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Abstract

Estimating the time since infection (TI) in newly diagnosed HIV-1 patients is challenging, but

important to understand the epidemiology of the infection. Here we explore the utility of virus

diversity estimated by next-generation sequencing (NGS) as novel biomarker by using a

recent genome-wide longitudinal dataset obtained from 11 untreated HIV-1-infected

patients with known dates of infection. The results were validated on a second dataset from

31 patients. Virus diversity increased linearly with time, particularly at 3rd codon positions,

with little inter-patient variation. The precision of the TI estimate improved with increasing

sequencing depth, showing that diversity in NGS data yields superior estimates to the num-

ber of ambiguous sites in Sanger sequences, which is one of the alternative biomarkers.

The full advantage of deep NGS was utilized with continuous diversity measures such as

average pairwise distance or site entropy, rather than the fraction of polymorphic sites. The

precision depended on the genomic region and codon position and was highest when 3rd

codon positions in the entire pol gene were used. For these data, TI estimates had a mean

absolute error of around 1 year. The error increased only slightly from around 0.6 years at a

TI of 6 months to around 1.1 years at 6 years. Our results show that virus diversity deter-

mined by NGS can be used to estimate time since HIV-1 infection many years after the

infection, in contrast to most alternative biomarkers. We provide the regression coefficients

as well as web tool for TI estimation.

Author summary

HIV-1 establishes a chronic infection, which may last for many years before the infected

person is diagnosed. The resulting uncertainty in the date of infection leads to difficulties

in estimating the number of infected but undiagnosed persons as well as the number of

new infections, which is necessary for developing appropriate public health policies and

interventions. Such estimates would be much easier if the time since HIV-1 infection for

newly diagnosed cases could be accurately estimated. Three types of biomarkers have

been shown to contain information about the time since HIV-1 infection, but

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005775 October 2, 2017 1 / 20

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPENACCESS

Citation: Puller V, Neher R, Albert J (2017)

Estimating time of HIV-1 infection from next-

generation sequence diversity. PLoS Comput Biol

13(10): e1005775. https://doi.org/10.1371/journal.

pcbi.1005775

Editor: Claus O. Wilke, University of Texas at

Austin, UNITED STATES

Received: April 24, 2017

Accepted: September 15, 2017

Published: October 2, 2017

Copyright: © 2017 Puller et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: Sequencing reads are

available in the European Nucleotide Archive under

accession numbers PRJEB9618 and PRJEB21629.

Processed data are available at hiv.biozentrum.

unibas.ch. All other data are within the paper and

its Supporting Information files.

Funding: This work was supported by: European

Research Council (https://erc.europa.eu/), Stg.

260686, principal investigator RN; Swedish

Research Council (https://www.vr.se/), K2014-

57X-09935, principal investigator JA. The funders

had no role in study design, data collection and

https://doi.org/10.1371/journal.pcbi.1005775
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1005775&domain=pdf&date_stamp=2017-10-12
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1005775&domain=pdf&date_stamp=2017-10-12
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1005775&domain=pdf&date_stamp=2017-10-12
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1005775&domain=pdf&date_stamp=2017-10-12
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1005775&domain=pdf&date_stamp=2017-10-12
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1005775&domain=pdf&date_stamp=2017-10-12
https://doi.org/10.1371/journal.pcbi.1005775
https://doi.org/10.1371/journal.pcbi.1005775
http://creativecommons.org/licenses/by/4.0/
http://hiv.biozentrum.unibas.ch
http://hiv.biozentrum.unibas.ch
https://erc.europa.eu/
https://www.vr.se/


unfortunately, they only distinguish between recent and long-term infections (concentra-

tion of HIV-1-specific antibodies) or are imprecise (immune status as measured by levels

of CD4+ T-lymphocytes and viral sequence diversity measured by polymorphisms in

Sanger sequences). In this paper, we show that recent advances in sequencing technolo-

gies, i.e. the development of next generation sequencing, enable significantly more precise

determination of the time since HIV-1 infection, even many years after the infection

event. This is a significant advance which could translate into more effective HIV-1

prevention.

Introduction

At diagnosis, most HIV-1 infected patients have an established HIV-1 infection of unknown

duration. This uncertainty complicates inference about the epidemiology of HIV-1. Conse-

quently, there is limited information about the true incidence of HIV-1, the number of hidden,

undiagnosed infected persons, the magnitude of the problem referred to as “late presentation”

and other important aspects of HIV-1 spread.

Several biomarkers that classify patients as recently or long-term infected have been used to

estimate HIV-1 incidence in populations [1–7]. These biomarkers can be divided into three

main categories: (i) serological incidence tests, (ii) CD4+ T-lymphocyte (CD4)-based estimates

and (iii) sequence-based estimates. Importantly, these biomarkers usually do not determine

the time since infection (TI), which limits their utility.

Serological incidence assays are based on knowledge about the development and matura-

tion of HIV-1 antibody responses (reviewed in [1, 4–6, 8]). Among the serological assays, the

BED assay and the LAg avidity assay are the most widely used [4, 8–10]. CD4 counts are deter-

mined as part of routine clinical care, a CD4 count below 350 cells/μL (or an AIDS-defining ill-

ness) at diagnosis is defined as late presentation [11, 12]. However, CD4 count is an imprecise

measure of TI because its rate of decline is quite variable [13–16].

Sequence-based methods focus on the increase in intra-patient HIV-1 sequence diversity

following infection [17]. Kouyos et al [18] showed that time since infection correlated with the

fraction of polymorphic nucleotides in partial HIV-1 pol gene sequences determined by Sanger

sequencing. Others have later reported similar findings [19–21]. This idea was expanded to

other measures of sequence diversity, such as mean Hamming distance [6, 7, 22] and high-res-

olution melting (HRM) [23]. These studies (except HRM) used sequences generated by tradi-

tional Sanger population sequencing often performed as part of routine HIV-1 resistance

testing.

Here, we have investigated the utility of estimating time since HIV-1 infection using genetic

diversity in whole genome deep sequencing data generated by next-generation sequencing

(NGS) on the Illumina platform [24]. We show that sequence diversity is a useful biomarker

that grows approximately linearly with time during the first 8 years of infection. We found that

the pol gene was best suited to calculate TI because diversity, mostly at third positions, accu-

mulated more steadily in pol than in other genomic regions. Inclusion of intra-patient single

nucleotide variants (iSNVs, also referred to as “polymorphisms”) down to the detection limit

of NGS (i.e. 0.3%) improved the accuracy of TI estimations as did exclusion of 1st and 2nd

codon position sites. NGS provided more accurate estimates of TI than Sanger sequencing,

which at best detects iSNVs down to 25% [25–27].
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Materials and methods

Patients

The study included two sets of HIV-1 whole-genome sequence data; a training dataset and a

validation dataset.

The training dataset consisted of sequence data from 11 patients who were diagnosed in

Sweden between 1990 and 2003 (Table 1 and S6 Table). Details about the patients and the sam-

ples have been published [24] and are also available online at hiv.biozentrum.unibas.ch. The

patients were selected based on the following criteria: 1) A relatively well-defined time of infec-

tion based on a laboratory-confirmed primary HIV-1 infection (PHI) or a negative HIV anti-

body test less than two years before the first positive test; 2) No antiretroviral therapy (ART)

during a minimum of approximately five years following diagnosis; and 3) Availability of bio-

bank plasma samples covering this time period. As previously described 6–12 plasma samples

per patient were retrieved from biobanks and used for full-genome HIV-1 RNA deep sequenc-

ing [24].

The validation dataset consisted of data from 31 patients who were diagnosed in Sweden

between 2003 and 2010 (S7 Table). The patients were selected using similar criteria as the 11

patients in the training dataset, but the follow-up time without ART was shorter (median 2.9

years, range 1.4–6.2 years). For each patient, one plasma sample collected early during follow-

up and one plasma sample collected late during follow-up was deep sequenced using the same

method as for the 11 patients.

Table 1. Summary of patient characteristics.

Patient

code

CD4 cell

count

(cells/μl)

*

Plasma HIV-

1 RNA level

(copies/ml)

*

Documented

PHI

Fiebig

stage*
BED

ODn*
Days

last

neg.-

first

pos.**

Estimated

“true” time of

infection (TI)

TI

method

No. of

samples

Days

between TI

and first

sequence

Years

between TI

and last

sequence

p1 537 <500 No VI 0.419 310 7/9/1996 BED

+ Fiebig

VI

12 122 8.2

p2 1185 31100 No V 0.171 397 7/28/2002 Fiebig V 6 74 5.5

p3 694 17300 No VI 0.898 575 9/3/1999 BED 10 146 8.4

p4 1064 6780 No V 0.170 620 10/2/2000 Fiebig V 8 93 8.4

p5 521 <50 No VI 0.153 196 12/10/2002 BED

+ Fiebig

VI

7 134 5.9

p6 480 6800 Yes IV 0.290 45 9/25/2002 PHI 7 62 7.0

p7 496 497 No VI nd 190 6/18/1990 Midpoint 10*** 2248 15.9

p8 460 2900 No V 0.158 299 4/19/1998 Fiebig V 7 87 6.0

p9 720 2300 No VI 0.277 614 11/24/1996 BED

+ Fiebig

VI

8 106 8.1

p10 420 594000 Yes II 0.101 16 5/19/1990 PHI 9 33 6.2

p11 850 12700 No VI 1.222 642 9/22/2000 BED 7 208 5.6

Table notes: PHI, primary HIV-1 infection; BED ODn, normalized optical density level in the BED serological assay; TI, estimated “true” date of infection;

*Results at baseline;

**Days between last negative and first positive HIV-1 test;

*** Sequencing of earlier time points failed due to low virus levels.

https://doi.org/10.1371/journal.pcbi.1005775.t001
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Ethics statement

The study was conducted according to the Declaration of Helsinki. Ethical approval was

granted by the Regional Ethical Review Board in Stockholm, Sweden (registration no. 2012-

505 and 2014-646 for the validation dataset and 2002-367, 2004-797, 2007-1533 and 2011-1854

for the training dataset). Patients participating in the study gave written and oral informed

consent to participate.

Determination of the “true” time of infection (TI)

For each patient in the training and validation datasets the “true” time of infection (TI) was

estimated using a hierarchical scheme based on clinical and laboratory findings as previously

described [24, 28]:

1. Laboratory-confirmed PHI. Infection was considered to have occurred 17 days prior to

date of first hospital visit based on an average incubation time from infection to develop-

ment of PHI of 14 days [29] and an estimated patient delay of 3 days.

2. Fiebig staging [28] was used if the necessary laboratory results were available and the

patient found to be in Fiebig stage I-V, which were considered to correspond to 13, 18, 22,

27 and 65 days since infection based on Cohen et al. [30].

3. BED assay results (i.e. normalized optical density, ODn) analyzed with a published time-

continuous model of development of BED-reactive antibodies [31] if the ODn level corre-

sponded to<1 year since infection after which ODn levels start to saturate.

4. Midpoint between the last negative and the first positive HIV test.

If possible information from several methods to determine TI were combined. The true TIs

were considered to be without measurement error. Comprehensive information is provided in

the S6 and S7 Tables.

CD4 counts, virus levels and BED tests

Plasma HIV-1 RNA levels were measured using the Cobas AmpliPrep sample preparation sys-

tem followed by analysis using the Cobas Amplicor HIV-1 monitor version 1.5 or the Cobas

TaqMan HIV-1 v1.0 or v2.0 (Roche Molecular Systems, Basel, Switzerland). CD4+ T-lympho-

cyte (CD4) cells were enumerated using flow cytometry.

As part of determination of the true TIs, BED testing was performed on the first plasma

sample from each study subject using the Aware BED EIA HIV-1 Incidence Test (Calypte Bio-

medical Corporation, Portland, OR, USA) according to the manufacturer’s instructions.

HIV-1 RNA sequences

Whole-genome deep-sequencing of virus RNA populations in plasma samples obtained before

start of therapy was performed as previously described [24, 32]. In short, total RNA in plasma

was extracted using RNeasy Lipid Tissue Mini Kit (Qiagen Cat No. 74804) and amplified using

a one-step RT-PCR with outer primers for six overlapping regions and Superscript III One-

Step RT-PCR with Platinum Taq High Fidelity High Enzyme Mix (Invitrogen, Carlsbad, Cali-

fornia, US). An optimized Illumina Nextera XT library preparation protocol was used together

with a kit from the same supplier to build DNA libraries, which were sequenced on the Illu-

mina MiSeq instrument with 2x250bp or 2x300bp sequencing kits (MS-102-2003/MS-10-

3003).

Estimating time of HIV-1 infection from next-generation sequence
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Sequencing reads are available in the European Nucleotide Archive under accession num-

ber PRJEB9618 and processed data are available at hiv.biozentrum.unibas.ch.

The samples of the validation dataset were sequenced and processed using the same proto-

col and analysis pipeline [24, 32]. Patient-specific consensus sequences were constructed using

an iterative mapping procedure. All reads were then remapped against this reference to calcu-

late iSNV frequencies (i.e. pile-ups or tables how often each nucleotide was observed at every

position of the genome). Sequencing and mapping/assembly was successful for 56 of the 62

samples. Filtered short-reads were submitted to ENA and are available under study accession

number PRJEB21629. iSNV frequency counts at each position of pol and gag are available as

part of the analysis code repository at github.com/neherlab/HIV_time_of_infection.

All analyses were done in Python using the libraries numpy, biopython, and matplotlib

[33–35]. These iSNV frequency tables were then used to calculate average pairwise distances,

average alignment entropies, or the number of sites with variation above a cutoff xc.

Statistical procedures

We have used three different diversity measures: fraction of polymorphic sites, average pair-

wise distance per length, and site entropy. All of these measures can be straight-forwardly cal-

culated from the frequencies of different nucleotides xiα at site i = 1. . .L and α 2 {A, C, G, T}

along the genome. Prior to calculation the nucleotide frequencies for each site were normal-

ized to sum to unity (i.e. ignoring gaps or positions not called by the sequencer.)

For all methods, we introduce a cutoff xc. Sites at which the sum of all minor variants is

smaller than xc contribute zero to the diversity measure. This cutoff serves to filter sequencing

errors or rare variation that cannot be reproducibly measured across samples. When using the

fraction of polymorphic sites as diversity measure, xc serves as the value above which sites are

considered “polymorphic”. Specifically, the fraction of polymorphic sites is defined as

DA ¼
1

L

XL

i¼1

Yð1 � xm
i � xcÞ ð1Þ

where xm
i is the frequency of the dominant nucleotide at position i, and Θ(x) is 1 when x> 0

and 0 otherwise (i.e. Yð1 � xm
i � xcÞ ¼ 1 when 1 � xm

i > xc and 0 otherwise). DA is thus the

fraction of sites at which the dominant nucleotide is less frequent than 1 − xc.

The average pairwise distance is the probability that two randomly drawn sequences have

different nucleotides at a specified position, averaged over all positions. It can be calculated

from the xiα as

DH ¼
1

L

XL

i¼1

Yð1 � xm
i � xcÞ

X

a

xiað1 � xiaÞ

" #

: ð2Þ

The quantity defined by Eq (2) is the conventional Nei-Li nucleotide diversity [36]

(∑α xiα(1 − xiα)) averaged over the sites. We refer to it as “average pairwise distance” when-

ever it is necessary to distinguish it from the other diversity measures introduced here, but

otherwise call it simply “diversity”.

This diversity measure is similar to the fraction of polymorphic sites with the important dif-

ference that the contribution of each site is weighted by a frequency dependent factor.

The average site entropy is defined by

DE ¼ �
1

L

XL

i¼1

Yð1 � xm
i � xcÞ

X

a

xia log ðxiaÞ

" #

ð3Þ

Estimating time of HIV-1 infection from next-generation sequence

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005775 October 2, 2017 5 / 20

http://hiv.biozentrum.unibas.ch
http://github.com/neherlab/HIV_time_of_infection
https://doi.org/10.1371/journal.pcbi.1005775


and differs from the average pairwise distance by the weighing function used. The entropy

puts more weight on sites with rare variation. This can increase the information of the measure

about TI, but can also be detrimental if too much weight is put on frequencies dominated by

sequencing error. We evaluate and discuss the merits of the different measures below. We use

the average pairwise distance as default diversity measure.

Given a diversity measure D, we model TI by

bTI ¼ s� Dþ t0; ð4Þ

where s is the conversion factor between diversity and time, and t0 is the intercept value

intended to accommodate possible non-linearity of diversity at small times.

To estimate values of s, t0 we minimized the average prediction error for the available data

points in respect to these two parameters (see S1 Appendix for more details) The error in esti-

mating s, t0 was calculated by randomly sampling the patients (bootstrapping over the

patients).

Cross-validation

To test the accuracy of the TI inference we used ten of the eleven patients as training data (to

determine the slope and the intercept) treating the eleventh patient as test data. This procedure

was repeated for every patient. Leaving out one patient at a time, rather than one sample at a

time, gives more accurate confidence intervals as different samples from the same patients are

correlated. We included in statistical analysis only samples where more than 50% of the sites

in the averaging window were successfully sequenced to minimal coverage of 100.

Additional validation was provided by applying the slopes and intercepts obtained by ana-

lyzing the data from the training set of 11 patients to the validation dataset of 31 other patients

with known times of infection.

Results

Patients characteristics

The training dataset consisted of recently published longitudinal full-genome deep sequencing

data from 11 HIV-1 infected patients who were diagnosed in Sweden between 1990 and 2003

(6–12 samples per patient) and had a relatively well-defined time of infection (TI) [24]. The

patient characteristics are summarized in Table 1 and fully described in the S6 Table. Nine of

the eleven patients were MSM infected with HIV-1 of genetic subtype B. TI was hierarchically

estimated using clinical and laboratory data (see Methods). Here, we take this estimate as the

true time of infection and investigate how accurately TI can be estimated from sequence diver-

sity in one sample. We will refer to this estimate as the estimated time since infection (ETI).

To validate the findings we used a second dataset consisting of similar sequence data from

31 additional patients (two samples per patient). The patient characteristics in validation data-

set was more diverse than for the 11 patients training dataset. Thus, 16 of the 31 patients were

infected with non-B-subtypes of HIV-1 and 11 patients belonged to other transmission groups

than MSM. See methods and (S7 Table).

Sequence diversity as a biomarker

All three diversity measures described in Materials and Methods grew linearly with time in the

eleven patients. Fig 1 shows average pairwise distance in the pol separately for each codon posi-

tion. Most diversity in pol is synonymous and accumulates at 3rd codon positions, while diver-

sity at 1st and 2nd codon positions remained low throughout. This pattern was less

Estimating time of HIV-1 infection from next-generation sequence
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pronounced in other genes [24, 37] (see also S1 and S2 Figs). In env, in particular, frequent

selective sweeps result in a saturation of diversity later in infection [17, 24].

We quantified the fraction of variation in diversity measures that could be explained by a

linear regression of sample date vs. diversity using the coefficient of determination (r2), see the

S3 and S4 Figs. In all patients for whom early samples were available, a linear regression

explained between 70% and 90% of variation if rare iSNVs below 20% population frequency

were included, that is the cutoff xc was below 0.2. The coefficient of determination was much

smaller when only iSNVs between 20% and 80% were included, that is the xc cutoff is larger

than 0.2. This decrease is due to increased noise as fewer and fewer sites contribute to the

diversity measures.

Furthermore, as seen from S4 Fig, the diversity at 3rd codon positions (at which mutations

are mostly synonymous) exhibited higher r2, whereas the trajectories at the 1st and 2nd codon

positions saturated quickly after the infection, Fig 1. Thus, in the following we limit the analy-

sis mainly to sites in 3rd codon positions (whenever we are dealing with a whole gene, i.e.

when the reading frame is known.) However, the results reported below show that inclusion of

1st and 2nd codon positions only has a small deleterious effect on the accuracy of the TI

estimates.

Diversity in pol yielded the most accurate TI estimates

Accurate estimation of TI requires averaging diversity across many sites. To investigate which

regions of the genome yields the most accurate estimates and how many sites should be aver-

aged, we calculated the average prediction error for averaging windows of different length and

in different regions of the genome. In Fig 2 the mean absolute error (MAE) for the estimated

TIs is shown as a function of the genome window position for different window sizes. We

Fig 1. Diversity in pol as a function of the time since infection (TI) and 1st, 2nd and 3rd codon positions.

(Genetic region: pol, diversity measure: average pairwise distance, xc = 0.003.)

https://doi.org/10.1371/journal.pcbi.1005775.g001
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found that the most precise TI estimates were obtained for windows with a length of 2000–

3000bp. The precision was highest if the window covered the pol gene and significantly lower

if the window included env. Smaller windows contain fewer sites and therefore gave less pre-

cise estimates. Larger windows also gave less precise TI estimates because they necessarily

include regions in which diversity saturates (such as env, S2 Fig) as well as regions that often

were sequenced less deeply in our dataset (again env, see [24]).

The precision of the TI estimates obtained for windows corresponding to particular genes

are shown in Fig 2 by lines indicating the position of the gene and the corresponding average

absolute error of the TI estimate. The dashed lines correspond to estimates using only 3rd

codon positions of the corresponding gene.

Accuracy increased with higher sequencing resolution

Genetic diversity in NGS data can be quantified by different measures and we investigated the

performance of three related measures—average pairwise distance, site entropy, and fraction

of polymorphic sites. As discussed above, these measures put different emphasis on iSNVs at

different frequency. Even though the average pairwise distance and site entropy formally do

not require a cutoff on minority iSNVs, in practice a cutoff is necessary to remove low-level

experimental errors. We therefore introduced an iSNV cutoff in calculating the diversity based

on average pairwise distance and site entropy, xc, taking into account only the data with iSNVs

above xc. For diversity measures based on polymorphic sites, the cutoff value corresponds to

the iSNV level from which the site is considered polymorphic. This emulates ambiguous base

calls by Sanger sequencers, which (at best) can identify minority iSNVs above a threshold of

around 25% [25–27].

Given the high ability of NGS to detect low level iSNVs one can consider the dependence of

the TI estimation on the cutoff value, as shown for all three diversity measures in Fig 3. All

Fig 2. Mean absolute prediction error of TI as a function of position in genome and different sizes of

the genome window (ws). Straight solid lines correspond to the error when estimation is based on diversity

in the genes gag, pol or env. The dashed lines are analogous estimates using diversity only at 3rd codon

position. Diversity measure: average pairwise distance, xc = 0.003.

https://doi.org/10.1371/journal.pcbi.1005775.g002
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three diversity measures performed equally well and increasingly better at cutoff values xc

down to around 10%. This indicates that diversity in NGS data allows more accurate estimates

of TI than ambiguous base calls in Sanger sequences and that this primarily is due to better

sensitivity and accuracy in detection of low level iSNVs. For cutoffs below 10% the error of TI

estimates based on counting polymorphic sites was greater than those based on the other two

measures since rare iSNVs which are sensitive to sequencing errors and amplification biases

contribute as much as common iSNVs. Indeed, at xc! 0 this measure includes all sites and

becomes completely insensitive to differences in iSNV levels. The other two measures do not

suffer from this problem, because they put different weights on sites with different iSNV levels.

Therefore the prediction errors for estimates based 3rd codon positions and average pairwise

distance or site entropy continued to decrease all the way down to xc = 0.003, which represents

the cutoff for sequencing errors for our NGS method [24].

The noticeably non-monotonic behavior of the predictions based on average pairwise dis-

tance and site entropy when all codon positions are taken into account is due to the saturation

of 1st and 2nd codon positions (i.e. non-synonymous) diversity. The 1st and 2nd codon posi-

tions tend to be conserved since they result in mostly non-synonymous mutations. Depending

on the fitness cost associated with the mutation, diversity at these sites saturates at different

levels [37]. As the threshold xc is lowered, sites with higher and higher fitness costs contribute

to the diversity measures and the effect of the saturation behavior becomes more pronounced.

Fig 3. Mean absolute error as a function of the low-frequency cutoff (xc). Different diversity measures

perform very similarly when the cutoff xc is greater than approximately 10%. Average pairwise distance and

entropy outperform fraction of polymorphic sites for low xc. This graph is based on diversity in pol. Solid lines

correspond to using all sites, dashed lines to diversity at 3rd codon positions.

https://doi.org/10.1371/journal.pcbi.1005775.g003
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Note that the non-monotonic dependence is not consistently reproduced in other genes (see

supplementary S5 Fig). Similarly, the fact that diversity measures based on all codon positions

perform somewhat better at xc > 10% was not consistently reproduced in other genes. In gag,

diversity at 3rd positions was better at estimating TI for most xc values (S5 Fig).

In the following analyses we opted for using the average pairwise distance measure, taking

into account only the diversity at the 3rd codon positions, with low (xc = 0.003) iSNV cutoff.

Average pairwise distance was chosen because the results were virtually indistinguishable from

those produced using site entropy, but easier to calculate and interpret. Since 1st and 2nd

codon positions contribute very little time-dependent diversity and are affected by purifying

selection and selective sweeps, we recommend to restrict the diversity measures to 3rd codon

positions.

Distribution of prediction errors

The results above indicated that more than 50% of the estimated TIs fell within a window of

about one year centered at the actual TI. Fig 4 (Left) shows a more direct analysis of the distri-

bution of TI prediction errors. The distribution is tightly peaked around zero, but has a left tail

corresponding to samples estimated to have been obtained shorter after infection than they

actually were drawn, i.e. diversity being lower than expected. Most of these samples were from

p6, who throughout infection had lower diversity than other patients. In addition to biological

reasons for low diversity, amplification problems and low RNA template numbers (i.e. low

virus levels) can explain underestimation of diversity.

Some samples were estimated to have been drawn later after infection than the true dura-

tion of infection. In particular early samples from p10 and p3 had markedly higher diversity

than expected. For both patients, we have evidence that their infections were established by

more than one virion resulting in carry-over of diversity from the donor. This excess diversity

gradually decreased in p10 and, somewhat slower, in p3.

Next, we investigated how the prediction error depended on the time since infection. Fig 5

shows the average absolute error of the estimated TI versus the true TI, averaged over n = 25

consecutive data points. This average error (see for details S2 Appendix) was surprisingly

Fig 4. (Left) Distribution of the estimation error. (Right) Estimated time of infection (ETI) versus actual time of

infection (TI). (Genetic region: 3rd codon positions in pol, diversity measure: average pairwise distance. The encircled

outliers are discussed in the text.)

https://doi.org/10.1371/journal.pcbi.1005775.g004

Estimating time of HIV-1 infection from next-generation sequence

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005775 October 2, 2017 10 / 20

https://doi.org/10.1371/journal.pcbi.1005775.g004
https://doi.org/10.1371/journal.pcbi.1005775


stable over TIs, and only increased slightly from around 0.6 years to around 1.1 years as the

age of infection increased from 6 months to 6 years. This increase can be attributed to bigger

statistical fluctuations of diversity later after infection due to factors such as variations in the

rate of diversification or differences in number and strength of selective sweeps that reduce

diversity.

Recommended regression coefficients

In Table 2 we list the values of slope and intercept that can be used to estimate the infection

date from the known diversity calculated as average pairwise distances for 3rd codon positions

in pol gene. The supplementary materials contain similar tables for the two other diversity

measures (S1 and S2 Tables), as well as for the case when all codon positions are taken into

account (S3, S4 and S5 Tables). As the iSNV resolution may vary between different sequencing

methods and facilities, we list the values of the parameters for different cutoffs, implying that

all the frequencies below the cutoff value are set to zero and the corresponding sites do not

contribute to the diversity measure. Note that the slope (and intercept) increases with increas-

ing iSNV cutoffs because fewer and fewer sites contribute to diversity. In addition to the two

parameter model, we also investigated the performance of a model with the slope as the single

parameter, i.e. no intercept (t0 = 0). This model has a slightly higher absolute prediction error.

However, for low values of the cutoff xc� 5% these models agree and for cutoffs below 20%

the two models perform equally well.

Fig 5. Estimation error dependence on time of infection (TI): TI and |ETI − TI| averaged over n = 25

adjacent points. (Genetic region: 3rd codon positions in pol, diversity measure: average pairwise distance.)

https://doi.org/10.1371/journal.pcbi.1005775.g005
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In order to make our data and the method of TI inference more accessible for practical use,

we added a web application to the web site containing the processed patient data, accessible at

hiv.biozentrum.unibas.ch/ETI/. Given a diversity value (determined according to Eq (2)), the

web application allows to determine the time since infection for an user-selected iSNV cutoff

value (xc) and genetic region, along with the appropriate error estimates. The results are pre-

sented in accessible graphical form, but also as a slope and intercept pair, equivalent to

Table 2. The user can specify whether the diversity was calculated using all codon positions or

only the 1st, 2nd, or 3rd. Specifying a codon position is only supported when the region used

to evaluate diversity is fully contained in one gene.

Validation of the regression coefficients

We validated the regression coefficients on a dataset from 31 patients with known infection

dates and NGS data available at two time points. The distribution of the diversity values for

these patients closely resembles that for our training dataset of 11 patients (see S8 and S9 Figs).

We inferred the time since infection for the 31 validation patients using the regression coef-

ficients obtained for the eleven patients of the training set; the results are summarized in Fig 6,

which also shows (in gray) the data points of the training set (same as in Fig 4). The new data

exhibit the same behavior as the training set: the TI estimates are centered around the true TI

and the accuracy of the estimate is about one year, as can be seen from the histogram in the left

panel of Fig 6. In order to make the histograms for the training and validation data compara-

ble, we included for the former only the points of the infection time less than 5 years.

Some outliers are present also in validation data, particularly data points with overestimated

TIs, i.e. having higher diversity than expected. As mentioned above, these data points probably

often represent infections established by more than one founder virus. One patient had sub-

stantial overestimation of time since infection, which might be due to superinfection from dif-

ferent donors rather than multiple founders from a single donor. However, it should be

stressed that almost all outliers are still within +/- 2 years from the true TI. Neither overestima-

tion nor underestimation of TI was clearly related to genetic subtype of the virus, transmission

route, virus levels or template numbers (S11 and S12 Figs).

Table 2. Recommended slope and intercept values depending on the cutoff.

slope and intercept slope only

cutoff (xc) slope (s)a intercept (t0)b MAEb slope (s)a MAEb

0.00 250.28 -0.08 0.88 247.59 0.86

0.05 297.17 0.27 0.96 321.96 0.99

0.10 350.52 0.50 1.03 386.22 1.05

0.15 407.65 0.75 1.14 490.79 1.18

0.20 484.39 0.79 1.23 556.58 1.29

0.25 551.75 1.02 1.35 701.51 1.44

0.30 692.19 1.20 1.46 850.78 1.61

0.35 780.52 1.56 1.60 1185.82 1.73

0.40 1218.07 1.54 1.69 1685.91 1.86

0.45 1394.26 2.53 1.87 2312.54 2.61

Table notes: Genetic region: 3rd codon positions in pol, diversity measure: average pairwise distance.
ain years/diversity;
bin years.

https://doi.org/10.1371/journal.pcbi.1005775.t002
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Discussion

Many newly diagnosed HIV-1 patients have an infection of unknown duration. This is prob-

lematic because accurate estimation of the time since infection (TI) is essential for understand-

ing important aspects of HIV-1 epidemiology such as incidence, proportion of undiagnosed

patients and late presentation. Most previous methods are suboptimal because they only cate-

gorize patients as being recently or long-term infected and/or are imprecise. Here, we show

that genetic diversity calculated from NGS data enables fairly accurate estimation of TI, even

many years after infection. We also show that NGS is superior to Sanger sequencing because

inclusion of minority iSNVs below the Sanger detection limit (around 25%) substantially

improves the accuracy of the TI estimates.

We investigated how the TI estimates were influenced by sequence length, genome

region, codon position, iSNV cutoff and type of distance measure. We found that the most

precise estimates of TI were obtained using average pairwise distance or site entropy based

on 3rd codon positions in the pol gene. For these data viral diversity increases approximately

linearly during at least 8 years after infection, which allows estimation of TI during this time

period. The accuracy of the TI estimate was approximately +/- 1 year in long-term infec-

tions, and slightly better during the first year of infection. The env gene was less suitable

than pol for estimating TI, especially if longer time had elapsed since infection. This is

because frequent selective sweeps in env continuously remove diversity and this effect

becomes increasingly evident with increasing time since infection [17, 24]. This explains

why the most accurate results were obtained using 2000–3000 base pair long sequences cov-

ering pol, while omitting env. We found that most of temporal signal came from 3rd codon

positions (at which most mutations are synonymous) and that omission of 1st and 2nd

codon positions slightly improved TI estimates for iSNV cutoffs (xc) below 10%, i.e. when

the full potential of NGS was utilized. Diversity measures based on average pairwise distance

and site entropy outperformed the measure based on fraction of polymorphic sites at low

iSNV cutoffs.

Fig 6. (Left) Distribution of the estimation error. (Right) Estimated time of infection (ETI) versus actual time of

infection (TI). Displayed for the training and the validation data sets. (Genetic region: 3rd codon positions in pol,

diversity measure: average pairwise distance, xc = 0.003. Connected data points belong to the same patient.)

https://doi.org/10.1371/journal.pcbi.1005775.g006
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Based on our results we make the following recommendations for TI estimation based on

HIV NGS data; average pairwise distance on 3rd codon positions in pol sequences with the

lowest possible cutoff for iSNVs (in our case 0.3%). Importantly, we have validated our recom-

mendations by applying them to a validation dataset consisting of NGS data from 31 addi-

tional patients with known infection times. The accuracy of TI estimation for the validation

data was as accurate and precise as for the training data, which confirms the applicability of

our method for broader clinical and epidemiological use. For convenience we provide a table

that translates viral diversity into TI as well as a web application that estimates TI for user-

defined regions of the HIV-1 genome.

Even though we primarily have focused on estimation of TI in individual patients, our

method can be applied to estimation of incidence in populations. Many methods for HIV-1

incidence estimation in populations have been based on biomarkers that classify patients as

recently or long-term infected (e.g. the BED and LAg assays). [1–7]. Such binary classification

can be done based on NGS data; if the diversity is less than a specified cutoff value Dcr infection

is classified as recent, and otherwise as long-term. The cutoff between recent and long-term

infections can be chosen by the investigator using Table 2 or the website. For instance a diver-

sity of 0.0021 for 3rd bases on pol corresponds to 180 days since infection. However, we have

not fully determined two test properties that are required for most binary incidence estimators;

the mean duration of recent infection (MDRI) and the false-recent rate (FRR) [38]. The NGS

data can also be used to directly model HIV-1 incidence based on TIs [39, 40].

Our study has some limitations. Ideally we should have studied a larger and more diverse

set of training and validation patients. However, patients with known time of infection, long

followup without therapy and suitable biobank samples are rare. Today it would be unethical

to delay start of ART. Thus, our training dataset consisted of patients who were diagnosed

between 1990 and 2003 and retrospectively identified and investigated using stored biobank

samples [24]. The patients in the validation dataset were diagnosed between 2003 and 2010,

and as a consequence had shorter followup without ART. In the training dataset 9 of 11

patients were MSM infected with subtype-B virus. The validation patients had a more diverse

distribution with 11 patients infected by other routes than MSM and 16 patients infected with

non-B-subtypes. The precision in the TI estimate was similar for patients with MSM and non-

MSM as well as subtype B and non-B infections, which again suggests that our regression coef-

ficients can be broadly applied (S11 and S12 Figs).

Another limitation is that the true (i.e. “known”) TI was estimated from laboratory and

clinical data and therefore has an error that we have not considered because it is difficult to

estimate. However, such a measurement error, which surely exists, will reduce the accuracy at

which TI can be estimated and assuming zero measurement error for the “true” TI is therefore

conservative.

A potential problem with NGS data is incomplete sampling of virus diversity in samples

with low virus levels. If the sequencing library is dominated by a few template molecules the

TI estimate might be erroneously short. A related problem is due to the reduced ability of

NGS to correctly estimate TI in infections that were founded by multiple virions. Two of

our 11 training patients showed evidence of such multiple infections. Clear overestimation

of TI was also observed in one of the 31 validation patients. It has been reported that HIV-1

infection is founded by more than one virion in around 40% of MSM and around 20% of

heterosexuals, whereas superinfection (from different donors) is more rare [41, 42]. In view

of the fact that most of our study patients were MSM, it is surprising that serious overesti-

mation of TI was not observed more often. There are two possible explanations for this.

Firstly, TI will only be overestimated if the multiple founders are sufficiently diverse. Sec-

ondly, the overestimation of TI appeared to diminished over time in the two training
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patients, which may happen if excess diversity is removed because favored iSNVs are

selected for over time [24]. Even though our method has limitations with multiple founders

and superinfection, a diversity value that exceeds the upper 95% confidence value of the

diversity that expected 10 years or more after infection should be treated with great caution,

because it may be due to multiple founders and/or superinfection. Furthermore, we plan to

investigate estimation of TI can be improved by combining virus diversity determined NGS

with other biomarkers, such as BED, LAg avidity, CD4 and virus levels, in a multiple assay

algorithm.

Finally, NGS is not yet part of routine diagnostics for HIV resistance. However, in the com-

ing years NGS can be expected to replace Sanger sequencing for clinical HIV-1 resistance test-

ing, which is recommended for all newly diagnosed patients (in developed countries). Thus,

while our method for estimating TI from NGS data currently requires extra laboratory work,

NGS data is likely to become increasingly available as part of routine HIV-1 care, which will

increase the utility of our method.

Conclusion

In conclusion, we show that sequence diversity determined by NGS can be used to estimate

time since HIV-1 infection with a precision that is better than most alternative biomarkers.

Importantly, TI can be estimated many years after infection, whereas most alternative methods

only categorize patients as being recently or long-term infected or are less precise. We found

that TI was most accurately estimated using 3rd codon positions in pol sequences with a xc =

0.003 cutoff for iSNVs and that average pairwise distances was the preferred distance measure.

Samples with low virus levels and infections established by multiple virions can give rise to

misleading levels of virus diversity. Algorithms based on NGS diversity in combinations with

other biomarkers may prove very useful.
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