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Abstract

It is generally agreed that bacterial diversity can be classified into genetically and ecolog-

ically cohesive units, but what produces such variation is a topic of intensive research.

Recombination may maintain coherent species of frequently recombining bacteria, but the

emergence of distinct clusters within a recombining species, and the impact of habitat struc-

ture in this process are not well described, limiting our understanding of how new species

are created. Here we present a model of bacterial evolution in overlapping habitat space.

We show that the amount of habitat overlap determines the outcome for a pair of clusters,

which may range from fast clonal divergence with little interaction between the clusters to a

stationary population structure, where different clusters maintain an equilibrium distance

between each other for an indefinite time. We fit our model to two data sets. In Streptococ-

cus pneumoniae, we find a genomically and ecologically distinct subset, held at a relatively

constant genetic distance from the majority of the population through frequent recombina-

tion with it, while in Campylobacter jejuni, we find a minority population we predict will con-

tinue to diverge at a higher rate. This approach may predict and define speciation

trajectories in multiple bacterial species.

Author summary

Species are conventionally defined as groups of individuals that breed with each other, but

not with those of other species. However, this does not apply to bacteria because, even if

they reproduce clonally, DNA may be donated between distinct species. Nevertheless, bac-

terial species do exist, and a fundamental question is how they are created. We present a

mathematical model to describe bacterial speciation. The model predicts that two groups

of ecologically different bacteria, assumed to live in partially overlapping habitats, may

evolve into genetically distinguishable clusters, without being able to proceed to full sepa-

ration. Analysis of a divergent Streprococcus pneumoniae subgroup shows that such ‘satel-

lite species’ exist and can be distinguished from more rapidly diverging clusters, like the

one we detect in Campylobacter jejuni.
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Introduction

Speciation in eukaryotes is well-studied [1], but the definition of bacterial species remains con-

troversial due to recombination, which allows transfer of DNA between distant strains [2].

While recombination may maintain the genetic coherence of a species [3–5], theory suggests

selection is necessary for diversification [6]. Bacterial populations generally comprise geneti-

cally and ecologically differentiated clusters [7–9], and several explanations have been offered

for this [10–12]. For example, in the Ecotype Model [10], niche -specific adaptive mutations

cause genome-wide selective sweeps that remove variability between isolates in the same the

niche, resulting in genetically differentiated clusters in different niches. Recently, a model of

ecological differentiation among sympatric recombining bacteria has been developed [13, 14].

In this model the differentiation is triggered by an acquisition of a few habitat-specific alleles

through horizontal gene transfer. If recombination between habitats is limited, the result is

gradual diversification, eventually creating genomically and ecologically distinct clusters.

Unlike in the Ecotype Model, which assumes genome-wide sweeps, here the sweeps occur only

at the habitat-specific genes, but the overall genetic differentiation happens more slowly

because recombination unlinks the habitat specific genes from the rest of the genome. The

resulting pattern has a small number of short regions with strong habitat association, while the

majority of the genome is relatively uncorrelated with habitat, a pattern observed between two

clusters of closely related Vibrio bacteria [13].

Fig 1 shows population structures in data sets with 616 Streptococcus pneumoniae [15]

and 235 Campylobacter jejuni samples [16–18] (see Materials and Methods). Both include

strains divergent from the rest of the population, providing us with an opportunity to investi-

gate the early stages of bacterial differentiation. In particular, the S. pneumoniae data consist

of 16 sequence clusters (SCs) of which one, SC12, differs from the rest, and has previously

been characterized as ‘atypical pneumococci’ representing a distinct species [15, 19]. All

other SCs are at the same equilibrium distance from each other, maintained by recombina-

tion, corresponding to the main mode in the distance distribution [4]. Two additional

modes can be discerned: one close to the origin comprising the within SC distances, which

may be explained by selection of some sort [4], and the other representing the broad division

of the data into SC12 vs. rest, which indicates less frequent recombination between these two

clusters. Whether SC12 is a nascent cluster, which will continue to diverge, is not known. It is

also possible that the distance could be an equilibrium produced by the combination of muta-

tional divergence and occasional recombination with the parent cluster. A similar minor

mode is found in C. jejuni, in this case arising from a single divergent isolate shown in red.

Whether this is an isolate from a cluster in the early stages of divergence is similarly

unknown.

The goal to understand the population sub-divisions observed in Fig 1 motivated us to

develop a model that could reproduce similar patterns. Previously models have been used to

investigate the impact of homologous recombination on population structure [3, 20], the dis-

tribution of accessory genome [21–23], parallel evolution of the core and accessory genomes

[4], migration and horizontal gene transfer [24], and gene sweeps and frequency dependent

selection [25]. Our model is motivated by the fact that different species carry genetic differ-

ences that lead to physiological differences, and, consequently, to niche separation. However,

the niche separation between different species may be incomplete, which means partial com-

petition of the same resources and increased opportunities for interaction, as illustrated in

Fig 2A. We take the model of sympatric differentiation [13, 14] as our starting point, and

extend it in two ways. First, we introduce an explicit, controllable barrier for recombination
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between the two populations, and second, we derive an analytical approximation for the

model.

An outline of our ‘Overlapping Habitats Model’ is shown in Fig 2B. Here the habitats repre-

sent different niches, and the key characteristic is the existence of two populations of different

types of strains living in partially overlapping habitats. Recombination between the popula-

tions only occurs between individuals in the shared habitat, while migration enables strains to

move between different parts of the habitat space. Notably, selection is implicit in the niche

structure, in that there are regions of ecological space ‘private’ to each species where the other

cannot survive. This habitat-specificity is assumed non-mutable and heritable, and could in

practice be caused by a small number of genes. However, unlike [14], we do not model these

explicitly, but rather focus on the consequences of that adaptation for the differentiation at the

rest of the genome. This formulation facilitates predictions for the evolution of the population

structure, given certain amount of habitat overlap, and, on the other hand, learning parameter

values that result in a given population structure as an equilibrium.

Fig 1. Population structures in S. pneumoniae and C. jejuni data sets. Distributions of pairwise distances computed between all strain pairs in the

data sets (A,C), and the corresponding phylogenies (B,D). In the S. pneumoniae phylogeny (B), 16 previously identified sequence clusters are annotated

as follows: the divergent cluster with red, 14 other monophyletic clusters with gray, and the remaining non-monophyletic cluster is not colored. Distances

within and between these clusters are annotated in the distance histogram (A). Similarly, for C. jejuni, three clusters corresponding to separate branches of

the phylogeny are colored with gray and one divergent strain with red (D), and the distances within and between these clusters are shown in the histogram

(B). Annotation “Other” refers to within cluster comparisons as well as to distances between the non-colored strains and other strains.

https://doi.org/10.1371/journal.pcbi.1005640.g001
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Materials and methods

Simulation model

As the basis of our model, we use a Wright-Fisher forward simulation of discrete generations,

where each generation is sampled with replacement from strains in the previous generation. In

our model, a strain is represented by a collection of genes, similar to [2], and we assume the

genes are ‘core’, i.e., present in all strains. Genes are encoded as binary sequences of fixed

length (500 bp). The model has in total four free parameters: mutation rate, homologous

recombination rate, the proportion of habitat overlap, and migration rate. Mutations and

recombinations take place between sampling of the generations. Mutations change one base in

the target sequence, while recombination results in the whole gene of the recipient to be

replaced by the corresponding gene of the donor. Recombination is allowed only between

strains within the same habitat, and accepted with probability that declines with respect to

increasing sequence divergence [26–28]. The habitat overlap parameter specifies the size of the

shared habitat, and migration determines the rate with which strains move between the shared

and private habitats (see below). In contrast with [2, 4], we simulate complete binary

sequences, avoiding the need for additional approximations.

In detail, we simulate a population of strains of two types, A and B, that live in habitats a
and b, respectively; however, part of the habitat space, denoted by ab, is shared, and both strain

types can inhabit it. For simplicity, the habitat-specificity encoding genes are assumed implicit

and not simulated in the model, and we further assume that strain types can not be changed by

recombination or mutation. Migration of type A strains between habitats a and ab is achieved

by sampling the next generation of strains in a, for example, from all type A strains such that

strains in ab are sampled with a relative weight determined by the migration parameter. This

corresponds to the assumption that strains within each habitat compete against each other and

those trying to enter the habitat. In detail, the sampling scheme can be described as follows.

We denote by Aa and Aab type A strains that are currently in a or ab environments; Bb and Bab

Fig 2. Motivation and the outline of the Overlapping Habitats Model. We model a situation where two species have overlapping ecological niches,

and we assume increased competition and interaction inside the shared part (A). The Overlapping Habitats Model, outlined in B, assumes two types of

strains, A and B, that live in habitats a or b, respectively. In addition, both types can live in the intersection of the habitats, denoted as ab. Type A strains

can migrate between a and ab and type B strains between b and ab. Strain can only recombine with other strains in the same region of habitat space.

https://doi.org/10.1371/journal.pcbi.1005640.g002

Speciation trajectories in bacteria

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005640 July 3, 2017 4 / 15

https://doi.org/10.1371/journal.pcbi.1005640.g002
https://doi.org/10.1371/journal.pcbi.1005640


are defined correspondingly. We sample strains for a with replacement from Aa and Aab such

that the probability of sampling a strain x is equal to

Pr ðxÞ ¼
1

jAaj þmjAabj
; if x 2 Aa; ð1Þ

and

Pr ðxÞ ¼
m

jAaj þmjAabj
; if x 2 Aab; ð2Þ

where 0�m� 1 is the migration parameter. Value m = 0 corresponds to no migration, in

which case Eqs 1 and 2 reduce to sampling the next generation for environment a from strains

already in that environment. On the other hand, m = 1 corresponds to unlimited migration,

and the next generation is sampled with equal probability from all type A strains in both envi-

ronments a and ab. Strains for the b environment are sampled similarly from strains in b and

ab environments. Finally, strains for the ab environment are sampled according to

Pr ðxÞ ¼
1

mjAaj þmjBbj þ jAabj þ jBabj
;

if x 2 Aab or x 2 Bab;

ð3Þ

and

Pr ðxÞ ¼
m

mjAaj þmjBbj þ jAabj þ jBabj
;

if x 2 Aa or x 2 Bb:

ð4Þ

Thus, if m = 0, the next generation of strains for the ab environment is sampled from strains

already in the environment. In the other extreme (m = 1), the strains are sampled from all

strains in both populations.

R-code for running and fitting the model, both simulation and the deterministic approxi-

mation (see below), is available as S1 Code.

Deterministic approximation of the model

We also derive a deterministic approximation of the Overlapping Habitats Model, which

enables rapid prediction of the evolution of the population structure without simulating the

actual sequences. The model is based on average distances between and within the different

sub-groups of the whole population: Aa, Aab, Bab, and Bb (see the previous sub-section). In

detail, let d be a vector comprising all 4 within and 6 between distances possible for the four

groups. In S1 Text, we derive a function f that expresses how the average distances in the next

generation, d�, approximately depend on the distances d in the current generation:

d� ¼ f ðdÞ: ð5Þ

One of the main interests is to identify stationary points in the distance distribution, i.e., dis-

tances d, for which

d ¼ f ðdÞ ð6Þ

holds.

We have implemented two methods to solve Eq (6). The first consists of using the update

rule Eq (5) repeatedly until d converges, in which case the stationarity condition Eq (6) is satis-

fied. The second way to solve Eq (6) is to use a quasi-Newton method, implemented in the

Speciation trajectories in bacteria
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optim-function of the R software, to minimize the objective function h, defined as follows:

hðdÞ ¼ jjf ðdÞ � djj2 ð7Þ

¼
X10

i¼1

ðfi � diÞ
2

" #1
2

; ð8Þ

where fi is the prediction for the ith element in the distance vector of the next generation, and

di the current value of the corresponding element. In practice we have found useful a strategy

of first running the Newton’s method, which is fast, followed by the robust sequential update

procedure to confirm convergence.

Model fitting

Our strategy for fitting the Overlapping Habitats Model to a particular data set can be summa-

rized as follows: we first assume the population structure observed in the data set represents an

equilibrium, and use the analytical approximation, together with estimated values from the lit-

erature when available, to learn the remaining parameters so that the result is the observed

equilibrium. Hence, we assume the patterns seen in data are relatively stable, but we also com-

pare to a model that assumes more rapid divergence, and present a way to distinguish between

these two (see Results). After fitting the model using the deterministic approximation, we run

the simulation, which takes the stochasticity into account, to determine how easy it is to escape

the equilibrium.

As discussed above, the S. pneumoniae data can be broadly divided into two sub-popula-

tions. To estimate the habitat overlap, we assumed the population structure, i.e., the within

and between sub-population distances observed, represented an equilibrium, with values

within = 0.01, between = 0.017. Multiple parameter combinations produced these distances

(Fig 3). Therefore, to determine the remaining parameters, we set the recombination rate, r/m

Fig 3. Fitting the model to the S. pneumoniae data. The panels show parameter combinations that produce the observed distance in the data between

SC12 and the rest of the population as a stationary condition in the S. pneumoniae data. The proportion specifies the proportion of the divergent sub-

population of the whole population (1.6% in the data), and panels A-C show results for different values of this parameter. It can be seen that several

parameter combinations produce the same distance distribution. A previously reported value of r/m (=11.3) is marked with the vertical dotted line, and it

determines the amount of overlap (*41%). The results seem insensitive to both the proportion of strains in the divergent cluster and the migration rate,

and we used values proportion = 0.05 and migration = 0.5.

https://doi.org/10.1371/journal.pcbi.1005640.g003
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to a previously reported value r/m = 11.3 [15]. The proportion of diverging strains of the

whole population was set to 5%, and migration to 0.5 (results were insensitive to these choices,

see Fig 3 and Results). These specifications led to an estimate of 41% habitat overlap, and a

mutation rate of 2.4 mutations per generation per gene in the whole population.

The parameters for the C. jejuni were estimated similarly. In detail, we assumed that the

within population distance was 0.015 (the main mode) and the between distance 0.03 (the

small separate mode). We fixed the recombination rate to a plug-in estimate of r/m = 49,

derived from an estimate that 98 percent of substitutions in MLST genes in the species are due

to recombinations [29]. We again set the proportion of the diverging strains to be 5% of the

whole population. These specifications yielded an estimate of 24% habitat overlap, and a muta-

tion rate of 3.8 mutations per generation per gene in the whole population.

For both data sets, we set the total number of strains simulated as 10,000 and the number

of genes as 30. As each gene had length 500, this corresponded to the total genome size of

15,000 bp. The probability of accepting a recombination was assumed to decline log-linearly

with respect to the distance between the alleles in the donor and recipient strains, according to

10−Ax, where x is the Hamming distance between the alleles. We used A = 18 for the parameter

that determines the rate of the decline, according to empirical data [2]. Before computing the

ecoSNP summaries (see below) we sampled subsets of simulated strains whose sizes matched

the sizes of the clusters in the data sets.

Data sets

Core gene alignments and the cluster annotation of the S. pneumoniae strains were obtained

from [15]. As an additional data cleaning step, we removed all genes with alignment lengths

less than 265bp, which corresponded to the 0.05th quantile of the lengths of the alignments of

the core genes. This step was added to increase confidence in the genes detected. This left us

with 1,191 core genes in the 616 pneumococcal isolates. More specifically, the genes are here

clusters of orthologous groups (COGs), and we use these terms interchangeably.

The C. jejuni data consisted of 239 previously published genomes [16–18]. From the refer-

ence-based assemblies mapped to the NCTC11168 reference genome, we extracted 423 COGs

using ROARY [30] with default settings. As a data cleaning step, we removed four isolates with

significantly increased levels of missing data. Additionally, we removed COGs with alignment

lengths less than the 0.05th quantile (225bp) of all lengths. This left us with 401 COGs in 235

isolates. The divergent isolate in Fig 1 differs from others in terms of its sampling location

(New Zealand), and by being the only isolate sampled from ‘environment’ and having

ST = 2381.

Results

Overlapping Habitats Model predicts varying rates of divergence

To investigate the impact of habitat structure on population structure, we simulated the model

for 100,000 generations with two clusters, each with 5,000 strains. We varied the habitat over-

lap and migration, but used realistic mutation and recombination rates corresponding to the

S. pneumoniae (see Materials and Methods). Fig 4 shows the evolution of the within and

between cluster distances during the simulation. With the smallest overlap (Fig 4A and 4D),

the limited interaction resulted in rapid divergence of the clusters, although within cluster dis-

tances reached an equilibrium as expected [2, 4]. With the largest overlap (Fig 4C and 4F) two

clusters emerged, with the between cluster distance exceeding the within distance. However

the clusters did not proceed to full separation, but rather maintained an equilibrium level of

separation, and, furthermore, the between distances overlapped with the within distances,
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making clusters difficult to distinguish (Fig 4F). With an intermediate overlap (Fig 4B and 4E)

the simulation still had periods of stationary behavior; however, now the clusters slowly drifted

apart as a result of genes one by one escaping the equilibrium. To understand the equilibrium,

we first note that if two clusters are very close, then recombination between them does not

make them any more similar. If the clusters are very distant, the ability to recombine vanishes.

The equilibrium, if exists, is located at an intermediate distance where the cohesive force of

recombination equals the diversifying force of mutation.

Accuracy of the deterministic approximation

Investigation of Fig 4 reveals that the deterministic approximation predicts the simulated

within cluster distances with high accuracy. Also, with the smallest overlap, the deterministic

approximation does not have a solution, immediately predicting the rapid divergence. How-

ever, we also see that the approximation has a tendency to underestimate the between cluster

distances. The reason for this is that the deterministic approximation is based on average

Fig 4. Simulation results from the Overlapping Habitats Model. A-C: the evolution of distances within and between strain types in simulations with 105

generations. The solid thin red and gray lines show the median between and within strain type distances in ten repetitions, and the thick lines show the

averages across the repetitions. The dashed horizontal lines in B,C show the predicted equilibrium distances from the deterministic approximation; in A the

deterministic model did not have a solution. D-F show distance intervals between 0.1th and 0.9th quantiles in one randomly selected simulation (two

additional simulations are shown in S1 Fig).

https://doi.org/10.1371/journal.pcbi.1005640.g004
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distances, and therefore does not account for variation in distances between specific donor

and recipient alleles, whereas in the simulation distant recombinations, which have the biggest

impact, are accepted less often. Therefore the approximation slightly overestimates the impact

of recombination. Also, because the approximation is non-stochastic, it can not determine

how easy it is to escape the equilibrium. Therefore, in our analyses of genomic data sets (see

below), we first estimated the parameters with the deterministic approximation, and then ran

the simulation with the learned values to produce the final prediction. S2–S4 Figs show addi-

tional results about the impacts of migration and recombination rates, and unequal cluster

sizes, with similar conclusions. One interesting finding is that as long as migration is not

extremely small (<0.01), its value has a negligible impact on the population structure (S2 Fig),

motivating the use of a fixed value (migration = 0.5) in analyses of genomic data sets.

Divergence rates in S. pneumoniae and C. jejuni

We next investigated whether the population divisions in the S. pneumoniae and C. jejuni data

(Fig 1) are best explained by rapid clonal divergence, a stationary equilibrium, or some inter-

mediate of these. To fit the Overlapping Habitats Model, representing the equilibrium or slow

divergence, we assumed the distances between the divergent strains and other strains to be at

equilibrium, and used a plug-in recombination rate estimate from the literature to compute

the approximate overlap that would produce the observed level of separation (see Materials

and Methods). For both data sets, a simulation with these parameters resulted in two separate

clusters that were diverging slowly, with rates of 0.32 (S. pneumoniae) and 0.45 (C. jejuni) rela-

tive to the clonal divergence rates. This indicates the separation between the clusters, especially

in the C. jejuni which also has a higher clonal divergence rate (see Model fitting), has exceeded

the level where recombination could prevent the divergence. However, these results alone do

not yet allow us to separate the two possible explanations: first, the clusters are in the process

of slow divergence, as just described, or second, the clusters are in the process of rapid clonal

diversification, and the distance between them just happens momentarily to be as observed.

EcoSnp distribution separates fast and slow divergence

A detailed comparison of the models’ outputs revealed a systematic difference in the ecoSNP

distributions between the scenarios of clonal divergence vs. equilibrium or slow divergence,

where ecoSNPs are defined, as in [13], as variants present in all strains of one cluster and

absent from all strains of the other cluster. In particular, with rapid divergence and little

recombination between the clusters, the ecoSNPs started to accumulate in all genes soon after

the introduction of the recombination barrier (S5 and S6 Figs). On the other hand, under the

equilibrium the majority of ecoSNPs were concentrated in only a few genes that already had

escaped the equilibrium, while the majority of genes had no ecoSNPs at all during the whole

simulation. For both data sets, the ecoSNP distribution supports the interpretation that the

observed population structure is a result of equilibrium or slow divergence, rather than rapid

clonal divergence (Fig 5). In the S. pneumoniae data the observed proportion of genes with no

ecoSNPs is even higher than predicted by the overlap model, suggesting that previously pub-

lished recombination rates may be underestimates. We note that while quantitatively the simu-

lation output depended on the exact parameter values, qualitatively the conclusions regarding

the main patterns were robust across a wide range of parameter values.

Discussion

Here we have shown that certain combinations of niche structure and recombination may

result in stable but distinct clusters, creating what might be termed ‘satellite species’, as seen in

Speciation trajectories in bacteria
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Fig 5. Comparing model output with the S. pneumoniae and C. jejuni data, and a summary of divergence rates. For each

data set, we simulated the Overlapping Habitats Model 20 times without overlap (A,D) and with the estimated overlap (B,E). A

barrier representing the size of the overlap between the clusters was introduced at the 30,000th generation (dashed vertical line)

after which the clusters diverged. The horizontal lines show for reference the within and between cluster distances in S. pneumoniae

and C. jejuni. Simulated ecoSNP distributions with and without overlap, computed at the generation when the simulated between-
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S. pneumoniae, and that these may be distinguished from dynamically diverging clusters using

ecoSNPs, as shown by the analysis of C. jejuni. Having shown stable clusters are possible in

nature, future work will be able to focus on determining the exact dimensions of the niches

and candidate loci associated with them. We should also note that ‘niche’ is here an abstrac-

tion, similar to that proposed by Hutchinson [31], as the hypervolume in resource space where

a species can survive, which we consider a proxy for physical connectedness. However, we

extend this to be the portion of resource space where recombination is possible. In some cases

recombination might occur without direct contact between the organisms, such as if mediated

by diffusing DNA, and in this case the two will not be exactly equivalent. These simplifying

assumptions are intended to help make a simple model, applicable to multiple species, that can

be developed further in future work.

There are several differences between our model and previous work. Notably, selection is

implicit in the niche structure, in that there are regions of ecological space ‘private’ to each spe-

cies where the other cannot survive. This distinguishes the niches in question from purely geo-

graphic separation. The strict fitness threshold was selected for simplicity, and could be

extended to a more realistic situation where strains have some probability of surviving in dif-

ferent niches, at the cost of introducing additional parameters to the model. We have chosen

this approach as a way of implicitly modeling selection on already ecologically differentiated

clusters (or species), because our interest is in the consequences of this ecological differentia-

tion for parts of the genome that are not directly involved in niche specificity and are able to

recombine. Rather than assuming niche specifying genes themselves cannot be recombined in

reality, we suspect our model approximates the case where niche specificity is due to multiple

loci, such that transfer of one (or a few) is not sufficient to alter a strain’s niche or a cluster’s

trajectory.

Key parameters in our model are mutation rate, recombination rate, proportion of habitat

overlap, and migration rate. Within-population distances were found informative about muta-

tion rates, and values from the literature were available for recombination rates. To understand

how the habitat overlap can be learned, we first note that if recombination between clusters

happens freely at the same rate as within clusters, a certain equilibrium distance between the

clusters is predicted. Observed distance greater than this suggests some additional barrier for

recombination, and the extent of the barrier can be learned to produce that distance. The habi-

tat structure can be interpreted as this additional barrier. In detail, the reduction in recombina-

tion between populations equals 1 − p, where p is the proportion of pairs that can recombine

of all pairs (i.e. p = (|Aab||Bab|)/(|A||B|)). Notably migration does not affect the amount of

genetic exchange between the populations, but only homogenizes each internally. Conse-

quently, any non-negligible migration rate produced similar results. This finding motivated

the simplification of our model by fixing the migration parameter. Eventually, after fitting the

model, the ecoSNP distribution can be used to determine whether the fitted model, represent-

ing equilibrium or slow divergence, is better suited to explain the population structure than a

model of more rapid clonal divergence.

The concentration of ecoSNPs in a few genome regions has previously been taken as evi-

dence for gene-specific sweeps of habitat-specific adaptive alleles acquired through horizontal

cluster distance matched the observed value, are compared with the observed ecoSNP distributions (C,F). Panel G summarizes the

simulated rate of divergence between the two clusters. Color scale shows the rate relative to clonal divergence, averaged over the

second half of the simulation. (*the heatmap is based on the mutation rate in S. pneumoniae, and, therefore, the location of C. jejuni

is modified by moving it to the closest contour line corresponding to the divergence rate estimated using its own mutation rate, for

which results are shown in S7 Fig)

https://doi.org/10.1371/journal.pcbi.1005640.g005
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gene transfer [13]. Our results suggest a similar pattern may emerge without explicit selection

on the loci affected, as a result of reduction in recombination due to habitat structure, which

may allow a region to drift sufficiently far apart to reduce the ability for genetic exchange in

the locus even further. This is followed by rapid diversification within the region concerned,

while the rest of the genome remains at equilibrium. This recalls the concept of ‘fragmented’

speciation in which different parts of the genome speciate at different times [32], except here

this was achieved without explicit selection on the diverging region. Eventually this results in

highly divergent habitat-specific loci surrounded by regions with little habitat association. In

practice this process could happen together with selection at the habitat-specific loci, as both

processes have the potential to increase differentiation and create ecoSNPs between the

clusters.

Despite its simplicity, the model adequately captured the main sub-divisions in two data

sets. Nonetheless, much structure is not captured, for example the individual sequence clusters

in the S. pneumoniae data. Our model does not contradict this additional structure, but instead

shows that the individual sequence clusters can indeed be ecologically different, and still main-

tain the equilibrium distance between them, as a mere 60% of habitat overlap is sufficient for

this (Fig 4). Nevertheless, the dense clusters observed in the data likely require some additional

form of selection. While some alternatives are discussed in [4], we expect that in practice the

within species dynamics will be governed by far more niches, with subtle distinctions leading

to far more overlap, and we are actively working to extend the present work to handle this and

see if it can at least qualitatively produce substructure like that we see in the pneumococcus.

To conclude, our model provides means to characterize equilibrium structures and define spe-

ciation trajectories in bacterial populations and we believe it will be helpful when interpreting

similar patterns in other data sets.

Supporting information

S1 Text. Derivation of the deterministic approximation for the Overlapping Habitats

Model.

(PDF)

S1 Fig. Two additional distance range examples. The figure shows distance range results,

interpreted in exactly the same way as Fig 4D–4F in the main text. Rows represent indepen-

dent simulations of the model, and columns different amounts of habitat overlap.

(PDF)

S2 Fig. Impact of migration in the simulation. Each panel shows median within and between

distances in 10 independent simulation runs. Columns represent different amounts of habitat

overlap, and rows different migration rates. We see that the results are almost identical for

migration�0.01, and even with migration = 0.001, the results are still qualitatively similar.

(PDF)

S3 Fig. Impact of unequeal population sizes in the simulation. The simulation results in

Fig 4 in the main text were based on simulation of 5,000 strains of both types. Here we repeat

this with exactly the same parameters, except that 2,000 type A strains and 8,000 type B strains

were simulated. The first row shows the within distances in the smaller and the second row in

the larger population. The same between distances are shown on both rows. We see that in the

larger population there is more diversity than in the smaller one. Nevertheless, the determin-

istic approximation accurately predicts the within distances in both populations.

(PDF)
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S4 Fig. Impact of recombination rate in the simulation. The top row shows results with 1/3

and the bottom row 3 times the recombination rate compared to that in Fig 4 in the main text.

We see that the between population distance decreases when recombination rate is increased.

As has been explained before, the within population equilibrium distance is not affected by

the recombination rate, as long as recombination is high enough for the equilibrium to emerge

[2, 4].

(PDF)

S5 Fig. Evolution of ecoSNP distribution in the S. pneumoniae simulation. The solid curve

shows the median of the ecoSNP distribution, the dashed curves the 0.1th and 0.9th quantiles.

The top row corresponds to the simulation from the Overlapping Habitats Model, fitted to the

S. pneumoniae data, and the bottom row the corresponding clonal simulation. The colums

show results for three independent simulations. The vertical line marks the generation when

the between distance matched that observed in the S. pneumoniae data. We see that in the

Overlapping Habitats Model (top row) the majority of genes had very few ecoSNPs throughout

the simulation, although some genes started to accumulate ecoSNPs immediately after the bar-

rier between the populations had been introduced. In clonal divergence all genes accumulated

ecoSNPs at an approximately constant rate.

(PDF)

S6 Fig. Evolution of ecoSNP distribution in the C. jejuni simulation. The results are inter-

preted in the same way as those in S5 Fig.

(PDF)

S7 Fig. Simulated divergence rates using mutation rate estimated for C. jejuni. The ‘x’

shows the predicted rate for C. jejuni.
(PDF)

S1 Code. R-code to run the model.

(ZIP)
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