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Abstract

Schools of fish and flocks of birds can move together in synchrony and decide on new direc-

tions of movement in a seamless way. This is possible because group members constantly

share directional information with their neighbors. Although detecting the directionality of

other group members is known to be important to maintain cohesion, it is not clear how

many neighbors each individual can simultaneously track and pay attention to, and what the

spatial distribution of these influential neighbors is. Here, we address these questions on

shoals of Hemigrammus rhodostomus, a species of fish exhibiting strong schooling behav-

ior. We adopt a data-driven analysis technique based on the study of short-term directional

correlations to identify which neighbors have the strongest influence over the participation of

an individual in a collective U-turn event. We find that fish mainly react to one or two neigh-

bors at a time. Moreover, we find no correlation between the distance rank of a neighbor and

its likelihood to be influential. We interpret our results in terms of fish allocating sequential

and selective attention to their neighbors.

Author summary

Schooling fish exhibit impressive group-level coordination in which multiple individuals

move together in a seamless way. This is possible because each individual in the group

responds to the movement of other group members. But how many individuals does each

fish pay attention to? Which are the influential neighbors? It is necessary to answer these

questions in order to understand how directional information propagates across a group.

Our research shows that in the rummy-nose tetra species there is a limited number of

influential neighbors which are not necessarily the closest ones.
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Introduction

Collective motion phenomena such as swarming, flocking and schooling behavior have been

observed in a large variety of animal species ranging from bacteria to humans [1]. Several theo-

retical models have been proposed to explain how such large scale coordination patterns

emerge from “microscopic level” interaction rules among individual animals [2–7]. These

models have been instrumental in improving our understanding of collective motion in real

animal groups by providing an indication of which interaction mechanisms are sufficient to

reproduce realistic patterns of collective behavior. In particular, most models agree on the fact

that two types of interaction are responsible for maintaining group cohesion to achieve coher-

ent collective motion: attraction and alignment.

More recent improvements in remote sensing and video-tracking technologies [8–10] have

made possible to automate data collection and test directly theoretical models against highly

resolved empirical movement data in various species. Generally, these studies have confirmed

the importance that attraction and alignment behavior play in the formation and maintenance

of collective movement patterns [11–15]. However, there is a less clear scientific consensus

about how these interaction rules are implemented in the sensory-motor responses of individ-

uals. This lack of agreement underscores the importance of answering the following question:

how do individuals mediate interactions with multiple neighbors? [16].

Specifically, theoretical studies have postulated a number of factors that are likely to affect

the probability and intensity of interactions: distance (metric neighborhood) [2–7], position

rank (topological neighborhood) [17], projected size (visual neighborhood) [18–20], and spa-

tial arrangement around a focal individual (Voronoi neighborhood) [13]. Each of these differ-

ent definitions of influential neighborhood is supported to some extent by computational

models and empirical observations.

Rather than siding with one or more of the proposed neighborhood definitions, we adopt a

fully data-driven approach with minimalist modeling assumptions. The simplest hypothesis

consists of assuming that fish copy the actions of their neighbors, but not instantaneously: the

fish reaction takes time to process sensory information and to trigger the appropriate behav-

ioral response. Those assumptions impose a temporal constraint given by the sequential occur-

rence of the perception of the neighbors’ actions, and the movement response [21, 22]. We

thus assume that animals following a particular neighbor in a new direction are subject to a

time-delay when copying the heading of influential neighbors.

Considerable work has already appeared on the identification of these time-delays. The

delays with which individuals align with each other have in fact been exploited to determine

social hierarchies in animal groups, as shown, e.g., for pigeon flocks [23], where the leadership

network is constructed with link weights given by the delay for which pairwise angle correla-

tion is maximal. Improvements on how to identify such delays from movement data have pro-

posed the use of time-dependence in pairwise angle correlation [24]. A computational

analysis, based on similarities between trajectories (Fréchet distance), has also been proposed

and implemented in a visual analytic tool [25]. A different approach has made use of a time-

ordering procedure on the pairwise angle correlation to determine temporary leader/follower

relations in foraging pairs of echolocating bats [26]. The analysis of the bat trajectories was

instrumental in identifying transient leadership and coupling it to sensory biases of the species.

However, only pairs of individuals were considered and group influence on individual behav-

ior was not investigated.

Since identifying influential neighbors is key to unravel the mechanisms of interaction,

there is a need in collective behavior studies to establish transient leadership from the dynam-

ics of the individual trajectories. One way to bridge this gap consists of determining who are
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those influential individuals whose heading is being copied more closely by others, how many

of such influential neighbors exist, and where are located in the group.

Fish have the ability to choose not only when to copy the heading of another individual, but

also the extent to which this heading is copied, that is the similarity and the pace at which fish

match the trajectory’s curvature of another individual [11, 27]. The closer two (or more) fish

are to this matching, the more aligned they are (even if with some delay), and the more faith-

fully they are following the movement path of the transient leader.

Here, we introduce a procedure that allows us to identify the influential neighbors of fish

moving in a group, and we test it along a series of experiments in groups of two and five indi-

viduals of the freshwater tropical fish Hemigrammus rhodostomus swimming in a ring-shaped

tank (see details in Materials and methods). In this set-up, fish swim in a highly synchronized

and polarized manner, and can only head in two directions, clockwise or anticlockwise, regu-

larly switching from one to the other. We base our procedure for identifying influential neigh-

bors on time-dependent directional correlations between fish, focussing our analysis on the

interactions that occur during these collective U-turns. Indeed, during U-turns, fish have to

make a substantial change of direction to reverse their heading, making easier the extraction of

the correlation resulting from the direct interactions between individuals rather than other

incidental correlations, e.g., their channeled motion in the ring-shaped tank. Moreover, as cor-

relation does not imply causal influence, we need to control for potential spurious correlations.

We do so by constructing a null model of collective U-turns to show that the patterns of inter-

action observed in the experiments are not due to random processes.

Results

Dynamics of collective U-turns

Hemigrammus rhodostomus performs burst-and-coast swimming behavior that consists of

sudden heading changes combined with brief accelerations followed by quasi-passive, straight

decelerations [15]. Moreover, fish spend most of their time swimming in a single group along

the wall of the tank. Fish regularly change their position within the group [28], so that every

individual fish can be found at the front of the group.

A typical collective U-turn event starts with the spontaneous turnaround of a single fish

(hereafter called the initiator), mostly located at the front of the group [28]. This sudden

change of behavior triggers a collective reaction in which all the other individuals in the group

make a U-turn themselves, so that, after a short transient, all individuals adopt the same final

direction of motion as the initiator. Overall, we analyzed 1586 U-turns of which 1111 were

observed in groups of 2 fish and 475 in groups of 5 fish. Fig 1 shows two examples of collective

U-turns in groups of N = 2 (left column, panels ABC) and N = 5 fish (right column, panels

DEF; see also supplementary S8 Fig and supplementary S1 and S2 Videos in the Supplemen-

tary Information).

Fig 1A shows a first fish F1 (red color) swimming close to the upper-left region of the tank,

followed by a second fish F2 (purple color) at a distance d12� 8.5 cm, swimming in the same

direction. Right before the U-turn starts (Fig 1A), fish F1 reduces its speed (circles become

closer to each other), the distance d12 decreases (to� 5.1 cm), and F2 also reduces its speed.

Then, both fish perform a change of direction which lasts about 1 second and during which

fish F2 clearly follows fish F1 (see the corresponding circles at each instant of time in Fig 1B).

Once the U-turn is completed (Fig 1C), F1 accelerates again, and so does F2, which also adopts

the direction of motion of F1. The distance d12 increases again (� 9.5 cm), due to the larger

velocities, and remains of the same order along the depicted trajectory.
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The situation is less clear when we try to describe collective U-turns in larger groups.

Fig 1D, 1E and 1F show a collective U-turn for the case where N = 5. Before the U-turn, fish

F2 (orange) seems to be the fish that the rest of the group follows, the first circle of its trajectory

being the most advanced one in the direction of motion. In fact, a position order can be

inferred from Fig 1D: F2, F3, F5, F1 and F4. However, it is rather complicated to extract from

Panel E a precise information about which fish is the initiator of the U-turn, in which order

the other fish follow, and therefore, who is influencing whom, especially if time-delays and

reaction times are taken into account. The same happens with the information about fish’s

positions after the U-turn, provided by Panel F.

In order to describe rigorously the individual behavior of the N fish during a U-turn, we

introduce the angle ϕi(t) as an instantaneous measure of the direction of motion of a fish Fi;
see Fig 2. We assume that the instantaneous heading of a fish Fi can be defined in terms of the

velocity vector~viðtÞ, so that~vi ¼ ð cos�i; sin�iÞ k~vi k. The heading of a fish ϕi allows us to

characterize the angle of incidence of the fish relative to the wall, θwi = ϕi − ψi, where ψi is the

angle formed by the position vector of the fish with the horizontal line (see Fig 2). The angle of

incidence θwi is an individual measure that doesn’t depend on the heading of another fish.

When a fish Fi is swimming along the wall, the value of θwi is around ±90˚ (we choose, by con-

vention, the positive sign for the anticlockwise angle). In our experiments, most of the time the

absolute value of the angle of incidence is close to 90˚; equivalently, |sin(θwi(t))|� 1. When the

Fig 1. Collective U-turns in groups of two and five fish. Fish trajectories (solid lines) with successive

positions (circles) equispaced in time every 0.04s. (ABC): N = 2, (DEF): N = 5. The top row (AD) displays the

collective U-turn one second before it starts, t 2 [ts − 1 s, ts], where ts denotes the time at which the collective

U-turn starts. The middle row (BE) displays the collective U-turn, t 2 [ts, te], where te denotes the end time of

the collective U-turn. The bottom row (CF) displays the movement data 0.5 s after collective U-turn’s end, t 2

[te, te + 0.5 s]. For visual convenience solid lines indicate the actual fish trajectories before ts − 1 s and after te
+ 0.5 s. Arrows indicate the direction of motion. The grey thick line represents the tank border of radius 35 cm.

https://doi.org/10.1371/journal.pcbi.1005822.g001
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motion is perpendicular to the wall, the incidence is zero if the fish points towards the wall

(θwi = 0˚), and maximal if the fish points towards the center of the tank (θwi = 180˚); in both

cases, sin(θwi(t)) = 0.

The change of sign of angle θwi can serve as an indicator that a U-turn has taken place. In

fact, this allows us to delimit the individual U-turns with precision and, consequently, to deter-

mine the start and the end of a collective U-turn.

We define the start and end times ts,i and te,i of the individual U-turn of fish Fi in terms of

the absolute value of the angle of incidence, |θwi(t)|. Once a U-turn has been detected, we

obtain the time ts,i at which |θwi(t)| has decreased (from approximately 90˚) below a given

Fig 2. Angles and lengths characterizing the relative position of two fish. Angleψj denotes the angular position of fish

Fj with respect to the horizontal (positive values fixed in the anticlockwise direction); angle ϕi is the heading of fish Fi; θwi is

the angle of incidence of fish Fi with respect to the outer wall; dij is the distance between Fi and Fj; θij is the viewing angle of Fi

with respect to Fj (not necessarily equal to θji), and ϕij = ϕj − ϕi is the heading difference of Fi with respect to Fj.

https://doi.org/10.1371/journal.pcbi.1005822.g002
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threshold �ys, and the time te,i at which |θwi(t)| has increased again and is above another given

threshold �ye (see Materials and methods for more details).

Thus, the start of a collective U-turn is determined by the time ts at which the first individ-

ual U-turn starts, while the end of a collective U-turn is given by the time te at which the last

individual U-turn finishes. That is:

ts ¼ min
i¼1;...;N

fts;ig; te ¼ max
i¼1;...;N

fte;ig: ð1Þ

For each collective U-turn, we have made a convenient time shift so that ts = 0. Then, te
denotes not only the end time but also the duration of the collective U-turn.

We also introduce an instantaneous measure of how similar the direction of motion of indi-

vidual fish are across the group. We define the instantaneous group polarization P(t) as the fol-

lowing function of normalized fish velocity vectors:

PðtÞ ¼
1

N

�
�
�
�
�

�
�
�
�
�

XN

i¼1

~eiðtÞ

�
�
�
�
�

�
�
�
�
�
; ð2Þ

where~ei ¼~vi= k~vi k. When all the fish have the same direction then the polarization is maxi-

mal and P(t) = 1. The minimum value P(t) = 0 is reached instead when the velocity vectors

cancel.

Figs 3 and 4 depict the two U-turns introduced in Fig 1, in terms of the polarization P(t)
and the sine of the angle of incidence of each fish with respect to the outer wall θwi(t). The

duration of the two illustrated collective U-turns is te = 0.94 s for N = 2 and te = 1.5 s for N = 5.

For both group sizes, the group polarization (Figs 3B and 4B) before and after the U-turn is

quite close to 1, showing that before and after the collective U-turn, all individual fish maintain

essentially the same common direction. During the U-turn, the polarization decreases,

describing a sharp V-form with a minimum at P(t)� 0.27 for N = 2 and P(t)� 0.60 for N = 5.

The minimum is reached at approximately half the duration of the collective U-turn,

tm = (ts + te)/2: tm = 0.47 s for N = 2 and tm = 0.75 s for N = 5.

Figs 3C and 4C show the change of direction individually for each fish in both U-turns:

from anticlockwise to clockwise direction for N = 2, and vice versa for N = 5. Fig 3C clearly

indicates that at t� 0.3 s, the fish F1 has almost completed its individual U-turn, while F2 has

just started to change direction: sin(θw2(0.3))� 0.98, while sin(θw1(0.3))� −0.5.

In Fig 4C, a similar ordering can be inferred from the times of departure from the bottom

line at ordinate sin(θwi) = −1 + δ, where δ> 0 is a small parameter with respect to the range of

ordinate values; we used δ = 0.1. Thus, the order is 2-3-1-5-4. However, the order in which

individual fish change the sign of their angle of incidence θwi is different, 2-1-3-5-4, and also

different is the arrival order to the top line at ordinate sin(θwi) = 1 − δ: 2-5-1-4-3. Moreover,

some of these departure and arrival times are almost identical (see, e.g., F1 and F4), and the

behavior of the fish during the U-turn is completely different. These difficulties in establishing

a consistent order show that another criterion is necessary to identify the relation of influence

between fish.

We have based our criterion to decide if a fish is an influential neighbor of another fish on

the average value of the time-dependent directional correlation between the two fish along a

time window.

For each pair of fish Fi and Fj, we define the directional correlation Hij as a function of the

heading of Fi evaluated at time t and the heading of Fj evaluated at a delayed time t − τ, where τ

Identifying influential neighbors in animal flocking

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005822 November 21, 2017 6 / 32

https://doi.org/10.1371/journal.pcbi.1005822


Fig 3. Spatial and temporal dynamics of a collective U-turn for N = 2. (A) Individual fish trajectories in the tank during the U-turn. Each

individual is represented by a unique color. The temporal sequence is indicated by circles equally spaced over time with a time-step of 0.04 s

(empty circles) and 0.1 s (filled circles). Arrows denote direction of motion. Grey wide line is the tank’s border. (B) Group polarization P(t), with

a minimum value Pmin� 0.27 reached at t� 0.46 s. (C) Sine of the angle of incidence of fish to the wall: when parallel to the wall, sin(θw) = 1

(anti-clockwise direction) or sin(θw) = −1 (clockwise). The three vertical lines of each color indicate for each fish the beginning, the middle and
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is the time-delay [26]:

Hijðt; tÞ ¼~eiðtÞ �~ejðt � tÞ: ð3Þ

The function Hij(t, τ) is in fact the cosine of the angle formed by the headings~eiðtÞ and

~ejðt � tÞ, and is a measure of how aligned is fish Fi at time t with fish Fj at time t − τ. The values

of Hij(t, τ) are between −1 (when fish swim in opposite directions) and 1 (when fish have the

same direction), and equals zero when fish have perpendicular directions.

By averaging Hij(t, τ) along a time-window of length (2w + 1)Δt, we are able to quantify

how much the focal fish Fi is copying the moving direction of its neighbor with a time-delay τ
by means of the following function [26]

Cijðt; t;wÞ ¼
1

2wþ 1

Xw

k¼� w

Hijðt þ tk; tÞ; ð4Þ

where tk = kΔt (the time-step in our experiments is Δt = 0.02s). The time-window parameter

length w has been determined by means of a sensitivity analysis (pairwise similarity matrix),

finding that w = 2 yields the more satisfactory results; see Section “Parameter selection” in

Materials and methods and S5 Fig.

The average directional correlation Cij(t, τ, w) allows us to characterize a fish Fj as an influ-

ential neighbor of a focal fish Fi at time t with time-delay τ, if the value of Cij(t, τ, w) is larger

than a given threshold Cmin. Details on how w and Cmin are obtained are given in Sections

“Optimal setting parameters for influential neighbors identification” and “Parameter selec-

tion” in Material and Methods.

Fig 5 shows the directional correlation H12 and its time-average C12 between fish F1 and F2

along the collective U-turn depicted in Fig 3. Left (resp. right) panels aim to indicate the align-

ment of fish F1 (resp. F2) at each time t with respect to the alignment of fish F2 (resp. F1) at an

earlier time t − τ. Panels A and C show respectively that for all τ, there is always an interval of

time during which H12(t, τ)� −1 and C12(t, τ)� −1 (dark region), meaning that for all time-

delays there is always an interval of time in which fish have opposite directions. Moreover, the

larger the time-delay, the wider the black region where the direction of F1 is opposite to the

direction of F2 at the previous time.

On the other hand, the figures of the directional correlation of F2 with F1, especially Panel

D, show a connected region in which the correlation C21(t, τ) remains positive and above the

threshold (yellow in the figure) around τ� 0.42 s where H21� 1 during all the time interval

[−0.5, 2 s]. This strongly suggests that, during this time interval, F2 is copying the behavior of

F1 with a 0.42 s time-delay, denoted τ2,1 for this specific U-turn. Thus, one can consider that F1

is influencing F2 with time-delay τ2,1, while F2 is not influencing F1 in this specific case. This

influence dynamics is illustrated in Fig 3D by drawing an arrow at time t from Fj to Fi when Fj
satisfies the condition Cij(t, τ, w)> Cmin for being an influential neighbor of Fi at time t, which

in turn receives this influence and responds by copying the exhibited heading with a time-

delay τ.

Using the same procedure for the N = 5 case depicted in Fig 4, we draw Fig 6 that shows F1

copying F2 with a time-delay τ1,2� 0.5 s (Panels A and E). F1 also copies F3 and F5 with,

respectively, τ1,3� 0.2 s (Panels B and F) and τ1,5� 0.1 s (Panels D and H), but it doesn’t copy

the end of its U-turn, with the middle representing the time when a fish has finally reversed its original direction. (D) Interaction with influential

neighbors: arrows point from influential neighbors to the focal fish and with the same color as the focal fish. (E) Fish bursting activity and their

influential neighbors. Dots at i = 1, 2 correspond to bursting activity, blank corresponds to coasting. Dots at i − 0.5 represent bursting activity of

the neighbor influencing fish i.

https://doi.org/10.1371/journal.pcbi.1005822.g003
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Fig 4. Spatial and temporal dynamics of a collective U-turn for N = 5. The displayed temporal sequence is drawn from the fish trajectories

one second before the U-turn begins till one second after its end. Symbols in all panels are the same as in Fig 3. (A) Individuals trajectories in

the tank during the U-turn. (B) Group polarization with a minimum value Pmin� 0.59 reached at t� 0.66 s. (C) Sine of the angle of incidence of

fish to the wall θw. The three vertical lines of each color indicate for each fish the beginning, the middle and the end of its U-turn. Here the

middle time means the instant where sin(θw) = 0. (D) Interactions with influential neighbors: arrows point from influential neighbors to the focal
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F4 (Panels C and G). The influential neighbors of F1 are thus F2, F3 and F5, at different times

and with different time-delays. We have calculated the rest of the correlations for all pairs of

fish (see S1 Fig for an overview of all the heading correlations). As for the N = 2 case, these rela-

tions are illustrated by arrows going from the influential neighbors to the reacting fish in

Fig 4D.

Effect of bursting on the transmission of information

The specific behavior of H. rhodostomus, namely, the successive alternation of bursts and

coasts [15], leads us to ask whether these abrupt changes of acceleration and speed can provide

information that other fish could use to adjust their own movement. To address this aspect we

study whether there is any correlation between the bursting activity of one fish at time t and

the fact that this fish is an influential neighbor of another fish shortly after time t.
A burst corresponds to a brief phase of acceleration during which most changes in fish

heading occur [15]. Panels E in Figs 3 and 4 show the bursting activity of each fish Fi, i = 1, . . .,

N, and that of its influential neighbors. For each fish Fi, we draw a dot at time t and ordinate i
if fish Fi is displaying a burst precisely at time t. Dot color at ordinate i corresponds to fish Fi’s
color. The absence of a dot at a given time denotes that the fish is in a coasting phase at that

time.

fish and with the same color as the focal fish. (E) Fish bursting activity and their influential neighbors. If there is more than one influential

neighbor, Fj with largest index value j is shown. Grey lines in Panels BCDE denote the start and end of the collective U-turn.

https://doi.org/10.1371/journal.pcbi.1005822.g004

Fig 5. Directional correlations between fish F1 and F2. (A) Directional correlations H12(t, τ) and (B) H21(t, τ)
for t 2 [−0.5, 2] and τ 2 [0, 2] and their corresponding average over a time-window of width 2w = 0.4 s: (C)

C12(t, τ, w), (D) C21(t, τ, w). Yellow regions: Hij� 1 and Cij� 1, i.e., fish have the same direction with a time-

delay τ. Dark regions: Hij� −1 and Cij� −1, i.e., fish have opposite directions. The white upper-left corners

indicate the τ is larger than the minimal time considered in this data set.

https://doi.org/10.1371/journal.pcbi.1005822.g005
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A second row of colored dots is drawn at ordinate i − 0.5 for some values of t when two

conditions are met: (1) Fish Fi is being influenced at those times by one or more fish

Fj, j 2 {1, . . ., N}, j 6¼ i, whose identity is given by the color of the dots, and (2) the influential

fish Fj was bursting when it was influencing Fi at time t − τ earlier. If Fi has more than one

influential neighbor at time t, the dot drawn at time t in row i − 0.5 has the color of the Fj fish

with the highest index j.
In Fig 3E, red dots at i = 1 mean that fish F1 is bursting at those time-steps and coasting at

the other time-steps, and red dots at i − 0.5 = 1.5 indicate that, first, F1 is the influential fish of

F2 at those time-steps, and second, F1 was bursting when it was earlier influencing F2. In turn,

there are two possible reasons to explain the absence of red dots at i − 0.5 = 1.5 for certain time

values: either F2 has no influential neighbor, or F1 was coasting. To assess which of the two

explanations is valid, one needs to look at Fig 3D. For example, the absence of dots at

i − 0.5 = 1.5 during 0.57 s and 0.62 s is due to F2 having no influential neighbors, while the

absence of dots in the same row between 0.75 s and 0.81 s results from the fact that F1, which is

the influential neighbor of F2, is in a coasting phase at time t − τ (in this example the delay was

found to be τ = 0.42 s).

Fig 3E shows that the bursting activities of both the focal fish and its influential neighbor

are not directly correlated, suggesting that the primary source of information for fish to adjust

their movements is the distance, orientation and angular position of their neighbors [15]. The

same conclusion is obtained for N = 5. By focusing on fish F2 for example, Fig 4E shows that

there is no systematic overlap between the yellow dots at i = 2 and those at i − 0.5 for i 6¼ 2, sug-

gesting that the correlation between the bursting activity of a fish and that of their influential

neighbors is marginal.

Number of influential neighbors

For all U-turns, we have counted the number of frames in which a fish is an influential neighbor,

that is, the number of frames where the above described condition for identifying influential

Fig 6. Directional correlation of fish F1 with the other fish Fj, j = 2, . . ., 5. Directional correlations H1j(t, τ) (panels ABCD) for t 2 [−0.5, 2] and τ 2 [0, 2],

and their corresponding average C1j(t, τ) (panels EFGH) over a time-window of width 2w = 0.4 s. Yellow regions: Hij� 1 and Cij� 1 (fish have the same

direction with a time-delay τ). Dark regions: Hij� −1 and Cij� −1 (fish have opposite directions). In the upper-left corners the white color indicates that τ is

larger than the minimal time considered in this data set.

https://doi.org/10.1371/journal.pcbi.1005822.g006
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neighbors is met. When there are only two fish, a fish is found to be the influential neighbor

30% of the time spent in a U-turn. In groups of five fish, this proportion grows up to 62%.

We have counted the number of influential neighbors Nif a fish Fi has during a U-turn in

groups of five fish, finding that in most cases, a fish has only one or two influential neighbors

(for 58% of the time spent in a U-turn Nif = 1 or 2); see Fig 7A. The most frequent case is

Nif = 1 (43%). Having more than one influential neighbor is frequent (19%), but less than

Fig 7. Number, location and temporal occurrence of influential neighbors. Cumulative analysis of collective U-turns of over 475

experimental (blue) and 1000 artificial (red) observations in groups of N = 5 fish. (A) Number of influential neighbors.(B) Distance rank of

influential neighbors with respect to the focal fish. (C) Position rank of influential neighbors in the group. (D) Turning rank of influential

neighbors. Histograms represent the proportion of time during which influential neighbors have been observed in a given class. The

procedure to construct the artificial observations is presented later and in the section “Null model” in Materials and Methods.

https://doi.org/10.1371/journal.pcbi.1005822.g007
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having no influential neighbors (38%). The cases where there are more than two influential

neighbors are negligible (less than 4% of the total time spent in U-turns).

For each fish Fi, we have calculated the respective distance dij(t) at which the other N − 1

fish Fj are from Fi during the U-turns, thus establishing a rank order among the neighbors

influenced by Fi. We have then compared the influence of close neighbors with those of distant

neighbors, finding no correlation between the distance rank of a neighbor and the influence it

exerts on the focal fish. This is shown in Fig 7B, where we have depicted the distribution of the

distance rank of influential neighbors with respect to a focal fish. The figure shows that fish

spent the same proportion of time (� 25%) being an influential neighbor of a focal fish inde-

pendently of their distance rank. In other words, influential neighbors are not necessarily the

closest ones.

When trying to identify events of causal influence by means of correlations, it is crucial to

keep in mind that correlation does not imply causation. We thus have controlled the effects of

potential chains of influence, where e.g. fish F1 is highly correlated with F3 not because F1 is

directly influencing F3, but because F1 is influencing fish F2, which in turn is influencing F3.

To check the impact of these chains of influence on our results, we have removed from our

data all the pairwise influence data that correspond to the following situation: if F1 is influ-

enced by both F2 and F3 and F2 is simultaneously influenced by F3 (or F3 is influenced by F2),

then we removed the pairwise correlation (focal fish, influential neighbor) corresponding to

(F1, F2) (or (F1, F3)). After removing 7172 out of 69703 data points and recomputing the results

with the remaining data, we found that our results remain practically unchanged.

We have also calculated the position rank that each fish occupies in the group during a col-

lective U-turn, finding that influential neighbors are mostly located in the front region of the

group: 32% in the leading most advanced position, and 20% in the second place; see Fig 7C.

Noticeably, influential neighbors can be found in the back of the group (in 29% of the cases in

the fourth or fifth position), and even in the last position (a non-negligible 13% of cases).

We also paid attention to the order in which each fish starts its individual U-turn during a

collective U-turn, finding that influential neighbors are those that most frequently turn earlier

(32% of the cases), and that this relation decreases linearly; see Fig 7D. It is again noticeable

that influential fish can be found to be the last turning fish (in 8% of the cases).

The apparently surprising fact that influential fish can be found in the back of the group

and that the last fish turning can be an influential fish is due to the anisotropic perception of

fish and their relative orientations during U-turns. But these findings have to be understood in

the light of our specific time-dependent characterization of influential neighbor. If, for

instance, F1 turns first and influences F2, F2 will turn with some time-delay after F1. Then,

when F2 is at half of its individual turning process, F2 can be rotating in the same direction as

F1 in such a way that F1, influenced by F2, slightly adjusts its direction. We would then say that

F2, which is the last turning fish, has influenced F1, the first turning fish.

In order to compare different collective U-turns, we define a normalized time

�t ¼ ðt � tsÞ=ðte � tsÞ in terms of the actual time t and the starting and ending time of each

U-turn, so that the duration of a U-turn is now �t ¼ 1. Thus, �t ¼ � 1 corresponds to a time as

long as the U-turn duration previous to the start of the U-turn, and �t ¼ 2 corresponds to a

time as long as the U-turn duration after the end of the U-turn. We have calculated the

instantaneous value of the average speed VðtÞ ¼ hk~vðtÞki, the average group polarization

PðtÞ ¼ hPðtÞi and the average number of influential neighbors N ðtÞ ¼ hNifðtÞi. Here, angle

brackets refer to the average across all fish in the U-turn along a time-window containing the

collective U-turn.

Fig 8A and 8B show respectively the time evolution of VðtÞ and PðtÞ during the collective

U-turns in groups of 5 fish. The description of the specific U-turn presented in Fig 4 is also
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Fig 8. U-turn dynamics in groups of N = 5 fish. We depict here the temporal dynamics for the average velocity, average polarization, number of

influential neighbors and its variation in over 475 experimental (blue) and 1000 artificial (red) recordings of collective U-turns. (A) Average speed VðtÞ. (B)

Average group polarization PðtÞ. (C) Average number of influential neighbor N ðtÞ per focal fish. (D) Average of the absolute variation in the number of

influential neighbors |ΔNif| divided by the number of influential neighbors Nif, defined in Eq (5): hη(t)i. Horizontal axis denotes normalized time �t, where ts
and te denote the start and end of the collective U-turn respectively. The procedure to construct the artificial observations is presented later and in the

section “Null model” in Materials and Methods.

https://doi.org/10.1371/journal.pcbi.1005822.g008
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valid for the general case: the speed decreases before the U-turn (from Vð� 1Þ � 150 mm/s to

Vð0Þ � 115 mm/s), it reaches a minimum at half the U-turn duration �t ¼ 0:5 (Vð0:5Þ � 70

mm/s), and it then grows to a higher value after the U-turn (Vð1:5Þ � 165 mm/s). A very simi-

lar behavior was found in groups of 2, 4, 8 and 10 fish of the same species in [28]. At the same

time, the polarization is very high and almost constant outside the U-turn (Pð�tÞ � 0:95), and

exhibits a perfect V-shape during the U-turn, with the high values (Pð�t ¼ f0; 1gÞ � 0:93)

reached at exactly the instants where the start and end of the U-turn takes place �t ¼ 0 and

�t ¼ 1, and the minimum value (Pð0:5Þ � 0:48) at the middle of the U-turn. As expected, the

average group polarization Pð�tÞ significantly decreases during the U-turn to almost half the

value it has outside the U-turn. Right after reaching this minimum, there is a sharp increase of

speed and polarization as more fish adopt the new direction of motion.

Fig 8C shows that before the U-turn the average number of influential neighbors N ðtÞ
increases until a maximum value is reached right before the start of the U-turn

(N ð� 0:1Þ � 1:45). During more than one half of the U-turn, N ðtÞ decreases until a mini-

mum (N ð0:6Þ � 0:8), and grows again beyond the end of the U-turn until a second maximum

(N ð1:2Þ � 1:6, twice the height of the minimum). After that, all fish have completed their

U-turns and N ðtÞ decreases again.

When the polarization is very high, the time-delay with which influential neighbors are

detected is often too small in comparison with biologically realistic reaction times τR, so that

these influential neighbors are not taken into account (we used τR = 0.04 s; see Section “Opti-

mal setting parameters for influential neighbors identification” in Materials and methods).

This is the reason why the average number of influential neighbors N ðtÞ appears to be smaller

in regions outside the U-turn, than when the U-turn is just about to start (�t � � 0:1Þ or slightly

after its end (�t � 1:2). Meanwhile, the decrease of N ðtÞ in the middle of the U-turn has a dif-

ferent origin: once a fish has started to turn around, there is no real need of updating its align-

ment according to all its neighbors. That fish can safely reverse its motion by keeping the

alignment with only one of those neighbors and even not paying attention to them for some

period of time.

Another indicator of how fish make decisions while turning is how frequently a focal fish

pays attention to other individuals. We define the relative variation of the number of influen-

tial neighbor per fish Nif(t) between two successive time-steps as follows:

ZðtÞ ¼
jNifðt þ DtÞ � NifðtÞj

NifðtÞ
; ð5Þ

denoting by Δt the time-step between frames (Δt = 0.02 s).

We have depicted the time-evolution of the average hη(t)i in Fig 8D, finding that hη(t)i
remains essentially constant before, during and after the U-turn event, the amplitude of its var-

iation being smaller than 10% of the signal (0.007 and 0.08, respectively).

Since the average number of influential neighbors N ðtÞ is smaller when fish are engaged in

the U-turn than right before or right after the U-turn, a constant average hη(t)i suggests that

fish adjust their heading more frequently during the U-turn than outside the U-turn. Indeed,

in the middle of a U-turn, no real common direction of motion exists (PðtÞ � 0:5), that is,

there is a high diversity of headings, so that fish have to frequently update their direction by

paying attention to different neighbors.

Spatial organization of influential neighbors

We are now interested in determining the dynamical spatial organization of the influential

neighbors of a focal fish. The relative state of a fish Fj with respect to a focal fish Fi is
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characterized by several parameters: the relative position of the neighbor~uij ¼ ~uj � ~ui, where

~ui is the vector position of Fi in cartesian coordinates, the distance between them dij ¼k~uij k,

the viewing angle of Fj relative to the direction of Fi [26], which is the angle θij with which Fi
perceives Fj (note that θij is not necessarily equal to θji), the relative velocity~vij ¼~vj � ~vi, and

the relative heading ϕij = ϕj − ϕi. All these quantities are time-dependent. We have calculated

their average value for all the U-turns in a uniform spatial grid of square cells to facilitate the

interpretation of the vector field of these continuous variables. Each square cell, of side 20 mm,

shows the average of the arbitrarily different number of values contained in the cell.

Fig 9A shows the density map of the relative position of the influential neighbor with

respect to the focal fish when N = 2. The intensity of color is proportional to the frequency of

occupation of the grid cell, showing that the influential neighbor is mostly located in front of

the focal fish and at a distance of one to three body lengths from the focal fish. The same infor-

mation is quantified in Panel B with a heat map in polar coordinates, highlighting the most fre-

quent location of the influential neighbor.

The average relative velocity h~viji is shown in Fig 9A (arrows), superimposed to the density

map. The vector field shows that when the influential neighbor is in front of or behind the

focal fish (sinhθiji � 0), both fish move at similar speed although the focal fish is a little bit

faster (the small black arrows are pointing in the opposite direction to the red one) and the dif-

ference in heading is also small. However, when the influential neighbor is on the sides of the

focal fish, relative speed and heading difference tend to vary more as the distance between

them increases.

The distributions of distances dij and exposure angles θij between a focal fish and its neigh-

bors are depicted in Panels C and D of Fig 9 respectively. We find, on the one hand, that their

most frequent separation is 62.6 mm ± 29.7 mm (mean and standard deviation of histogram in

Fig 9C), a value that is consistent with previous results where it was shown that the behavioral

reactions of a fish depend on the angular position of its neighbors, as a consequence of the

anisotropic perception of the environment [15].

On the other hand, the distribution of the exposure angle of fish Fj to the focal fish Fi is nar-

rower when Fj is influencing Fi than when Fj is a neighbor of Fi, not necessarily influencing Fi.
As both distributions are centered on θij = 0, this shows that Fj is more frequently located in

front of Fi when Fj is an influential neighbor of Fi than in the case when Fj is just a neighbor

of Fi.
Fig 10 shows similar results for groups of N = 5 fish. Influential neighbors are more fre-

quently located in front of the focal fish (although with a slight shift to the right; see Panels A

and B) and at a mean distance of 67.5 mm ± 40.6 mm (Panel C).

In turn, the velocity field has a smaller intensity and is much more homogeneous than in

the case where N = 2. A slight asymmetry can also be observed (not noticed when N = 2) with

fish located in front and slightly to the right of the focal fish having a higher velocity than those

located elsewhere. Moreover, the distribution of exposure angles is more dispersed than in the

case of two fish, meaning that influential neighbors are exposed to the focal fish with a larger

diversity of angles, something that is simply due to the higher number of fish.

The difference in the homogeneity of the velocity field between groups of 5 and 2 individu-

als is not necessarily the result of averaging over a larger number of individuals. Although aver-

aging over fish data pairs may reduce the uncertainty in the extracted parameter values, it is

well-known that the level of homogeneity in the direction of motion of the school increases

with group size [29]. But one also ought to consider that specific values of delay and curvature

the individuals adopt during the U-turns could help to limit variability in coordinating the

group. Some theoretical studies support this idea: simplified models of velocity alignment with
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additive noise have shown semi-analytically the existence of delay and rate of turn values that

minimise the fluctuations in the variance of the individual speed [30], and flocking models of

self-propelled particles have also shown that delay can be tuned to increase stability and align-

ment of the group [31].

Finally, we have analyzed the variation of the time-delay τ as a function of both the distance

between the focal fish and its influential neighbors dij and the difference of heading ϕij, finding

Fig 9. Spatial and velocity distributions of influential neighbors around a focal fish in groups of 2 individuals. (A) Density map of

influential neighbors’ location (blue) and their average relative velocity field (arrows) with respect to the focal fish (red arrow). (B) Average

spatial distribution of influential neighbors in polar coordinates (red: highest frequency; dark blue: low frequency; white: frequency equals

zero). (C) and (D): Distributions of the distance dij and the angle of exposure θij respectively. Blue histograms: Fj is an influential neighbor of

Fi; orange: Fj is a neighbor of Fi, not necessarily influencing Fi; dark pink: overlap between the two.

https://doi.org/10.1371/journal.pcbi.1005822.g009
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that in both cases N = 2 and N = 5, the time-delay increases with respect to both the distance

dij and the heading difference ϕij (see Fig 11). This result can be understood because during a

U-turn the fish speed is decreasing and two fish can display larger reaction times the more sep-

arated they are and the less aligned they are.

Fig 10. Spatial and velocity distribution of influential neighbors around a focal fish in groups of 5 individuals. (A) Density map of

influential neighbors’ location (blue) and their average relative velocity field (arrows) with respect to the focal fish (red arrow). (B) Average

spatial distribution of influential neighbors in polar coordinates (red: highest frequency; dark blue: low frequency; white: frequency equals

zero). (C) and (D): Distributions of the distance dij and the angle of exposure θij respectively. Blue histograms: Fj is an influential neighbor of

Fi; orange: Fj is a neighbor of Fi, not necessarily influencing Fi; dark pink: overlap between the two.

https://doi.org/10.1371/journal.pcbi.1005822.g010
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A null model to detect spurious correlations

As already mentioned in the introduction, establishing causal influence on the basis of correla-

tion measures requires controlling for spurious effects. Although our experimental data corre-

spond to a specific collective behavior in which individuals influence each other, the relatively

short time-windows over which cross-correlation are averaged and the use of several parame-

ters through sensitivity analysis can weaken the accuracy of our results. To demonstrate that

the particular detections of influential neighbors are not purely due to chance, we generated

random artificial U-turns events by bootstrapping the data and applying the same procedure

used to analyze collective U-turns in our experiments.

The null model is built for groups of 5 fish, for which our experimental data provide

M = 2375 individual trajectories (5 × 475 collective U-turns). For every fish Fi, i = 1, . . ., M, the

trajectory is rotated so that the individual turning point of the fish (where sin(θwi) = 0) is

located in the upper part of the tank, by randomly sampling the new angular position ψi in the

interval [π/2 − ξ, π/2 + ξ], where ξ is a small angle (we used ξ = π/12). Similarly, the time scale

of each fish is shifted by sampling the instant of turning in the time interval [−z, z], where z is

a short time (we have used z = 1 s). Then, five trajectories are randomly sampled, each one

from a different randomly sampled collective U-turn, and mirrored if necessary so that the five

individual U-turns are done in the same direction, clockwise or anti-clockwise. This way, the

five fish of the artificial U-turn make their individual U-turn approximately at the same place

and approximately the same time. For more details, see the section “Null model” in Materials

and methods.

We have produced 1000 artificial collective U-turns; S9 Fig shows a collection of 10 of

them. The results of our analysis are shown in red in Figs 7 and 8. As expected, they reveal

clear differences between artificial and experimental U-turns.

Fig 11. Time-delay dependence on heading difference and separation distance. Time delay τ extracted from the empirical observations as a

function of heading difference ϕij and separation distance dij. (A) N = 2, (B) N = 5. In both cases, the larger the heading difference and the distance, the

longer the time-delay.

https://doi.org/10.1371/journal.pcbi.1005822.g011
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Fig 7A shows that in artificial U-turns the proportion of time during which a focal fish has

no influential neighbor is more than 63% of the time, while in the experiments it was less than

39%. The analysis also reveals that in artificial U-turns a focal fish has one influential neighbor

for less than 28% of the time, while in the experiments, the proportion raises to 43%. Similarly,

Fig 8C shows that the average number of influential neighbors N ðtÞ ¼ hNifðtÞi is much

smaller in artificial U-turns (� 0.4) than in real U-turns, where N ðtÞ is almost always greater

than 1. Note that the increase of N ðtÞ during U-turns in artificial data is the consequence of

the channeled motion of fish by the corridor. Moreover, the variation of N ðtÞ along time,

including the transients preceding and following the U-turn, decreases in artificial U-turns

while it remains constant and with a higher value in experiments.

Fig 7B shows that distance rank has no significant effect on which fish is the influential one,

both in experiments and in artificial U-turns. The decreasing number of influential neighbors

comes from the fact that the tank is circular and the method we use. If the tunnel had been a

straight corridor, we should have detected no decrease in our null model. However, in a circu-

lar tank, because of the geometrical constraints imposed by the curvature, even when two fish

are both swimming in the same direction (i.e., clockwise or anti-clockwise), as the distance

between fish increases, our method will detect a decrease of correlation. While Fig 7C confirms

that influential neighbors are slightly more often ranked in the first position of the group, this

effect is much more pronounced in the experiments. In fact, Figs 7B, 7C and 7D and 8A and

8B show that the selected null model satisfactorily reproduces the typical spatiotemporal

behavioral patterns of real U-turns: the position and turning ranks are almost identical, as well

as the variation of the average speed and the average group polarization, although the V-shape

of the average polarization in real U-turns is significantly sharper than in artificial U-turns.

An additional, albeit expected, result of our null model is the homogeneous (isotropic) spa-

tial distribution of “influential neighbors”, while in real collective U-turns influential neigh-

bors are mostly located in front of the focal fish; see S10A and S10B Fig, compared with

Fig 10A and 10B.

Discussion

By sharing information with other group members, schooling fish and other collectively mov-

ing animals can potentially improve their navigational accuracy (e.g. the many wrongs princi-

ple [32]), take better decisions (e.g. to avoid a predator [33]), or improve their abilities to sense

the environment [34]. However, there are both physical and practical reasons why information

is expected to be shared with only a few neighbors. Physical reasons involve material limita-

tions, such as visual occlusions. Practical reasons often refer to trade-offs between sharing

information, so that the group collectively selects a direction of motion, and deciding indepen-

dently [35, 36].

Assuming that correlations between fish behavior rely to some extent on a causal influence,

our analysis reveal that in groups of H. rhodostomus, during a collective U-turn, at any

moment in time each fish only pays attention to a small number of neighbors whose identity

regularly changes. We also find that the phases during which a focal fish is affected by one or

two influential neighbors are interspersed with other phases during which its movement

appears uninfluenced by the movement of neighbors. Moreover, influential fish are mostly

located in front of the focal fish. The distance between a focal fish and its influential neighbors

is about two body-lengths and the relative exposure angle is smaller than 60 degrees.

Our results bring insights on the way information on the neighborhood is processed by

fish. Instead of having a synchronous update based on a fixed number of neighbors (topologi-

cal neighborhood) or on all neighbors located within a fixed distance (metric neighborhood),
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our results suggest an asynchronous updating that does not depend on the distance between a

focal fish and its influential neighbors. A similar asynchronous updating scheme has been pre-

viously introduced by Bode et al. [37] in a flocking model showing that it can give rise to emer-

gent topological interactions consistent with the measures done on starling flocks [38].

It is however worth noting that our experiments, performed on small group sizes, may have

prevented us from detecting any influence of the distance, since each of the four neighbors are

located between one and three body lengths. In larger groups of fish moving in an uncon-

strained space, we expect the effective neighborhood of fish to result from the interplay

between an asynchronous updating on a small number of neighbors and a modulation of the

strength of interactions with the distance between fish [15].

Previous studies on the number and the spatial arrangement of influential neighbors led to

different results depending on the species and on the procedure used to analyse the data. The

work by Ballerini et al. [39] provides evidence that each bird within a starling flock (Sturnus
vulgaris) coordinates its motion with a fixed number of closest neighbors, irrespective of their

distance, while in mosquitofish (Gambusia holbrooki), one single nearest neighbor was suffi-

cient to account for the large majority of the observed interaction responses [12]. In barred

flagtails (Kuhlia mugil), it has been shown that different kinds of neighborhoods (Voronoi

neighborhood and the k nearest neighbors (k� 6 * 8) were compatible with experimental

data in a tank [13]. Our study points to a low number of influential neighbors. There are multi-

ple possible explanations for the differences in the number of interacting neighbors found

across the scientific literature. (i) It is possible that different animal groups interact with differ-

ent numbers of neighbors. (ii) Temporal factors are also important [37], as interactions can be

integrated in time to produce effectively larger neighborhoods. Here, we propose a third expla-

nation (iii) based on the consideration that interaction responses such as attraction, alignment

and avoidance are qualitatively different mechanisms that rely on different sensory-motor

responses and, consequently, on different interacting neighborhoods. In particular, attraction

and repulsion require to process information about the position of neighbors, while alignment

is intrinsically a response dependent on orientation and velocity. These different interactions

are likely to rely on different neural circuits (motion and form are typically processed by differ-

ent brain areas in many animal groups [40, 41]) and hence might depend on different sets of

influential neighbors: for instance, a focal individual could avoid collisions with its Voronoi

neighbors, be attracted towards a different neighborhood of visually salient individuals and

only process alignment information for one or two selected neighbors. It might also depend

on different sets of influential neighbors: for instance a focal individual could avoid collisions

with its Voronoi neighbors, be attracted towards a different neighborhood of visually salient

individuals and only process alignment information for one or two selected neighbors.

It is thus natural to suggest that influential neighbors are intrinsically associated with

different interaction mechanisms, which might also explain why fish point to different

neighborhoods.

Our method for identifying influential neighbors is based on the computation of the time-

dependent directional correlation between a focal fish and its neighbors. Of course, correlation

does not imply causation, so that inferring causal influence between fish from directional cor-

relation requires an extremely cautious methodology.

The methodology we proposed here is based on two solid procedural cornerstones. First,

the data used in our study were carefully selected from a clearly recognizable behavior, the col-

lective U-turns, where influence from neighbors undoubtedly exists, and thus should be, to

some extent, responsible for a fundamental part of the correlations detected by our method.

Time-delay between individuals’ direction choices has already been used to measure the inter-

actions between group members in animal flocking. Specifically, Nagy et al. [23] used
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correlation delay times to reconstruct flight hierarchies in flocks of pigeons. Their approach

consisted in integrating delay times over the entire trajectory to obtain a “leadership mark” for

each individual. Our assumption is instead that the time-delay results from the individuals’

behavior and their environment, which varies in time depending on the information being

gathered. To detect the response delay of each individual, we have instead followed the

approach employed in [26] that allows for a change of delay over time. In fact, it is easy to

show that the time delay between the same pair of fish is not constant, as revealed by our analy-

sis of pair of fish (see Material and methods). Applying Nagy et al.’ method to different subsets

of data in the same experiment, we found that the time delays between the same pair of fish

vary substantially (see S2 Fig). The second methodological cornerstone is provided by the

results of the null model that clearly show that the correlations we detected come from causal

influence between neighbors and not from spurious random coincidences. The results of the

null model also confirm that distance rank has no effect.

Identifying the number and position of influential neighbors is an essential step towards

reconstructing behavioral cascades of information propagation across a group. Our method

provides an accurate basis for mapping interaction network that does not rely on any assump-

tion about the channel (e.g., vision, sound or hydrodynamic interactions) mediating informa-

tion transfer. We are confident that by adopting our technique to map interactions in different

species and different experimental contexts we will gain a much more detailed understanding

of the distributed information processing taking place in fish schools.

Materials and methods

Ethics statement

Our experiments have been approved by the Ethics Committee for Animal Experimentation

of the Toulouse Research Federation in Biology N˚1 and comply with the European legislation

for animal welfare.

Experimental procedures and data collection

Hemigrammus rhodostomus (rummy-nose tetras, Fig 12A) were purchased from Amazonie

Labège (http://www.amazonie.com) in Toulouse, France. Fish were kept in 150 L aquariums

on a 12:12 hour, dark:light photoperiod, at 27.7˚C (±0.5˚C) and were fed ad libitum with fish

flakes. The average body length of the fish used in these experiments was 31 mm (± 2.5 mm).

The experimental tank (120 × 120 cm) was made of glass and was set on top of a box to isolate

fish from vibrations. The setup was placed in a chamber made by four opaque white curtains

surrounded by four LED light panels to provide an isotropic lighting. A ring-shaped corridor

was set inside the experimental tank filled with 7 cm of water of controlled quality (50% of

water purified by reverse osmosis and 50% of water treated by activated carbon) heated at

28.1˚C (±0.7˚C) (Fig 12B). The corridor was made of a vertical circular outer wall of radius 35

cm and a circular inner wall with a conic shape of radius 25 cm at the bottom, so that the effec-

tive width of the corridor available to fish for swimming ranges from 10 cm at the bottom to

12 cm at the surface. The conic shape was chosen to avoid the occlusion on videos of fish

swimming too close to the inner wall. Fish were randomly sampled from their breeding tank

for a trial and were used at most in only one experiment per day. Groups of 2 or 5 fish were

introduced in the experimental tank and acclimatized to their new environment for a period

of 10 minutes. Their behavior was then recorded for one hour by a Sony HandyCam HD cam-

era filming from above the setup at 50 images per second in HDTV resolution (1920x1080p).

We performed 10 trials for each group size of 2 and 5 fish.
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Data extraction and pre-processing

The positions of each fish on each frame were tracked with idTracker 2.1 [10]. Fish were some-

times misidentified by the tracking software, for instance when two fish were swimming too

close to each other for a long period of time. In those cases, the missing positions were cor-

rected manually. All sequences with 50 consecutive missing positions or less were interpolated.

Larger sequences of missing values were checked by eye to determine whether interpolating

was reasonable or not; if not, namely the trajectory doesn’t look like a straight line, then merg-

ing positions with closest neighbors were considered. Time series of positions were converted

from pixels into meters. The origin of the coordinate system was set to the center of the ring-

shaped tank. Body orientation of fish were measured using the first axis of a principal compo-

nent analysis of the fish shapes detected by idTracker 2.1.

Fig 12. Fish and experimental setup. (A) A spontaneous U-turn initiated by a single fish in a group of five

Hemigrammus rhodostomus fish. (B) Experimental ring-shaped tank,©David Villa ScienceImage/CBI/CNRS,

Toulouse.

https://doi.org/10.1371/journal.pcbi.1005822.g012
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Detection and quantification of collective U-turns

Since the experiments were performed in an annular setup, the direction of rotation can be

converted into a binary value: clockwise or anti-clockwise. We choose the anti-clockwise direc-

tion as the positive values for angular position. Before a U-turn event, all fish move in the same

direction, say clockwise. Then, one fish, not necessarily the one located at the front of the

group, changes its direction of motion to anti-clockwise direction. After a short transient, the

other fish of the group display the same direction change, from clockwise to anti-clockwise.

We defined the whole process of changing direction as a collective U-turn (see examples in

Fig 1 and in S8 Fig). After data extraction and pre-processing, we found 1111 and 475 collec-

tive U-turns in groups of 2 and 5 fish, respectively. The duration distribution of collective

U-turns in groups of 2 fish is shown in S3 Fig while the results for groups of 5 fish are shown

in S4 Fig. Most of the collective U-turns last between 1 and 3 seconds, while the individual

turning time usually lasts between 0.4 and 1 second.

The procedure used to define an individual U-turn for a fish Fi is as follows: we first deter-

mine the time tm,i at which the sign of the angle of incidence of fish Fi changes sign (from nega-

tive to positive or vice versa). Then, starting from tm,i, we reverse time step by step until the

first time at which the absolute value of the angle of incidence is higher than a threshold �ys;i is

reached. We denote this time by ts,i. Similarly, we start again from tm,i and go forward step by

step until the first time at which the absolute value of the angle of incidence is higher than a

second threshold �ye;i is reached. We denote this time by te,i. To determine the values of the

thresholds �ys;i and �ye;i, we first compute the moving average of the angle of incidence over a

period of 50 time steps (1s in real time), before and after the middle point tm,i, with a window

of 5 time steps (0.1s in real time), respectively. Then we set the threshold values as the maxi-

mum values of the absolute moving average. Doubling the length of the period of time over

which the average is computed, or doubling the width of the window, do not affect the results.

Finally, the time at which the collective U-turn starts (resp. ends) is defined by minfts;ig
N
i¼1

(resp. maxfte;ig
N
i¼1

).

Position rank in a group

The relative position of a fish Fi in a group of N fish is calculated by projecting the vector posi-

tion of the fish~ui on the average group velocity vector~z ¼ ð1=NÞ
PN

i¼1
~vi. This allows us to

define a group centroid in the direction of~z , with respect to which the fish are ranked: the first

fish in the group is the fish whose projection on~z is the most advanced one in the direction of

motion of the group (given by~z), the second fish in the group is the second most advanced,

and so on. Relative distance between fish are not taken into account when establishing the

rank.

Optimal setting parameters for influential neighbors identification

Four parameters are used to identify influential neighbors: the time-delay τ, the window size

w, the correlation threshold Cmin above which individuals are supposed to be interacting, and

the threshold ε for selecting more than one influential fish.

The time delay must be specified along the whole trajectory of the focal fish: it is thus a

series of values ft�kg
M
k¼0

, where M is the number of time-steps or frames in the individual U-

turn. The parameters Cmin, ε and w are in turn given for all time and for all fish by means of a

sensitivity analysis described in the next section.
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Assume by now that the three values Cmin, ε and w are known, and denote by Fi the focal

fish and by Fj one of its neighbors. Then, the series of time-delays ft�kg
Mi
k¼0

is built recursively as

follows (actually only w is required to extract the time delays).

Denote by Γi(tk) the highest value of the pairwise directional correlation Cij of the velocity of

fish Fi at time tk with the velocity of Fj at each time-step in the range of the previous ðt�k� 1
þ 1Þ

time-steps Rk ¼ ½0; t
�
k� 1
þ 1�:

Γ iðtk;wÞ ¼ max
tr2Rk
fCijðtk; tr;wÞg: ð6Þ

Then, the time-delays t�k, k = 1, . . ., Mi, are determined by the smallest value of the time-delay

τr 2 Rk where Γi(tk, w) reaches its maximum. For t1, the maximum correlation is reached at

Cijðt1; t�1;wÞ, for some time-delay t�
1
2 R1 ¼ ½0; t

�
0
þ 1�. We set t�

0
¼ 50 for the initial value of

the recurrence. For the rest of time-delays t�k , k = 2, . . ., Mi, the size of Rk is based on the

assumption that if, at some time t, Fi copies the behavior that Fj displayed at a previous time

t − τ, then, after time t, Fi will not copy the behavior that Fj displayed at any time earlier than

t − τ.

Time-delays obtained with more complicated and time consuming procedures such as the

time-ordered technique developed in [26] or through the similarity analysis based on Fréchet

distances [25] would in principle produce similar values.

Fig 13B shows the distribution of time-delays obtained with this procedure in groups of

two fish. The distribution is clearly bimodal with a first peak when τ = 0 and a second one

around τ = 0.4 s. Considering a reaction time threshold of 50-100 ms for a fish to integrate

information and reach a decision [42], we cannot attribute small values of time-delays to situa-

tions where the behavioral decision of the focal fish has been influenced by its neighbors. This

is confirmed by the analysis of the spatial distribution of the extracted time-delays (Fig 13A),

where we show that the lowest average values of τ are found mostly when the neighbor was

behind the focal fish, in a zone with the lowest perception [15], while the highest values of τ>
0.4 s are found when the neighbor is located in front of the focal fish. This has lead us to con-

sider in our analyzes only situations where τ> τR = 0.04 s.

Parameter selection

Although the time-delays ft�kg
M
k¼0

are determined once w is known, they also strongly depend

on Cmin and ε, as the value of these three parameters must be fixed at the same time. This is

done by means of a sensitivity analysis in which we have tested the following 40 combinations

of parameter values: w 2 {0, 1, 2, 3, 4}, ε = {3, 5}, and Cmin 2 {0.995, 0.99, 0.95, 0.5}.

Each combination (Cmin, ε, w) gives rise to four histograms like those depicted in Fig 7.

These histograms constitute the solution of our method of analysis, and can be characterized

by a vector~SðCmin; ε;wÞ in 19 dimensions: (i) the 5 proportions of the number of influential

neighbors in groups of 5 fish, (ii) the 4 proportions of their distance rank, (iii) the 5 propor-

tions of their position rank, and (iv) the 5 proportions of their turning rank. This allows us to

determine how similar are the results arising from two combinations (Cmin, ε, w) and

ðC0min; ε
0;w0Þ, by computing the cosine similarity of the two vectors~SðCmin; ε;wÞ and

~S0 ðC0min; ε
0;w0Þ.

The cosine similarity of two vectors~a and~b, denoted cos simð~a;~bÞ, is the cosine of the angle

between these two vectors. Thus, two colinear vectors are such that cos simð~a;~bÞ ¼ �1 inde-

pendently of their magnitude, while two perpendicular vectors are such that cos simð~a;~bÞ ¼ 0.

In our case, the components of the vectors are positive, so cos simð
~S; ~S0 Þ � 0 for all (Cmin, ε, w)
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and ðC0min; ε
0;w0Þ. Moreover, as the components are proportions, colinearity implies identity,

both in direction and magnitude. Thus, cos simð
~S; ~S0 Þ ¼ 1 means that both results are identical,

while cos simð
~S; ~S0 Þ ¼ 0 means that they differ as much as possible.

S5 Fig shows the cosine similarity matrix for the 40 combinations we have tested. Note

that the matrix is symmetric with respect to the diagonal, where cos simð
~S;~SÞ ¼ 1. Except for

Cmin = 0.5, all similarity values are in the thin range [0.96, 1], showing that all combinations

yield practically the same results. The higher dissimilarity is found in the white-yellow lines,

where one of the combinations is (Cmin, ε, w) = (0.5, 3, 2).

The selection of parameter values is thus done as follows.

We choose w = 2, which corresponds to the higher dissimilarity regions. The selected time

window size is sufficiently large so that the jagged nature of the movement data is smoothed

out but not too large so that the actual turns gets washed out from the data.

Using ε = 3 or ε = 5 yields very similar results and we have arbitrarily chosen ε = 3.

The selection of Cmin is done by a specific procedure, which consists in calculating the num-

ber of data points that remain available for our analysis for each value of Cmin. S6 and S7 Figs

exhaustively demonstrate that the larger Cmin is, the less data points remain available, and vice
versa. We might be prone to choose a sufficiently small Cmin in order to get the maximum

number of data points. However, according to our definition of influential neighbor, Cmin

should be sufficiently large to select only the real influential neighbors. We have thus chosen

the highest value which provides a sufficiently large number of data points, that is, the largest

value before the fall of the number of data points in S11 Fig, Cmin = 0.95. This value preserves

61% (23830) and 76% (69703) of data points for N = 2 and N = 5 respectively.

Fig 13. Distribution of time-delay τ. (A) Spatial distribution of time-delays obtained by selecting the maximum of the pairwise correlation

between the focal fish and its neighbor. The color of each bin represent the mean value of all the cases in that bin. An angle of 0˚ degree

corresponds to when the influential neighbor is in front of the focal individual. (B) Spatially integrated distribution of time-delays. The data

here are the same as those used in panel A. The dotted line corresponds to the reaction time threshold τR = 0.04s.

https://doi.org/10.1371/journal.pcbi.1005822.g013
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Null model of collective U-turns

We want to design artificial collective U-turns in groups of 5 fish where all fish perform an

individual U-turn at more or less the same place and more or less the same time, and in the

same direction (clockwise or anti-clockwise). Fish must coincide in time and space to consti-

tute a “group”, but individual U-turns must happen in an absolutely independent way. Corre-

lations at hand in this paper are thus reduced to a minimum, while preserving the general

aspect of a group of fish changing direction.

Our experimental data provide us with 5 × 475 = 2375 trajectories of individual fish, which

we have conveniently normalized and combined to build 1000 groups of 5 fish changing direc-

tion in the same spatiotemporal interval. This is done as follows.

The whole trajectory of a fish Fi during a U-turn takes place in an interval of time [ts,i, te,i],
where ts,i is the instant at which the individual U-turn of fish Fi starts, and te,i is the time at

which the individual U-turn ends. See the paragraph above Eq (1). The trajectory of fish Fi in

radial coordinates is given by

fðriðtkÞ;ciðtkÞÞg
Ni
k¼1
; ð7Þ

where ρi(tk) is the radius (distance of the fish from the center of the tank), ψi(tk) the already

defined angle position (computed anticlockwise as positive), and Ni is the number of time-

steps tk in the trajectory.

Denote by Ti the instant at which fish Fi effectively turns, i.e., Fi is perpendicular to the wall:

sin(θwi(Ti)) = 0. In well defined individual U-turns as the ones we are using in our data, this

happens only once per U-turn. Accordingly, (ρi(Ti), ψi(Ti)) denotes the fish position at time Ti.

Although we would like to have absolutely uncorrelated fish, it would not make sense to use

groups of trajectories that do not reproduce a consistent U-turn, e.g., if one fish makes its U-

turn much later than another, or on the other side of the tank. We thus try to decorrelate fish

trajectories as much as possible, while preserving at the same time the typical spatiotemporal

shape of real collective U-turns.

The decorrelation of all individual U-turns is done with the following two steps:

• Spatial rotation: For all individual fish Fi in all U-turns, we rotate its trajectory an angle

−ψi(Ti) + π/2 + ξi, where ξi is a random number in [−π/12, π/12] sampled uniformly, so that

the new location of fish Fi at the time Ti when it performs its individual U-turn is in the

upper part of the tank around π/2, in [5π/12, 7π/12].

• Time shift: For all individual fish Fi in all U-turns, we shift the time scale a value −Ti + zi,

where zi is a random number sampled uniformly in [−1, 1] s, so that Fi makes its individual

U-turn at around time 0, in [−1, 1] seconds.

The artificial collective U-turn is thus built as follows:

1. Select randomly 5 real collective U-turns, and, from each collective U-turn, select randomly

one trajectory. Rotate and time-shift trajectories according to the process described above.

2. Select randomly one of the 5 fish as the fish of reference Fref for building the artificial U-

turn. If necessary, mirror the trajectories of other fish so that all fish move in the same

direction as Fref with respect to the center of the tank, i.e., clockwise or anti-clockwise.

Then, the fish of reference of the artificial U-turn will make its individual U-turn at time

zref 2 [−1, 1] s and position (ρref(Tref), π/2 + ξref). The other four fish Fj will make their individ-

ual U-turn at time zj 2 [−1, 1] s and position (ρj(Tj), π/2 + ξj) respectively, for j = 1, . . ., 5, j 6¼
ref.
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We have depicted in S9 Fig a set of artificial U-turns for comparison with the real U-turns

shown in S8 Fig. Note that in these figures the time-scale has been shifted again so that collec-

tive U-turns start at t = 0 s.

Supporting information

S1 Video. Sample video of an U-turn event in a group of 5 fish. Original video of an U-turn

event, corresponding to Fig 4 and S2 Video.

(AVI)

S2 Video. Sample video of an U-turn dynamic in a group of 5 fish. Video showing the veloc-

ities of fish and interaction dynamics in the group, corresponding to Fig 4 and S1 Video.

(AVI)

S1 Fig. Directional correlation Hij(t, τ) between fish Fi and Fj. For i = 2, . . ., 5 (rows) and

j = 1, . . ., 5, j 6¼ i (columns), e.g., first row is for fish F2: (A) H21(t, τ), (B) H23(t, τ), (C) H24(t, τ)

and (D) H25(t, τ).

(TIF)

S2 Fig. Different values of τ� for different subsets of the same data set computed with the

method of Nagy et al. [23]. Consider the dataset of U-turns of 2 fish composed by U-turn

number 1 to U-turn number 36, coming from the same experiment, and divide it in two sub-

sets SA and SB containing respectively the U-turns [1,. . .,18] and the U-turns [19,. . .,36]. (A)

Average directional correlation Cij with respect to time-delay τ for the U-turns from dataset

SA. Red star and dashed blue vertical line denotes τ� = 0.96. (B) Cij for the U-turns from dataset

SB. Red star: τ� = 0.32. (C) Cij for all the U-turn in data set SA [ SB. Red star: τ� = 0.80. The

method of Nagy et al. is based on the assumption that the pairwise interaction between two

individuals in a group has a constant time-delay τ�. However, Panels A and B provide different

values of τ� for different data sets, showing that the method of Nagy et al. is not suitable for

studing our data, and that the method we introduce here, which is based on the detection of

dynamic time-delays, has potential for a broader range of applications.

(TIF)

S3 Fig. Distribution of the average duration (in seconds) of (A) individual and (B) collec-

tive U-turns in groups of 2 fish. Collective U-turns last around twice the duration of individ-

ual U-turns.

(TIF)

S4 Fig. Distribution of the average duration (in seconds) of (A) individual and (B) collec-

tive U-turns in groups of 5 fish. Collective U-turns last almost four times the duration of indi-

vidual U-turns.

(TIF)

S5 Fig. Parameter comparison matrix. Matrix of 40 × 40 square cells, where each cell corre-

sponds to the similarity value SV arising from the comparison of the two parameter combina-

tions shown in the corresponding horizontal and vertical axes. We considered 40 parameter

combinations, thus the size of the matrix. The similarity value SV is represented by the color of

the cell, where the brightest red color corresponds to SV = 1 and the white color to SV = 0.92.

For instance, the top-left cell displays a similarity value of SV = 0.95, showing how similar the

results are when comparing the two combinations {ε = 5, Cmin = 0.995, w = 0} (horizontal axis)

and {ε = 3, Cmin = 0.5, w = 4} (vertical axis). Cells along the diagonal correspond to the com-

parison of two identical parameter combinations and therefore SV = 1 there.

(TIF)
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S6 Fig. Available data for different values of the average directional correlation threshold

Cmin in the case of N = 2 fish. Small panels: (there are 10, one per experiment) Number of

data points available from the respective experiment for each value of Cmin in [0.5, 1]. The val-

ues of Cmin are denoted by small circles. Three specific values are shown by arrows: 0.6, 0.95

and 0.995. The value highlighted in red corresponds to the value we chose and is denoted by a

star instead of a circle. Each vertical line corresponds to the fish that is taken as being the focal

fish: F1 (red) and F2 (cyan). For instance, selecting Cmin = 0.6 in the upper-left small panel, 700

data points will be available for both fish. For Cmin = 0.95, around 450 points will be available

for both fish.

Leftmost higher panel: Total number of data points available from all fish from all the experi-

ments (summary of the 10 small panels, i.e., there is only one –pink– line). Vertical axis: ratio

between the available number of data points for Cmin and the number of data points available

for Cmin = 0.5. Total data points available from all the experiments (for Cmin = 0.5): 39381; data

points available for Cmin = 0.95: 23830.

(TIF)

S7 Fig. Available data for different values of the average directional correlation threshold

Cmin, in the case of N = 5 fish. Small panels: (there are 10, one per experiment) Number of

data points available from the respective experiment for each value of Cmin in [0.5, 1]. The val-

ues of Cmin are denoted by small circles. Three specific values are shown by arrows: 0.6, 0.95

and 0.995. The value highlighted in red corresponds to the value we chose and is denoted by

a star instead of a circle. Each vertical line corresponds to the fish that is taken as being the

focal fish: F1 (red), F2 (yellow), F3 (green), F4 (blue) and F5 (magenta). For instance, selecting

Cmin = 0.6 in the third small panel of the upper row, 55 data points will be available for each

one of the 5 fish. For Cmin = 0.95, around 75 points will be available for each fish.

Leftmost higher panel: Total number of data points available from all fish from all the experi-

ments (summary of the 10 small panels, i.e., there is only one –pink– line). Vertical axis: ratio

between the available number of data points for Cmin and the number of data points available

for Cmin = 0.5. Total data points available from all the experiments (for Cmin = 0.5): 91827; data

points available for Cmin = 0.95: 69703.

(TIF)

S8 Fig. Collective U-turns observed in experiments with N = 5 fish.

(TIF)

S9 Fig. Artificial collective U-turns obtained with the null model.

(TIF)

S10 Fig. Homogeneous (isotropic) spatial distribution of “influential neighbors” in collec-

tive artificial U-turns. (A) Density map of “influential neighbors” location (blue) and their

average relative velocity field (arrows) with respect to the focal fish (red arrow). (B) Average

spatial distribution.

(TIF)

S11 Fig. Number of available data points for different values of Cmin. Solid black line:

Remaining data points for each value of Cmin for N = 2 according to the leftmost panel in

S6 Fig. Red line: same thing, for N = 5, according to S7 Fig. Dashed line: highest number of

available data points before the sharp fall of the black curve at Cmin = 0.95.

(TIF)
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