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Abstract

Advances in optical neuroimaging techniques now allow neural activity to be recorded with

cellular resolution in awake and behaving animals. Brain motion in these recordings pose

a unique challenge. The location of individual neurons must be tracked in 3D over time to

accurately extract single neuron activity traces. Recordings from small invertebrates like

C. elegans are especially challenging because they undergo very large brain motion and

deformation during animal movement. Here we present an automated computer vision

pipeline to reliably track populations of neurons with single neuron resolution in the brain

of a freely moving C. elegans undergoing large motion and deformation. 3D volumetric

fluorescent images of the animal’s brain are straightened, aligned and registered, and

the locations of neurons in the images are found via segmentation. Each neuron is then

assigned an identity using a new time-independent machine-learning approach we call

Neuron Registration Vector Encoding. In this approach, non-rigid point-set registration is

used to match each segmented neuron in each volume with a set of reference volumes

taken from throughout the recording. The way each neuron matches with the references

defines a feature vector which is clustered to assign an identity to each neuron in each vol-

ume. Finally, thin-plate spline interpolation is used to correct errors in segmentation and

check consistency of assigned identities. The Neuron Registration Vector Encoding

approach proposed here is uniquely well suited for tracking neurons in brains undergoing

large deformations. When applied to whole-brain calcium imaging recordings in freely

moving C. elegans, this analysis pipeline located 156 neurons for the duration of an 8 min-

ute recording and consistently found more neurons more quickly than manual or semi-

automated approaches.

Author summary

Computer algorithms for identifying and tracking neurons in images of a brain have

struggled to keep pace with rapid advances in neuroimaging. In small transparent organ-

ism like the nematode C. elegans, it is now possible to record neural activity from all of the
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neurons in the animal’s head with single-cell resolution as it crawls. A critical challenge is

to identify and track each individual neuron as the brain moves and bends. Previous

methods required large amounts of manual human annotation. In this work, we present a

fully automated algorithm for neuron segmentation and tracking in freely behaving C. ele-
gans. Our approach uses non-rigid point-set registration to construct feature vectors

describing the location of each neuron relative to other neurons and other volumes in the

recording. Then we cluster feature vectors in a time-independent fashion to track neurons

through time. This new approach works very well when compared to a human.

Introduction

Optical neural imaging has ushered in a new frontier in neuroscience that seeks to understand

how neural activity generates animal behavior by recording from large populations of neurons

at cellular resolution in awake and behaving animals. Population recordings have now been

used to elucidate mechanisms behind zebra finch song production [1], spatial encoding in

mice [2], and limb movement in primates [3]. When applied to small transparent organisms,

like Caenorhabditis elegans [4], Drosophila [5], and zebrafish [6], nearly every neuron in the

brain can be recorded, permitting the study of whole brain neural dynamics at cellular

resolution.

Methods for segmenting and tracking neurons have struggled to keep up as new imaging

technologies now record from more neurons over longer times in environments with greater

motion. Accounting for brain motion in particular has become a major challenge, especially in

recordings of unrestrained animals. Brains in motion undergo translations and deformations

in 3D that make robust tracking of individual neurons very difficult. The problem is com-

pounded in invertebrates like C. elegans where the head of the animal is flexible and deforms

greatly. If left unaccounted for, brain motion not only prevents tracking of neurons, but it can

also introduce artifacts that mask the true neural signal. In this work we propose an automated

approach to segment and track neurons in the presence of dramatic brain motion and defor-

mation. Our approach is optimized for calcium imaging in unrestrained C. elegans.
Neural activity can be imaged optically with the use of genetically encoded calcium sensitive

fluorescent indicators, such as GCaMP6s used in this work [7]. Historically calcium imaging

was often conducted in head-fixed or anesthetized animals to avoid challenges involved with

imaging moving samples [4, 8, 9]. Recently, however, whole-brain imaging was demonstrated

in freely behaving C. elegans [10, 11]. C. elegans are a small transparent nematode, approxi-

mately 1mm in length, with a compact nervous system of only 302 neurons. About half of the

neurons are located in the animal’s head, which we refer to as its brain.

Analyzing fluorescent images of moving and deforming brains requires algorithms to detect

neurons across time and extract fluorescent signals in 3D. Automated methods exist for seg-

menting and tracking fluorescently labeled cells during C. elegans embryogenesis [12], and

semi-automated methods are even able to track specific cells during embryo motion [13], but

to our knowledge these methods are not suitable for tracking neurons in adults. Generally, sev-

eral strategies exist for tracking neurons in volumetric recordings. One approach is to find cor-

respondences between neuron positions in consecutive time points, for example, by applying a

distance minimization, and then stitching these correspondences together through time [14].

This type of time-dependent tracking requires that neuron displacements for each time step

are less than the distance between neighboring neurons, and that the neurons remain identifi-

able at all times. If these requirements break down, even for only a few time points, errors can
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quickly accumulate. Other common methods, like independent component analysis (ICA)

[15] are also exquisitely sensitive to motion and as a result they have not been successfully

applied to recordings with large brain deformations.

Large inter-volume motion arises when the recorded image volume acquisition rate is too

low compared to animal motion. Unfortunately, large inter-volume brain motion is likely

to be a prominent feature of whole-brain recordings of moving brains for the foreseeable

future. In all modern imaging approaches there is a fundamental tradeoff between the fol-

lowing attributes: acquisition rate (temporal resolution), spatial resolution, signal to noise,

and the spatial extent of the recording. As recordings seek to capture larger brain regions at

single cell resolution, they necessarily compromise on temporal resolution. For example,

whole brain imaging in freely moving C. elegans has only been demonstrated at slow acquisi-

tion rates because of the requirements to scan the entire brain volume and expose each slice

for sufficiently long time. At these rates, a significant amount of motion is present between

image planes within a single brain volume. Similarly, large brain motions also remain

between sequential volumes. Neurons can move the entire width of the worm’s head

between sequential volumes when recording at 6 brain-volumes per second, as in [10]. In

addition to motion, the brain also bends and deforms as it moves. Such changes to the

brain’s conformation greatly alter the pattern of neuron positions making constellations of

neurons difficult to compare across time.

To track neurons in the presence of this motion, previous work that measured neural activ-

ity in freely moving C. elegans utilized semi-automated methods that required human proof

reading or manual annotation to validate each and every neuron-time point [10, 11]. This level

of manual annotation becomes impractical as the length of recordings and the number of neu-

rons increases. For example, 10 minutes of recorded neural activity from [10], had over

360,000 neuron time points and required over 200 person-hours of proofreading and manual

annotation. Here, we introduce a new time-independent algorithm that uses machine learning

to automatically segment and track all neurons in the head of a freely moving animal without

the need for manual annotation or proofreading. We call this technique Neuron Registration

Vector Encoding, and we use it to extract neural signals in unrestrained C. elegans expressing

the calcium indicator GCaMP6s and the fluorescent label RFP.

Results

Overview of neuron tracking analysis

We introduce a method to track over 100 neurons in the brain of a freely moving C. elegans.
The analysis pipeline is made of five modules and an overview is shown in Fig 1. The first

three modules, “Centerline Detection,” “Straightening” and “Segmentation,” collectively

assemble the individually recorded planes into a sequence of 3D volumes and identify each

neuron’s location in each volume. The next two modules, “Registration Vector Construc-

tion” and “Clustering,” form the core of the method and represent a significant advance over

previous approaches. Collectively, these two modules are called “Neuron Registration Vector

Encoding.” The “Registration Vector Construction” module leverages information from

across the entire recording in a time-independent way to generate feature vectors that char-

acterize every neuron at every time point in relation to a repertoire of brain confirmations.

The “Clustering” module then clusters these feature vectors to assign a consistent identity to

each neuron across the entire recording. A final module corrects for errors that can arise

from segmentation or assignment. The implementation and results of this approach are

described below.
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PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005517 May 18, 2017 3 / 19

https://doi.org/10.1371/journal.pcbi.1005517


Recording of whole-brain calcium activity and body posture in moving

animal

Worms expressing the calcium indicator GCaMP6s and a calcium-insensitive fluorescent pro-

tein RFP in the nuclei of all neurons were imaged during unrestrained behavior in a custom

3D tracking microscope, as described in [10]. Only signals close to the cell nuclei are measured.

Two recordings are presented in this work: a new 8 minute recording of an animal of strain

AML32 and a previously reported 4 minute recording of strain AML14 first described in [10].

The signal of interest in both recordings is the green fluorescence intensity from GCaMP6s

in each neuron. Red fluorescence from the RFP protein serves as a reference for locating and

tracking the neurons. The microscope provides four raw image streams that serve as inputs for

our neural tracking pipeline, seen in Fig 2A. They are: (1) low-magnification dark-field images

of the animal’s body posture (2) low-magnification fluorescent images of the animal’s brain

(3) high-magnification green fluorescent images of single optical slices of the brain showing

Fig 1. Schematic of analysis pipeline to segment and track neurons through time and extract their

neural activity in a deforming brain. Neurons are labeled with calcium insensitive red fluorescent proteins,

RFP, and calcium sensitive green fluorescent proteins, GCaMP. Videos of the animal’s behavior and

volumetric fluorescent images of the animal’s brain serve as input to the pipeline. The algorithm detects all

neurons in the head and produces tracks of the neural activity across time as the animal moves.

https://doi.org/10.1371/journal.pcbi.1005517.g001
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GCaMP6s activity and (4) high-magnification red fluorescent images of single optical slices of

the brain showing the location of RFP. The animal’s brain is kept centered in the field of view

by realtime feedback loops that adjust a motorized stage to compensate for the animal’s crawl-

ing. To acquire volumetric information, the high magnification imaging plane scans back and

forth along the axial dimension, z, at 3 Hz as shown in Fig 2B, acquiring roughly 33 optical

slices per volume, sequentially, for 6 brain-volumes per second. The animal’s continuous

motion causes each volume to be arbitrarily sheared. Although the image streams operate at

different volume acquisition rates and on different clocks, they are later synchronized by

flashes of light that are simultaneously visible to all cameras. Each image in each stream is

given a timestamp on a common timeline for analysis. Each of the four imaging streams are

spatially aligned to each other in software using affine transformations found by imaging fluo-

rescent beads. An example of the high magnification RFP recording is shown in S1 Movie.

Centerline detection and gross brain alignment

The animal’s posture contains information about the brain’s orientation and about any

deformations arising from the animal’s side-to-side head swings. The first step of the pipeline

is to extract the centerline that describes the animal’s posture. Centerline detection in C. ele-
gans is an active field of research. Most algorithms use intensity thresholds to detect the

worm’s body and then use binary image operations to extract a centerline [16–18]. Here we

Fig 2. Input to the pipeline. (A) Example images from all four video feeds from our imaging system. Both scale bars are 100μm.

Fluorescent images are shown with false coloring. (B)A schematic illustrating the timings from all the devices that run in open loop in our

imaging setup. The camera that collects high magnification images captures at 200Hz. The two low magnification images capture at 60Hz,

and the focal plane moves up and down in a 3 Hz triangle wave. The cameras are synchronized post-hoc using light flashes and each image

is assigned a timestamp on a common timeline.

https://doi.org/10.1371/journal.pcbi.1005517.g002
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use an open active contour approach [19, 20] to extract the centerline from dark field images

with modifications to account for cases when the worm’s body crosses over itself as occurs

during so-called “Omega Turns.” In principle any method, automated or otherwise, that

detects the centerlines should be sufficient. At rare times where the worm is coiled and the

head position and orientation cannot be determined automatically, the head and the tail of

the worm are manually identified.

The animal’s centerline allows us to correct for gross changes in the worm’s position, orien-

tation, and conformation (Fig 3a). We use the centerlines determined by the low magnification

behavior images to straighten the high magnification images of the worm’s brain. An affine

transform must be applied to the centerline coordinates to transform them from the dark field

coordinate system into the coordinate system of the high magnification images. Each image

slice of the worm brain is straightened independently to account for motion within a single

volume. The behavior images are taken at a lower acquisition rate than the high magnification

brain images, so a linear interpolation is used to obtain a centerline for each slice of the brain

volume. In each slice, we find the tangent and normal vectors at every point of the centerline

(Fig 3b). The points are interpolated with a single pixel spacing along the centerline to preserve

the resolution of the image. The image intensities along each of the normal directions are

interpolated and the slices are stacked to produce a straightened image in each slice (Fig 3c).

In the new coordinate system, the orientation of the animal is fixed and the gross deformations

from the worm’s bending are suppressed. More subtle motion and deformation, however,

remains.

We further reduce shearing between slices using standard video stabilization techniques

[21]. Specifically, bright-intensity peaks in the images are tracked between neighboring image

slices. The coordinates of these peaks are used to calculate the affine transformations between

neighboring slices of the volume using least squares. All slices are registered to the middle

slice by applying these transformations sequentially throughout the volume. Each slice would

undergo transformations for every slice in between it and the middle slice to correct shear

throughout the volume. A final rigid translation is required to align each volume to the first

Fig 3. Straightening and segmentation. (A) Centerlines are detected from the low magnification dark field images. The centerline is

shown in green and the tip of the worm’s head is indicated by a blue dot. (B) The centerline found from the low magnification image is

overlaid on the high magnification RFP images. The lines normal to the centerline, shown in blue, are used to straighten the image. All scale

bars are 100 μm. (C) A maximum intensity projection of the straightened volume is shown. Individual neuronal nuclei are shown (D) before

and (E) after segmentation.

https://doi.org/10.1371/journal.pcbi.1005517.g003
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volume of the recording. The translations are found by finding an offset that maximizes the

cross-correlation between each volume and the initial volume.

A video of straightening is shown in S1 Movie. Straightened images are used for the

remaining steps of the analysis pipeline. Only the final measurement of fluorescence intensity

is performed in the original unstraightened coordinated system.

Segmentation

Before neuron identities can be matched across time, we must first segment the individual

neurons within a volume to recovers each neuron’s size, location, and brightness (Fig 3d and

3e). Many algorithms have been developed to segment neurons in a dense region [22, 23]. We

segment the neurons by finding volumes of curvature in fluorescence intensity in the straigth-

ened volumes. After an initial smoothing, we compute the 3D Hessian matrix at each point in

space and threshold for points where all of the three eigenvalues of the Hessian matrix are neg-

ative. This process selects for regions around intensity peaks in three dimensions. In order to

further divide regions into objects that are more likely to represent neurons, we use a water-

shed separation on the distance transform of the thresholded image. The distance transform is

found by replacing each thresholded pixel with the Euclidean distance between it and the clos-

est zero pixel in the thresholded image. This approach is sufficient to segment most neurons.

Occasionally neurons are missed or two neurons are incorrectly merged together. These occa-

sional errors are corrected automatically later in the pipeline.

Neuron registration vector construction

Extracting neural signals requires the ability to match neurons found at different time points.

Even after gross alignment and straightening, neurons in our images are still subject to local

nonlinear deformations and there is significant movement of neurons between volumes. This

remaining motion and deformation is clearly visible, for example, in S1 Movie. Rather than

tracking neurons sequentially in time, the neurons in each volume are characterized based on

how they match to neurons in a set of reference volumes. Our algorithm compares constella-

tions of neurons in one volume to unannotated reference volumes and assigns correspon-

dences or “matches” between the neurons in the sample and each reference volume. We

modified a point-set registration algorithm developed by Jian and Vemuri [24] to do this

(Fig 4a). The registration algorithm represents two point-sets, a sample point-set denoted by

X = {xi} and a reference point-set indicated by R = {ri}, as Gaussian mixtures and then attempts

to register them by deforming space to minimize the distance between the two mixtures. In

their implementation, each point is modeled by a 3D Gaussian with uniform covariance. Since

we are matching images of neurons rather than just points, we can use the additional informa-

tion from the size and brightness of each neuron. We add this information to the representa-

tion of each neuron by adjusting the amplitude and standard deviation of the Gaussians. The

Gaussian mixture representation of an image is given by,

f ðξ;XÞ ¼
X

i

Aiexp �
kξ � xik

2

2ðlsiÞ
2

 !

; ð1Þ

where Ai, xi, and σi are the amplitude, mean, and standard deviation of the i-th Gaussian.

These parameters are derived from the brightness, centroid, and size of the segmented neuron,

while ξ is the 3D spatial coordinate. A scale factor λ is added to the standard deviation to

scale the size of each Gaussian. This will be used later during gradient descent. The sample
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constellation of neurons is then represented by the Gaussian mixture f(ξ, X). Similarly, the ref-

erence constellation’s own neurons are represented as a f(ξ, R).

To match a sample constellation of neurons X with a reference constellation of neurons R,

we use the non rigid transformation u : IR3 7! IR3. The transformation maps X to u[X] such

that the L2 distance between f(ξ, u[X]) and f(ξ, R) is minimized with some constraint on the

amount of deformation. This can be written as an energy minimization problem, with the

energy of the transformation, E(u), written as

EðuÞ ¼
R

f ðξ; u½X�Þ � f ðξ;RÞ½ �
2dξþ EDeformationðuÞ: ð2Þ

Note that the point-sets X and R are allowed to have different numbers of points. We

model the deformations as a thin-plate spline (TPS). The TPS transformation equations and

resulting form of EDeformation(u) are shown in the methods. The minimization of E is found by

gradient descent. Working with Gaussian mixtures as opposed to the original images allows us

to model the deformations and analytically compute the gradients of Eq 2 making gradient

Fig 4. Schematic of Neuron Registration Vector Encoding. (A) The registration between a sample volume and a single reference

volume is done in several steps. I. The image is segmented into regions corresponding to each of the neurons. II. The image is represented

as a Gaussian mixture, with a single Gaussian for each segmented region. The amplitude and the standard deviation of the Gaussians are

derived from the brightness and the size of the segmented regions. III. Non-rigid point-set registration is then used to deform the sample

points to best overlap the reference point-set. IV. Neurons from the sample and the reference point-sets are paired by minimizing distances

between neurons. (B) Neuron registration vectors are constructed by assigning a feature vector vi,t to each neuron xi,t in a sample volume xt

by performing the registration between the sample volume and a set of 300 reference volumes, each denoted by rk. Each registration of the

neuron results in a neuron match, vki , and the set of matches becomes the feature vector vi,t. (C) Vectors from all neuron-times are clustered

into similar groups in a two step process: Hierarchical clustering (illustrated in the figure) is performed on a subset of neurons to define

clusters, each of which is given a label Sn. Then each feature vector vi,t is assigned to a cluster based on a distance metric (not illustrated).

(D) The clustering of the feature vectors shown in (C) assigns an identity to each of the neurons in every volume. This allows us to track the

neurons across different volumes of the recording.

https://doi.org/10.1371/journal.pcbi.1005517.g004
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descent more efficient. The gradient descent approach used here is similar to that outlined by

Jian and Vemuri [25]. Since the energy landscape has many local minima, we initially chose a

large scale factor, λ, to increase the size of each Gaussian and smooth over smaller features.

Gradient descent is iterated multiple times with λ decreasing multiple times. After the trans-

formation, sample points are matched to reference points by minimizing distances between

assigned pairs using an algorithm from [14]. The matching is not greedy, and neurons in the

sample that are far from any neurons in the reference are not matched. A neuron at xi is

assigned a match vi to indicate which neuron in the set R it was matched to. For example if xi

matched with rj when X is registered to R, then vi = j. If xi has no match in R, then vi = ;.

The modified non-rigid point-set registration algorithm described above allows us to com-

pare one constellation of neurons to another. In principle, neuron tracking could be achieved

by registering the constellation of neurons at each time-volume to a single common reference.

That approach is susceptible to failures in non-rigid point-set registration. Non-rigid point-set

registration works well when the conformation of the animal in the sample and the reference

are similar, but it is unreliable when there are large deformations between the sample and the

reference, as happens with some regularity in our recordings. In addition, this approach is

especially sensitive to any errors in segmentation, especially in the reference. An alternative

approach would be to sequentially register neurons in each time volume to the next time-vol-

ume. This approach, however, accumulates even small errors and quickly becomes unreliable.

Instead of either of those approaches, we use registration to compare the constellation of neu-

rons at each time volume to a set of reference time-volumes that span a representative space of

brain conformations (Fig 4b), as described below.

The constellation of neurons at a particular time in our recording is given by Xt, and the

position of the i-th neuron at time t is denoted by xi,t. We select a set of K reference constella-

tions, each from a different time volume Xt in our recording, so as to achieve a representative

sampling of the many different possible brain conformations the animal can attain. These K
reference volumes are denoted by {R1, R2, R3,. . .,RK}. We use 300 volumes spaced evenly

through time as our reference constellations. Each Xt is separately matched with each of the

references, and each neuron in the sample, xi,t, gets a set of matches vi;t ¼ fv1
i;t; v

2
i;t; v

3
i;t; ::v

K
i;tg,

one match for each of the K references. This set of matches is a feature vector which we call a

Neuron Registration Vector. It describes the neuron’s location in relation to its neighbors

when compared with the set of references. This vector can be used to identify neurons across

different times.

We find that 300 reference volumes creates feature vectors that are sufficiently robust to

identify neurons in our recordings. What determines the optimal number of reference vol-

umes? As long as the reference volumes contain a representative sample of the space of brain

conformation occupied during our recordings, the number of reference volumes needed to

create a robust feature vector depends only on the size of this conformation space. Because the

conformation space of a real brain in physiological conditions is finite, there exists some num-

ber of reference volumes beyond which adding more reference volumes provides no additional

information. Crucially, the worm brain seems to explore this finite conformation space quickly

relative to the time scales of our recordings. As a result, the number of required reference vol-

umes should not depend on recording length, at least for the minutes-long timescales that we

consider here.

Clustering registration vectors

The neuron registration vector provides information about that neuron’s position relative to

its neighbors, and how that relative position compares with many other reference volumes. A
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neuron with a particular identity will match similarly to the set of reference volumes and thus

that neuron will have similar neuron registration vectors over time. Clustering similar registra-

tion vectors allows for the identification of that particular neuron across time (Fig 4c and 4d).

To illustrate the motivation for clustering, consider a neuron with identity s that is found at

different times in two sample constellations X1 and X2. When X1 and X2 have similar deforma-

tions, the neuron s from both constellations will be assigned the same set of matches when

registered to the set of reference constellations, and as a result the corresponding neuron regis-

tration vectors v1 and v2 will be identical. This is true even if the registration algorithm itself

fails to correctly match neuron s in the sample to its true neuron s in the reference. As the

deformations separating X1 and X2 become larger, the distance between the feature vectors v1

and v2 also becomes larger. This is because the two samples will be matched to different neu-

rons in some of the reference volumes as each sample is more likely to register poorly with ref-

erences that are far from it in the space of deformations.

Crucially, the reference volumes consist of instances of the animal in many different defor-

mation states. So while errors in registering some samples will exist for certain references, they

do not persist across all references, and thus do not effect the entire feature vector. For the bio-

logically relevant deformations that we observe, the distance between v1 and v2 will be smaller

if both are derived from neuron s than compared to the distance between v1 and v2 if they

were derived from s and another neuron. We can therefore cluster the feature vectors to pro-

duce groups that consist of the same neuron found at many different time points.

The goal of clustering is to assign each neuron at each volume to a cluster representing that

neuron’s identity. Clustering is performed on the list of neuron registration vectors from all

neurons at all times, {vi,t}. Each match in the vector, vki;t , is represented as a binary vector of 0s

with a 1 at the vk� th
i position. The size of the vector is equal to the number of neurons in Rk.

The feature vector {vi,t} is the concatenation of all of the binary vectors from all matches to the

K reference constellations.

For computational efficiency, a two-step process was used to perform the clustering: First

agglomerative hierarchical clustering was used on the neurons from an initial subset of vol-

umes to define the clusters. Next, neurons from all volumes at all times were assigned to the

nearest cluster as defined by correlation distance to the clusters’ center of mass. Assignments

were made in such a way so as to ensure that a given cluster is assigned to at most one neuron

per volume. Details of this clustering approach are described in the methods. Each cluster is

given a label {S1, S2, S3,. . .} which uniquely identifies a single neuron over time, and each neu-

ron at each time xi, t is given an identifier si, t corresponding to the cluster to which that neu-

ron-time belongs. Neurons that are not classified into one of these clusters are removed

because they are likely artifactual or represent a neuron that is segmented too poorly for

inclusion.

Correcting errors in tracking and segmentation

Neuron Registration Vector Encoding successfully identifies segmented neurons consistently

across time. A transient segmentation error, however, would necessarily lead to missing or

misidentified neurons. To identify and correct for missing and misidentified neurons, we

check each neuron’s locations and fill in missing neurons using a consensus comparison and

interpolation in a TPS deformed space. For each neuron identifier s and time t?, we use all

other point-sets, {Xt} to guess what that neuron’s location might be. This is done by finding

the TPS transformation, ut!t?: Xt 7! Xt?, that maps the identified points from Xt to the corre-

sponding points in Xt? excluding the point s. Since the correspondences between neurons has

already been determined, ut!t? can be found by solving for the parameters from the TPS

Automatically tracking neurons in a moving and deforming brain
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equation (see methods). The position estimate is then given by ut!t? [xi,t] with i selected such

that si,t = s. This results in a set of points representing the set of predicted locations of the neu-

ron at time t? as inferred from the other volumes. When a neuron identifier is missing for a

given time, the position of that neuron s is inferred by consensus. Namely, correct location is

deemed to be the centroid of the set of inferred locations weighted by the underlying image

intensity. This weighted centroid is also used if the current identified location of the neuron s
has a distance greater than 3 standard deviations away from the centroid of the set of locations

inferred from the other volumes, implying that an error may have occurred in that neuron’s

classification. This is shown in Fig 5, where neuron 111 is correctly identified in volume 735,

but the the label for neuron 111 is incorrectly located in volume 736. In that case the weighted

centroid from consensus voting was used.

Comparison with manually annotated data

To assess the accuracy of the Neuron Registration Vector Encoding pipeline, we applied our

automated tracking system to a 4 minute recording of whole brain activity in a moving C. ele-
gans that had previously been hand annotated and published [10]. A custom Matlab GUI was

used for manually identifying and tracking neurons. Nine researchers collectively annotated

70 neurons from each of the 1519 volumes in the 4 minute video. This is much less than the

181 neurons predicted to be found in the head [26]. The discrepancy is likely caused by a com-

bination of imaging conditions and human nature. The short exposure time of our recordings

makes it hard to resolve dim neurons, and the relatively long recordings tend to cause photo-

bleaching which make the neurons even dimmer. Additionally, human researchers naturally

tend to select only those neurons that are brightest and are most unambiguous for annotation,

and tend to skip dim neurons or those neurons that are most densely clustered.

We compared human annotations to our automated analysis in this same dataset. We per-

formed the entire pipeline including detecting centerlines, worm straightening, segmentation,

and neuron registration vector encoding and clustering, and correction. Automated tracking

detected 119 neurons from the video compared to 70 from the human. In each volume, we

paired the automatically tracked neurons with those found by manual detection by finding the

closest matches in the unstraightened coordinate system. A neuron was perfectly tracked if it

matched with the same manual neuron at all times. Tracking errors were flagged when a neu-

ron matched with a manual neuron that was different than the one it matched with most

Fig 5. Example of consensus voting to correct a misidentified neuron. In volume 735, neuron #111 is found successfully and is

indicated in green. In volume 736, however, the neuron is misidentified, shown in red. During the correction phase, all other time points vote

for what the position of neuron #111 should based on a thin-plate spline deformation. A sample of votes are shown (blue ‘x’). Since the initial

estimate of the position is far from the majority of consensus votes, a corrected position is assigned to be the centroid of the votes weighted

by image intensity. This process is repeated to correct any errors for every neuron at every time.

https://doi.org/10.1371/journal.pcbi.1005517.g005
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often. The locations of the detected neurons are shown in Fig 6A. Only one neuron was incor-

rectly identified for more than 5% of the time volumes (Fig 6B). The locations of neurons and

the corresponding error rates are shown in Fig 6B. Neurons that were detected by the algo-

rithm but not annotated manually are shown in gray. Upon further inspection, it was noted

that some of the mismatches between our method and the manual annotation were due to

human errors in the manual annotation, meaning the algorithm is able to correct humans on

some occasions.

GCaMP6s fluorescent intensity is ultimately the measurement of interest and this can be

easily extracted from the tracks of the neuron locations across time. The pixels within an

approximate 2 μm radius sphere around each point are used to calculate the average fluores-

cent intensity of a neuron in both the red RFP and green GCaMP6s channels at each time.

This encompasses regions of the cell body, but excludes the neuron’s processes. The pixels

within this sphere of interest are identified in the straightened RFP volume, but the intensity

Fig 6. Comparison of the automated Neuron Registration Vector Encoding algorithm with manual human annotation. A previously

published 4 minute recording of calcium activity (strain AML14) was annotated by hand, [10]. (A) Spheres show position of neurons that

were detected by the automated algorithm. Grey indicates a neuron detected by both the algorithm and the human. All neurons detected by

the human were also detected by the algorithm (70 neurons). Red indicates neurons that were missed by the human and detected only by

the algorithm (49 neurons). (B) Histogram showing number of neurons that were mismatched for a given fraction of time-volumes when

comparing automated and manual approaches. Only those neurons that were consistently found by both algorithm and human were

considered. An automatically identified neuron was deemed correctly matched for a given time-volume if it was paired with the correct

corresponding manual neuron.

https://doi.org/10.1371/journal.pcbi.1005517.g006
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values are found by looking-up corresponding pixels in the unstraightened coordinate system

in the original red- and green-channel images, respectively. We use the calcium-insensitive

RFP signal to account for noise sources common to both the GCaMP6s and the RFP channel

[10]. These include, for example, apparent changes in intensity due to focus, motion blur,

changes in local fluorophore density arising from brain deformation and apparent changes in

intensity due to inhomogeneities in substrate material. We measure neural activity as a fold

change over baseline of the ratio of GCaMP6s to RFP intensity,

Activity ¼
DR
R0

¼
R � R0

R0

; R ¼
IGCaMP6s

IRFP
: ð3Þ

The baseline for each neuron, R0, is defined as the 20th percentile value of the ratio R for

that neuron. Fig 7 shows calcium imaging traces extracted from new whole-brain recordings

using the registration vector pipeline. 156 neurons were tracked for approximately 8 minutes

as the worm moves. Many neurons show clear correlation with reversal behaviors in the

worm.

Discussion

The Neuron Registration Vector Encoding method presented here is able to process longer

recordings and locate more neurons with less human input compared to previous examples of

whole-brain imaging in freely moving C. elegans [10]. Fully automated image processing

means that we are no longer limited by the human labor required for manual annotation. In

new recordings presented here, we are able to observe 156 of the expected 181 neurons, much

larger than the approximately 80 observed in previous work from our lab and others [10, 11].

Fig 7. Calcium activity traces. Neural activity traces from 156 neurons in the brain a C. elegans as it freely moves on an

agarose plate for 8 minutes (strain AML32). The neural activity is expressed as a fold change over baseline of the ratio of

GCaMP6s to RFP for each neuron. The behavior is indicated in the ethogram. On the right is the locations of all of the

detected neurons (the head of the worm is towards the top of the page). The neurons that have significant correlation with

reverse locomotion are indicated in red. White gaps indicate instances where neurons failed to segment. This is a newly

acquired recording, different from that in Fig 6.

https://doi.org/10.1371/journal.pcbi.1005517.g007
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By automating tracking and segmentation, this relieves one of the major bottlenecks to analyz-

ing longer recordings.

The neuron registration vector encoding algorithm primarily relies on the local coherence

of the motion of the neurons. It permits large deformations of the worm’s centerline so long as

deformations around the centerline remain modest. Crucially, the algorithm’s time-indepen-

dent approach allows it to tolerate large motion between consecutive time-volumes. These

properties make it well suited for our neural recordings of C. elegans and we suspect that our

approach would be applicable to tracking neurons in moving and deforming brains from

other organisms as well.

Certain classes of recordings, however, would not be well suited for Neuron Registration

Vector Encoding and Clustering. The approach will fail when the local coherence of neuron

motion breaks down. For example, if one neuron were to completely swap locations with

another neuron relative to its surroundings, registration would not detect the switch and our

method would fail. In this case a time-dependent tracking approach may perform better.

In addition, proper clustering of the feature vectors requires the animal’s brain to explore a

contiguous region of deformation space. For example, if a hypothetical brain were only ever to

occupy two distinct conformations that are different enough that registration is not reliable

between these two conformation states, the algorithm would fail to cluster feature vectors from

the same neuron across the two states. To effectively identify the neurons in these two confor-

mations, the animal’s brain must sample many conformations in between those two states.

This way, discrepancies in registration arise gradually and the resulting feature vectors occupy

a continuous region in the space of possible feature vectors. Note that a similar requirement

would necessarily apply to any time-dependent tracking algorithm as well.

We suspect that brain recordings from most species of interest meet these two require-

ments: namely neuron motion will have local coherence and the brain will explore a contigu-

ous region of deformation space. Where these conditions are satisfied, we expect registration

vector encoding to work well. Tracking in C. elegans is especially challenging because the entire

brain undergoes large deformations as the animal bends. In most other organisms like zebra-

fish and Drosophila, brains are contained within a skull or exoskeleton and relative motion of

the neurons is small. In those organisms, fluctuations in neuron positions take the form of

rigid global transformations as the animal moves, or local non-linear deformations due to

motion of blood vessels. We expect that this approach will be applicable there as well.

Methods

Strains

Transgenic worms were cultivated on nematode growth medium (NGM) plates with OP50

bacteria. Strain AML32 (wtfIs5[Prab-3::NLS::GCaMP6s; Prab-3::NLS::tagRFP]) was generated

by UV irradiating animals of strain AML14 (wtfEx4[Prab-3::NLS::GCaMP6s; Prab-3::NLS::

tagRFP]) [10] and outcrossing twice.

Imaging C. elegans

Imaging is performed as described in Nguyen et al [10]. The worm is placed between an aga-

rose slab and a large glass coverslip. The coverslip is held up by 0.006” plastic shims in order to

reduce the amount of pressure on the worm from the glass, and mineral oil is spread over the

worm to better match refractive indices in the space between the coverglass and the worm.

The dark field image is used to extract the animal’s centerline while the fluorescent image is

used for tracking the worm’s brain. Only the head of the worm is illuminated by the fluores-

cent excitation light and can be observed in the low magnification fluorescent image.
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The two low magnification videos and the RFP and GCaMP6 high magnification videos are

aligned by imaging a slide of 4 μm “Tetraspeck” beads (ThermoFisher) that emit light in both

red and green channels. We manually or automatically locate the beads from calibration

images and use the bead positions to find affine transformations between each camera’s coor-

dinate system. The affine parameters are found using a least squares fit on the coordinates of

the beads in the image.

Thin plate spline transformations

Thin plate spline (TPS) transformations play an important role in error correcting and are

also critical for the point set registration algorithm [24]. Given a set of n initial control points

X = {xi}, and the set of transformed points, u[X], the TPS transformation u can be written as

u[X] = WU(X) + AX + t. The affine portion of the transformation is AX + t, while WU(X) is

the non-linear part of the transformation from TPS. U(X) is an n × n vector with Ui;j ¼
1

kxj � xik

and W is a 3 × n matrix. The elements of W, A and t are the parameters of the transformation

u. These parameters are found in different ways dependant on context. During the error cor-

rection processing step, these parameters are fit by knowing both the the set of control points

X and the location of the transformed points u[X]. In the context of the point set registration

algorithm, u[X] incurs an energy penalty for deforming space given by EDeformation(u) =

trace(WUWT) [24]. This cost is used in Eq 2 to determine the total energy of the transforma-

tion. Gradient descent is then used to determine the optimal TPS transformation parameters

by minimizing the total energy of the transformation.

Clustering

Clustering is performed in two steps: hierarchical clustering and neuron classification. We

chose to perform hierarchical clustering only on an initial subset of 800 volumes because hier-

archical clustering can become prohibitively computationally intensive for larger datasets. The

correlation distance, 1 − corr(vm, vn), was used as the pairwise distance metric for clustering.

Agglomerative hierarchical clustering was implemented using complete linkage with a dis-

tance cutoff of 0.9. Clusters which are smaller than 40% of the number of subset volumes were

removed. After the clusters were defined via hierarchical clustering, we then performed neu-

ron classification.

To classify neurons, we assigned neurons from every volume to the cluster with the nearest

centroid. Only the best matched neuron in each volume is assigned to a cluster and only if the

neuron is closer than some threshold distance, described below. If two or more neurons from

a volume would otherwise be assigned to a single cluster, the closest neuron retains that classi-

fication and other neurons are unassigned. As a result, some putative neurons are not assigned

to any cluster and at most one neuron per volume is assigned to any given cluster. The imple-

mentation of the algorithm is shown in Algorithm 1.

Algorithm 1 Clustering the Neuron Registration Vectors
1: input:Set of registrationvectorsV = {vi,t}
2: output:Clusterassignmentsfor each of the vectorsin V
3: procedureCLUSTER(V)
4: S = subsetof V
5: subset_assignments= hierarchicallyclusterS with distancecutoff0.9
6: cluster_list= unique(subset_assignments)
7: for each clusterin cluster_listdo
8: If size(cluster)> 40% of volumesused then
9: cluster_center= averageof S assignedto cluster

10: else
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11: removecluster
12: end if
13: end for
14: computethresholdfrom S
15: for each vi,t in V do
16: d = distancesfrom vi,t to cluster_centers
17: if any(d< threshold)then
18: assignvi,t to closestcluster
19: end if
20: end for
21: for each volumein the recordingdo
22: for each clusterin cluster_listdo
23: if multiplevi,t from volumeassignedto clusterthen
24: unassignall vi,t from the clusterexceptthe closestone
25: end if
26: end for
27: end for
28: end procedure

The threshold distance to determine whether a neuron is assigned to a cluster is calculated

using a statistical analysis of the clusters generated by the initial hierarchical clustering so as

to discriminate between neurons that are likely correctly or incorrectly assigned. The thresh-

old is calculated as follows: For each neuron assigned during the initial clustering, we collect

the distance between that neuron and the center of the cluster it was assigned to. The distri-

bution of these distances is the “correctly assigned” distribution. In contrast, the null distri-

bution is found by collecting the distances between each neuron and all clusters to which

that neuron is not assigned. The threshold distance is set to be the largest distance for which

a distance is more likely to be found in the “correctly assigned” distribution than the null

distribution.

Algorithm implementation

The analysis was performed on Princeton University’s high-performance scientific computing

cluster, “Della” primarily consisting of 240 nodes and 4288 cores, each with 2.4 GHz proces-

sors. Jobs were run on up to 200 cores simultaneously. Timing information for the steps listed

in Fig 1 are described below and summarized in Table 1.

Centerline detection. Centerlines in each image are calculated using information from

the previous centerline and as a result must be computed linearly. Total computational time

for centerline detection scales linearly with recording length. Specifically, centerlines must be

fit for every frame of the low magnification video so the computation time scales as O(nframes).

Table 1. Breakdown of computation time and scalings for Neuron Registration Vector Encoding pipeline. nframes is the total number of low magnifica-

tion images used to detect centerlines, nvol is the total number of volumes in the recording, nref is the number of reference volumes used for creating feature

vectors, nneurons is the total number of neurons detected, and nsubset is the number of neurons in the subset of volumes used for initial clustering.

Analysis Step Computation Approx. % of real time Computational time scales as

Centerline Detection Linear 4 O(nframes)

Worm Straightening Parallel 10 O(nvol)

Segmentation

Registration Vector Encoding Parallel 80 O(nvol × nref)

Clustering Hierarchical Linear 2 Oðn2
subset � n

2
neuronsÞ

Classification Linear 0 O(nvol × nneurons)

Error Correction Parallel 4 up to Oðn2
vol � nneuronsÞ

https://doi.org/10.1371/journal.pcbi.1005517.t001
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Worm straighteningand and segmentation. Straightening and segmentation are paralle-

lized over each volume. Total computation time for worm straightening and segmentation

scales as O(nvol), with each volume taking *20 seconds on a single core.

Registration vector construction. Registration vector construction is the most computa-

tionally intensive part of the algorithm. The vectors are created by performing non-rigid

point-set registration between all sample volumes and all reference volumes. Total computa-

tion time scales as O(nvol × nref) with the bulk of the computational time consumed by gradient

descent during point-set registration. The gradient descent for matching a single sample vol-

ume to a single reference on one processing core takes *15s. This step is parallelized over

each volume.

Clustering. Clustering is broken into two subparts, hierarchical clustering and classifica-

tion. Clustering is overall fast compared to point-set registration. Computation time for hierar-

chical clustering scales quadratically with the number of neurons in the worm times the size of

the initial set of volumes used to define the clusters. This can become prohibitively slow if we

increase the number of volumes used for hierarchical clustering as the length of the recordings

increase. Thus, we fix the number of volumes used for initial hierarchical clustering to an arbi-

trary size (e.g. 800 volumes) regardless of the length of the recording. Thus, the clustering time

scales as Oðn2
subset � n2

neuronsÞ. After the clusters are defined via hierarchical clustering in the first

subpart, all neurons can then be quickly classified into clusters with negligible computational

time in the second subpart.

Error correction. Error correction is parallelized over each neuron, with each neuron

checked in every volume. The error checking in each volume is done by comparing the point-

set to all other point-sets using a thin-plate spline transformation. This operation is fast com-

pared to the registration vector construction step because here the correspondences between

the point sets are already known. Computation time for this process scales as Oðn2
vol � nneuronsÞ.

We chose to compare each neuron in each volume to all other volumes because these compari-

sons are relatively fast. However, we also observe that comparing each neuron with merely a

subset of volumes seems to suffice without loss of performance. In that case the computation

time for error correction would be O(nvol × nneurons × nsubset), where nsubset is the number of

volumes selected for comparison during error correcting.

An 8 minute recording of a moving animal has approximately 3000 volumes and 250 GB of

raw imaging data and can be processed from start to finish on the university cluster in less

than 40 hours. Major time reduction could be achieved by reducing the number of reference

volumes used during Registration Vector Encoding.

All data used in this publication have been made publicly available at the IEEE DataPort

repository (DOI:10.21227/H2901H) http://dx.doi.org/10.21227/H2901H. MATLAB code

implementing our pipeline is available at https://github.com/leiferlab/NeRVEclustering.

Supporting information

S1 Movie. Example video for raw, straightened, and tracked data. Left: Raw video feed from

high magnification RFP video. The imaging plane is scanning up and down through the vol-

ume of the worm’s brain. The recording is shown at 1/2× speed and the time elapsed is indi-

cated in the bottom left. Middle: Maximum intensity projection of each volume is shown after

Worm Centerline Tracking and Straightening. Right: Locations of neurons are shown at the

end of the pipeline (after Neuron Registration Vector Encoding, Clustering and Error Correc-

tion). Each color represents a different tracked neuron. All neurons from the volume are

shown overlaid on a raw image of the middle plane of each volume. Note a light flash used for
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time synchronization is visible around t = 13s.
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