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Abstract

Using fission yeast cell cycle as an example, we uncovered that the non-equilibrium network

dynamics and global properties are determined by two essential features: the potential land-

scape and the flux landscape. These two landscapes can be quantified through the decom-

position of the dynamics into the detailed balance preserving part and detailed balance

breaking non-equilibrium part. While the funneled potential landscape is often crucial for the

stability of the single attractor networks, we have uncovered that the funneled flux landscape

is crucial for the emergence and maintenance of the stable limit cycle oscillation flow. This

provides a new interpretation of the origin for the limit cycle oscillations: There are many

cycles and loops existed flowing through the state space and forming the flux landscapes,

each cycle with a probability flux going through the loop. The limit cycle emerges when a

loop stands out and carries significantly more probability flux than other loops. We explore

how robustness ratio (RR) as the gap or steepness versus averaged variations or rough-

ness of the landscape, quantifying the degrees of the funneling of the underlying potential

and flux landscapes. We state that these two landscapes complement each other with one

crucial for stabilities of states on the cycle and the other crucial for the stability of the flow

along the cycle. The flux is directly related to the speed of the cell cycle. This allows us to

identify the key factors and structure elements of the networks in determining the stability,

speed and robustness of the fission yeast cell cycle oscillations. We see that the non-equili-

briumness characterized by the degree of detailed balance breaking from the energy pump

quantified by the flux is the cause of the energy dissipation for initiating and sustaining the

replications essential for the origin and evolution of life. Regulating the cell cycle speed is

crucial for designing the prevention and curing strategy of cancer.
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Author summary

We have uncovered that the non-equilibrium network dynamics and global properties are

determined by two essential features: the potential landscape and the flux landscape. We

have found that the funneled potential landscape is crucial for the stability of the states on

the cell cycle, however, the stabilities of the oscillation states cannot guarantee the stable

directional flows. We have uncovered that the funneled flux landscape is important for

the emergence and maintenance of the stable limit cycle oscillation flow. This work will

allow us to identify the key factors and structure elements of the networks in determining

the stability, speed and robustness of the fission yeast cell cycle oscillations. We see that

the non-equilibriumness characterized by the degree of detailed balance breaking from

the energy pump quantified by the flux is the cause of the energy dissipation for initiating

and sustaining the replications essential for the origin and evolution of life. Regulating the

cell cycle speed is crucial for designing the prevention and curing strategy of cancer.

Introduction

The global stability and robustness are crucial for maintaining the function. They are also

important for uncovering underlying mechanisms of the networks. [1–7] However, it is diffi-

cult to quantify them for dynamic systems and networks. This presents a challenge for the

dynamical systems and the field of systems biology. [8–23]

In equilibrium systems, the global nature of the system is characterized by the underlying

equilibrium potential landscape U which is directly linked to the equilibrium probability

through the Boltzmann distribution law P * exp(−βU). The local dynamics is determined by

the gradient of the equilibrium potential landscape. However, most dynamical systems do not

typically have a gradient potential as in the equilibrium case. They are open systems usually

not in isolations. Global natures of such systems are hard to address. In addition, for meso-

scopic systems, the intrinsic fluctuations can also be significant. Under stochastic fluctuations,

instead of following the dynamical trajectories which are stochastic and unpredictable, the evo-

lution of the probabilistic distributions should be followed, which is inherently global as well

as predictable due to its intrinsic linearity. The probabilistic evolution is governed by the mas-

ter equations for discrete state space (more general) and Fokker-Planck equations for continu-

ous state space.

It turns out the steady state distribution of the probability evolution in long time limit can

give a global quantification of the dynamical systems [5–23]. This defines a probability or

weight landscape for characterizing the system states. On the other hand, the dynamics of the

systems can be decomposed to gradient of the potential landscape related to the steady state

probability distribution and a curl probability flux. The existence of a non-zero curl flux

directly reflects the degree of the breakdown of the detailed balance. This quantifies the degree

of the non-equilibrium. While this decomposition is shown explicitly in continuous space

through Fokker-Planck equation description of the stochastic dynamics [10–23], the corre-

sponding decomposition and associated statistics of stochastic dynamics in discrete space

from the master equation still needs further explorations [22–31].

In this work, we study the more general stochastic dynamics in discrete space of the non-

equilibrium networks (Markov chains) governed by the probabilistic master equation. We

found the network dynamics and global properties are determined by two features: the poten-

tial landscape and the probability flux landscape. While potential landscape quantifies the

probabilities of different states forming hills and valleys, the probability flux landscape is
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composed of many flux loops flowing in state space. Therefore, statistics of the flux loops

becomes important. These two landscapes can be quantitatively constructed through the

decomposition of the dynamics into the detailed balance part and non-detailed balance part.

We found that while funneled landscape is crucial for the stability of the single attractor net-

works and stability of oscillation states. The funneled flux landscape is crucial for maintaining

the stable limit cycle oscillation flow. The stability and the robustness of the networks can

be quantified through a dimensionless ratio of the gap or steepness versus the averaged varia-

tions or roughness of the landscape (which measures the degree of funnel, we termed as

robustness ratio RR), and explored under the changes of the network topologies and stochastic

fluctuations.

This flux landscape picture provides a new interpretation of the origin of the limit cycle

oscillations. The global oscillation only emerges when one specific loop stands out and carries

much more probability flux, and therefore becomes more probable than the rest of the others.

We specifically studied the fission yeast cell cycle as an example to illustrate the idea. We

found the flux landscape of the fission yeast cell cycle oscillations is funneled, which guarantees

its stability and the robustness of the oscillation flows. The global stability is quantified by the

robustness ratio RR of the funneled flux landscape and the robustness is quantified by RR

against the changes in topology of the network (wirings) and stochastic fluctuations. The flux

is directly related to the speed of the cell cycle. The landscape analysis here allows us to identify

the key factors and structure elements of the networks in determining the global stability,

speed, and robustness of the fission yeast cell cycle oscillations. We see that the non-equili-

briumness characterized by the degree of detailed balance breaking from the energy pump

quantified by the flux is the cause of the energy dissipation for initiating and sustaining the

replications essential for the origin and evolution of life. The cell cycle speed is a hallmark of

cancer. Regulating the cell cycle speed thus provides a possible strategy for preventing and cur-

ing strategy against cancer.

Model and methodology

The stochastic boolean model of fission yeast cell cycle

We follow a boolean network model mainly built for fission yeast in [32]. As illustrated in the

Table 1, the cell cycle of fission yeast is divided into several phases: START phase! G1 phase!

S phase! G2 phase!M phase! G1 phase. The network wiring diagram shown in Fig 1 con-

sists of one check point and 9 gene nodes, that is CS (Cell Size), SK, Cdc2/Cdc13, Ste9, Rum1,

Slp1, Cdc2/Cdc13�, Wee1/Mik1, Cdc25, and PP. The check point of this cell cycle network is

named as Cell Size (CS) as it mainly works as an indicator of mass of the cell [32, 33]. In the

global state space, there are 210 states. Each state is the combination of the “on” (si = 1) and “off”

(si = 0) states, which can be represented by a state vector S = {s1, s2, s3, . . ., s10}. With this repre-

sentation, it can form a state space of a complex gene regulation interaction networks [34]. In

general, one can use the boolean dynamics model to explore the coarse grained dynamics with

the information of the wiring topology of the networks [33], and one can find that there are

robust biological pathway and a global robust G1 state inside the state space.

However, from the view of cell cycle, the stationary state G1 which converges the biological

pathway is a temporal fixed point. To perform the function of cell cycle, one needs a positive

feedback to push the G1 state to pass through the checkpoint of cell size to activate the node

SK, and then go through the dynamic oscillatory trajectory, and finally get back to the G1

state. Therefore we add a kinetic excitation once the global G1 state is reached. For biological

meaning, if there is no nutrition supply constantly pumping into the system, the cell cycle will

stay in the stationary G1 state (so-called G0 state). While given enough nutrition supply, the
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cell staying at G1 gains a large transition probability to reach the cell size checkpoint and then

activate the node SK to drive the cycle. Such a pumping or driving force has been explicitly dis-

cussed in a model system for limit cycle oscillation as the chemical energy supply [35]. There,

the chemical energy supply, which may be generated from ATP or GTP, acted as a chemical

pump or battery for initiating and maintaining the cycle. In dynamics, the chemical energy

supply is in terms of flux driving the cycle flow.

This cycling conception can be emerged well in a stochastic Boolean network model. We

have developed an approach to probabilistically describe the network dynamics as follow:

Firstly, we calculate transition probabilities T(si(t0)|S(t)) of gene node i jumping from state

si(t) to state si(t0), where t and t0 are two close neighborhood time moments. Based on the Mar-

kovian process theory, all the cases of transition probability T(si(t0)|S(t)) are shown in the black

box in Table 2. [24, 28, 36–40].

In Table 2, I ¼
P10

j¼1
aijsjðtÞ is defined as the total input of the ith gene node at time t, which

is the summation of each of the interaction strength aij from jth gene node to ith gene node.

Just considering the simplifications of the interactions between two nodes (activated (+1)

or repressed (-1)), one can obtain that: when the total input I> 0, gene node i has high proba-

bility to stay at state si(t0) = 1; when the total input I< 0, gene node i tends to be repressed at

state si(t0) = 0. It is similar with the behavior of switching function, that is why we define the

transition probability as T(si(t0)|S(t)) = 1/2 ± 1/2tanh(μI). In this way, we can clearly see that

the transition probability is mainly determined by the input. While in the case of I = 0, the ith
gene node mainly stays at present state, just with a little probability of c to change the state due

to the background production and self-degradation. There is only one exception for the case

I = 0, that is when the cell cycle stays at the G1/G0 state, where we add a cycling activation

strength of γ to activate the check point of CS, which corresponds to the condition with

enough chemical supply as mentioned above.

The biological meaning of the three parameters μ, c and γ in Table 2 can be illustrated as fol-

lows: μ can be considered as a mean transition strength from the input to output of a gene or

protein node, which is also related to the inverse of the fluctuation or noise strength.

c is a parameter to quantify the effect of perturbation from the background production or

degradation with not input (I = 0). For example, gene node i without any input interactions

has a probability of c to change the present state, with 0! 1 due to the background produc-

tion, while 1! 0 due to the background self-degradation (direct degradation and growth

dilution).

Table 1. Fission yeast cell cycle temporal evolution steps.

Phase Time Step Network Nodes

CS SK Cdc2/Cdc13 Ste9 Rum1 Slp1 Cdc2/Cdc13* Wee1/Mik1 Cdc25 PP

START 1 1 0 0 1 1 0 0 1 0 0

G1 2 0 1 0 1 1 0 0 1 0 0

G1/S 3 0 0 0 0 0 0 0 1 0 0

G2 4 0 0 1 0 0 0 0 1 0 0

G2 5 0 0 1 0 0 0 0 0 1 0

G2/M 6 0 0 1 0 0 0 1 0 1 0

G2/M 7 0 0 1 0 0 1 1 0 1 0

M 8 0 0 0 0 0 1 0 0 1 1

M 9 0 0 0 1 1 0 0 1 0 1

G1/G0 10 0 0 0 1 1 0 0 1 0 0

https://doi.org/10.1371/journal.pcbi.1005710.t001
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Fig 1. The cell cycle regulatory network of fission yeast with 10 gene nodes. The solid arrow (!)

represents positive regulations between gene nodes. The inhibition sign (���|)represents negative regulations

between gene nodes.

https://doi.org/10.1371/journal.pcbi.1005710.g001
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γ represents the probability of the positive feedback or stimulation from the stationary G1

state to the check point of cell size, that is from G1 phase to START phase. The cell cycle stays

at G1/G0 at present implies the fact that there is no input interaction (I = 0) for all the node

(so-called global stable steady state). When the nutrition supply is enough, the chemical energy

pump will push the stationary G1/G0 state to activate the check point node CS (i = 1) and

reach the state of START phase, with a probability of γ (with a probability of (1 − γ) to stay at

G0).

Secondly, we figure out that the transition probability between two neighbor states in the

Markov time series chain can be written as the product of each node transition [23, 27]

TðSðt0Þ ¼ fs1ðt0Þ; s2ðt0Þ; :::; s10ðt0ÞgjSðtÞÞ ¼
Y10

i¼1

Tðsiðt
0ÞjSðtÞÞ; ð1Þ

Finally, we obtain the evolution equation to guide the probabilistic dynamics, which is so

called master equation [23, 41, 42]:

dPi

dt
¼ �

X

j

TijPi þ
X

j

TjiPj; ð2Þ

where Pi represents the probability of state i, and the transition probability Tij represents the

transition probability from state i to state j. Here, we use Tij as a discrete transition probability

to fit the master equation, whose meaning is equal to the continuous transition probability

expression of T(S(t0)|S(t)). The physical meaning of the master equation is the conservation

law of probability: the local change of the probability of a particular state i in time is equal to

the probability flow (flux) from the other states to this state i given by ∑j Tji Pj subtracting the

probability flow (flux) from the state i to other states ∑j Tij Pi. By solving the 210 = 1024 master

equations numerically, we obtain both the time-dependent evolution and the steady-state

probability of each state in the global state space.

Decompositions of boolean dynamics and probability flux loops

For steady state, we set the left term of the master eq (2) to zero, that is
dPi
dt ¼ 0, then we obtain

the numerical steady state solution Pss
i , which is the long time limit. Given the steady solution,

we can define the steady state flux between state i and j as: Fij
ss ¼ � TijPss

i þ TjiPss
j , If for any i, j

pair, Fijss = 0, this Markov chain is detail-balance preserved, and the steady state of the system

becomes the equilibrium state (without net local flux), since dPi/dt = ∑j Fijss = 0. However, in

general the steady state probability can be obtained, but it does not have to satisfy the detailed

balance condition(Fijss 6¼ 0). In other words, the net flux does not have to be zero. The system

is then in non-equilibrium steady state. Although the steady-state distribution is fixed and

does not change in time, there can be an internal probability flow among states.

Table 2. Transition probability T(si(t
0)|S(t)) of gene node i.

Input Output

si(t
0) = 1 si(t

0) = 0

I 6¼ 0 1/2 + 1/2tanh(μI) 1/2 − 1/2tanh(μI)

I = 0 si(t) = 1 1 − c c

si(t) = 0 S(t) 6¼G0 or i 6¼ 1 c 1 − c

S(t) = G0 and i = 1 γ 1 − γ

https://doi.org/10.1371/journal.pcbi.1005710.t002
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In order to study the non-equilibrium steady states and characterize the global properties,

one can separate the dynamical process into two parts, a detailed balance part and a pure irre-

versible non-detailed balance flux part by decomposing the transition probability matrix M
[29]. The master equation can be rewritten as dP=dt ¼MTP, where P is the vector of proba-

bility of all the discrete states, M is the transition probability matrix (or rate matrix) with

Mij = Tij, i 6¼ j and Mii = (−1)∑j Tij. We define a matrix C such that the ith row and jth column

of it is given as Cij ¼ maxfTijPss
i � TjiPss

j ; 0g=P
ss
i ; i 6¼ j and Cii = (−1)∑j Cij, and matrix D whose

ith row and jth column is given as Dij ¼ minfTijPss
i ;TjiPss

j g=P
ss
i ; i 6¼ j and Dii = (−1)∑j Dij. It fol-

lows that M ¼ C þD and DTPss ¼ 0. Since MTPss ¼ ðC þDÞTPss ¼ 0, CTPss ¼ 0. By separat-

ing the transition probability matrix this way, two Markov processes are obtained [29]. The

probability transition matrix (or rate matrix) M for characterizing the dynamics can be

decomposed into two terms: C and D. Both C and D have the same steady-state(stationary)

probability distribution, and one of the processes D satisfies detailed balance(Dij Piss = Dji Pjss),
while the other C is non-detailed balanced and irreversible (if Cij Piss> 0, Cji Pjss = 0). In this

way, the dynamics is decomposed to detailed balance preserving part and detailed balanced

breaking part.

The non-equilibrium irreversible part can be termed as the circulation or flux part, since it

can be further decomposed into flux circles or loops with a flux value on each cycle [29]. The

prove of the circulation also provides a way to obtain all the circles and their corresponding

flux values for the dynamic part. By definition of flux, we have Fij ¼ � CijPss
i þ CjiPss

j ¼ � Fji.
Now define Jij ¼ CijPss

i ; i 6¼ j; Jii ¼ 0, we have ∑i Jij = ∑i Jji. Since Jii = 0, suppose Jk0k1
> 0, from

the summation equation just mentioned, we can find a k2 6¼ k0, k1 such that Jk1k2
> 0. We can

keep on doing this, until a repeat is found: kn 2 {k0, k1, . . ., kn−2}. Suppose kn ¼ kn0
, let

i1 ¼ kn0
; i2 ¼ kn0þ1; . . . ; in1

¼ kn� 1 and in1þ1 ¼ i1, we now construct a cycle or closed loop with

i1; . . . ; in1
. Let r1 ¼ mink¼1;2;...;n1

fJikikþ1
g, define r1 as the flux value of this cycle. Then subtract

their flux value from the matrix J, thus

Jð1Þij ¼

Jij � r1; i 2 fi1; :::; in1
g;

Jij; otherwise:

8
<

:

If J(1) 6¼ 0, repeat what we did above to find another cycle as well as its flux value, then sub-

tract those fluxes from J(1) to get J(2). Since the number of non-zero elements in J(i) is at least

one less than that in J(i−1), there exits an integer N such that J(N+1) = 0 (all the elements of the

matrix J are zero). Therefore for the non-detailed balanced part of the dynamics, the flux can

be decomposed to finite number of circles or closed loops, each with a flux value, J ¼
Pi¼N

i¼1
JðiÞ

[29]. Therefore, the decomposition and associated flux statistics can be directly carried out at

the master equation level.

On the other hand, one can also find another way for decomposition and associated sta-

tistics of the fluxes from the stochastic boolean trajectories. One can follow the trajectory

from one state S(t) at moment t to another state S(t0) at the next moment t0. If one finds the

same state at different moment, that is S(t@) = S(t), then all the states between these two same

states can be defined as one loop. Then one should remove this loop from the trajectory and

repeat the steps above to obtain all the loops. By making statistical analysis on all the flux

loops, one can calculate the flux landscape using the formula below, Uflux = −lnPflux, where

Pflux ¼ Fluxloop ¼ limN!1

N
JðiÞ

NJ
. [26–29, 43]

Funneled potential and flux landscapes of fission yeast cell cycle

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005710 September 11, 2017 7 / 31

https://doi.org/10.1371/journal.pcbi.1005710


Therefore we have two quantitative features to characterize the system, one is the steady

state probability and the other is the non-zero steady state probability flux which can be further

decomposed into loops. The steady state probability obeys the evolution equation of the transi-

tion probability matrix (or rate matrix) at long time limit characterizing only the detailed

balance part. The detailed balance condition allows one to identify the path independent prob-

ability measures [30]. This naturally leads to the potential. We can see how both potential and

flux landscape influence the dynamics and stability of the system through an example on fis-

sion yeast cell cycle.

Entropy production rate and dissipation in the fission yeast boolean

network

As known, when an open system is under long time evolution, it can reach non-equilibrium

steady state (NESS) [6, 7, 19–23, 31, 44]. The local steady state flux Fij
ss ¼ � TijPss

i þ TjiPss
j is not

necessarily equal to zero (no detailed balance). In this condition we can define a generalized

force referring to the generalized chemical potential (from j to i) Aji ¼ lnðTjiPjTijPi
) [8, 10, 19–23,

31, 44]. There is a mapping between the cellular networks and electric circuits. The flux Fij cor-

responds to current I and chemical potential Aij corresponds to voltage V. The non-equilib-

rium cell network dissipates energy just as the electric circuits.

In the steady state, the heat loss rate is related to the entropy production rate. The entropy

production or dissipation characterizes “time irreversibility” and provides a lower bound for

the actual heat loss in Boolean network [8, 10, 19–23, 44]. The total entropy change is equal to

the part from the system or source plus the part from the bath or sink (dissipation). Since in

steady state the entropy change of the system is equal to zero, thus the total entropy change

(source) is equal to the entropy change of the sink (dissipation). The total entropy change

(source) = ∑Fij Aij is the entropy production and the sink term is dissipation. Therefore in

steady state, knowing the entropy production, we know the dissipation quantitatively. The

entropy S from the system part is defined as S = −∑i PilnPi and entropy production rate
dStot
dt is

given by:
dStot
dt ¼

P
FjiAji ¼

P
ijTjiPjln

TjiPj
TijPi

� �
.

Entropy production is correlated with flux. When the steady state flux is zero, the entropy

production or dissipation at steady state is zero. When the flux increases, the entropy produc-

tion typically increases. Therefore, the entropy production or dissipation can also serve as a

quantitative measure of how far away the system is from the equilibrium, or in other words,

the degree of the detailed balance breaking.

Results and discussions

Potential landscape of fission yeast cell cycle

Quantifying the potential landscape. To explore the global quantification of dynamical

systems of this fission yeast networks, we define the underlying potential landscape U from

the steady state probability U = −ln(Pss). To visualize the potential landscape U over the 210

states space, we firstly draw the landscape spectrum, which is shown in Fig 2. Then we define

the Robustness Ratio (RR) as the ratio of potential energy gap between the lowest potential

energy value and the average potential energy, with the average variations measured by the

standard deviation of potentials. That is RR = δU/ΔUwhere δU = |Um −<U> | and

DU ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
< U2 > � < U>2
p

. The gap represents the separation between the lowest potential

state with the rest of the decoys. This definition of RR holds for a single attractor. When we

deal with cycle oscillations as fission yeast, we are interested in the stability of not only one

Funneled potential and flux landscapes of fission yeast cell cycle
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state but the whole oscillating cycle states. Therefore we extend our definition to include all

the states (10 states in our example of fission yeast cell cycle) on the oscillation path as the

“native” states. So, for the cell cycle, the gap quantifies the bias or slope of the underlying land-

scape towards the native (potentials of all the states on the oscillation paths basin of attraction)

while the average variations measure the fluctuations or roughness of the underlying land-

scape. In this way, we can quantify the topography of underlying potential landscape.

Fig 2 was shown with the parameters μ = 5, c = 0.001 and γ = 60% for the fission yeast cell

cycle model(Table 2). In the potential landscape spectrum there are 10 states representing the

biological cell cycle phases (G1, S, G2, M) which are marked as green lines. We notice that

they all settle at the bottom. This means the 10 states are sitting on the most stable cell cycle

pathway. We then calculate RR = 2.29813. RR is significantly larger than 1, which indicates the

10 states along the biological cell cycle is separated from the others. So we state that this can be

the reason that the cell cycle states are stable since the states of the biological path are all at low

potentials and high probabilities sufficiently separated from others.

Furthermore, we draw all those states (210 = 1024) on a 2-dimensional surface by minimiz-

ing the distances between two states which have the strongest connections, and using the

underlying potential energy to be the vertical axis. The color represents the potential level of

each state on both surface and the bottom contour map. We obtain Fig 3, in which we notice

that the potential landscape shows a distinct topology with a Mexican hat like shape. This gives

us a visualized 3D picture for the potential landscape. The valleys of this landscape correspond

to exactly the biological cell cycle with low potentials more easily seen at the bottom contour

map.

In our earlier study of budding yeast system without explicitly putting in the excitations

from G1 ground state to the start signal [22, 23], we see quite different dynamics and land-

scape. There the potential landscape has a funneled shape. The system has one dominant basin

of attraction pointing towards G1. The model can explain the dynamical process of yeast cell

Fig 2. Potential landscape spectrum U of the 210 states, where μ = 5, c = 0.001 and γ = 60%. The

potential values of those 10 states of the biological pathway are in green lines. They are lower than the rest of

the states.

https://doi.org/10.1371/journal.pcbi.1005710.g002
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cycle once the start signal kicks off. Since the end state is always the G1 state (bottom of the

funnel or basin of attraction), it does not contain the cycle part. The excitation from G1 state

here giving the cycle is triggered by the nutrition supply or energy pump [17–19, 35].

With the excitation explicitly implemented in the fission yeast cell cycle, we can see in Fig 3

the potential landscape changes the shape from single attractor funnel to Mexican hat shape

which can guarantee the stabilities of the oscillation states. If we see Mexican hat landscape a

Fig 3. Three dimensional potential landscape and two dimensional contour in projected 2 dimensional state space. The vertical axis and color

represent the potential level of each state in the three dimension and the contour map laying on the bottom respectively. The low potential valley of the

potential is a cycle or closed ring, which is exactly the biological cycle path with low potential level, and this can also be seen more clearly on the contour map.

https://doi.org/10.1371/journal.pcbi.1005710.g003

Funneled potential and flux landscapes of fission yeast cell cycle

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005710 September 11, 2017 10 / 31

https://doi.org/10.1371/journal.pcbi.1005710.g003
https://doi.org/10.1371/journal.pcbi.1005710


global quantification of a closed loop line attractor, an effective “funneled” potential landscape

towards the oscillation path emerges. The degree of the funneless is quantified by RR. The

“funneled” potential landscape towards the oscillation guarantees the global stabilities of the

states on oscillation paths. However, this potential landscape can not guarantee the stable

directional flows for the oscillations. The state transitions or switching along the biological

path from the energy pump provided by the nutrition supply directs the oscillation cycle of the

fission yeast cycle (G1! S! G2!M! G1). This is globally manifested by the underlying

flux landscape, as we will show later in this study.

Robustness of potential landscape against changes in sharpness of response, self degra-

dation, and stimulations. To further explore the robustness of the networks with internal

and external perturbations, we calculate the Robustness Ratio (RR), probability of the cell cycle

path, entropy production against the variations of different parameters.

In Fig 4(a), we have shown the stationary probabilities for both G1 state and cell cycle path

by fixing c = 0.001, γ = 60% and changing μ. As we mentioned above, the parameter μ refers to

the mean transition rate of gene or protein switching and can be considered as the inverse of

Fig 4. Influence on the system robustness from the variation of the sharpness of the response or the inverse noise level μ, by fixing c = 0.001

and γ = 60%. (a) Steady-state probability of stationary G1 (PG1) and “native” cycle (PCircle) versus μ. (b) Robustness Ratio (RR) versus μ. (c) Entropy

production rate (dS/dt) versus μ. (d) Entropy production rate (dS/dt) versus Robustness Ratio.

https://doi.org/10.1371/journal.pcbi.1005710.g004
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the noise strength or environment temperature [23, 27]. So as the transition rate μ increases or

the fluctuation decreases, the whole biological cell cycle, as well as the G1 state, becomes more

stable monotonously. When comparing the biological cell cycle with the G1 phase by changing

μ, the biological cell cycle is more statable than the G1 phase with higher probabilities.

The changing of RR while switching the parameter μ is shown in Fig 4(b). As we see at first

the Robustness Ratio increases when μ increases or the fluctuation decreases. This means a

large transition from input to output or smaller fluctuations makes a more robust network.

Notice that the RR goes down to reach a certain value when μ is large enough. This result is

similar to the behavior shown in the budding yeast cell cycle without the excitation from G1

ground state [23]. We have stated that there are many traps beyond the G1 state and circle

path in the state space, which have low potentials and high weights at “low temperatures”

(small fluctuations or high transition rate μ). The presence of these traps leads the potential

landscape spectrum less separated from the lowest potential state, and therefore less RR. One

needs to increase the “temperature” with more fluctuations or decrease transition (or switch-

ing) μ (at high μ) in order to “kick” the system out of the traps and therefore increase RR. That

is why there is a peak of RR against the variation of the parameter μ.

In Fig 4(c) and 4(d), we plotted the entropy production rate or the dissipation cost of the

network, dSdt, against μ and RR. We can see that the sharper the switching is, and therefore the

more stable the oscillation is, the more dissipation cost is. The stable oscillation requires more

energy consumptions to maintain it. The entropy production rate is the accumulated effects

from the combination of both landscape and flux. Therefore the entropy production rate is in

general a nonlinear function of these accumulated effects of landscape and flux. In addition,

we see that traps consumes more energy and this leads to less stability of oscillation states

through RR.

Fig 5(a) shows the steady state probability of the biological cell cycle versus the variation of

the perturbation parameter c (fixing μ = 5, γ = 60%). We notice that large (small) c indicates

large (small) perturbation, and then the probability of biological cell cycle is decreasing with

respect to c. It indicates that less perturbation gives more stable biological cell cycle, and there-

fore a more robust network which is shown in Fig 5(b). Fig 5(c) and 5(d) show the energy dis-

sipation decreases as the perturbation effect increases and as the RR decreases, which shows

that the robust system needs more energy consumption against the larger perturbation effect.

γ can be considered as the jumping probability which represents that the state of the fission

yeast receives a start signal to begin from the G1 phase. We see in Fig 6(a) that the weights or

occupational probabilities of the states on the oscillation path do not change significantly with

respect to cycling activation strength γ. Although γ does not change the stabilities of these

oscillating states much, it does lead to the directed flow and therefore the stable oscillations as

seen in the later flux landscape discussions. Consequently, stimulations through the cycling

activation strength γ does not change significantly the shape of the potential landscape as

shown in Fig 6(b). Fig 6(c) and 6(d) show that the recycling probability of the cell cycle costs

more energy and maintaining a more stable oscillating system requires more energy

consumption.

Fig 7(a) and 7(b) show the steady state probability of G1 state and the steady state probabil-

ity of the biological cell cycle path under various stimulation levels (γ) at different switching or

fluctuations μ. It has been studied above that μ should characterize the inverse noise strength

and increase of which enhances the stability of both the G1 phase and the biological cell cycle

path. When considering the changes of jumping probability γ, one can see in Fig 7(a) and 7(b)

that the larger the stimulation probability from G1 phase is,the less stable G1 state becomes.

The weights or the occupation probabilities of the states on the oscillation paths are also
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decreased slightly with respect to the cycling activation strength γ, but not significantly com-

pared to that of G1. This means that although the individual states or phases of the cell cycle

such as G1 becomes less stable, the stimulation does not change significantly the overall occu-

pations of the states on the oscillation paths and therefore the associated stability.

Power spectrum under different stimulation and sharpness of responses. To illustrate

the oscillation cycle, one can introduce the correlation functions of the dynamical observables.

For the fission yeast cell cycle, the observables are the expressions of individual genes. This

gives the measure on the dynamical response and fluctuations of the systems. The Fourier

transform of the autocorrelation function in time of gene expression variables gives the power

spectrum. The power spectrum analysis is widely used in the periodical signal transduction

mixed with noise interference [45]. The gene expression time series of fission yeast cell cycle

can be viewed as the noisy signals. We try to calculate the power spectrum of the fission yeast

cell cycle to find how oscillation is influenced by different parameters, and then study their

relationship with the flux landscape in the global state space.

Fig 5. Influence on the system robustness from the variation of the perturbation parameter c, by fixing μ = 5, γ = 60%. (a) Steady-state

probability of “native” cycle (PCircle) versus c. (b) Robustness Ratio (RR) versus c. (c) Entropy production rate (dS/dt) versus c. (d) Entropy production

rate (dS/dt) versus Robustness Ratio.

https://doi.org/10.1371/journal.pcbi.1005710.g005
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The results from Fig 8(a) to 8(f) show that a main peak of the power spectrum emerges and

becomes more prominent with the cycling activation strength γ being larger (0 < γ< 0.4)

when fixing c = 0.001, μ = 5. This peak corresponds to exactly the speed or frequency of the

cell cycle oscillation path. This shows that the intrinsic frequency of the oscillations from the

loop flux (the loop flux is proportional to the speed and inversely related to the period of oscil-

lations) coincides with the external response frequency at power spectrum peak. In other

words, this results the resonance from the system’s external response by power spectrum to

reflect the intrinsic frequency of the cell cycle oscillations. When γ becomes larger than 0.4, we

also find that the power spectrum will have even more significate peaks. As one peak can map

Fig 6. Influence on the system robustness by changing the cycling activation strength γwhich represents the jumping probability from the G1/

G0 state to the activated G1 state (START phase), while fixing μ = 5, c = 0.001. (a) Steady-state probability of “native” cycle (PCircle) versus γ. (b)

Robustness Ratio (RR) versus γ. (c) Entropy production rate (dS/dt) versus γ. (d) Entropy production rate (dS/dt) versus Robustness Ratio.

https://doi.org/10.1371/journal.pcbi.1005710.g006
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into one periodical oscillation, we can see that with γ becoming higher, there are more and

more smaller peaks representing smaller loops emerging, and the biological cell cycle path

tends towards the most prominent loop, which can be considered as the dominant loop com-

pared with others.

While by setting c = 0.001, γ = 60% with changing μ, Fig 9(a) to 9(h) give us a clear view

that the increasing μ leads to one prominent peak and several other smaller peaks, which again

shows that the fission yeast cell cycle contains one main dominant periodical oscillation, and

many other much smaller cycles. At even larger stimulations chaos might emerge.

Funneled flux landscape leads to robust limit cycle oscillations

Quantifying the flux landscape. To give a whole picture of the probabilistic flux, we fur-

ther calculate the flux landscape of this fission yeast cell cycle, and analyze how the flux land-

scape is influenced by different parameter variations, such as μ, c and γ. By comparing the

characteristics of landscape of flux with that of the landscape of potential, we expect to gain

unique insights on the non-equilibrium biological cell cycle.

After the decomposition of the driving force into the probability landscape and probability

flux, we further decompose the probability flux into the cycle loops. This forms the flux land-

scape with different loops. The results are shown in Fig 10 (we did not show all the loops for

the purpose of clear view on the figure). The thickness of the arrows represents the magnitude

of the probability fluxes and the node size represents the steady state probability of that state.

We can see that the blue loop can be considered as a dominant loop of the biological cell cycle

path with dominant flux flowing along the 10 states of the cell cycle. There are also other sec-

ondary loops which can map into those secondary peaks in Figs 8(f) or 9(c). We notice that

there is a small number of states clustered together but separated from the major state cluster.

These are possible traps of states.

To further quantifying the flux landscape, we show that the flux landscape spectrum in Fig

11. We can see that there is a clear separation seen from the large gap between the flux from

“native” cycle and the rest of the others under the chosen parameter set. This means the cell

cycle loop stands out from the sea of many loops and becomes dominant. As a result, the flux

Fig 7. Steady-state probability of stationary G1 (PG1) (a) and probability of “native” cycle (PCircle) (b) versus the variation of μ under different

jumping probabilities γ by fixing c = 0.001.

https://doi.org/10.1371/journal.pcbi.1005710.g007
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landscape is funneled towards the dominant loop state. This provides a physical picture for the

origin of the limit cycle.

Robustness of flux landscapes against changes in sharpness of the response, self degra-

dations and stimulations. We plot the dominant flux flowing along the biological cell cycle,

Fig 8. Power spectrum of the fission yeast cell cycle by changing the jumping probability γ = {1%, 11%, 31%, 51%, 71%, 99%} for (a)-(f), while

fixing c = 0.001, μ = 5.

https://doi.org/10.1371/journal.pcbi.1005710.g008
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Fig 9. Power spectrum of the fission yeast cell cycle by changing μ = {0.1, 0.5, 0.9, 1.0, 2.0, 3.0, 5.0, 9.0} for (a)-(h), with

c = 0.001, γ = 60%.

https://doi.org/10.1371/journal.pcbi.1005710.g009
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by varying response μ and fixing parameters c = 0.001 and γ = 60% in Fig 12(a). We can see

that the increasing μ can directly lead to the increase of the flux. Reminding the discussions

above on the robustness of potential landscape (Fig 4(a)), we can state that high probability of

switching between states or less environment fluctuations will lead to higher flux of the cell

cycle.

We explore the robustness RR of the flux landscape in Fig 12(b) and 12(c) to show how it

relates to μ and entropy production rate dS/dt. As we have mentioned, increasing μ can lead to

higher probability of the G1 ground state, as well as the cycle flux. Here we see the robustness

RR also increases to certain level. The excessively large μ can lead to higher probabilities of

other states as traps near G1. This results to the decrease of RR of both potential landscape and

flux landscape. Larger fluctuations (smaller μ) from the large μ side will lead to the “escape”

from the traps and therefore larger RR as shown in Fig 12(b). Fig 12(c) indicates that more

robust oscillating cell cycle often costs more energy to maintain, while traps can consume even

more energies. Comparing with the potential landscape shown in Fig 4(b) and 4(d), we obtain

Fig 12(d), which shows the consistency of the robustness measure of the potential landscape

using states on cell cycle as “native” states and the robustness measure of the flux landscape.

We also calculate how flux landscape is influenced by the perturbation parameter c (by fix-

ing μ = 5, γ = 60%). From Fig 13(a)–13(c), when the perturbation parameter c decreases, the

cycle flux increases and the funneled flux landscape becomes more robust, which costs more

Fig 10. The probability flux flowing in the 210 states space of the fission yeast cell cycle. The thickness of the arrows is proportional to the

magnitude of the probability fluxes and the node size is related to the steady state probability of the state. The colored flux loops represent several

typical flux loops among all, in which the largest blue loop with 10 nodes stands out and becomes the “native” biological cycle. The simulations were

performed with c = 0.001, μ = 5, γ = 60%.

https://doi.org/10.1371/journal.pcbi.1005710.g010
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energy to maintain. Fig 13(d) also shows that the robustness of the flux landscape is monotonic

related to the robustness of the potential landscape upon varying of c.
We study the relationship between the stimulation or activation strength from the G1 state

to START state and the flux landscape. The flux originates from the the nutrition supply which

provides the energy pump (for example, thorough the release of the ATP production). We

show in Fig 14(a)–14(d) how the cycling activation strength γ influences the shape or topogra-

phy of the underlying flux landscape. Before the pumping, the biological cell cycle is an one-

way stable pathway to G1 [23, 33]. At this stage, even the occupations of the states of the oscil-

lation path including G1 are higher with high RR for potential landscape, the robust direc-

tional flow along the cycle has not been formed yet. As a result, no oscillations are emerged.

The increase of activation strength can be considered as a switch to form the flux landscape

with cycle loops from a deep stable one basin potential landscape. When the pumping

increases, many cycle loops start to form and flux landscape starts to emerge. When activation

strength γ is large enough the flux and RR reaches saturation. Further pumping will not be

effective since robust cycle and flux landscape has already been formed. The average cycle flux

increases and the robustness of the flux landscape increases. This indicates that a single flux

loop dominates and stands out from the rest. It leads to robust cell cycle. The robust cycle costs

more energy to maintain.

Fig 14(d) shows that although the increase of the stimulation or pumping from the G1 to

the start of the cell cycle leads to a slight decrease of the occupations of the states on the oscil-

lating path (due to the excitations), the separation between the dominant flux loop and the rest

of the decoys increases. As a result, the dominant flux loop stands out and forms the direc-

tional flow along the yeast cell cycle.

Energy pump, curl flux, dissipation, speed of the cell cycle, and origin of life. To fur-

ther explore the intrinsic mechanism of flux landscape formation, we study the relationship

between the oscillation speed, entropy production and flux. From Fig 8, we can find that when

Fig 11. Probability flux spectrum of all the loops, where μ = 5, c = 0.001 and γ = 60%. The flux of the loop

which is formed by the 10 states of the biological pathway and thus represents the “native” cycle is drawn in

green line. It is the lowest one in negative logarithm compared to other cycle loops.

https://doi.org/10.1371/journal.pcbi.1005710.g011
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the activation strength γ increase from 1% to 30%, the frequency of most prominent oscillation

also increases. We can associate the most prominent frequency and flux. We focus on these

relationships in Fig 14(a), 14(b) and 14(d), in which we can see clearly that larger flux leads to

the faster cell cycle oscillation. Therefore, the energy pump through γ is the origin of the flux

and the flux drives the limit cycle and determines the associated speed or period.

Furthermore, we also explore the relationship between entropy production and flux under

activation strength γ changes in Fig 15(c), 15(e) and 15(f). The entropy production rate here

represents the energy dissipation in steady state. These figures show that larger flux gives larger

energy dissipation and the total entropy production becomes larger. This demonstrates that

the degree of detailed balance breaking from the energy pump measured by the flux is the

cause of the energy dissipation for sustaining the oscillation.

A fundamental signature of living is the biological replications which can be described by

the limit cycle oscillations. From this quantitative study, we can see that energy pump is

Fig 12. Influence on the probability flux from the variation of the sharpness of the response or the inverse noise level μ, by fixing

c = 0.001 and γ = 60%. (a) Steady-state probability flux versus μ. (b) Robustness Ratio (RR) of flux spectrum versus μ. (c) Entropy production rate

(dS/dt) versus RR of flux. (d) Robustness Ratio (RR) of flux spectrum versus RR of potential landscape spectrum.

https://doi.org/10.1371/journal.pcbi.1005710.g012
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required for the replications to emerge and survive. Therefore energy supply is necessary for

life. This also has evolution implications for the origin of life being initiated and sustained by

energy supply.

As a summary, we can state that the limit cycle oscillation is maintained to be stable due to

two driving forces: the funneled potential landscape which tends to attract the system down to

the close ring valley, leading to high occupations of the states along the oscillation path. The

directional flow along the oscillation path is driven by the probability flux originated from the

nutrition supply manifested as the stimulation or excitation from G1 to the start of cell cycle.

The funneled flux landscape guarantees the clear separation between dominant flux loop and

the rest of the other flux loops. Consequently, the dominant flux loop stands out and forms the

yeast cell (limit) cycle. Both forces from potential landscape and flux landscape are essential

for the stability of the fission yeast cell cycle.

Fig 13. Influence on the probability flux from the variation of the perturbation parameter c, by fixing μ = 5, γ = 60%. (a) Steady-state

probability flux versus c. (b) Robustness Ratio (RR) of flux spectrum versus c. (c) Entropy production rate (dS/dt) versus RR of flux. (d)

Robustness Ratio (RR) of flux spectrum versus RR of potential landscape spectrum.

https://doi.org/10.1371/journal.pcbi.1005710.g013
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Backbone subnetwork of fission yeast from the evaluation of global

stability and robustness of both potential landscape and flux landscape

We have uncovered that both the potential landscape and the flux landscape are crucial for the

stability and the robustness of the limit cycle oscillation of the fission yeast cell cycle. As a prac-

tical application, we will perform global sensitivity analysis based on the two landscapes, to

explore a backbone subnetwork to carry out the biological functions. We firstly perform per-

turbations through adding, deleting or repressing arrows between nodes in the wiring diagram

in Fig 1, or replacing an active arrow with an inactive arrow, or deleting an individual node.

And then we try to analyze the variation of the important characteristic of the two landscapes,

such as RR, PG1, PCircle, RR of flux and so on. Finally, we try to work out which key links or

nodes are responsible for the stability, speed (function), and robustness of the cell cycle.

Global stability and robustness of potential landscape under perturbations of muta-

tions and regulation strengths. Fig 16(a) shows the RR versus the probability of the

Fig 14. Influence on the probability flux by changing the cycling activation strength γwhich represents the jumping probability from the

G1/G0 state to the activated G1 state (START phase), while fixing μ = 0.8, c = 0.001. (a) Steady-state probability flux versus γ. (b) Robustness

Ratio (RR) of flux spectrum versus γ. (c) Entropy production rate (dS/dt) versus RR of flux. (d) Robustness Ratio (RR) of flux spectrum versus

steady-state probability of “native” cycle (PCircle).

https://doi.org/10.1371/journal.pcbi.1005710.g014
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biological cell cycle (fixing μ = 5, γ = 60%) against various perturbations. The perturbations

are through adding, deleting or repressing the arrows between the nodes in the wiring diagram

in Fig 1, or replacing an activating arrow with an inactivating arrow, or deleting an individual

node. We see the larger the RR is, the higher the occupation is of the states on oscillation cell

cycle upon perturbations of links and nodes. This indicates the more stabilities of the states on

the cell cycle. This provides the rational of using RR as a robustness measure for the cell cycle

network. Fig 16(b) shows again that more stable oscillations requires more energy consump-

tion. The points of low dissipations with large RR values are ignored, as the corresponding

probabilities of the biological cycle path are low.

Fig 16(c) shows the relationship between the steady state probability of the biological cell

cycle path and the steady state probability of the G1 state upon perturbations of links and

nodes. The stable G1 often correlates with higher occupations of the states on oscillating cycle

paths, as G1 is the starting point in the biological cycle path. However the higher occupations

of the biological cycle do not always imply stable G1 state, as quite a few perturbations will dis-

able the stability of state G1 and enhance the stabilities of some other states along the cell cycle

path.

Fig 15. Relationship between the most prominent frequency, entropy production and flux by changing γ = (1%, 30%), while fixing μ = 5, c = 0.001.

(a)-(c) Variation of most prominent frequency, flux and entropy production rate when changing the activation strength γ. (d)-(f) Positive correlation between

the most prominent frequency, entropy production and flux when changing γ.

https://doi.org/10.1371/journal.pcbi.1005710.g015
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Global stabilities and robustness of flux landscape under perturbations of mutations

and regulation strengths. Fig 17 shows the probabilities of oscillation cell cycle path and

robustness ratios of the flux landscapes, upon those mentioned perturbations.

We see that upon perturbations on links and nodes of the fission yeast cell cycle network,

higher probabilities of states on oscillation path often accompany with higher robustness ratio

of the flux landscape separating the cell cycle loop from the rest as shown in Fig 17. There are

some exceptions where very high and very low probabilities of the states on oscillation cell

cycle path have varying robustness ratios of the flux landscapes. We can ignore those due to

the insignificant cell cycle or insignificant decoys.

Backbone subnetwork contained in the fission yeast networks

Through the global stability analysis for the key wirings of the networks upon perturbations of

links and nodes, one can identify the key network structure elements or motifs responsible for

Fig 16. Perturbations through mutations (adding, deleting or repressing the arrows) on the fission yeast cell cycle network, while μ = 5,

c = 0.001 and γ = 60%. (a) Steady-state probability of “native” cycle (PCircle) versus Robustness Ratio under different perturbations. (b) Entropy

production rate versus Robustness Ratio under different perturbations. (c) Steady-state probability of “native” cycle (PCircle) versus steady-state

probability of G1 (PG1) under different perturbations.

https://doi.org/10.1371/journal.pcbi.1005710.g016
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the stability and biological function. To further identify the stable and functional backbone

subnetwork, we choose to delete the link one by one and find out which will make the network

more unstable. Based on the discussion in the text above, we select three essential elements to

measure the importance of each network edge, that is RR, PG1, and RRflux (RR of flux land-

scape), which can represent not only the global stability of G1 state but also the robustness of

the biological path.

To measure the robustness of each edge, we performed the orders as follow: First of all, for

each edge, we respectively calculate the difference of the three essential elements between

mutated network and original network. Then we rank the difference of the 27 edges and give

them score from 1 to 27. The larger is the difference, the larger the score is. Then we rank the

summation of all the three scores as a total evaluation score(TES), and obtain the rank of

robustness of all the 27 edges of the fission yeast network. (One can see the result in Table 3)

Based on the edge robustness, we attempt to reconstruct a minimal but most robust or sta-

ble backbone network of the fission yeast. However, nature does not necessarily use the robust

edges to build the network, as the aim of a network is to perform certain biological function.

Therefore, we need to reconstruct a biological meaningful network based on the major func-

tional biological path for cell cycle. There are several strategies to do so.

In an approach [46], the backbone network is obtained directly from the criterion of emer-

gence of major biological path for cell cycle. However, in our approach, we chose the backbone

subnetwork based on the global sensitivity and robustness from potential and flux landscape

for quantitatively guarantee a stable biological path. We have labeled each edge of this subnet-

work both in the Table 3 with italic type and the original network wiring in Fig 18 with red

color.

Notice that our backbone subnetwork has large overlaps with the one obtained by Zeng

et al. [46] through biological path requirement. This shows that the backbone network chosen

from biological path is also likely the stable one as we have quantitatively shown here for this

case of fission yeast cell cycle.

Fig 17. Steady-state probability of “native” cycle (PCircle) versus RR of flux spectrum. It shows the

perturbations through mutations (adding, deleting or repressing the arrows) on the fission yeast cell cycle

network, while μ = 5, c = 0.001 and γ = 60%.

https://doi.org/10.1371/journal.pcbi.1005710.g017
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This result seems not so intuitive. As the backbone subnetwork directs to the minimal net-

work to perform the biological function, while the robust network means that it has strong

capability to persist in the mutation or fluctuation environments. Therefore, the minimal net-

work should not always lead to the most robustness one.

In our study, we explore parameters listed in the Table 3 of both potential and flux land-

scapes. The three elements which contribute the TES are the key features representing the

potential and flux landscape topography. Therefore, the rank of the TES is calculated in a

quasi-quantitative way to gain insights on both potential stability and period persistence for

each edge. It suggests that due to the consideration of flux landscape in the periodical dynam-

ics, the minimal backbone subnetwork with highest rank of TES tends to be a global robust

one to perform the cell cycle function. Therefore, we state that this study gives a physical prin-

ciple and basis in terms of the potential and flux landscape for the backbone finding.

Furthermore, based on the global sensitivity analysis, we can identify key links that change

significantly the occupation probabilities of the states on the cell cycle path and robustness

ratio separating the dominant cycle loop from the rest compared to the wild type. These links

and nodes are responsible for biological function of the cell cycle.

As we have stated, for this case of oscillation network, the flux landscape have a large impact

on the dynamical behavior of the network. In Table 3, if we delete the index of flux landscape,

Table 3. Robustness ranking of 27 links of the fission yeast networks.

Starting Nodes Ending Nodes Variation Ranks TES Rank of Robustness

RR PG1 RRflux

Slp1 Cdc2/Cdc13 20 26 27 73 1

PP Wee1/Mik1 25 21 25 71 2

PP Ste9 23 24 24 71 3

Cdc25 Cdc2/Cdc13* 21 22 26 69 4

PP Cdc25 24 20 23 67 5

PP Rum1 22 23 22 67 6

SK SK 26 19 21 66 7

CS CS 27 17 20 64 8

Cdc2/Cdc13 Cdc25 18 15 19 52 9

Cdc2/Cdc13 Wee1/Mik1 17 14 18 49 10

Slp1 PP 9 27 13 49 11

SK Rum1 16 9 17 42 12

Cdc2/Cdc13* Slp1 3 25 12 40 13

PP PP 12 18 10 40 14

Slp1 Slp1 8 16 14 38 15

SK Ste9 15 8 15 38 16

Cdc2/Cdc13 Rum1 14 13 9 36 17

CS SK 19 1 1 36 18

Cdc2/Cdc13 Ste9 13 12 8 33 19

Ste9 Cdc2/Cdc13 11 11 7 29 20

Rum1 Cdc2/Cdc13 10 10 6 26 21

Slp1 Cdc2/Cdc13* 5 7 11 23 22

Wee1/Mik1 Cdc2/Cdc13* 4 4 5 13 23

Cdc2/Cdc13* Rum1 6 2 4 12 24

Cdc2/Cdc13* Ste9 7 3 2 12 25

Ste9 Cdc2/Cdc13* 2 6 1 9 26

Rum1 Cdc2/Cdc13* 1 5 3 9 27

https://doi.org/10.1371/journal.pcbi.1005710.t003
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Fig 18. The minimal robustness backbone subnetworks of the fission yeast networks. All the links

marked by red color contribute a backbone subnetwork, which is generated from the evaluation of robustness

in Table 3 (marked by italic type). The remaining links form a residual auxiliary subnetwork. All the signs of the

links are the same as in Fig 1.

https://doi.org/10.1371/journal.pcbi.1005710.g018
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i.e. RRflux, there are several edges in the original network acutely changing their orders of

importance. The edges such as SK to Rum1, and Cdc25 to Cdc2/Cdc13� will lose their high

ranks due to the missing of flux index, while the remaining edges such as Cdc2/Cdc13 to

Rum1 and to Ste9 and others tend to squeeze into the subnetwork. This leads to the conclu-

sion that the former edges tend to perform the biological cycle function while the remaining

edges tend to keep the robustness of G1 state. It is in this perspective these results provide a

strong support for the potential and flux landscape theory in the study of cell cycle.

Cell cycle is a hallmark of cancer. Cancer cells has a much faster speed of cell cycle than nor-

mal cells. Therefore, regulating the cell cycle speed is crucial for preventing and curing the can-

cer. From above global sensitivity analysis, we can identify the key nodes and links in the

fission yeast cell cycle network for regulating the cell cycle speed. These key links and nodes

form the backbone network of the cell cycle. Therefore, we can based on this to do network

design and network medicine discovery targeting the cancer.

Conclusions

We explore the global natures of the networks. We found the network dynamics and global

properties are determined by two essential features: the potential landscape and the flux land-

scape. While potential landscape quantifies the probabilities of different states forming hills

and valleys, the flux landscape quantifies the probability fluxes of different loops flowing

through states. These two landscapes can be quantified through the decomposition of the

dynamics into the detailed balance preserving part and detailed balance breaking part. While

funneled landscape is crucial for the stability of the single attractor networks, the argument

can be extended to the stabilities of the states on the oscillation paths by including them in the

same (line) basin of attraction. Importantly, we have uncovered that the funneled flux land-

scape is crucial for the stable and robust oscillation flow.

This provides a new interpretation of the origin of the limit cycle oscillations: There are

always many cycles and loops forming the flux landscapes, each with a probability flux going

through the loop. The oscillation only emerges when one specific loop stands out and carries

much more probability flux than the rest of the others.

We studied the fission yeast cell cycle as an example to illustrate the idea. We found both

the potential landscape and the flux landscape of the fission yeast cell cycle oscillations are fun-

neled, which guarantees the global stability. While the funneled potential landscape guarantees

the stabilities of the states on the oscillating path, the funneled flux landscape guarantees the

directional flow of the oscillations which breaks the detailed balance and time reversal symme-

try, leading to the stand out of the dominant flux loop against others. The stability and robust-

ness of the oscillations are quantified through a dimensionless ratio of the steepness or gap

versus the averaged variations or roughness of the landscape (measuring funnelness as we

termed as robustness ratio RR).

We explore how RR changes with respect to the stimulations, self degradations, state

switching rate or fluctuations, and changes in topology of the network (wirings). This allows

us to identify the key factors and structure elements of the networks in determining the stabil-

ity, speed and robustness of the fission yeast cell cycle oscillations.

Based on the global sensitivity analysis, we obtain that our most robust subnetwork is nearly

the same as the minimal biological functional network, and by setting the cell cycle period as

the evolution goal, we suggest the fission yeast should follow this evolution goal to form a

27-link network with faster period but not using minimal backbone network. We see that the

non-equilibriumness characterized by the degree of detailed balance breaking from the energy

pump quantified by the flux is the cause of the energy dissipation for initiating and sustaining
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the replications essential for the origin and evolution of life. Finally we are looking forward to

the good future by controlling the speed of the cell cycle as an important in designing targeting

drugs for preventing and curing the cancer.
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