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Abstract

Recent research has produced a number of methods for forecasting seasonal influenza out-

breaks. However, differences among the predicted outcomes of competing forecast meth-

ods can limit their use in decision-making. Here, we present a method for reconciling these

differences using Bayesian model averaging. We generated retrospective forecasts of peak

timing, peak incidence, and total incidence for seasonal influenza outbreaks in 48 states

and 95 cities using 21 distinct forecast methods, and combined these individual forecasts to

create weighted-average superensemble forecasts. We compared the relative performance

of these individual and superensemble forecast methods by geographic location, timing of

forecast, and influenza season. We find that, overall, the superensemble forecasts are more

accurate than any individual forecast method and less prone to producing a poor forecast.

Furthermore, we find that these advantages increase when the superensemble weights are

stratified according to the characteristics of the forecast or geographic location. These find-

ings indicate that different competing influenza prediction systems can be combined into a

single more accurate forecast product for operational delivery in real time.

Author summary

Timely forecasts of infectious disease transmission can help public health officials, health

care providers, and individuals better prepare for and respond to disease outbreaks. Work

in recent years has led to the development of a number of forecast systems. These systems

provide important information on future disease incidence; however, all forecasting sys-

tems contain inaccuracies, or error. This error can be reduced by combining information

from multiple forecasting systems into a superensemble using Bayesian averaging meth-

ods. Here we compare 21 forecasting systems for seasonal influenza outbreaks and use

them together to create superensemble forecasts. The superensemble produces more accu-

rate forecasts than the individual systems, improving our ability to predict the timing and

severity of seasonal influenza outbreaks.
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Introduction

In the United States, seasonal influenza outbreaks occur every winter; however, the timing

and severity of these seasonal outbreaks vary considerably from year to year. Accurate fore-

cast of key characteristics of influenza outbreaks would allow public health agencies to better

prepare for and respond to epidemics and pandemics. To this end, there has been significant

work in recent years to develop forecasts of seasonal influenza outbreaks[1–5]. Proposed

forecast methods include a range of statistical and mechanistic models, and incorporate data

sources including syndromic and viral surveillance data, meteorological information, and

internet search queries[3]. A comparison of coordinated influenza forecasts for the 2013–

2014 season showed substantial disagreement in predicted outbreak characteristics among

forecast methods[1]. This disagreement presents a barrier to the use of forecasts in decision-

making.

While some forecast methods may be consistently superior to others, the relative perfor-

mance of individual forecast methods can also vary according to the specifics of the popula-

tion, location, or outbreak of interest. For example, a forecast method developed for a densely

populated urban area may be less accurate in a sparse rural setting. Alternatively, some forecast

methods may be better suited for prediction of outbreaks that are smaller or larger than typi-

cally observed. The optimal forecast method may also depend on when in the season the fore-

cast is being generated.

Previous comparisons of subsets of the individual forecast methods used in this study

have indeed revealed differences in forecast performance. Yang et al. [5] compared the per-

formance of six filtering methods coupled with a mathematic model of disease transmission

in retrospective forecasting of influenza epidemics. The relative performance of the filter

methods varied by the timing of the forecast, the location being forecast, and the number of

observed peaks in the outbreak. In retrospective forecasts of dengue fever, the relative accu-

racy of a model-filter forecasting system and two statistical methods varied by forecast tim-

ing, forecast target of interest (i.e. timing of outbreak peak, maximum incidence and total

incidence), and the similarity between the outbreak being forecast and previously observed

outbreaks[6].

In weather and climate forecasting, discordant forecasts from competing models are com-

bined into superensemble forecasts in order to offset the biases of each individual model. The

resulting superensemble forecasts are more accurate than forecasts from any one model form

[7–9]. Recent work has shown this superensemble approach to be effective in improving the

accuracy of forecasts of dengue outbreaks[6] and influenza [10, 11].

Here, we compare the accuracy of a suite of 21 competing forecast methods, as well as a

superensemble forecast, in retrospective forecasts of influenza epidemics (See Methods and S1

Appendix). We group the 21 individual forecasts into three categories: ensemble filter systems;

particle filter systems; and a statistical model. The ensemble-based filter systems include three

types of filters: Ensemble Kalman Filter (EKF), Ensemble adjustment Kalman Filter, (EAKF)

and Rank Histogram Filter (RHF). Two particle filters are used: a basic particle filter (PF) and

a particle Markov Chain Monte Carlo method (pMCMC). The five filter methods are each

coupled with four standard compartmental models of disease transmission: SIR, SEIR, SIRS

and SEIRS (see Methods). For the final individual forecast method, we use a statistical model

called Bayesian Weighted Outbreaks (BWO).

We find that the superensemble forecasts are more accurate than any individual forecast

system, and that this advantage increases when superensemble weights are stratified according

to the characteristics of the forecast, or by geographic location.

Superensemble forecasts of seasonal influenza outbreaks
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Results

Comparison of individual forecasts

For the ensemble and particle filter systems, observations of influenza incidence from the

beginning of the season to the week of forecast initiation are used to optimize each of the 4

mathematical models. The optimized model is then run to the end of the season to generate a

weekly forecast of influenza incidence, as measured by ILI+, an estimate of influenza positive

patients per 100 patient visits to outpatient health care providers (see Methods). For the BWO,

only the most recent 8 weeks are used for training. A forecast is then generated as a weighted

average of historical ILI+ epidemic trajectories (see Methods).

Thus, each individual forecast method produces a weekly estimate of ILI+ from the time

of forecast through the end of the influenza season. These trajectories were used to calculate

key characteristics of each outbreak: the peak incidence, peak timing, and total incidence.

Forecast skill was assessed based on the mean absolute error (MAE) in predictions of each of

these metrics.

Distributions of seasonal influenza outbreak peak timing, peak ILI+ and total ILI+ across

48 states and 97 cities are shown in Fig 1. The overall error of each of the 21 individual forecast

methods (see Methods for names and descriptions of each forecast system) used to predict

these observed outbreak characteristics is shown in Fig 2, relative to the MAE of the Baseline

superensemble as a reference value (discussed below in Superensemble results). Forecast MAE

ranged from 1.8 weeks to 3.5 weeks for peak timing. Individual forecast MAEs for peak inci-

dence ranged from 1.2 to 3.5 ILI+, and from 0.5 to 1.0 ILI+ for total incidence. Among individ-

ual forecast methods, the lowest MAEs for peak timing and total incidence were generated by

the dynamical models that included an exposed compartment (i.e. the SEIR and SEIRS struc-

tures) coupled with ensemble filters. However, the advantage of the exposed compartment was

less clear in forecasts of peak incidence. Rather, the EKF model-filter systems produced the

most accurate forecasts of peak incidence. Ensemble filter methods and BWO consistently out-

performed particle filter methods for peak week and peak incidence; for total incidence, several

particle-filter forecast systems performed comparably to ensemble methods. The pMCMC-

SEIR and pMCMC-SEIRS forecast systems had exceptionally large errors for peak and total

incidence.

Fig 3 shows the MAE of each individual forecast method by forecast lead time and

influenza season. Lead time refers to timing of the forecast relative to the outbreak peak,

in weeks, with negative values indicating forecasts made prior to the peak and positive val-

ues for forecasts made after the peak. There were clear differences in relative forecast accu-

racy when discriminating by these factors. For example, the ensemble filters and BWO

generally outperformed the particle filters in forecasts of peak ILI+ and total ILI+, with the

exception of 2007–2008 and 2012–2013, two years with relatively large outbreaks. The parti-

cle filters produced the most accurate forecasts of peak week 1 to 5 weeks before the peak,

but were among the worst performers following the peak. Inaccurate predictions of out-

break peak are possible even after the true peak has passed, as the models may predict

a continued increase in incidence resulting in a later peak. The pMCMC-SEIR and

pMCMC-SEIRS systems were especially prone to this type of error. Unlike the other filter

methods, the pMCMC requires the same set of parameters be used to fit the entire observed

time series [5]. As a result, the filter is less able to adapt to shifts in outbreak dynamics

during an influenza season. This can result in poor forecasts, particularly for multi-peak

outbreaks.

Superensemble forecasts of seasonal influenza outbreaks
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Superensemble results

For the initial baseline set of superensemble forecasts, a single set of weights for each target

metric was applied to the competing individual forecasts each season (Fig 4). Each season, a

new set of superensemble weights were computed using training data from all previous years.

As such, we expected increased stability in the weights as more years were used to generate the

weights. For all target metrics, the BWO forecast was typically assigned large weight, ranging

from .10 to .53 for peak week, .10 to .32 for peak ILI+, and .03 to .33 for total incidence. How-

ever, note that the BWO approach is the most dissimilar among the forecast approaches. If a

subgroup of forecasts predicts similar outcomes, the superensemble weights, which sum to

one, are expected to be split among that subgroup. The contribution of the individual model-

filter forecasts, which share filter methods and model structures, may thus be diluted among

Fig 1. Distributions of observed outbreak peak timing, peak ILI+ and total ILI+ by season. Boxplots show the range of metric

values observed each season across 97 cities and 48 states. ILI+ measures the number of influenza positive patients per 100 visits to

outpatient visits to health care providers.

https://doi.org/10.1371/journal.pcbi.1005801.g001
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similar forecasts. This circumstance may explain the heavy weighting of the BWO forecast,

despite its larger than average MAEs among individual forecasts. The twelve ensemble filter

systems contributed a total weight of .29 to .68 for peak week, .49 to .68 for peak incidence,

and .36 to .69 for total incidence. The eight particle filter systems contributed a total weight of

.14 to .31 for peak week, .14 to .21 for peak incidence., and .26 to .43 for total incidence.

The MAEs of superensemble forecasts are shown in Table 1. On average, the baseline super-

ensemble forecasts were more accurate at predicting the timing of the outbreak peak than any

of the individual forecasts, with the exception of the EKF-SEIRS (Fig 2). Baseline superensem-

ble forecasts of peak and total incidence had smaller MAE than all individual forecasts.

Fig 2. Ratio of individual forecast MAE to baseline level MAE. The baseline level MAE for each metric is the

corresponding score of the baseline superensemble forecast (listed in Table 1). The three colors show the three target

metrics. Note the abbreviated y-axis; the black line indicates a ratio of 1.

https://doi.org/10.1371/journal.pcbi.1005801.g002
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We then stratified the weights by geographical region, forecast week, lead time relative to

predicted peak, lead time relative to observed outbreak peak, population size and population

density. These variables were pre-specified on the basis of previous work indicating that they

may influence the accuracy of individual forecast methods (for example [5, 6]). The MAEs of

the stratified superensemble forecasts are shown in Table 1. For both peak timing and peak

Fig 3. Forecast MAE grouped by forecast lead (left column) and season (right column). Line plots show MAE for

forecast peak week (top row), peak ILI+ (middle row) and total ILI+ (bottom row), averaged over all locations. Each line

shows the MAE of an individual forecast method. For the model-filter systems, colors indicate groupings by filter type.

https://doi.org/10.1371/journal.pcbi.1005801.g003

Superensemble forecasts of seasonal influenza outbreaks

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005801 November 6, 2017 6 / 17

https://doi.org/10.1371/journal.pcbi.1005801.g003
https://doi.org/10.1371/journal.pcbi.1005801


incidence, stratifying by lead time relative to observed peak led to the greatest improvements

in forecast performance, decreasing MAE by 0.4 weeks for peak timing and 0.06 ILI+ for peak

incidence compared to the baseline superensemble forecast. On average, this forecast outper-

formed individual forecasts of peak timing and peak incidence at all times during the course of

Fig 4. Contribution of each individual forecast to the baseline superensemble forecast for peak week

(top), peak incidence (middle), and total incidence (bottom) by year. The colors indicate the weight assigned

to an individual forecast system specified by the horizontal axes and the influenza season specified by the vertical

axes. For example, the upper-right square in each subplot shows the weight assigned to the EAKF-SEIR forecast

system for the 2005–2006 influenza season.

https://doi.org/10.1371/journal.pcbi.1005801.g004
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the outbreak (Fig 5). In contrast, several individual forecasts were more accurate in forecasting

peak timing than the baseline superensemble early in the season, while others outperformed

the baseline superensemble late in the season (Fig 5).

Averaged within influenza seasons, the superensemble forecasts generally outperformed

individual forecasts (S1 Fig) The most notable single seasonal exception was the set of forecasts

of total incidence in 2012–2013, the year with unusually high influenza incidence.

Stratifying superensemble weights by forecast week or lead time relative to predicted peak,

which can serve as real-time proxies for actual lead time, led to decreases in MAE for peak tim-

ing, but had only a small effect on forecasts of peak and total incidence. Meanwhile, stratifying

by geographical region and population density led to small decreases in MAE for peak inci-

dence, but degraded forecast accuracy for peak timing (Table 1, Fig 5). Stratifying weights by

geographical region led to the lowest MAE for total incidence, but the improvement over the

baseline forecast was small (0.02 ILI+).

We further assessed the accuracy of superensemble forecast credible intervals by determin-

ing the fraction of observations falling within the credible intervals specified by each forecast.

In a well-calibrated forecast, we would expect this fraction to correspond to the value of the

credible intervals; for example, 95% of observed outcomes should fall within the 95% credible

intervals of a forecast method. Overall, the forecasts were well-calibrated. The calibration var-

ied between the three target metrics, as well as between choices of stratification variable for

superensemble weighting (S2 and S3 Figs) Forecasts of peak week and peak ILI+ were well cali-

brated at 90% and 95% credible intervals but somewhat overdispersed at lower confidence

intervals. Forecast coverage for total ILI+ was well calibrated for 50%, but underdispersed at

95% and 99% credible intervals.

Forecast rankings

In addition to comparing forecast errors averaged over many forecasts, we also compiled a

ranking of individual forecast outcomes. For each forecast, we ranked the 21 point-estimates

from the individual forecasts and the resulting baseline superensemble forecast from 1 (lowest

absolute error) through 22 (highest absolute error) and summed the frequency of each ranking

(Fig 6). For peak week and peak incidence, we restrain the analysis to forecasts made prior to

the observed forecast peak, as most forecasts report the true peak values after the peak has

been observed, resulting in equal ranking.

The superensemble gave the most accurate forecast 8.6% of the time for peak timing,

which was more frequently than 12 of the individual forecast methods, but less frequently than

BWO and most models-filter combinations using SEIR and SEIRS models. While the BWO,

pMCMC-SEIR and pMCMC-SEIRS forecasts of peak timing had the most frequent first place

Table 1. Mean absolute error for superensemble forecasts. Forecast error averaged over all seasons,

forecast weeks, and locations.

Weighting Scheme MAE

Peak Week Peak ILI+ Total ILI+

Baseline 1.85 1.19 0.47

Week 1.72 1.18 0.47

HHS Region 1.86 1.15 0.45

Forecast lead 1.74 1.19 0.46

Actual lead 1.39 1.13 0.46

Population density 1.87 1.18 0.47

Population Size 1.85 1.18 0.47

https://doi.org/10.1371/journal.pcbi.1005801.t001
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rankings, they also produced many predictions that received the lowest rankings. In contrast,

the superensemble forecast, as well as the SEIR and SEIRS models coupled with EAKF, EKF,

and RHF ensemble filter methods, had few low rankings. When superensemble weights were

stratified by lead time of forecast relative to the observed outbreak peak, the resulting forecast

rankings dramatically improved, with 54.3% of superensemble forecasts receiving a rank of 1

through 4, surpassing all individual forecast methods (S4 Fig).

Fig 5. Performance of superensemble forecasts compared to individual forecasts stratified by lead time. Each

line shows the results of one forecast, with grey dotted lines representing the 21 individual forecasts and colored lines

representing superensemble forecasts. SE-baseline refers to the baseline superensemble forecast, while SE-week,

SE-region, SE-forlead and SE-actlead refer to superensemble forecasts with weights stratified by forecast week, HHS

region, lead relative to predicted peak, and lead relative to observed peak, respectively.

https://doi.org/10.1371/journal.pcbi.1005801.g005
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In forecasts of peak incidence, the baseline superensemble forecast gave the best prediction

10.8% of the time, which was more frequent than all individual forecasts except BWO, which

was the highest ranked method for 17.1% of predictions. The superensemble was among the 4

worst forecasts less than 0.5% of the time, compared to 17.7% of BWO forecasts (Fig 6). The

Fig 6. Heat map of forecast rankings. The colors indicate the frequency of each forecast ranking, with rank 1

assigned to the most accurate forecast and rank 22 assigned to the least accurate forecast. More optimal forecasts

have a higher frequency of top rankings (warm colors on the left) and a lower frequency of bottom rankings (cold

colors on the right). The upper image shows peak week, the middle shows peak incidence, and the bottom shows

total incidence. This analysis includes all forecasts of total season incidence (n = 22640), and all forecasts made at

or prior to the observed outbreak peak for peak week and peak incidence (n = 15187). Forecasts made after the

peak had been observed were excluded from the ranking, as were forecasts where all 22 forecasts predicted the

same outcome.

https://doi.org/10.1371/journal.pcbi.1005801.g006
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proportion of high to low ranking forecasts increases when superensemble weights are strati-

fied by lead time of forecast (S4 Fig). These results indicate that the superensemble provides a

consistent advantage in forecasts of peak incidence, both in aggregate, as well as for any given

prediction.

For forecasts of total incidence, the baseline superensemble forecast had an average number

of first place forecasts (5%), and was most often ranked between 7 and 13. However, as with

the other two metrics, the superensemble had far fewer low rankings than any individual

method. Among individual ensemble models, those using the SEIRS structure were ranked

highest. BWO, pMCMC-SEIR, pMCMC-SEIRS, PF-SEIR and PF-SEIRS had frequent rank-

ings in both the top 4 and the bottom 4.

Discussion

Disagreement between competing forecasts of infectious disease outbreaks presents an obsta-

cle to the interpretation and utilization of such forecasts. Here, we have presented a method

for reconciling the disagreement among forecasts, while simultaneously improving overall

forecast accuracy. We have shown that overall forecast accuracy for the timing and magnitude

of peak influenza transmission is improved by combining individual forecasts into weighted-

average superensemble forecasts. These superensemble forecasts were, on average, more accu-

rate than any individual forecast method. In particular, the superensemble was less prone to

producing a poor forecast. The advantage of the superensemble approach increases in circum-

stances where the relative accuracy of individual forecasts varies according to characteristics of

the outbreak, or the location being forecast.

The 21 individual forecast methods compared in this study varied in their performance,

as well as their reliability. The SEIRS dynamical model coupled with the EKF, EAKF and

RHF ensemble filter methods were consistently among the better individual forecasts. Other

forecast methods, namely pMCMC-SEIRS and pMCMC-SEIR, and to a lesser extent, BWO,

performed inconsistently in that predictions were either among the best or the worst of the

competing forecasts. This type of inconsistent performance presents a challenge to the super-

ensemble approach, as the good forecasts can cause the forecast to receive a relatively high

weighting in the superensemble; however, by identifying the circumstances that lead to dif-

ferences in relative forecast performance, adaptive weighting can then be employed to vari-

ably weight an individual forecast method highly when it is prone to perform well and

discount it in other circumstances. Here we found that the performance of individual fore-

cast methods varied according to geographic location, influenza season, and the timing of

the forecast.

We found that the timing of the forecast with respect to the outbreak peak was an important

factor in determining relative forecast accuracy; consequently, stratifying superensemble

weights by the actual lead time of the forecasts led to improvements in superensemble forecast

accuracy. This improvement outweighed the gains made by simply eliminating the two most

inconsistent forecast methods (pMCMC-SEIR and pMCMC-SEIRS). While the idealized pro-

cess of weighting individual forecasts by actual forecast lead is not possible in real time, strati-

fying weights by forecast-predicted lead or simply calendar week, which can serve as real-time

proxies for actual forecast lead, proved beneficial in improving forecast accuracy.

Stratifying superensemble weights by HHS region improved forecasts of peak and total inci-

dence. This benefit may be related to regional differences in baseline and seasonal levels of

influenza activity, or could be reflective of differences in the progression of influenza among

regions. These findings provide a robust methodology for generating superensemble forecasts

of influenza and other infectious diseases; however, the superensemble weights and the

Superensemble forecasts of seasonal influenza outbreaks
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optimal stratification partitioning must be continually reevaluated and updated as new years

of data become available, or as the geographical scale or resolution are altered.

While this study focused on the forecast of point estimate outcomes, the superensemble

approach can also be used to produce probability distribution functions of target metrics. For

example, the superensemble forecasts presented here were associated with reasonable credible

intervals, which were influenced by the choice of stratification variable (S3 Fig). The calibra-

tion of individual and superensemble probabilistic forecasts remains an area of ongoing

research.

The algorithm used to create the superensemble is flexible, and can combine any number

and any type of individual forecast method, provided retrospective forecasts are available for

superensemble training. These findings can thus be applied operationally to competing fore-

casts of infectious disease in order to improve forecast accuracy, and to present a streamlined

prediction to public health decision-makers.

Methods

Observations of influenza activity

Regional influenza activity is monitored by the U.S. Centers for Disease Control and Preven-

tion (CDC) through the U.S. Outpatient Influenza- like Illness Surveillance Network (ILINet).

The CDC provides weekly near real-time estimates of regional influenza-like illness (ILI),

defined as the number of patients with flu-like symptoms (fever with sore throat and/or with

cough) divided by the total number of patient visits at ILINet outpatient healthcare facilities in

order to account for temporal and spatial variability in patient volume and reporting rates of

health care providers [1]. At the city and state level, ILI was estimated by Google Flu Trends

(GFT), which used a statistical model relating weekly CDC ILI data to Google internet search

queries[12]. GFT estimates are available for up to 115 cities and 50 states, from 2003 until the

program was discontinued in 2015.

ILI is not specific to influenza, as it encompasses a range of respiratory infections. The

World Health Organization and National Respiratory and Enteric Virus Surveillance System

(NREVSS) provide weekly reports of the proportion of laboratory-confirmed positive tests for

influenza virus. A more specific estimate of influenza activity can be obtained by multiplying

ILI with corresponding weekly regional viral isolation information, resulting in a measure we

refer to as ILI+, defined as the number of influenza positive patients per 100 patient visits. As

in our previous studies, we use city and state level GFT ILI estimates multiplied by regional

NREVSS viral isolation rates to obtain ILI+, as the metric of observed influenza incidence [5].

Forecast targets

We produced weekly forecasts of three target metrics for each influenza outbreak: the highest

observed weekly ILI+ (peak incidence); the week during which peak ILI+ occurred (peak

week); and the total ILI+ over the influenza season, which we define as a 20-week period

beginning on the 45th calendar week of the year (total incidence).

Forecast methods

Weekly forecasts of influenza outbreak trajectories, outbreak peak ILI+, total ILI+ and out-

break peak timing were produced using 21 different forecast methods. Of the 21 methods, 20

are variations of a mathematical model of disease transmission coupled with a data assimila-

tion, or filtering, method, and 1 is a statistical model based on historically observed outbreaks.

We generated retrospective forecasts for 95 cities and the 48 contiguous United States with

Superensemble forecasts of seasonal influenza outbreaks
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available records during the 2005–2006 through 2014–2015 influenza seasons, excluding the

pandemic seasons of 2008–2009 and 2009–2010. Pandemic seasons were excluded because the

individual forecast systems used in this study were designed specifically for seasonal outbreaks.

While the model-filter forecasts could be adapted to forecast pandemics or irregularly timed

outbreaks (for example [13–15]), the Bayesian Weighted Outbreaks method in particular is

not appropriate for forecasting pandemics as it relies on the assumption that the outbreak in

progress will be similar in timing and magnitude to previously observed outbreaks.

Mathematical models of disease transmission. Our previous studies using model-filter

forecasts of influenza feature a humidity-forced Susceptible-Infectious-Recovered-Susceptible

(SIRS) model to simulate influenza transmission [2, 5, 16]. This model assumes a perfectly-

mixed population and is described by the following equations.

dS
dt
¼
N � S � I

L
�

bðtÞIS
N
� a ð1Þ

dI
dt
¼

bðtÞIS
N
�
I
D
þ a ð2Þ

where N is the population size, S and I are, respectively, the number of susceptible and infec-

tious individuals in the population, and N-S-I is the number of recovered (immune) individu-

als. The model parameters are: D, the mean duration of infection; β(t), the transmission rate at

time t, L, the mean duration of immunity; and α, the rate of travel-related imported influenza

into the model domain.

The transmission rate β(t) is related to the basic reproductive number, β(t) = R0 (t)/D.R0(t)
is modulated daily based on the empirical relationship between absolute humidity and viral

transmission[17]:

R0ðtÞ ¼ R0min þ ðR0max � R0minÞe
� 180qðtÞ ð3Þ

where R0min and R0max are the minimum and maximum daily basic reproductive numbers,

respectively, and q(t) is time-varying daily average specific humidity.

In addition to the SIRS model, we consider three alternate model structures: Susceptible-

Infectious-Recovered (SIR); Susceptible-Exposed-Infectious-Recovered (SEIR); and Suscepti-

ble-Exposed-Infectious-Recovered-Susceptible (SEIRS). The Exposed compartment in the

SEIR and SEIRS models represent a latent period of infection. The equations describing these

additional model structures are provided in S1 Appendix.

Filter methods. The mathematical models described above are coupled with filter meth-

ods for the weekly assimilation of ILI+ observations and optimization of the model state vari-

ables and parameters. These filters use Bayesian inference to calculate the posterior conditional

distribution of parameters and state variables given observed ILI+, based on the prior distribu-

tion of the model ensemble and the conditional distribution of observed ILI+ given model

parameters and state variables.

Five different data assimilation methods were used with each of the four model structures.

These consist of three ensemble filter methods—the ensemble Kalman filter (EKF)[18], the

ensemble adjustment Kalman filter (EAKF)[19] and the rank histogram filter (RHF)[20], and

two particle filter methods—a basic particle filter (PF) with resampling and regularization[21]

and the particle Markov chain Monte Carlo (pMCMC) method[22]. A description of each fil-

ter method is provided in S1 Appendix. For full filter details, we refer readers to the original

texts referenced above.
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The combined model-filter system recursively updates the model state variable and parame-

ter estimates with each new weekly ILI+ observation. Through this process, these estimates of

the observed and unobserved variables and parameters values are nudged closer to their true

values. Following the assimilation of the most recent weekly ILI+ observation, the optimized

set of model simulations is propagated forward in free simulation through the remainder of

the season, producing a forecast of future ILI+ observations, from which we calculate the pre-

dicted timing and magnitude of peak influenza incidence, and total incidence.

Bayesian weighted outbreaks. The final forecast method, which we call Bayesian

weighted outbreaks (BWO), is a statistical method that uses Bayesian model averaging to

describe the trajectory of ILI+ for the outbreak of interest as a weighted average of outbreak

trajectories from prior seasons. This method has been used in weather forecasting[23], and has

previously been adapted to forecast dengue outbreaks[6]. The weights assigned to candidate

trajectories are determined based on the likelihood of the ILI+ values observed for the out-

break in progress given ILI+ during the same time period (weeks t-7 through t) in the candi-

date trajectories (see [6] for further details). The forecast trajectory of ILI+ obtained by taking

the weighted average is used to predict peak timing, peak incidence and total incidence in the

outbreak of interest.

The pool of candidate trajectories used in the BWO retrospective forecasts included ILI

+ observations from all 145 locations (48 states and 97 cities) available for the seasons prior to

the season being forecast (e.g. retrospective forecasts of the 2005–2006 season considered ILI

+ trajectories from 2003–2004 and 2004–2005—seasons 1 and 2), excluding the pandemic

years of 2008–2009 and 2009–2010. More generally, retrospective BWO forecasts of influenza

season N use candidate trajectories from seasons 1 through N-1.

Superensemble model averaging algorithm

Superensemble forecasts were created for the 2005–2006 through 2014–2015 influenza seasons

(excluding the pandemic seasons 2008–2009 and 2009–2010) by taking the weighted average

of the 21 individual weekly forecasts for each location. The superensemble weights, which dic-

tate the contribution of each individual forecast to the superensemble, are determined using

maximum likelihood estimation of the conditional probability distribution function (PDF)

over a selected number of training forecasts:

pðy0j f 01;m; . . . ; f 021;mÞ ¼
X21

k¼ 1
wk;mgkðy

0j f 0k;mÞ ð4Þ

where the left hand side of the equation is the probability distribution of the superensemble

forecast, and the right hand side is the weighted sum of the 21 individual forecast distributions,

gk(y’|f ’k,m). More formally, y’ is the true value of the training outbreak metricm (peak timing,

peak incidence or total incidence), wk,m is the probability that individual forecast method k is

the most accurate method, and gk(y’|f ’k,m) is the PDF of y’, conditional on training forecast

f ’k,m, given that f ’k,m is the most accurate forecast of y’m. This conditional PDF is assumed to be

normal with mean f ’k,m and standard deviation σ. For simplicity, σ is assumed equal for all

individual forecasts, and is determined through the maximum likelihood estimation of Eq 4 to

obtain wk,m, which serve as the superensemble weights (see Raftery et al.[23] for full details).

Superensemble weights for season N are trained using individual forecasts from 2003–2004

through season N-1. The set of BWO training forecasts, f ’BWO,m, are produced using a leave-

one-out approach for training seasons 1 through N-1. That is, training forecasts for each sea-

son from 1 through N-1 were constructed using trajectories using all other seasons between

1 and N-1. The number and diversity of candidate trajectories increases over time, as each sub-

sequent year adds 145 additional ILI+ trajectories to the pool. The model-filter forecasts do
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not use historical observations, and thus do not require a leave-one-out approach for training

forecasts.

The superensemble weights wk,m are then applied to the point estimates of the target metric

from the 21 individual forecasts, fk, for the time t, location l, and metricm of interest to obtain

the superensemble forecast, SE:

SEmðt; lÞ ¼
X21

k¼1

wk;mfk;mðt; lÞ ð5Þ

The probability distribution function of the superensemble forecast obtained from Eq 4 is

used to determine credible intervals around each forecast (for example, S2 Fig). The width of

the credible intervals is a function of both the spread of the point estimates from the 21 indi-

vidual forecast methods, as well as the estimated variance of each individual forecast over the

training period (σ2) [23].

Superensemble weighting schemes

The baseline superensemble forecasts were made by applying a single set of superensemble

weights across all locations and times within an influenza season. However, based on previous

analyses of individual forecast system performance (e.g. [2, 5, 6]), we hypothesized that super-

ensemble performance would improve if superensemble weights were stratified by the follow-

ing variables: calendar week of forecast, lead time relative to forecast peak (weeks between the

week of forecast initiation and the predicted peak), geographic region, population size, and

population density.

A final set of forecasts was produced by stratifying superensemble weights by lead time rela-

tive to the actual peak (weeks between the week of forecast initiation and the week of the true

peak). While this weighting scheme could not be implemented in an operational real-time

forecast, it is useful to know how the superensemble would perform under this idealized con-

dition, as this may represent an upper bound to improvements that can be achieved using a

weighting scheme based on forecast timing.

The method for stratifying superensemble weights consisted of dividing forecasts into bins

according to the variable of interest. We then obtained weights for each bin by including only

training forecasts falling into that bin in the algorithm described in Eq 4. In setting the bin

sizes for each variable, our objective was to resolve potential differences in forecast perfor-

mance. This objective was balanced by the need to include sufficient training forecasts in each

bin to avoid over-fitting.

Forecasts stratified by lead time (actual or predicted) were grouped using the following bin

edges, where negative values indicate weeks prior to the peak and positive numbers are weeks

after the peak: [<-8, -8, -7, -6, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5–8, 9–12, >12]. We selected a fine

resolution of 1 week around peak, with wider bins at either end, as fewer outbreaks have lead

times in these categories. Actual lead time is simply the week of the forecast minus the week

that peak is eventually observed. Forecast predicted lead time is calculated by taking the mean

prediction of peak week from the 21 individual forecasts, and subtracting this mean value

from the week of forecast.

Geographic regions were grouped according to the ten US Health and Human Services

Regions, as these are the standard geographical groupings used by the CDC to describe influ-

enza activity. Calendar week groupings were delineated by individual weeks. Population den-

sity and populations size were arbitrarily binned into quintiles for cities and terciles for states.
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Supporting information

S1 Appendix. Additional details on forecast methods.

(PDF)

S1 Fig. Performance of superensemble forecasts compared to individual forecasts by influ-

enza season. Each line shows the results of one forecast, with grey dotted lines representing

the 21 individual forecasts and colored lines representing superensemble forecasts. SE-baseline

refers to the baseline superensemble forecast, whereas SE-week, SE-region, SE-forlead and SE-

actlead refer to superensemble forecasts with weights stratified by forecast week, HHS region,

lead relative to predicted peak, and lead relative to observed peak, respectively.

(TIF)

S2 Fig. Sample superensemble forecast with 95% credible intervals. The weekly SE-baseline

and SE-week forecasts are shown for a sample outbreak. 95% credible intervals are indicated

by the shaded areas.

(TIF)

S3 Fig. Coverage of forecast credible intervals. The points on the graph show the percent of

observations falling within the specified credible intervals of the superensemble forecasts.

(TIF)

S4 Fig. Heat map of forecast rankings. Same as Fig 6 in main text of paper, but with superen-

semble weights stratified by lead time of forecast relative to observed outbreak peak.

(TIF)

Author Contributions

Conceptualization: Teresa K. Yamana, Jeffrey Shaman.

Data curation: Sasikiran Kandula.

Formal analysis: Teresa K. Yamana, Jeffrey Shaman.

Funding acquisition: Jeffrey Shaman.

Investigation: Teresa K. Yamana, Sasikiran Kandula.

Methodology: Teresa K. Yamana.

Software: Teresa K. Yamana, Sasikiran Kandula.

Supervision: Jeffrey Shaman.

Visualization: Teresa K. Yamana.

Writing – original draft: Teresa K. Yamana.

Writing – review & editing: Teresa K. Yamana, Sasikiran Kandula, Jeffrey Shaman.

References
1. Biggerstaff M, Alper D, Dredze M, Fox S, Fung IC, Hickmann KS, et al. Results from the centers for dis-

ease control and prevention’s predict the 2013–2014 Influenza Season Challenge. BMC Infect Dis.

2016; 16(1):357. https://doi.org/10.1186/s12879-016-1669-x PMID: 27449080.

2. Shaman J, Karspeck A, Yang W, Tamerius J, Lipsitch M. Real-time influenza forecasts during the

2012–2013 season. Nature communications. 2013; 4:2837. https://doi.org/10.1038/ncomms3837

PMID: 24302074.

Superensemble forecasts of seasonal influenza outbreaks

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005801 November 6, 2017 16 / 17

http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1005801.s001
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1005801.s002
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1005801.s003
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1005801.s004
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1005801.s005
https://doi.org/10.1186/s12879-016-1669-x
http://www.ncbi.nlm.nih.gov/pubmed/27449080
https://doi.org/10.1038/ncomms3837
http://www.ncbi.nlm.nih.gov/pubmed/24302074
https://doi.org/10.1371/journal.pcbi.1005801


3. Chretien JP, George D, Shaman J, Chitale RA, McKenzie FE. Influenza forecasting in human popula-

tions: a scoping review. PLoS One. 2014; 9(4):e94130. https://doi.org/10.1371/journal.pone.0094130

PMID: 24714027.

4. Brooks LC, Farrow DC, Hyun S, Tibshirani RJ, Rosenfeld R. Flexible Modeling of Epidemics with an

Empirical Bayes Framework. PLoS computational biology. 2015; 11(8):e1004382. https://doi.org/10.

1371/journal.pcbi.1004382 PMID: 26317693.

5. Yang W, Karspeck A, Shaman J. Comparison of filtering methods for the modeling and retrospective

forecasting of influenza epidemics. PLoS computational biology. 2014; 10(4):e1003583. Epub 2014/04/

26. https://doi.org/10.1371/journal.pcbi.1003583 PMID: 24762780.

6. Yamana TK, Kandula S, Shaman J. Superensemble forecasts of dengue outbreaks. Journal of The

Royal Society Interface. 2016; 13(123):20160410.

7. Yun W, Stefanova L, Krishnamurti T. Improvement of the multimodel superensemble technique for sea-

sonal forecasts. Journal of Climate. 2003; 16(22):3834–40. https://doi.org/10.1175/1520-0442(2003)

016<3834:Iotmst>2.0.Co;2

8. Krishnamurti TN, Surendran S, Shin DW, Correa-Torres RJ, Kumar TSVV, Williford E, et al. Real-time

multianalysis-multimodel superensemble forecasts of precipitation using TRMM and SSM/I products.

Monthly Weather Review. 2001; 129(12):2861–83. https://doi.org/10.1175/1520-0493(2001)129<2861:

Rtmmsf>2.0.Co;2

9. Krishnamurti TN, Kishtawal C, Zhang Z, LaRow T, Bachiochi D, Williford E, et al. Multimodel ensemble

forecasts for weather and seasonal climate. Journal of Climate. 2000; 13(23):4196–216.

10. Chakraborty P, Khadivi P, Lewis B, Mahendiran A, Chen J, Butler P, et al., editors. Forecasting a mov-

ing target: Ensemble models for ILI case count predictions. Proceedings of the 2014 SIAM international

conference on data mining; 2014: SIAM.

11. Ray EL, Reich NG. Prediction of infectious disease epidemics via weighted density ensembles. arXiv

preprint arXiv:170310936. 2017.

12. Ginsberg J, Mohebbi MH, Patel RS, Brammer L, Smolinski MS, Brilliant L. Detecting influenza epidem-

ics using search engine query data. Nature. 2009; 457(7232):1012–4. https://doi.org/10.1038/

nature07634 PMID: 19020500

13. Yang W, Lipsitch M, Shaman J. Inference of seasonal and pandemic influenza transmission dynamics.

Proceedings of the National Academy of Sciences of the United States of America. 2015; 112(9):2723–

8. https://doi.org/10.1073/pnas.1415012112 PMID: 25730851.

14. Yang W, Cowling BJ, Lau EHY, Shaman J. Forecasting Influenza Epidemics in Hong Kong. PLoS

computational biology. 2015; 11(7):e1004383. https://doi.org/10.1371/journal.pcbi.1004383 PMID:

26226185

15. Yang W, Olson DR, Shaman J. Forecasting Influenza Outbreaks in Boroughs and Neighborhoods of

New York City. PLoS computational biology. 2016; 12(11):e1005201. https://doi.org/10.1371/journal.

pcbi.1005201 PMID: 27855155

16. Shaman J, Karspeck A. Forecasting seasonal outbreaks of influenza. Proceedings of the National

Academy of Sciences. 2012; 109(50):20425–30.

17. Shaman J, Kohn M. Absolute humidity modulates influenza survival, transmission, and seasonality.

Proceedings of the National Academy of Sciences. 2009; 106(9):3243–8.

18. Burgers G, Jan van Leeuwen P, Evensen G. Analysis scheme in the ensemble Kalman filter. Monthly

weather review. 1998; 126(6):1719–24.

19. Anderson JL. An ensemble adjustment Kalman filter for data assimilation. Monthly weather review.

2001; 129(12):2884–903.

20. Anderson JL. A non-Gaussian ensemble filter update for data assimilation. Monthly Weather Review.

2010; 138(11):4186–98.

21. Arulampalam MS, Maskell S, Gordon N, Clapp T. A tutorial on particle filters for online nonlinear/non-

Gaussian Bayesian tracking. IEEE Transactions on signal processing. 2002; 50(2):174–88.

22. Andrieu C, Doucet A, Holenstein R. Particle markov chain monte carlo methods. Journal of the Royal

Statistical Society: Series B (Statistical Methodology). 2010; 72(3):269–342.

23. Raftery AE, Gneiting T, Balabdaoui F, Polakowski M. Using Bayesian model averaging to calibrate fore-

cast ensembles. Monthly Weather Review. 2005; 133(5):1155–74.

Superensemble forecasts of seasonal influenza outbreaks

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005801 November 6, 2017 17 / 17

https://doi.org/10.1371/journal.pone.0094130
http://www.ncbi.nlm.nih.gov/pubmed/24714027
https://doi.org/10.1371/journal.pcbi.1004382
https://doi.org/10.1371/journal.pcbi.1004382
http://www.ncbi.nlm.nih.gov/pubmed/26317693
https://doi.org/10.1371/journal.pcbi.1003583
http://www.ncbi.nlm.nih.gov/pubmed/24762780
https://doi.org/10.1175/1520-0442(2003)016<3834:Iotmst>2.0.Co;2
https://doi.org/10.1175/1520-0442(2003)016<3834:Iotmst>2.0.Co;2
https://doi.org/10.1175/1520-0493(2001)129<2861:Rtmmsf>2.0.Co;2
https://doi.org/10.1175/1520-0493(2001)129<2861:Rtmmsf>2.0.Co;2
https://doi.org/10.1038/nature07634
https://doi.org/10.1038/nature07634
http://www.ncbi.nlm.nih.gov/pubmed/19020500
https://doi.org/10.1073/pnas.1415012112
http://www.ncbi.nlm.nih.gov/pubmed/25730851
https://doi.org/10.1371/journal.pcbi.1004383
http://www.ncbi.nlm.nih.gov/pubmed/26226185
https://doi.org/10.1371/journal.pcbi.1005201
https://doi.org/10.1371/journal.pcbi.1005201
http://www.ncbi.nlm.nih.gov/pubmed/27855155
https://doi.org/10.1371/journal.pcbi.1005801

