analysis was performed as in Fig 6. Under such semi-natural flight conditions (Fig 8E and 8G),

the background activity was dominated by the rotational response. This background activity

was strong and rather independent of wall distance. Therefore, the response contrast curves

increased with motion adaptation, but with a relatively shallow slope. Moreover, the response

amplitudes did not differ as much for different wall distances as those obtained during linear

motion without saccadic turns interspersed (compare Fig 8F and 8G).

Without saccadic turns, the response contrast between the bars and the background

increased most when the distance between wall and bars was smallest and, accordingly, the

background and bar responses most similar. Thus, the adaptation is most effective when an

enhancement of the response contrast is particularly relevant to segregate objects from their

background. However, this characteristic is hardly visible under semi-naturalistic conditions,

in which large responses were induced by saccades. However, the general qualitative feature of

enhanced response contrast between nearby objects and background with motion adaptation

was maintained even with saccades, though to a much smaller extent. There is evidence that

responses to saccadic turns are suppressed in visual neurons (measured in LPTCs) by efference
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copy signals [41, 42]. Although the exact location of the target of the efference copy is not yet

clear, this mechanism can potentially counteract the above mentioned detrimental effects of

saccades on the consequences of motion adaptation.

Discussion

The present study shows by model simulations that local motion adaptation as observed in the

fly visual pathway facilitates optic flow-based spatial vision by enhancing the representation of

nearby objects in the response profile of arrays of local motion detectors. This is due to the fact

that motion adaptation strongly reduces the responses to constant or slowly-varying back-

ground velocities, while maintaining or even enhancing the responses to velocity discontinui-

ties. Because discontinuities in the optic flow in different regions of the visual field are caused

by discontinuities in the depth structure of the environment during translational locomotion,

the enhanced sensitivity to optic flow discontinuities is concluded to improve the representa-

tion of the depth structure.

The above conclusion has been obtained by model simulations with a novel adaptive model

of the visual motion pathway of flies (Fig 1). The model was developed mainly based on

response characteristics of fly motion sensitive neurons recorded in previous studies ([26, 27],

Fig 2). In this model, motion adaptation is accomplished by a modified version of a mecha-

nism that has previously been used to model brightness adaptation of photoreceptors [22],

although adaptation at the different processing stages operates on very different timescales,

with motion adaptation being much slower than brightness adaptation. Motion adaptation is

based on a divisive interaction of the relatively fast output signal of each half-detector with a

much slower branch. The slower branch reflects the direction-independent motion energy by

combining the temporally low-pass filtered output of all half-detectors at this retinal location

irrespective of their preferred direction. Decisive for motion adaptation to enhance the

response to optic flow discontinuities is an adaptation of the exponent of each component of

the division by the direction-independent motion energy level (see Eqs (1)–(3)). The adaptive

model of the visual motion pathway does not only account for the benchmark response fea-

tures of fly motion sensitive neurons under a wide range of stimulus conditions (Figs 2 and 3),

but also reproduces the direction-independent component of motion adaptation (Fig 4A–4C;

[28]) and the contrast gain reduction (Fig 4D; [28]) observed in the fly nervous system.

With this adaptive model of the visual motion pathway, we could show that during transla-

tional motion in artificial (Figs 5 and 6) and in cluttered natural (Fig 7) 3D environments

motion adaptation may enhance the sensitivity to velocity discontinuities in the retinal image

induced by nearby objects. We could further show that this conclusion remains even valid

under dynamic conditions mimicking the free flight behavior of insects (Fig 8).

Adaptive model of the insect visual motion pathway

Several previous modeling studies have been dedicated to explain motion adaptation in the fly

visual pathway at the level of LPTCs [43–46] and to decompose the components of the mecha-

nisms involved [28].

Clifford and Ibbotson [45] explained the reduction of the cell response to constant-velocity

motion, while maintaining or enhancing sensitivity to brief velocity changes [26, 27] by adap-

tive changes of the EMD low-pass filter time constant by feedback control. This time constant

is specific for the motion detection circuit and, especially, for determining its velocity tuning.

In contrast, the adaptation mechanism proposed in the present study is a more general-pur-

pose feed-forward adaptive model. The computational principle underlying this mechanism

can be used at different stages of the visual pathway to explain, after adjustment of the time
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constants to the particular functional needs, brightness adaptation of photoreceptors as well as

motion adaptation of the motion detection circuits. This simple adaptation mechanism does

not only explain the enhancement of response contrast with motion adaptation for a wide

range of test conditions (Figs 2 and 3). It also explains that motion adaptation in fly LPTCs is

to a large extent direction-independent (Fig 4; [28, 44]), and reproduces the reduction of con-

trast gain (Fig 4; [28]). We could not validate these features (Figs 2, 3 and 4) by re-implement-

ing and testing the model of Clifford [45] (see [47]).

Harris et al. [28] analyzed the adaptive properties of LPTCs by confronting them with grat-

ing motion before and after a period of motion adaptation in PD, ND or in the orthogonal

direction. They attributed motion adaptation observed in LPTCs to three components: (1) a

motion-dependent, but direction-independent contrast gain reduction, (2) a strong direction-

selective after-hyperpolarization, and (3) an activity-dependent reduction of the response

range. Amongst these adaptive components, our model can account for the direction-indepen-

dent contrast gain reduction (Fig 4). The other two components of motion adaptation charac-

terized by Harris et al. [28] are not covered by the present model. This finding is in line with

the conclusion that these components of motion adaptation have their origin post-synaptic to

the EMDs at the LPTC level [40]. As pointed out above, it has not been the goal of the present

study to model LPTCs, but to study the impact of local motion adaptation on the signal repre-

sentation of environmental information at the level of EMD arrays. However, in principle,

depending on the signal used to adapt each branch of the half- detector, this model can be

adjusted to also account for direction-dependent motion adaptation.

Another modeling study on motion adaptation of LPTCs attempted to explain a different

response feature of LPTCs, i.e. the shortening of the response transients induced by motion

steps and motion impulses after adaptation [29, 46]. This feature might potentially further

enhance the representation of discontinuities in the optic flow pattern by increasing the tem-

poral resolution of motion detectors. On the other hand, this model based on adapting time

constants of filters in the cross-branches of the EMDs before the multiplication stage [46] can-

not explain the adaptive benchmark features examined in this study (own results based on a

reimplementation of the model of [46]; Supplementary S1 Fig).

Since motion adaptation in our model was realized at the output of the EMD half-detectors

rather than by interfering with motion computation itself, this adaptive mechanism could also

be applied at the output of other types of motion detector models such as recently published

motion detector models combining preferred-direction enhancement and anti-preferred

direction inhibition [10].

Functional significance of local motion adaptation at EMDs

It was already in the fifties of the last century that each stage of signal processing in nervous

systems had been suggested to reduce redundancy in order to efficiently use the limited infor-

mation capacity of neurons and to extract eventually ecologically relevant information [48].

Given the limited coding capacity of all processing stages of a nervous system, it is expected for

each layer of neurons to be adaptive, i.e. to be able to adjust its input-output relationship

according to recent input history. Examples from insect visual systems (but restricted neither

to the visual modality nor to insects [49–51]) are brightness adaptation in photoreceptors and

LMCs [52, 53], motion adaptation at the level of local motion detectors (although measured in

large-field motion sensitive cells, [26, 27, 29, 43, 54]), and wide-field motion adaptation at the

level of LPTCs [28, 40]. It is generally assumed from the perspective of information theory that

adaptive coding provides the advantage of an efficient use of the coding capacity of neural cir-

cuits by removing redundant (i.e. unchanging or only slowly changing) signals based on the
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recent input history [49, 50]. Redundancy reduction can increase information transmission

[23, 24] and save encoding energy [25, 55].

There have been several studies revealing adaptive features based on electrophysiological

experiments on LPTCs using various system-analytical stimuli [26–29, 43], and a major com-

ponent of the adaptive mechanisms is suggested to occur locally pre-synaptic to the LPTCs

[26, 29, 43]. However, how local motion adaptation affects signal representation in the

responses of motion detector arrays during flight in the three dimensional world has by now

only been analyzed experimentally in an indirect way at the level of LPTCs [30, 31], but due to

methodological constraints not at the level of the array of their pre-synaptic local input ele-

ments. With our adaptive model of the visual motion pathway, it was possible to analyze the

impact of local motion adaptation on the signal representation at EMD arrays, at least by simu-

lation approaches. In this way, we found that, as a consequence of motion adaptation, the

representation of foreground objects in an environment is much more salient at the EMD out-

put than the EMD responses to the background clutter (Figs 5–7). Consistent with the experi-

mental results on LPTCs [31], we could show that this segregation of foreground objects from

background clutter is maintained, even if translational flights were interspersed with fast sac-

cades, as are the characteristic of insect flight (Fig 8). However, saccades interspersed between

translational self-motion segments of the agent attenuate the enhancement of the response

contrast between fore- and background and its distance-dependency. This detrimental influ-

ence of saccades on representing spatial information by movement detectors may be counter-

acted by the experimentally established efference copy signals that were found to suppress

saccade-driven visual motion responses [41, 42].

What is the functional significance of an enhancement of nearby contours at the movement

detector output resulting from motion adaptation? This question cannot yet be answered,

because not much is known about how the output of EMD arrays, apart from being LPTC

input, is processed. Furthermore, closed-loop control as is characteristic of most behaviors

may add complexity to our understanding of the role of local motion adaptation. If the

enhancement measured in our model simulations is sufficient to substantially change the

detectability of objects is hard to assess without making assumptions on the signal-to-noise sit-

uation in a real system and the structure of the following processing steps.

In principle, the information provided by motion detector arrays during self-motion may

serve later-stage signal processing subserving a wide range of behavioral tasks, such as (1)

optic flow-based spatial vision which is important for detecting objects [56], collision avoid-

ance [57, 58] and landing [59, 60], (2) gaze stabilization during locomotion [2, 3, 61], (3) flight

speed control [57, 62] and (4) visual odometry [63, 64]. The impact of motion adaptation on

signal processing in these behavioral contexts is still not clear. However, one potentially impor-

tant aspect is that local motion adaptation at the EMD level is largely direction-independent

([28]; Fig 4). This feature could be functionally important in maintaining equal adaptive states

and, thus, equal sensitivity of local motion detectors with different preferred directions. If the

sensitivity of differently aligned motion detectors is changed by an adaptive mechanism

depending on the direction of motion, the population responses of such detectors would indi-

cate different directions of local motion in response to a given motion direction-depending

stimulus history. Thus, direction-independent adaptation might be important in behavioral

contexts where a correct representation of local motion direction is essential.

Although this model study is based on the electrophysiological data and flight data from

blowflies, there is no reason why the adaptive model and the conclusions about how local

motion adaptation enhances the segregation of foreground objects from their cluttered back-

ground in optic flow-based spatial vision should be restricted to flies. Moreover, the model

may also be useful for implementing artificial motion vision systems.
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Supporting information

S1 Fig. Characterization of Borst-Reisenmann-Haag model. LPTC model response (based

on reimplementation of model suggested in [46]) to (A) transient sine-wave grating before

and after motion adaptation with sine-wave grating motion in preferred direction and (B) con-

stant motion of sine-wave grating interspersed with eight transient velocity increments (as in

Fig 2A). See Figure 4 in [29] and Figure 1 in [27] for corresponding electrophysiological data.

(TIF)

S2 Fig. Temporal frequency tunning of the LPTC model. Temporal frequency tunning with-

out (A) and with (B) motion adaptation (see Fig 1). There is no substantial shift in the velocity

tuning with additional modeling of motion adaptation.

(TIF)
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