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Abstract

Neural network dynamics are governed by the interaction of spiking neurons. Stochastic

aspects of single-neuron dynamics propagate up to the network level and shape the dynam-

ical and informational properties of the population. Mean-field models of population activity

disregard the finite-size stochastic fluctuations of network dynamics and thus offer a deter-

ministic description of the system. Here, we derive a stochastic partial differential equation

(SPDE) describing the temporal evolution of the finite-size refractory density, which repre-

sents the proportion of neurons in a given refractory state at any given time. The population

activity—the density of active neurons per unit time—is easily extracted from this refractory

density. The SPDE includes finite-size effects through a two-dimensional Gaussian white

noise that acts both in time and along the refractory dimension. For an infinite number of

neurons the standard mean-field theory is recovered. A discretization of the SPDE along its

characteristic curves allows direct simulations of the activity of large but finite spiking net-

works; this constitutes the main advantage of our approach. Linearizing the SPDE with

respect to the deterministic asynchronous state allows the theoretical investigation of finite-

size activity fluctuations. In particular, analytical expressions for the power spectrum and

autocorrelation of activity fluctuations are obtained. Moreover, our approach can be adapted

to incorporate multiple interacting populations and quasi-renewal single-neuron dynamics.

Author summary

In the brain, information about stimuli is encoded in the timing of action potentials pro-

duced by neurons. An understanding of this neural code is facilitated by the use of a well-

established method called mean-field theory. Over the last two decades or so, mean-field

theory has brought an important added value to the study of emergent properties of neu-

ral circuits. Nonetheless, in the mean-field framework, the thermodynamic limit has to be

taken, that is, to postulate the number of neurons to be infinite. Doing so, small fluctua-

tions are neglected, and the randomness so present at the cellular level disappears from

the description of the circuit dynamics. The origin and functional implications of variabil-

ity at the network scale are ongoing questions of interest in neuroscience. It is therefore
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crucial to go beyond the mean-field approach and to propose a description that fully

entails the stochastic aspects of network dynamics. In this manuscript, we address this

issue by showing that the dynamics of finite-size networks can be represented by stochas-

tic partial differential equations.

Introduction

Neurons communicate by sending and receiving pulses called spikes which occur in a rather

stochastic fashion. A stimulus is thus translated by neurons into spike trains with a certain ran-

domness [1]. At the microscopic scale, this variability is mostly attributed to the probabilistic

nature of the opening and closing of ion channels underlying the emission of an action poten-

tial. At a mesoscopic scale, variability typically stems from the seemingly random barrage of

synaptic inputs. This variability is fundamentally noise [2, 3]. Many papers have been devoted

to establish its origin [4, 5], and the mathematical formalization to suitably describe this effect

has been an intense subject of research over the past decades. Nowadays, models are capable of

reproducing both the statistics of the spiking activity and the subthreshold dynamics of differ-

ent cell types.

In neuroscience, it is believed that information—about external stimuli, internal states,

motor outputs, etc.—is encoded in the timing of spikes produced by populations of neurons

[6]. An understanding of this high-dimensional response, from an information-theoretic or

dynamical point of view, is facilitated by various dimensionality-reduction methods [7]. A triv-

ial one is to consider the population activity, i.e. the proportion of neurons firing in small time

windows, which is assumed to be a meaningful coarse-grained dynamical variable [6, 8–10].

The importance of population activity is manifest in its extensive use in macroscopic models

of neural activity, and by the constant effort put forth to derive its dynamics from single-

neuron and network properties.

Most attempts to produce analytically tractable population rate models have made use

(directly or indirectly) of mean-field theory [11–14]. The population activity obtained by solv-

ing mean-field models is deterministic, since this theory neglects finite-size fluctuations. Theo-

retically, this causes no problem. Real neural circuits, however, necessarily have a finite size.

For a system made up of N independent units, the relative magnitude of fluctuations should

scale as 1=
ffiffiffiffi
N
p

. The thermodynamic limit (N goes to infinity) neglects those small fluctuations,

and the randomness so present at the cellular level disappears in the description of the circuit.

However, these finite-size effects should be taken into account because they can drastically

affect both the synchronization [15, 16] and the stability [17, 18] of neural systems.

Various analytical methods from statistical physics have been used to describe such activity

fluctuations. A first type of approach consists in adapting the Fokker-Planck formalism to

incorporate the finite-size rate fluctuations as a source term [18, 19]. The spiking processes of

the neurons are then assumed to be Poisson processes. One can also apply the so-called linear

response theory (LRT) [20] and compute spectral quantities characterizing the neuronal spik-

ing processes. This theory relies on the ansatz that the spiking response of a neuron embedded

in a network can be written as the sum of the neuron’s unperturbed spiking activity—i.e.,

when the neuron is isolated from the fluctuations of the network activity—and its first-order

response to the fluctuations of synaptic currents. Finite-size effects do not need a special treat-

ment in that theory, but it can only manage wide-sense stationary external inputs that main-

tain a comfortable distance from bifurcation points. LRT has in fact been successfully used to

study finite-size fluctuations in the context of decorrelative effects of inhibitory feedback [21],

Finite-size spiking neural networks
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the interplay between correlation structures and network topology [22], and the effect of corre-

lations on coding [23].

A more systematic approach to study finite-size effects is to construct a master equation

describing the time evolution of the probability distribution of the states of the network. In

that case the formalism borrows heavily from reaction kinetics in chemistry [24, 25]. The net-

work navigates between states via activation and decay functions, which embody the stochastic

transitions between quiescent and active spiking states. Using the master equation, one can

then construct a system involving moments of the network’s activity. A troublesome feature of

this approach is that lower order moments typically depend on higher order moments, thus

constituting a hierarchy of moments that must be truncated in one way or the other. The cho-

sen truncation scheme depends on the assumptions about the underlying neural activity. One

possibility is to assume that the network is in an asynchronous state—defined by a constant

infinite-size mean field—so that spike-spike correlations are of order 1/N, and a direct expan-

sion of the moments to that order becomes possible [26–28]. In the same spirit, one can also

perform a system-size expansion—to order 1=
ffiffiffiffi
N
p

—of the master equation, and then con-

struct the hierarchy of moments that can be subsequently truncated [29]. Another truncation

based on normal-ordered cumulants assumes near-Poisson spiking [30].

The truncation of the hierarchy of moment equations breaks down near criticality, i.e., near

a bifurcation. One way to circumvent this problem is to use path integral methods [31]—

borrowed from statistical field theory—which themselves are amenable to the use of renorma-

lization group methods that can extract critical exponents near the bifurcation. These field the-

oretic methods have also been applied to describe the statistics of deterministic phase neurons

[32]. All the approaches discussed above assume a network that is either far below criticality or

near criticality.

As we see from this overview, analytical treatments are emerging and hold the expectancy

of understanding the nontrivial effects of variability on neural circuits. To move toward the

formulation of models that keep track of the intrinsic randomness, our challenge is to correct

the usual mean-field equations to account for the inescapable stochastic nature of spike initia-

tion. The aim of the present paper is then to take up the problem of finite-size fluctuations and

to show that, actually, one can formulate it in the framework of stochastic partial differential

equations (SPDE).

Contrary to other treatments of finite-population dynamics, our main objective is to

describe the finite-size activity itself, and not its moments. To this end, we derive a SPDE

(see Eq 7 below) that gives the activity of a finite population of spike-response model neurons

with escape noise [33] for a fully connected inhibitory network. The equation describes the

dynamics of the finite-size refractory density [34], i.e. the density of neurons in a given refrac-

tory state at a given time. The boundary condition (Eq 8) or the conservation law (Eq 9) for

the refractory density is used to extract the activity. Finite-size fluctuations appear in the SPDE

through a two-dimensional Gaussian white noise—in time and along the refractory

dimension—whose prefactor vanishes in the infinite-size (thermodynamic) limit. Importantly,

the Gaussian white noise acting in the network’s description naturally emerges from the intrin-

sic randomness of spike initiation present at the cellular level.

The SPDE can be solved numerically via a discretization along its characteristic curves (see

Eq 55 in the Methods section), and thus provides a direct mean to simulate finite-size net-

works, both below and above the bifurcation towards the oscillatory state. Importantly, the

simulation time does not depend on the size of the population. Bifurcation analysis of the asso-

ciated mean-field counterpart enables us to reveal how delayed inhibitory feedback permits

the emergence of macroscopic rhythms. More insight into finite-size effects is obtained by

Finite-size spiking neural networks
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applying a linear noise approximation, followed by a study of the spectral and autocorrelation

properties of fluctuations in the asynchronous activity regime (see Eqs 18 and 20).

Perhaps the approaches closest in spirit to the one adopted in the following are those of

Meyer and van Vreeswijk [27], and Deger, Schwalger and coworkers [35, 36]. Meyer and van

Vreeswijk treated finite-size fluctuations in homogeneous, fully-connected networks of

renewal spike-response neurons using a refractory density approach, as in the current paper.

However, their main goal was to derive equations for the temporal cross correlations in the sta-

ble stationary state. Thus, even though their framework is akin to ours, the objectives differ:

instead of focusing on the moments, here we analytically build a stochastic dynamical equation

that captures the temporal evolution of the activity itself, including finite-size fluctuations.

The paper by Deger, Schwalger et al. [35] dealt with the finite-size activity of randomly con-

nected spike-response model neurons with adaptation. With their approximations, they ended

up with quasi-renewal neurons [37] connected in an effective all-to-all fashion. In that context,

they established an integral equation for the activity, and obtained the temporal autocorrela-

tion function of the activity. However, this formulation makes it impossible to actually simu-

late the network’s activity; this is because their correlation function includes the probability

density that a spike in the past causes a spike in the future, which cannot be computed in gen-

eral because the future activity—which is yet unknown—is required.

In a recent work, however, Schwalger et al. [36] solved that problem by proposing an error

minimizing method that permits rapid and accurate simulations of the firing statistics of the

network, for a single or multiple populations. They derived stochastic differential equations

that only involve the finite-size activity; contrary to our approach, information about the

refractory distribution is thus purposefully disregarded. A byproduct of this approximation is

that the neuron number is not conserved anymore, unlike our approach. Moreover, using a

Gaussian approximation they obtained a stochastic equation—Eq 41 in their appendix—that is

similar in spirit to ours, although it differs somewhat in its details. Their stochastic equation

also involves the temporal evolution of the refractory distribution, but is not thoroughly

analyzed.

This paper is organized as follows. First, we present the network and neuron model that

will be used throughout. Then, we obtain the SPDE and perform a linear noise approximation,

which is then used to study both the stability of the deterministic (mean-field) part of the activ-

ity, and the statistical properties of the finite-size fluctuations. These include spectral and auto-

correlation properties.

Results

The neural network

We consider a fully connected (all-to-all) homogenous network of N neurons with inhibitory

synapses. Neuronal dynamics are described using the spike-response model with escape noise

[33]. For this model, neuronal spiking occurs according to an instantaneous firing intensity or

hazard function that depends on the difference between the membrane potential and a fixed

threshold. The membrane potential of neuron i at time t is given by

uiðtÞ ¼ � ðV � yiÞðtÞ �
Js
N

XN

j¼1

ðk � yjÞðtÞ þ ðk � IextÞðtÞ

� � ðV � yiÞðtÞ þ hiðtÞ;

ð1Þ

where hi(t) is the change in potential caused by inputs (input potential), � V is a refractory

kernel representing the reset of the membrane potential following a spike, and κ is a filter

Finite-size spiking neural networks
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kernel encompassing synaptic and membrane filtering of synaptic and external inputs. The

spike train of any neuron is given by

yiðtÞ ¼
X

f

dðt � tðf Þi Þ;

where the sum is over all of its spike times. Hence, the membrane potential of neuron i at time

t is given by the convolution of its own spike train with the refractory kernel [ðV � yiÞðtÞ], to

which are added a filtered external input [(κ � Iext)(t)] and the total inhibitory synaptic input

�
Js
N

XN

j¼1

ðk � yjÞ

coming from all neurons within the network, with uniform synaptic weight −Js/N. We shall

restrict ourselves to non-adaptive single-neuron dynamics, meaning that only the most recent

spike of a neuron affects its potential. Thus,

ð� V � yiÞðtÞ � � VðriÞ; ð2Þ

where

ri ¼ t � t̂ i;

is the refractory state or age of neuron i, and t̂ i denotes its most recent spike.

We are interested in the dynamics and statistics of the population activity

AðtÞ �
1

N

XN

i¼1

yiðtÞ: ð3Þ

The homogeneity of the network implies that the index i can be dropped in Eq 1: all neurons

with the same refractory state have the same subsequent dynamics. Using the definition of the

population activity, Eq 1 becomes

uðt; rÞ ¼ ðk � ½Iext � JsA�ÞðtÞ � VðrÞ: ð4Þ

The hazard function ρ is the probability per unit time of emitting a spike, conditional on the

past history of the activity,

Ht � fAðt
0Þ : 0 < t0 < tg;

and of the external signal,

fIextðt
0Þ : 0 < t0 < tg:

For concreteness we will use an exponential hazard function,

r½uðt; rÞ� ¼ l0 exp ½uðt; rÞ=du�; ð5Þ

where λ0 and δu = 1 mV are constants. This choice has no impact on the theory presented

herein, other than simplifying some computations. Also, the refractory kernel is taken to be

VðrÞ ¼ � ln ð1 � e� r=tÞ;

where τ is the recovery time scale. The synaptic filter is

kðtÞ ¼ Hðt � DÞ
e� ðt� DÞ=ts

ts
; ð6Þ

Finite-size spiking neural networks
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withH(t) the Heaviside step function, τs the synaptic decay and Δ the conduction delay. The

specific expression characterizing the escape rate is justified and largely used because it com-

bines a relative mathematical simplicity with the capacity to realistically reproduce observed

neuronal behaviors. Note that Js and Iext have units mV�ms and mV, respectively, because

κ has units ms−1. The synaptic kernel is thus defined because in that case the average input

potential is independent of the time scale τs. The hazard function and the synaptic kernel are

depicted in Fig 1. We also provide examples of network dynamics in Fig 2. The dynamics of

every neuron follow the non-adaptive version of Eq 1 (i.e., with Eq 2), together with the escape

rate firing mechanism and the hazard function of Eq 5. As Js increases, the network develops

an oscillatory instability (see below) and oscillations appear.

The stochastic-field equation

The continuous deterministic mean-field approach to modeling neural networks fails to cap-

ture many important details. The missing detail manifests itself as small unpredictable finite

size fluctuations present at the network level. Our main challenge is then to define an equation

Fig 1. Illustration of the hazard function and the synaptic kernel. A) Hazard function ρ(r), Eq 5, when h(t)

� 5 and λ0 = 1 kHz. B) Synaptic filter κ(t) for different values of the synaptic decay τs, with Δ = 10 ms (cf. Eq 6).

The integral of κ over time is normalized to 1.

https://doi.org/10.1371/journal.pcbi.1005691.g001
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that fully entails the stochastic aspects of the network. To do so, we consider the finite-size

refractory density q(t, r), such that Nq(t, r)dr gives the number of neurons with age in [r − dr, r)
at time t. A time dt later, all neurons that did not fire will have aged by an amount dr = dt,
whereas the number of neurons that did fire is given by a Poisson random variable P with rate

Nρ(t, r)q(t, r)dtdr [25, 35]. This idea encompasses the presence of fluctuations that are propor-

tional to the mean number of firing events and therefore retains the full random character of

the spiking probability. Using a Gaussian approximation of this Poisson distribution, i.e. mak-

ing the approximation

PðNrðt; rÞqðt; rÞdtdrÞ � Nrðt; rÞqðt; rÞdtdr þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Nrðt; rÞqðt; rÞdtdr

p
N ð0; 1Þ;

where N ð0; 1Þ denotes the standard normal distribution and * means “is distributed like”, we

show (see Methods) that q(t, r) obeys the following stochastic partial differential equation

(SPDE):

@

@t
qðt; rÞ þ

@

@r
qðt; rÞ ¼ � rðt; rÞqðt; rÞ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rðt; rÞqðt; rÞ

N

r

Zðt; rÞ; ð7Þ

where η is a Gaussian (sheet) white noise with

hZðt; rÞi ¼ 0; hZðt; rÞZðt0; r0Þi ¼ dðt � t0Þdðr � r0Þ;

and

rðt; rÞ ¼ l0 exp ½uðt; rÞ�:

The brackets denote an ensemble average over realizations of the stochastic process. The

boundary condition is naturally given by the reset mechanism. Indeed, once a neuron triggers

a spike, its age is reset to zero. Therefore, the boundary condition is

qðt; 0Þ ¼ AðtÞ; ð8Þ

where A(t) is the finite-size activity of the network (see for instance Fig 2). This activity A(t) is

also given by the total rate at which neurons of all ages escape their trajectories in the (t, r)-
plane:

AðtÞ ¼
Z 1

0

rðt; rÞqðt; rÞ dr þ
Z 1

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rðt; rÞqðt; rÞ

N

r

Zðt; rÞ dr: ð9Þ

Fig 2. Examples of spiking activity for the neural network. The network contains N = 200 neurons. In each panel is shown the spiking activity of every

neuron in a raster plot (dots represent spikes). The solid red line represents the activity A(t) of the network, obtained by counting the total number of

spikes in a time window Δt = 0.2 ms, and dividing by NΔt. For all panels, λ0 = 1 kHz, τ = τs = 10 ms, Δ = 3 ms and Iext = 7;. Panel A: Js = 3; panel B: Js = 4,

panel C: Js = 5.

https://doi.org/10.1371/journal.pcbi.1005691.g002
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The integral above is to be understood in the Itô sense. Finally, the refractory density must

obey a conservation law,

Z 1

0

qðt; rÞ dr ¼ 1; ð10Þ

since each neuron possesses a given age at any given time. Note that both q(t, r) and A(t) are

stochastic processes in this formulation.

From the derivation above we observe that for a network with N cells, the relative magni-

tude of fluctuations scale as 1=
ffiffiffiffi
N
p

. The stochastic parts in Eq 7 as well as in Eq 9 disappear in

the thermodynamic limit when the network is taken infinitely large. Doing so, the equation

finally reduces to the classical refractory equation [33]. However, the thermodynamic limit

does not allow for any characterization of fluctuations around the mean activity, because it is

an entirely deterministic approach as is illustrated in Figs 3 and 4.

Fig 3A shows the time evolution of the external stimulus, whereas panel B gives the spiking

activity obtained from a simulation of the full network and its corresponding activity. The

Fig 3. Simulation of the SPDE and comparison with the full network dynamics and the mean-field theory for a time

dependent stimulus. A) Time evolution of the stimulus. B) Activity obtained from simulations of the full network. C) Activity obtained

from simulations of the mean-field equation (Eq 13). D) Activity obtained from the SPDE (Eq 7). The same initial condition was used in

all cases. Parameters are as in Fig 2C, except that N = 500 and Δt = 0.1 ms.

https://doi.org/10.1371/journal.pcbi.1005691.g003
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activity given by the standard mean field in the thermodynamic limit (N taken infinitely large,

see Eq 13 below) is shown in Fig 3C. Although in this case the mean-field approximation cap-

tures the essential “shape” of the activity of the full network shown in the panel B, it completely

ignores the substantial finite-size fluctuations. Finally, Fig 3D shows the activity as generated

via a simulation of the stochastic-field equation (Eq 7). The stochastic-field equation effectively

captures both the shape and variability of the full neural activity, which could be described as a

noisy version of the mean-field activity. Similar observations can be made regarding the refrac-

tory density q(t, r) as can be seen in Fig 4. The numerical integration of Eq 7 is discussed in the

Methods section.

Note that multiple populations can be modeled straightforwardly using the above formal-

ism. To each population n would be assigned a refractory density qn(t, r) obeying the SPDE.

The respective membrane potentials would be given by

unðt; rÞ ¼ ðkn � ½Iext �
X

k

JnkAk�ÞðtÞ � VnðrÞ

with Jnk the total synaptic strength connecting population k to population n. Different hazard

functions ρn can be chosen as well.

An analytical solution of the SPDE is exceedingly difficult, if not impossible. However,

informations about the statistics of activity fluctuations can be extracted via a system-size

expansion, as discussed in the next section.

Linear noise approximation

To investigate the effects of fluctuations for large but finite network size N, we perform a linear

noise approximation (LNA) when Iext is constant. In our situation, the LNA states that the den-

sity function as well as the neural activity can be approximated by the sum of a deterministic

and a stochastic process. The fluctuating part is scaled by a 1=
ffiffiffiffi
N
p

factor that is justified by the

Van Kampen system-size expansion [24]. This system-size expansion is usually pursued only

up to first order, hence the “linear” qualifier. We write

qðt; rÞ ¼ q0ðt; rÞ þ
1
ffiffiffiffi
N
p qxðt; rÞ þO

1

N

� �

; ð11Þ

with q0(t, r) and qξ(t, r) the deterministic and stochastic parts, respectively. Similarly, the

Fig 4. Refractory density q(t, r) as computed from A) the full network, B) the mean-field limit (Eq 13) and C) the SPDE (Eq 7). The same initial

condition was used in all cases. Parameters are as in Fig 2A, except Δt = 0.1 ms, t = 1000.

https://doi.org/10.1371/journal.pcbi.1005691.g004
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population activity reads

AðtÞ ¼ A0ðtÞ þ
1
ffiffiffiffi
N
p AxðtÞ þO

1

N

� �

; ð12Þ

again with A0(t) the deterministic part and Aξ(t) the stochastic part. After algebraic manipula-

tions—including a linearization that only keeps the first-order term in 1=
ffiffiffiffi
N
p

—we find that

the deterministic part obeys the usual mean-field description

@

@t
q0ðt; rÞ þ

@

@r
q0ðt; rÞ ¼ � r0ðt; rÞq0ðt; rÞ ð13Þ

with boundary condition

q0ðt; 0Þ ¼ A0ðtÞ;

where A0(t) is the deterministic part of the activity. The hazard ρ0(t, r) is

r0ðt; rÞ � r½u0ðt; rÞ�;

with

u0ðt; rÞ � ðk � ½Iext � JsA0�ÞðtÞ � VðrÞ:

Note that the mean field equation is strikingly similar to the standard age-structured system

known as the McKendrick von-Foerster model in mathematical biology [38, 39].

The stochastic component solves a SPDE similar to Eq 7, namely (see Methods)

@

@t
qxðt; rÞ þ

@

@r
qxðt; rÞ ¼ Jsðk � AxÞðtÞ

dr

du

�
�
�
�u0

q0ðt; rÞ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r0ðt; rÞq0ðt; rÞ
q

Zðt; rÞ

� r0ðt; rÞqxðt; rÞ
ð14Þ

and the derivative dr=duju0
is evaluated at u0. This equation is now linear in the function qξ—

contrary to Eq 7—and therefore an analytical solution is possible (this is done in Methods in

the context of a computation of the power spectrum of activity fluctuations).

When the deterministic component exhibits multiple stable states, the LNA fails to capture

transitions between these states. While the LNA is inadequate for this type of situation, it is

pertinent when the network fluctuates around a unique stable equilibrium, as illustrated in

Fig 5. The stochastic activity is given to first order by Eq 12. After a short transient (*10 ms),

the deterministic part of the activity, A0(t), asymptotically reaches its steady state value A1
(see black curve in Fig 5C and 5E). Since the neuron number is finite, fluctuations around the

deterministic activity are observed, both in the transient and steady states (red curve Fig 5C

and 5E). As illustrated in panels B and D of this figure, the activity of the relaxed network is

asynchronous.

The average activity in the asynchronous state, A1, can be computed as the time-indepen-

dent solution of the infinite-size refractory density equation, Eq 13. This means that the partial

derivative with respect to time is zero. After algebraic manipulations, we find that A1 is given

by (see Methods)

A� 1
1
¼

Z 1

0

e�
R r

0
r1ðsÞ ds dr; ð15Þ

where

r1ðsÞ � r½u1ðsÞ� ¼ r½h1 � VðsÞ�;
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and

h1 ¼ Iext � JsA1:

The equation above must be solved self-consistently for A1. From Fig 5A, the agreement

between analytical and numerical results is excellent.

Deterministic oscillatory instability

The asynchronous state can lose stability through an oscillatory instability. Finite-size fluctua-

tions will potentially influence the presence of oscillations. To address this issue, we performed

a linearization of the deterministic field equation (Eq 13) around the steady state (see Meth-

ods). This allowed us to write the characteristic equation, whose solutions give the eigenvalues

λ of the deterministic system. The characteristic equation is denoted

CðlÞ ¼ 0;

with

CðlÞ � 1 � P̂1ðlÞ � Jsk̂ðlÞA1

Z 1

0

dr
Z r

0

dsP1ðrÞ
dr

du

�
�
�
�
�
u1ðsÞ

e� lðr� sÞ

þ Jsk̂ðlÞ
Z 1

0

dr

du

�
�
�
�
�
u1ðrÞ

q1ðrÞdr:

ð16Þ

where k̂ðlÞ is the Laplace transform of κ and P1(r) is the steady-state interspike interval

Fig 5. Relaxation towards the steady state activity. A) Steady state activity in the asynchronous regime as a function of the

synaptic coupling Js. Since Js actually represents the strength of inhibition, A1 decreases when Js increases. The black curve is

obtained by computing A1 from Eq 15. The small red points and the two large blue dots are steady-state activities computed from

simulations of the stochastic neural network. B) and D) The spiking activity is depicted as raster plots. The two simulations

correspond to the parameters given by the two large blue dots in panel A. C) and E) Comparison between the neural activity of the

fully stochastic neural network (red curve) and the deterministic activity (constant black line) obtained by solving Eq 15. Parameters

were N = 100, Iext = 2 mV, τ = 7 ms, τs = 5 ms, Δ = 3 ms and λ0 = 1 kHz. The discretization time step for computing the activity (red

curves) was Δt = 0.2 ms.

https://doi.org/10.1371/journal.pcbi.1005691.g005
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probability density of the asynchronous infinite-size network, i.e. the probability density of

obtaining an interval

r ¼ t � t̂ ;

see Eq 46. Also,

q1ðrÞ ¼ lim
t!1

q0ðt; rÞ

is the steady state of the infinite-size refractory density. The eigenvalues are thus given by the

roots of CðlÞ. The time-independent solution A1 will be stable if all eigenvalues have negative

real parts. The bifurcation line—which separates the oscillatory regime from the asynchronous

one—can be drawn numerically, as depicted in Fig 6A. The red line constitutes the boundary

between the stability and the instability regions for the chosen Iext. The shaded area defines the

region in parameter space where self-sustained oscillations are going to emerge. Well below

the transition line, in the asynchronous regime, damped oscillations may occur; however, the

network activity will eventually settle into finite-size fluctuations around a constant mean

activity. Above the transition, network oscillations are clearly noticeable (Fig 6C).

The existence of oscillations in fully connected, delayed inhibitory networks is well known

[40], and underlies the ING (Interneuron Network Gamma) mechanism for generating

gamma rhythms (see for instance [41]). The above analysis serves the purpose of delineating

the oscillatory and asynchronous states in the phase diagram of Fig 6 with the help of the char-

acteristic function. Both the phase diagram and the characteristic function will come handy in

the next section where we will study the fluctuations of the asynchronous state. Note, however,

that we shall not study the exact nature of the bifurcation; for the network studied in [40], the

Hopf bifurcation can be either subcritical or supercritical, depending on the inhibitory cou-

pling strength.

Fluctuations in the asynchronous regime

Asynchronous firing has been repeatedly associated with the background activity in cortical

networks [42]. Finite-size effects generate fluctuations whose basic statistics are closely related

Fig 6. Oscillatory instability. If the synaptic strength Js and the conduction delay Δ are large enough, then the system

undergoes a Hopf bifurcation. A) Bifurcation line in parameter space (red curve). The grey shaded region corresponds to an

oscillatory regime of the neural network. B) and C) Raster plots of the spiking activity for 50 cells. Panel B corresponds to the black

asterisk lying in the asynchronous (white) region in panel A, whereas panel C depicts the activity in the oscillatory state. Parameters

were Iext = 2 mV�ms, λ0 = 1 kHz, τ = 10 ms and τs = 10 ms.

https://doi.org/10.1371/journal.pcbi.1005691.g006
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to the response of the associated infinite-size dynamics. To characterize the statistical content

of fluctuations we compute the power spectrum of the activity in the asynchronous regime.

The power spectrum describes how the variance of A(t) is distributed over the frequency

domain and accordingly helps to identify the dominant frequencies, if any.

By definition, the power spectrum is given by

PðoÞ ¼ lim
T!1

hj~ATðoÞj
2
i

T
;

where

~ATðoÞ ¼
Z T

0

AðtÞe� iot dt

is the Fourier transform of the neural activity restricted to a time interval and the brackets h�i

denote an average over the noisy realizations of the network dynamics. To derive an analytical

expression for this quantity, we assume that the deterministic part of the activity has reached

its equilibrium state (below the threshold of instability). This means that Eq 12 becomes

AðtÞ ¼ A1 þ
1
ffiffiffiffi
N
p AxðtÞ;

neglecting terms of order 1/N and above. Hence,

PðoÞ ¼ 2pA2
1

dðoÞ þ
PxðoÞ

N
; ð17Þ

with PxðoÞ=N the power spectrum of the fluctuations. In Methods, PxðoÞ is shown to be

PxðoÞ ¼ A1
1þ

Z 1

0

dsr1ðsÞe
R s

0
r1ðxÞdx

�
�
�
�

Z 1

s
dre� iorP1ðrÞ

�
�
�
�

2

jCðioÞj2

�

2A1<f
Z 1

0

ds
Z s

0

dr r1ðsÞP1ðrÞe� ioðr� sÞg

jCðioÞj2
:

ð18Þ

where <means to take the real part of the expression in curly brackets and P1(r) is the

interspike interval distribution in the asynchronous state. The stability of the deterministic sys-

tem—embodied in its characteristic equation CðlÞ ¼ 0—appears explicitly in the above

expression. Of course, in the asynchronous regime there are no pure imaginary solutions to

this equation. However, the minima of CðioÞ dictate the position of dominant frequencies, as

illustrated in Fig 7. This figure also compares the power spectrum obtained from Eq 18 to the

power spectrum obtained from both an average over different realizations of the fully stochas-

tic neural network and the SPDE; it shows an excellent agreement. We carried out the compar-

ison for more simulations than are shown here, and our results hold over a wide range of

parameters.

We note that there is a discrepancy between theory and numerics mainly at lower frequen-

cies as the bifurcation is approached from below (Fig 7B). The theoretical power spectrum of

Eq 18 does not capture the emergence of harmonics (for instance, the small peak around

f = 400 Hz in Fig 7B). The LNA is known to fail as soon as parameters are chosen to be close to

a bifurcation point. The spectra computed from the SPDE agree very well with the spectra

from the whole network for all the regimes shown. Thus the SPDE can be used to provide a
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good picture of a spiking network’s spectral properties without having to resort to the much

longer full network simulations, at least when the network size is not too small.

Another important remark concerns the discrepancy between the SPDE and the full net-

work for very small system sizes. To illustrate this effect, we show in Fig 8 comparisons

Fig 7. Power spectrum (PS) of finite-size fluctuations of the network activity A(t) as a function of frequency f =ω/2π. We display the theoretical

PS (solid red curve), omitting the DC component atω = 0 (cf. Eqs 17 and 18), as well as an average spectrum (black trace) over 50 realizations of the

SPDE. The blue curve is the PS of the full spiking network activity. Parameters were Iext = 2 mV�ms, λ0 = 1 kHz, τ = 10 ms and τs = 10 ms. A-B-C

correspond to the three stars of Fig 6A.

https://doi.org/10.1371/journal.pcbi.1005691.g007

Fig 8. Discrepancy between the SPDE and the full network for small network sizes. We display the average spectrum over 50

realizations of the SPDE (black traces) and of the full spiking network (blue traces). Panels A, B and C correspond to simulations

with network sizes N = 1000, 100 and 10, respectively. The subscripts 1 to 3 correspond to the three stars in Fig 6A: number 1

corresponds to the star in the non-oscillatory regime, 2 represents the red star and 3 corresponds to the rightmost star in the

oscillatory regime. Other parameters as in Fig 6.

https://doi.org/10.1371/journal.pcbi.1005691.g008
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between the power spectrum of the full network and the SPDE for different sizes. The simula-

tions presented in Fig 8 correspond to parameters under the bifurcation line (top row), close

to the bifurcation line (middle row), and above the bifurcation (bottom row). The chosen

parameter values within these regimes correspond to the three stars of Fig 6A. Panels A, B and

C are illustrations for different number of cells. We clearly see that the SPDE gives very good

results for large N, for all regimes. However, discrepancies appear when the number of cells

becomes too small (of order *10; panels C). This is no surprise since our theory is expected to

fail for very small networks. Indeed, the Gaussian approximation to the Poisson variable (see

Methods) that is used to arrive at the SPDE (Eq 7) implicitly assumes the number of cells to be

large enough. Hence the observed discrepancy when the number of cells is too small.

Another way to obtain the power spectrum would be to first compute the autocorrelation

function of Aξ(t) and then use the Wiener-Khintchin theorem. However, solving Eq 14 pro-

vides a self-consistent expression (see Methods), namely

AxðtÞ ¼ ðQ � AxÞðtÞ þ SðtÞ: ð19Þ

Here, Q represents the response to finite-size perturbations of the activity in the past, whereas

S gives the effect of the Gaussian noise η(t, r) on the stochastic part of the activity (see Eq 54

and following in Methods for expressions for Q and S). Eq 19 can be solved by taking the Fou-

rier transform, thus forcing us to first compute the power spectrum to get the autocorrelation

function. Interestingly, however, the autocorrelation function of S(t) can be obtained directly

in terms of the interspike interval distribution in the asynchronous state, giving (see Methods)

hSðtÞSðt þ sÞi ¼ A1dðsÞ � A1

Z 1

0

dr P1ðrÞP1ðr þ jsjÞ; ð20Þ

which corresponds to that obtained in [35].

Discussion

The origin and functional implications of variability at the network scale are ongoing ques-

tions of interest in neuroscience. There have been a number of earlier efforts to go beyond the

mean-field approximation to address these questions. In the past few years the idea of studying

spiking neural circuit within the framework of statistical physics to investigate finite-size

effects has become a concrete research project (see e.g. [43]). In this study, an alternative

method was proposed to adequately describe observable noise at the network level.

We derived a stochastic partial differential equation (SPDE) describing the dynamics of the

refractory density q(t, r) (Eq 7). This quantity gives the density of neurons in refractory state r
at a certain time t, the refractory state being the time interval from the last spiking event. The

population activity A(t) can be extracted, for instance, from the boundary condition q(t, 0). In

the limit where the neuron number N goes to infinity, the standard PDE for the infinite-size

refractory density is recovered.

An important point about our derivation is that we did not assume that the single-neuron

spiking processes were described by a (inhomogeneous) Poisson process. In particular, as per

renewal theory, the firing intensity (or hazard function) depended on the last spike, contrary to

Poisson processes. Poisson random variables appeared in the course of the derivation because

the number of neurons firing in a small time interval Δt is a random variable following a bino-

mial distribution, which becomes a Poisson distribution in the limit Δt goes to zero. From

there, the only assumption to arrive at Eq 7 was to approximate this Poisson distribution by a

Gaussian distribution—the Gaussian approximation. This is in contrast with the work of Brunel

and Hakim [18, 44], which starts with deterministic single-neuron membrane equations, but
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approximates the spiking process of neurons embedded in the network by a Poisson process.

Nonetheless, the two approaches lead to a similar description, where the number of spikes pro-

duced during a small amount of time can be approximated by a Gaussian random variable.

Our SPDE cannot be solved analytically since the stochastic term involves a square-root

nonlinearity. Nonetheless, a discretization along the characteristic curves of the SPDE offers a

numerical scheme that gives a very satisfying approximation to its behavior. The advantage

over numerical simulations of the full network is that it overcomes some of the restrictions

imposed by computation time in multiple neuron simulations. Indeed, the numerical simula-

tion of the SPDE is independent of the number of neurons. Therefore the stochastic-field den-

sity approach appears to be a viable method to make simulations of large neural networks all

the while keeping track of their intrinsic variability.

On the other hand, a system-size expansion restricted to first order in 1=
ffiffiffiffi
N
p

—the linear

noise approximation—gives rise to two coupled linear SPDEs which are amenable to analytical

investigations. In particular, we studied finite-size fluctuations in the asynchronous regime,

for which the average network activity is constant and neurons fire asynchronously. This

enabled an analytical expression for the power spectrum of these fluctuations to be obtained

(Eq 18). Its structure is determined both by the characteristic function of the deterministic sys-

tem (thermodynamic limit) and by the spiking properties of the network (e.g., the interspike

interval density and the hazard function). The characteristic function appears in the stability

analysis of the deterministic system: zeros of this function are eigenmodes of the deterministic

dynamics. Similarly, via an integration along the characteristic curves, some salient aspects of

the autocorrelation properties of the finite-size fluctuations in the asynchronous activity

regime were computed (Eq 20), allowing comparison with the literature. We therefore note

that our SPDE permits the analytical computations of both the spectral Eq (18) and the corre-

lation Eq (20) properties of the fluctuations.

We restricted our study to fully connected networks of non-adaptive (renewal) neurons.

However, it should be noted that it is possible to take care of non-renewal aspects of neural

dynamics using the approximation provided by the quasi-renewal theory [37]. That theory

suggests that one can replace the full adaptation potential (Eq 1) by the sum of a contribution

from the last spike, � VðrÞ, and an average potential caused by other spikes over the whole

past. This latter contribution can be formulated as a convolution of the population activity

with a kernel. Thus, it can simply be included in an extended version of the SPDE formalism

presented here.

The stochastic-field approach to finite-size effects in neural network dynamics presented

herein uses a surrogate quantity q(t, r) to access the population activity. With this approach,

finite-size noise explicitly appears in the main equation, Eq 7, taking the form of a Gaussian

white noise in the variables t and r, divided by
ffiffiffiffi
N
p

. This equation can be integrated numeri-

cally, providing information about the latent, refractory state of neurons. This information is

typically not present in other approaches that deal with finite-size effects. Moreover, and most

importantly, the firing activity can thus be directly simulated by using the SPDE; such direct

simulation is typically not possible with other methods (but see below). On the other hand, the

linear noise approximation gives analytical expressions for the power spectrum of finite-size

activity fluctuations in the asynchronous state, a feat also possible by other approaches. For

instance, the linear response theory applied to leaky integrate-and-fire networks readily gener-

ates this power spectrum [20]. Also, an integral equation has recently been proposed that

directly involves the population activity [35]; linearizing this equation yields the power spec-

trum. Our preliminary investigations and Ref. [45] suggest that all these approaches lead to

analogous results.
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Moreover, Schwalger et al. recently used an error minimizing procedure to directly describe

the activity of finite-size networks at a so-called mesoscopic level. This procedure de facto sac-

rifices probability conservation to obtain a nevertheless accurate activity equation in the time

domain. Our approach rather involves both time and refractoriness, which is still considered

the microscopic level by these authors. However, working directly with our SPDE provides

some advantages. First, even though we performed a Gaussian approximation of the Poisson

spiking statistics, the probability is still conserved, which is the standard expectation for bio-

physically interpreted neural mass models [14]. Second, as stated above, its linearization in

combination with the use of the method of characteristics enabled us to obtain a stochastic dif-

ferential equation—along the characteristics—and to compute spectral and correlation proper-

ties of the network activity. Finally, we note that our approach can also be extended to multiple

populations, and we pointed the reader in the right direction for doing so without performing

the full calculations.

Methods

Derivation of the stochastic partial differential equation

We consider a homogeneous neural population and we denote the density of neurons in

refractory state r at time t by q(t, r). The number of neurons with their refractory state in [r −
Δr, r) at time t, denotedm(t, r), is given by

mðt; rÞ � N
Z r

r� Dr
qðt; xÞdx: ð21Þ

At time t, a given neuron is in refractory state r if its last spike occurred at

t̂ ¼ t � r;

and survived without spiking until t. Accordingly,m(t, r) represents the number of neurons a

time t whose last spike t̂ belongs to interval (t − r, t − r + Δr]. By extension,m(t + Δt, r + Δr)
represents the number of neurons whose last spike also occurred in (t − r, t − r + Δr], but that

survived without spiking until t + Δt. Intuitively,m(t + Δt, r + Δr) is equal tom(t, r) minus the

number of these neurons that did spike in [t, t + Δt). If Δt is small enough—so that the hazard

function ρ(t, r) is nearly constant on this interval—then this number is a statistically indepen-

dent Poisson random variable with mean and variance equal to ρ(t, r)m(t, r)Δt [25, 35]. There-

fore,

mðt þ Dt; r þ DrÞ � mðt; rÞ � Pfrðt; rÞmðt; rÞDtg; ð22Þ

where P is the aforementioned Poisson-distributed random number.

Assuming that

rðt; rÞmðt; rÞDt � 1;

then the Poisson distribution from which samples are randomly drawn approaches a normal

distribution. In this case, we can write

Pfrðt; rÞmðt; rÞDtg � rðt; rÞmðt; rÞDt þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rðt; rÞmðt; rÞDt

p
N ð0; 1Þ; ð23Þ

where N ð0; 1Þ is a standard normal random variable. On the discretized (t, r)-space implicitly

defined above, there exists one such standard normal random variable for every point of that

space; these random variables are mutually independent.
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Replacing Eq 21 in Eq 22 and using Eq 23 yields

Z rþDr

r
qðt þ Dt; xÞdx �

Z r

r� Dr
qðt; xÞdx ¼ � rðt; rÞDt

Z r

r� Dr
qðt; xÞdx

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

rðt; rÞ
Z r

r� Dr
qðt; xÞdxDt

N

v
u
u
t

N ð0; 1Þ

After a change of integration variable the left-hand side becomes

Z r

r� Dr
½qðt þ Dt; x þ DrÞdx � qðt; xÞ�dx �

Z r

r� Dr

@q
@t

Dt þ
@q
@r

Dr
� �

dx;

assuming that the partial derivatives of q exist; they are evaluated at (t, x). From the mean-

value theorem, we have for any integral

Z xþDx

x
f ðzÞdz ¼ Dxf ðxÞ; x < x < x þ Dx:

Then, in our case, we get

@q
@t

�
�
�
�
ðt;xÞ

DtDr þ
@q
@r

�
�
�
�
ðt;xÞ

Dr2 ¼ � rðt; rÞqðt; xÞDtDr �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rðt; rÞqðt; xÞDrDt

N

r

N ð0; 1Þ;

where

r � Dr < x < r:

Note that

Dr2 ¼ DtDr

because the refractory state increases linearly with t when neurons are not firing, hence

Dr ¼ Dt

Dividing each side of this equation by ΔtΔr and taking the limits

Dt ! 0; Dr ! 0;

yields the stochastic partial differential equation (SPDE) appearing as Eq 7 in the main text:

@q
@t
þ
@q
@r
¼ � rðt; rÞqðt; rÞ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rðt; rÞqðt; rÞ

N

r

Zðt; rÞ:

Here, we identified the limit of

Zðt; rÞ ¼ lim
DtDr!0

1
ffiffiffiffiffiffiffiffiffiffi
DtDr
p N ð0; 1Þ;

with a two-dimensional Gaussian white noise process η(t, r) obeying

hZðt; rÞZðt0; r0Þi ¼ dðt � t0Þdðr � r0Þ:
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The initial condition needed to solve the SPDE is obtained as follows. The total number of

neurons firing in interval [t, t + Δt), here denoted n(t), is given by

nðtÞ ¼ N
Z tþDt

t
Aðt0Þdt0; ð24Þ

where A(t0) is the population activity. But n(t) is also the number of neurons at time t + Δtwith

refractory state in [0, Δt). Hence,

mðt þ Dt;DtÞ ¼ nðtÞ ) N
Z Dt

0

qðt þ Dt; xÞdx ¼ N
Z tþDt

t
Aðt0Þdt0: ð25Þ

In the limit of small Δtwe get

qðt; 0Þ ¼ AðtÞ; ð26Þ

which is the required initial condition.

Moreover, n(t) must be equal to the summation of all neurons that fire in [t, t + Δt), what-

ever their refractory state. Therefore, we must have, symbolically,

N
Z tþDt

t
Aðt0Þdt0 ¼ lim

Dr!0

X

r

½mðt; rÞ � mðt þ Dt; r þ DrÞ�:

Steps similar to those used above readily yield

AðtÞ ¼
Z 1

0

dr rðt; rÞqðt; rÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rðt; rÞqðt; rÞ

N

r

Zðt; rÞ

" #

: ð27Þ

Finally, a normalization condition for q(t, r) is obtained from the fact that, at time t, all neu-

rons within the network have a given refractory state:

Z 1

0

qðt; rÞdr ¼ 1: ð28Þ

Eqs 26–28—and variants thereof—are used in the main text.

Let us emphasize that we do not assume that the single neurons possess Poisson statistics.

The Poisson random variable arises from an application of the theory of point processes.

According to this theory, a generic point process with hazard function lðtjHðtÞ;YÞ—where

H is the given history of events prior to t and Θ represents any covariate, e.g. an external stim-

ulus—generates a spike in [t, t + Δt) with probability lðtjH;YÞDt þOðDt2Þ [46]. A Poisson

process is obtained when the hazard function does not depend on history, in which case the

hazard function identifies with the mean field itself (i.e. the firing rate). In our case, the hazard

function ρ depends on the history

Ht � fAðt0Þ : 0 < t0 < tg

and the external input through the potential u(t, r). Fundamentally, the number of neurons fir-

ing in [t, t + Δt) follows a binomial distribution, which becomes a Poisson distribution in the

limit Δt! 0; the underlying Poisson random variable changes as a function of time and is cor-

related with other Poisson variables at other times (see appendix B in [35] for a mathematical

explanation).
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Linear noise approximation

We start with the system-size expansion given in Eqs 11 and 12, that we rewrite here for conve-

nience

qðt; rÞ ¼ q0ðt; rÞ þ
1
ffiffiffiffi
N
p qxðt; rÞ þO N � 1ð Þ ð29Þ

AðtÞ ¼ A0ðtÞ þ
1
ffiffiffiffi
N
p AxðtÞ þO N � 1ð Þ: ð30Þ

Replacing these two equations in the SPDE, Eq 7, yields

dq0

dt
þ

1
ffiffiffiffi
N
p

dqx

dt
¼ � r q0 þ

1
ffiffiffiffi
N
p qx

� �

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r q0 þ
1
ffiffiffiffi
N
p qx

� �

N

v
u
u
u
t

Z

omitting function arguments for brevity. Here, d/dt is the material derivative operator

d=dt � @=@t þ @=@r:

Using Eqs 30 and 4, we can write the hazard function as

r½uðt; rÞ� � r½ðk � ½� JsA0 þ Iext�ÞðtÞ � JsN � 1=2ðk � AxÞðtÞ � VðrÞ�

� r0ðt; rÞ � JsN � 1=2ðk � AxÞðtÞ
dr

du
;

ð31Þ

where

r0ðt; rÞ � r½u0ðt; rÞ�

with

u0ðt; rÞ � ðk � ½� JsA0 þ Iext�ÞðtÞ � VðrÞ

and the derivative dρ/du is evaluated at u0. Then, matching terms of orders Oð1Þ and

OðN � 1=2Þ, and neglecting contributions from terms of order OðN � 1Þ and lower, we get two

equations involving q0 and qξ:

dq0

dt
¼ � r0ðt; rÞq0ðt; rÞ

dqx

dt
¼ � r0ðt; rÞqxðt; rÞ þ Jsðk � AxÞðtÞ

dr

du
q0ðt; rÞ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r0ðt; rÞq0ðt; rÞ
q

Zðt; rÞ:

ð32Þ

The first of these equations is the usual mean-field model (Eq 13). The second equation is a

SPDE whose coefficients, source and noise terms depend on the solution of the deterministic

equation. Of course, the boundary condition on q(t, r) (cf. Eqs 8 or 26) implies

A0ðtÞ ¼ q0ðt; 0Þ

AxðtÞ ¼ qxðt; 0Þ:
ð33Þ
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Furthermore, from Eq 9 and the LNA, we have, after algebraic manipulations:

A0ðtÞ ¼
Z 1

0

r0ðt; rÞq0ðt; rÞdr

AxðtÞ ¼
Z 1

0

r0ðt; rÞqxðt; rÞ � Jsðk � AxÞðtÞ
Z 1

0

dr

du
ðt; rÞq0ðt; rÞdr

þ

Z 1

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r0ðt; rÞq0ðt; rÞ
q

Zðt; rÞdr:

ð34Þ

Together, Eqs 32–34 constitute a coupled system between the deterministic mean field (A0 and

q0) and the first-order fluctuations in the LNA (Aξ and qξ).

Activity in the asynchronous state

Let us denote by q1(r) and A1 the refractory density and activity in the asynchronous steady

state, respectively. We have to solve

d
dr
q1ðrÞ ¼ � r1ðrÞq1ðrÞ; ð35Þ

where

r1ðrÞ � r½u1� ¼ r½� VðrÞ þ h1�

h1 � Iext � JsA1:
ð36Þ

Eq 35 can be integrated to give

q1ðrÞ ¼ A1e
�

R r
0

r1ðsÞ ds; ð37Þ

where we have used the boundary condition

q1ð0Þ ¼ A1:

Finally, the average asynchronous activity can be computed using the conservation property of

the neural network, namely

Z 1

0

q1ðrÞdr ¼ 1;

so that

A� 1

1
¼

Z 1

0

e�
R r

0
r1ðsÞ dsdr:

Note that the mean firing rate is implicitly given since ρ1 depends on A1. Therefore, to com-

pute the mean activity, this nonlinear equation must be solved numerically.

With our choices for ρ we can push the calculation further. We have

r1ðrÞ ¼ l0e
h1ð1 � e� r=tÞ;

where δu has been set to its numerical value of 1 mV, hence

Z r

0

r1ðsÞds ¼ l0e
h1½r þ tðe� r=t � 1Þ�
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and

A� 1
1
¼

Z 1

0

expf� l0eh1½r þ tðe� r=t � 1Þ�gdr

¼ expðl0eh1tÞ

Z 1

0

expf� l0eh1ðr þ te� r=tÞgdr:

The change of variable

t ¼ l0te
h1� r=t

reduces the problem to finding the solution of the equation

A� 1

1
¼ t

e
s1

� �s1
gðs1; s1Þ; ð38Þ

where the lower incomplete γ function is given by

gða; xÞ ¼
Z x

0

ta� 1e� tdt;

and we defined

s1 � tr1ð1Þ ¼ tl0exp½Iext � JsA1�:

Eq 38 is then solved self-consistently for A1.

Stability analysis and the characteristic equation

To study the stability of the asynchronous state, one needs the eigenvalues of the differential

operator once a linearization around the steady state has been performed. We therefore con-

sider a small perturbation and write the solution in the form

q0ðt; rÞ ¼ q1ðrÞ þ εq1ðt; rÞ þOðε2Þ; A0ðtÞ ¼ A1 þ εA1ðtÞ þOðε2Þ: ð39Þ

Plugging these expressions into Eq 13—keeping the first order terms only—yields the partial

differential equation

@

@t
q1ðt; rÞ þ

@

@r
q1ðt; rÞ ¼ � r1ðrÞq1ðt; rÞ þ Js

dr

du

�
�
�
�
u1ðrÞ

q1ðrÞðk � A1ÞðtÞ; ð40Þ

with ρ1(r) given by Eq 36 and

u1ðrÞ ¼ � VðrÞ þ h1:

From Eq 40 (compare with Eqs 7 and 27), we have

A1ðtÞ ¼
Z 1

0

r1ðrÞq1ðt; rÞdr � Jsðk � A1ÞðtÞ
Z 1

0

dr

du

�
�
�
�
u1ðrÞ

q1ðrÞdr: ð41Þ

We express the perturbation in eigenmodes

q1ðt; rÞ ¼ eltq1ðrÞ; A1ðtÞ ¼ eltA1:

After algebraic manipulations, we find that the perturbation obeys

d
dr
q1ðrÞ ¼ � ½r1ðrÞ þ l�q1ðrÞ þ JsA1

dr

du

�
�
�
�
u1ðrÞ

q1ðrÞk̂ðlÞ; ð42Þ
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with the Laplace transform of κ given by

k̂ðlÞ �

Z 1

0

kðsÞe� ls ds:

Integration of this equation yields

q1ðrÞ ¼ A1S1ðrÞe
� lr þ JsA1k̂ðlÞ

Z r

0

dr

du

�
�
�
�
u1ðsÞ

q1ðsÞe
� lðr� sÞ S1ðrÞ

S1ðsÞ
ds; ð43Þ

where

S1ðrÞ � exp �
Z r

0

r1ðxÞdx
� �

ð44Þ

is the survivor function in the steady state. From Eq 37, we have

q1ðsÞ ¼ A1S1ðsÞ;

hence,

q1ðrÞ ¼ A1S1ðrÞe
� lr þ JsA1k̂ðlÞA1S1ðrÞ

Z r

0

dr

du

�
�
�
�
u1ðsÞ

e� lðr� sÞds: ð45Þ

Moreover, we get from Eq 41

A1 ¼

Z 1

0

r1ðrÞq1ðrÞdr � Jsk̂ðlÞA1

Z 1

0

dr

du

�
�
�
�
u1ðrÞ

q1ðrÞdr:

Replacing Eq 45 into this latter equation gives, after cancellation of A1 throughout,

1 ¼

Z 1

0

r1ðrÞS1ðrÞe� lrdr þ Jsk̂ðlÞA1

Z 1

0

dr r1ðrÞS1ðrÞe� lr

Z r

0

dr

du

�
�
�
�
u1ðsÞ

elsds

� Jsk̂ðlÞ
Z 1

0

dr

du

�
�
�
�
u1ðrÞ

q1ðrÞdr:

Writing

P1ðrÞ � r1ðrÞS1ðrÞ ð46Þ

for the probability density of obtaining a refractory state r in the steady state and defining its

Laplace transform

P̂1ðlÞ �
Z 1

0

P1ðrÞe
� lrdr; ð47Þ

we get

1 ¼ P̂1ðlÞ þ Jsk̂ðlÞA1

Z 1

0

dr P1ðrÞe� lr

Z r

0

ds
dr

du

�
�
�
�
u1ðsÞ

els

� Jsk̂ðlÞ
Z 1

0

dr

du

�
�
�
�
u1ðrÞ

q1ðrÞdr:
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We shall write the characteristic equation as CðlÞ ¼ 0 with

CðlÞ � 1 � P̂1ðlÞ � Jsk̂ðlÞA1

Z 1

0

dr
Z r

0

ds P1ðrÞ
dr

du

�
�
�
�
u1ðsÞ

e� lðr� sÞ

þ Jsk̂ðlÞ
Z 1

0

dr

du

�
�
�
�
u1ðrÞ

q1ðrÞdr:

The eigenvalues are thus given by the roots of CðlÞ. The time-independent solution A1 will be

stable if all the eigenvalues have negative real parts.

Computation of the power spectrum

We assume that the deterministic part of the activity tends toward its equilibrium state—below

the instability threshold. In other words, t is large enough that

q0ðt; rÞ ¼ q1ðrÞ; A0ðtÞ ¼ A1:

Thus discarding the transient dynamics, the SPDE involving the finite-size fluctuations in the

LNA (see second equation of Eq 32) becomes

@qx

@t
þ
@qx

@r
¼ � r1ðrÞqxðt; rÞ þ Jsðk � AxÞðtÞ

dr

du

�
�
�
�
u1

q1ðrÞ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r1ðrÞq1ðrÞ

p
Zðt; rÞ: ð48Þ

On the other hand, the stochastic part of the activity now reads (see second equation in Eq 34)

AxðtÞ ¼
Z 1

0

r1ðrÞqxðt; rÞdr � Jsðk � AxÞðtÞ
Z 1

0

dr

du

�
�
�
�
u1ðrÞ

q1ðrÞdr

þ

Z 1

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r1ðrÞq1ðrÞ

p
Zðt; rÞdr:

ð49Þ

The power spectrum is defined by

PxðoÞ � lim
T!1

hj~AxðoÞj
2
i

T
;

where

~AxT
ðoÞ �

Z T

0

AxðtÞe
� iotdt ð50Þ

is the Fourier transform of the stochastic process Aξ restricted to 0< t< T. Analogously, we

define

~qxT
ðo; rÞ �

Z T

0

qxðt; rÞe
� iot dt;

and likewise for other stochastic processes depending on t and r. After taking the Fourier

transform, Eq 48 becomes (arguments of functions are omitted when no confusion may arise)

@~qxT

@r
¼ � ½r1ðrÞ þ io�~qxT

þ Js~k ~AxT

dr

du

�
�
�
�
u1

q1ðrÞ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r1ðrÞq1ðrÞ

p
~ZTðo; rÞ:

Note that this equation has exactly the same form as Eq 42 above, and thus can be solved
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accordingly:

~qxT
¼ ~AxT

S1ðrÞe� ior þ Js~k ~AxT
A1

Z r

0

dr

du
ju1ðsÞe

� ioðr� sÞS1ðrÞds

�

Z r

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r1ðsÞq1ðsÞ

p
~ZTðo; sÞe� ioðr� sÞ

S1ðrÞ
S1ðsÞ

ds;

where we used

~qxT
ðo; 0Þ ¼ ~AxT

ðoÞ:

Also, from Eq 49 we get

~AxT
¼

Z 1

0

r1ðrÞ~qxT
ðo; rÞdr � Js~k ~AxT

Z 1

0

dr

du

�
�
�
�
u1ðrÞ

q1ðrÞdr

þ

Z 1

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r1ðrÞq1ðrÞ

p
~ZTðo; rÞdr:

ð51Þ

Replacing ~qxT
in this equation by the expression that has just been obtained for it yields

~AxT
¼ ~AxT

Z 1

0

P1ðrÞe� iordr þ Js~k ~AxT
A1

Z 1

0

Z r

0

dr

du

�
�
�
�
u1ðsÞ

e� ioðr� sÞP1ðrÞdsdr

�

Z 1

0

Z r

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r1ðsÞq1ðsÞ

p
~ZTðo; sÞe� ioðr� sÞ

P1ðrÞ
S1ðsÞ

dsdr � Js~k ~AxT

Z 1

0

dr

du

�
�
�
�
u1ðrÞ

q1ðrÞdr

þ

Z 1

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r1ðrÞq1ðrÞ

p
~ZTðo; rÞdr:

Hence, with

~P1ðoÞ ¼ P̂1ðioÞ ¼
Z 1

0

P1ðrÞe
� iordr

the characteristic function of P1(r), we get

~AxT
ðoÞ ¼

R1
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r1ðrÞq1ðrÞ

p
~ZTðo; rÞdr �

R1
0

R r
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r1ðsÞq1ðsÞ

p
~ZTðo; sÞe� ioðr� sÞ

P1ðrÞ
S1ðsÞ

dsdr

CðioÞ
:

To simplify the notation, we define

aoðs; rÞ � e� ioðr� sÞ
P1ðrÞ
S1ðsÞ

; f ðrÞ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r1ðrÞq1ðrÞ

p
:

Then,

~AxT
ðoÞ ¼

R1
0
f ðrÞ~ZTðo; rÞdr �

R1
0

R r
0
f ðsÞ~ZTðo; sÞaoðs; rÞdsdr

CðioÞ
:

To compute the power spectrum of Aξ, we first note that

lim
T!1

h~ZTðo; rÞ~Z�Tðo; r
0Þi

T
¼ dðr � r0Þ

since η(t, r) is a Gaussian white noise. Also, in the expression for ~AxT
ðoÞ, only the numerator
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contains stochastic terms. Therefore, we only have to compute

lim
T!1

1

T

��
�
�
�

Z 1

0

f ðrÞ~ZTðo; rÞdr �
Z 1

0

Z r

0

f ðsÞ~ZTðo; sÞaoðs; rÞdsdr
�
�
�
�

2�

which gives rise to four terms that we compute separately (we denote h�i � lim T!1
1

T h�i).

First term

Z 1

0

Z 1

0

dr dr0 f ðrÞf ðr0Þh~ZTðo; rÞ~Z
�

Tðo; r
0Þi

¼

Z 1

0

Z 1

0

dr dr0 f ðrÞf ðr0Þdðr � r0Þ

¼

Z 1

0

½f ðrÞ�2dr ¼ A1:

Second term

Z 1

0

Z 1

0

Z r0

0

drdr0ds0f ðrÞf ðs0Þa�
o
ðs0; r0Þdðr � s0Þ

¼

Z 1

0

Z 1

0

drdr0½f ðrÞ�2a�
o
ðr; r0ÞHðr0 � rÞ

¼

Z 1

0

dr
Z r

0

dr0½f ðrÞ�2a�
o
ðr; r0Þ

since

Z r0

0

ds0gðs0Þdðr � s0Þ ¼ gðrÞHðr0 � rÞ

for an arbitrary function g(s).
Third term

Z 1

0

Z 1

0

Z r0

0

drdr0ds0f ðrÞf ðs0Þaoðs
0; r0Þdðr � s0Þ

¼

Z 1

0

dr
Z r

0

dr0½f ðrÞ�2aoðr; r
0Þ:

Fourth term

Z 1

0

dr
Z 1

0

dr0
Z r0

0

ds0
Z r

0

dsf ðsÞf ðs0Þaoðs; rÞa�oðs
0; r0Þdðs � s0Þ

¼

Z 1

0

dr
Z 1

0

dr0
Z r0

0

ds½f ðsÞ�2aoðs; rÞa�oðs; r
0ÞHðr � sÞ

¼

Z 1

0

ds
Z 1

s
dr½f ðsÞ�2aoðs; rÞ

Z 1

s
dr0a�

o
ðs; r0Þ

¼

Z 1

0

ds½f ðsÞ�2
�
�
�
�

Z 1

s
draoðs; rÞ

�
�
�
�

2

:

Finite-size spiking neural networks

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005691 August 7, 2017 26 / 34

https://doi.org/10.1371/journal.pcbi.1005691


The power spectrum is then

PxðoÞ ¼

A1 þ
Z 1

0

ds ½f ðsÞ�2j
Z 1

s
draoðs; rÞj

2
� 2<

Z 1

0

ds ½f ðsÞ�2
Z s

0

draoðs; rÞ

jCðioÞj2
:

With the definitions for f(s) and αω(s, r), the second term of the numerator becomes

Z 1

0

dsr1ðsÞq1ðsÞ
�
�
�
�

Z 1

s
dr e� ioðr� sÞ

P1ðrÞ
S1ðsÞ

�
�
�
�

2

¼ A1

Z 1

0

ds
r1ðsÞ
S1ðsÞ

�
�
�
�

Z 1

s
dr e� iorP1ðrÞ

�
�
�
�

2

and for the third term,

2< A1

Z 1

0

ds r1ðsÞe
ios
Z s

0

dr e� iorP1ðrÞ
� �

:

Hence, finally,

PxðoÞ ¼ A1
1þ

Z 1

0

dsr1ðsÞe
R s

0
r1ðxÞdx

�
�
�
�

Z 1

s
dr e� iorP1ðrÞ

�
�
�
�

2

jCðioÞj2

� A1
2<

�Z 1

0

ds
Z s

0

dr r1ðsÞP1ðrÞe� ioðr� sÞ
�

jCðioÞj2
:

Autocorrelation function

In this section, we compute Aξ and (a part of) its autocorrelation function. According to the

Wiener-Khintchin theorem, the autocorrelation function of Aξ is simply the Fourier transform

of its power spectrum. But to allow comparison with the results in [35], we calculate a part of

this autocorrelation directly. From Eq 49, we must determine qξ(t, r). This will be done by first

solving Eq 48 using the method of characteristics.

Solving the first-order inhomogeneous PDE with the method of characteristics. We

have to solve

@qx

@t
þ
@qx

@r
¼ � r1ðrÞqxðt; rÞ þ Fðt; rÞ: ð52Þ

where

Fðt; rÞ � Jsðk � AxÞðtÞ
dr

du

�
�
�
�
u1ðrÞ

q1ðrÞ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r1ðrÞq1ðrÞ

p
Zðt; rÞ:

The ranges of r and t are [0,1) and (−1,1), respectively. The boundary condition is

qxðt; 0Þ ¼ AxðtÞ:

With the method of characteristics, we first transform the PDE above into an ordinary
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differential equation. We find a family of curves for which

@qx

@t
þ
@qx

@r
¼
dqx

dr
:

Since

dt=dr ¼ 1;

we have

t ¼ r þ t0:

Along these lines,

d
dr
qxðtðrÞ; rÞ ¼

@qx

@t
dt
dr
þ
@qx

@r
:

Hence, we now have to solve the ODE on the characteristic curve, namely

dqx

dr
þ r1ðrÞqx ¼ Fðr þ t0; rÞ; qxðt0; 0Þ ¼ Axðt0Þ:

The solution is

qxðtðrÞ; rÞ ¼ Axðt0ÞS1ðrÞ þ S1ðrÞ
Z r

0

Fðtþ t0; tÞ
S1ðtÞ

dt:

Replacing

t0 ¼ t � r;

we get the solution for the whole (t, r) space:

qxðt; rÞ ¼ Axðt � rÞS1ðrÞ þ S1ðrÞ
Z r

0

Fðtþ t � r; tÞ
S1ðtÞ

dt:

Replacing this expression into Eq 49 yields

AxðtÞ ¼
Z 1

0

Axðt � rÞP1ðrÞdr þ
Z 1

0

P1ðrÞ
Z r

0

Fðtþ t � r; tÞ
S1ðtÞ

dtdr

� Jsðk � AxÞðtÞ
Z 1

0

dr

du

�
�
�
�
u1ðrÞ

q1ðrÞdr þ
Z 1

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r1ðrÞq1ðrÞ

p
Zðt; rÞdr:

ð53Þ

The second term is

Z 1

0

P1ðrÞ
Z r

0

Fðtþ t � r; tÞ
S1ðtÞ

dtdr

¼

Z 1

0

P1ðrÞ
Z r

0

Jsðk � AxÞðtþ t � rÞ
dr

du

�
�
�
�
u1ðtÞ

q1ðtÞ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r1ðtÞq1ðtÞ

p
Zðtþ t � r; tÞ

S1ðtÞ
dtdr:

The first part of this second term can be written

JsA1

Z 1

0

dr P1ðrÞ
Z r

0

dt

Z 1

� 1

dx kðtþ t � r � xÞAxðxÞ
dr

du

�
�
�
�
u1ðtÞ

� JsA1ðG � AxÞðtÞ
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with

GðtÞ �
Z 1

0

drP1ðrÞ
Z r

0

dt
dr

du

�
�
�
�
u1ðtÞ

kðt þ t � rÞ:

Therefore, we finally have

AxðtÞ ¼ ðQ � AxÞðtÞ þ SðtÞ ð54Þ

with

QðtÞ � P1ðtÞ � Js½a1kðtÞ � A1GðtÞ�;

a1 �

Z 1

0

dr

du

�
�
�
�
u1ðrÞ

q1ðrÞdr;

and

SðtÞ �
Z 1

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r1ðrÞq1ðrÞ

p
Zðt; rÞdr �

Z 1

0

dr P1ðrÞ
Z r

0

dt

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r1ðtÞq1ðtÞ

p
Zðtþ t � r; tÞ

S1ðtÞ
:

In the case where the hazard function is exponential, as in Eq 5, a1 becomes

a1 ¼
1

du

Z 1

0

r1ðrÞq1ðrÞdr ¼
A1
du

whereas

GðtÞ ¼
1

du

Z 1

0

drP1ðrÞ
Z r

0

dtr1ðtÞkðt þ t � rÞ:

Autocorrelation function of S. We compute hS(t)S(t + t0)i:

hSðtÞSðt þ t0Þi ¼
Z 1

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r1ðrÞq1ðrÞ

p
Zðt; rÞdr �

Z 1

0

P1ðrÞ
Z r

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r1ðtÞq1ðtÞ

p
Zðtþ t � r; tÞ

S1ðtÞ
dtdr

" #*

Z 1

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r1ðr0Þq1ðr0Þ

p
Zðt þ t0; r0Þdr0 �

Z 1

0

P1ðr0Þ
Z r0

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r1ðt

0Þq1ðt0Þ
p

Zðt0 þ t þ t0 � r0; t0Þ
S1ðt0Þ

dt0dr0
" #+

First, we have

Z 1

0

Z 1

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r1ðrÞq1ðrÞ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r1ðr0Þq1ðr0Þ

p
hZðt; rÞZðt þ t0; r0Þidr0dr

¼

Z 1

0

Z 1

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r1ðrÞq1ðrÞ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r1ðr0Þq1ðr0Þ

p
dðt0Þdðr � r0Þdr0dr

¼ dðt0Þ
Z 1

0

r1ðrÞq1ðrÞdr ¼ A1dðt0Þ:

Finite-size spiking neural networks

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005691 August 7, 2017 29 / 34

https://doi.org/10.1371/journal.pcbi.1005691


Second, we have

�

Z 1

0

Z 1

0

Z r0

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r1ðrÞq1ðrÞ

p
P1ðr

0Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r1ðt

0Þq1ðt0Þ
p

S1ðt0Þ
hZðt; rÞZðt0 þ t þ t0 � r0; t0Þidt0dr0dr

¼ �

Z 1

0

Z 1

0

Z r0

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r1ðrÞq1ðrÞ

p
P1ðr

0Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r1ðt

0Þq1ðt0Þ
p

S1ðt0Þ
dðt0 þ t0 � r0Þdðr � t0Þdt0dr0dr

¼ � A1

Z 1

0

Z r0

0

P1ðr
0Þr1ðt

0Þdðt0 þ t0 � r0Þdt0dr0

¼ � A1Hðt0Þ
Z 1

0

Hðr � t0ÞP1ðrÞr1ðr � t
0Þdr

Similarly, for the third term we obtain

� A1Hð� t0Þ
Z 1

0

Hðr þ t0ÞP1ðrÞr1ðr þ t
0Þdr:

We can combine the last two expressions by writing

� A1

Z 1

0

Hðr � jt0jÞP1ðrÞr1ðr � jt
0jÞdr

¼ � A1

Z 1

0

r1ðrÞP1ðr þ jt
0jÞdr:

For the fourth term, defining

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r1ðrÞq1ðrÞ

p
� sðrÞ;

we have

Z 1

0

Z 1

0

Z r

0

Z r0

0

P1ðrÞP1ðr
0Þ
sðtÞ

S1ðtÞ
sðt0Þ

S1ðt0Þ
hZðtþ t � r; tÞZðt0 þ t þ t0 � r0; t0Þidt0dtdrdr0

¼

Z 1

0

Z 1

0

Z r

0

Z r0

0

P1ðrÞP1ðr
0Þ
sðtÞ

S1ðtÞ
sðt0Þ

S1ðt0Þ
dðt0 þ t0 � r0 � tþ rÞdðt � t0Þdt0dtdrdr0

¼

Z 1

0

Z 1

0

Z r

0

Hðr0 � tÞP1ðrÞP1ðr
0Þ
sðtÞ2

S1ðtÞ
2

dðt0 þ r � r0Þdtdrdr0

¼ A1

Z 1

0

dr
Z r

0

dt Hðr þ t0 � tÞP1ðrÞP1ðr þ t
0Þ

r1ðtÞ

S1ðtÞ
;

where in the last line we used

q1ðrÞ ¼ S1ðrÞA1:

When t0 > 0, we have

A1

Z 1

0

dr P1ðrÞP1ðr þ t
0Þ

Z r

0

dt
r1ðtÞ

S1ðtÞ

¼ A1

Z 1

0

dr r1ðrÞP1ðr þ t
0Þ � A1

Z 1

0

dr P1ðrÞP1ðr þ t
0Þ
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where we used

Z r

0

dt
r1ðtÞ

S1ðtÞ
¼ � 1þ 1=S1ðrÞ:

When t0 < 0,

A1

Z 1

0

dr P1ðrÞP1ðr � jt
0jÞ

Z r� jt0 j

0

dt
r1ðtÞ

S1ðtÞ

¼ A1

Z 1

0

dr r1ðr � jt
0jÞP1ðrÞ � A1

Z 1

0

dr P1ðrÞP1ðr � jt
0jÞ

¼ A1

Z 1

0

dr r1ðrÞP1ðr þ jt
0jÞ � A1

Z 1

0

dr P1ðrÞP1ðr þ jt
0jÞ:

The autocorrelation function is then

hSðtÞSðt þ t0Þi ¼ A1dðt0Þ � A1

Z 1

0

r1ðrÞP1ðr þ jt
0jÞdr

þA1

Z 1

0

dr r1ðrÞP1ðr þ jt
0jÞ � A1

Z 1

0

dr P1ðrÞP1ðr þ jt
0jÞ;

hence, finally

hSðtÞSðt þ sÞi ¼ A1dðsÞ � A1

Z 1

0

dr P1ðrÞP1ðr þ jsjÞ:

Numerical implementation

The SPDE of Eq 7 can be readily integrated using the following numerical scheme:

qðt þ Dt; r þ DtÞ ¼ qðt; rÞexpf� r½uðt; rÞ�Dtg

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qðt; rÞH½qðt; rÞ�f1 � expð� r½uðt; rÞ�DtÞg

NDt

r

N ð0; 1Þ
ð55Þ

whereH(x) is the Heaviside step function, and N ð0; 1Þ is a standard normal random variable.

This numerical scheme is obtained by discretizing the time evolution of q(t, r) on the charac-

teristic curve (cf.Methods) and noting that

1 � rqdt � e� rqdt;

with e−ρdt the probability that a spike is not fired during interval dt [33]. The Heaviside function

prevents negative values for q(t, r) from appearing under the square-root sign. Along the char-

acteristic curve, the dynamics correspond to a Cox-Ingersoll-Ross stochastic differential equa-

tion [47]. The proposed numerical scheme above is thus well defined [48] and produces results

in excellent agreement with simulations of the full network (see Fig 4). One way to extract the

population activity is to evolve q(t, r) according to the above numerical scheme for all

r ¼ iDt; 8i > 0;

and compute q(t, 0)—and thus A(t)—by enforcing the conservation law (Eq 10).
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