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Abstract

A central question in neuroscience is to understand how noisy firing patterns are used to

transmit information. Because neural spiking is noisy, spiking patterns are often quantified

via pairwise correlations, or the probability that two cells will spike coincidentally, above and

beyond their baseline firing rate. One observation frequently made in experiments, is that

correlations can increase systematically with firing rate. Theoretical studies have deter-

mined that stimulus-dependent correlations that increase with firing rate can have beneficial

effects on information coding; however, we still have an incomplete understanding of what

circuit mechanisms do, or do not, produce this correlation-firing rate relationship. Here, we

studied the relationship between pairwise correlations and firing rates in recurrently coupled

excitatory-inhibitory spiking networks with conductance-based synapses. We found that

with stronger excitatory coupling, a positive relationship emerged between pairwise correla-

tions and firing rates. To explain these findings, we used linear response theory to predict

the full correlation matrix and to decompose correlations in terms of graph motifs. We then

used this decomposition to explain why covariation of correlations with firing rate—a rela-

tionship previously explained in feedforward networks driven by correlated input—emerges

in some recurrent networks but not in others. Furthermore, when correlations covary with fir-

ing rate, this relationship is reflected in low-rank structure in the correlation matrix.

Author summary

A central question in neuroscience is to understand how noisy firing patterns are used to

transmit information. We quantify spiking patterns by using pairwise correlations, or the

probability that two cells will spike coincidentally, above and beyond their baseline firing

rate. One observation frequently made in experiments is that correlations can increase

systematically with firing rate. Recent studies of a type of output cell in mouse retina

found this relationship; furthermore, they determined that the increase of correlation with

firing rate helped the cells encode information, provided the correlations were stimulus-

dependent. Several theoretical studies have explored this basic structure, and found that it

is generally beneficial to modulate correlations in this way. However—aside from mouse

retinal cells referenced here—we do not yet have many examples of real neural circuits
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that show this correlation-firing rate pattern, so we do not know what common features

(or mechanisms) might occur between them.
In this study, we address this question via a computational model. We set up a compu-

tational model with features representative of a generic cortical network, to see whether

correlations would increase with firing rate. To produce different firing patterns, we var-

ied excitatory coupling. We found that with stronger excitatory coupling, there was a posi-

tive relationship between pairwise correlations and firing rates. We used a network linear

response theory to show why correlations could increase with firing rates in some net-

works, but not in others; this could be explained by how cells responded to fluctuations in

inhibitory conductances.

Introduction

One prominent goal of modern theoretical neuroscience is to understand how the features of

cortical neural networks lead to modulation of spiking statistics [1–3]. This understanding is

essential to the larger question of how sensory information is encoded and transmitted,

because such statistics are known to impact population coding [4–8]. Both experimental and

theoretical inquiries are complicated by the fact that neurons are widely known to have hetero-

geneous attributes [9–14].

One family of statistics that is implicated in nearly all population coding studies is trial-to-

trial variability (and co-variability) in spike counts; there is now a rich history of studying how

these statistics arise, and how they effect coding of stimuli [15–19]. Recent work by numerous

authors has demonstrated that the information content of spiking neural activity depends on

spike count correlations and its relationship (if any) with stimulus tuning [15, 17, 19–21].

Since a population of sensory neurons might change their firing rates in different ways to sti-

muli, uncovering the general mechanisms for when spiking correlations increases with firing

rate (or when they do not) is important in the context of neural coding. Thus, we study this

question in a general recurrent neural network model.

One observation that has been made in some, but not all, experimental studies is that pair-

wise correlations increase with firing rates. This relationship has been observed in vitro [22]

and in several visual areas: area MT [23], V4 [24], V1 [25, 26], and notably, in ON-OFF direc-

tionally sensitive retinal ganglion cells [21, 27]. The retinal studies involved cells with a clearly

identified function, and therefore allowed study of the coding consequences of this correla-

tion/firing rate relationship. Both studies found that the stimulus-dependent correlation struc-

ture observed compared favorably to a structure in which stimulus-independent correlations

were matched to their (stimulus-)averaged levels. This finding reflects a general principle artic-

ulated in other studies [17, 19], that stimulus-dependent correlations are beneficial when they

serve to spread the neural response in a direction orthogonal to the signal space.

While many studies have illustrated the connection between stimulus-dependent correla-

tion structure and coding, these have (until recently: see [21, 25, 27]) largely taken the correla-

tion structure as given, leaving open the question of how exactly a network might produce the

hypothesized correlation structure [6, 7] (see also the theoretical calculations in [21, 27]). The-

oretical studies of the mechanisms that contribute to correlation distributions have largely ana-

lyzed homogeneous networks (i.e. cells are identical, aside from E/I identity) [2, 3, 28, 29],

which does not allow an exploration of a correlation/firing rate relationship. Thus, how corre-

lation coefficients can vary across a population of heterogeneously-tuned neurons is not yet

well understood despite its possible implications for coding.

When do correlations increase with firing rates?
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In this paper we investigated the relationship between correlations and firing rates in con-

ductance-based leaky integrate-and-fire (LIF) neural network models, consisting of excitatory

(E) and inhibitory (I) cells that are recurrently and randomly coupled. We introduced neural

heterogeneity by allowing thresholds to vary across the population, which induced a wide

range of firing rates, and explored different firing regimes by varying the strength of recurrent

excitation. We found that with relatively strong excitation, pairwise correlations increased

with firing rate.

In theoretical studies, this correlation-firing rate trend has been explained in feed-forward

networks driven by common input [22, 30, 31]. Here we investigated whether the correlation/

firing relationship in recurrent networks can be explained by this theory, but where the source

of input correlations is internally generated; i.e., from overlapping projections within the

recurrent network. We first adapted a network linear response theory, to decompose predicted

correlations into contributions from different graph motifs, which are subgraphs which form

the building blocks of complex networks [28, 32, 33].

We found that in all networks studied here, second-order motifs—and specifically inhibi-
tory common input—were the dominant contributor to overall pairwise correlations. This

allowed us to generalize theory from [22], and describe pairwise correlations in terms of a sin-

gle-cell susceptibility function. Surprisingly, we found that correlations from inhibitory com-

mon input could either increase or decrease with firing rate, depending on how cells

responded to fluctuations in inhibitory conductances.

We further show that a correlation-firing rate relationship has an important consequence

for heterogeneous networks; it can shape low-dimensional structure in the correlation matrix.

Low-dimensional structure—often modeled with a low-rank approximation to the correlation

matrix—is important because it can be used to improve estimation [34] and even to recon-

struct full correlation matrices from incomplete data [35–37]; such structure has been

observed in experimental data [25, 38–41] but its origin is not always known. We demonstrate

in our networks that when correlation co-varies with firing rate, the (E-E) correlation matrix

could be accurately modeled with a low-rank approximation, and the low-rank projection in

this approximation was strongly associated with firing rate. Thus we demonstrate that low-

rank structure can result from recurrent activity modulated by single-cell characteristics, as

well as from a global input or a top-down signal [38].

Results

We studied asynchronous recurrent networks of leaky integrate-and-fire model neurons, and

varied the strength of excitation to get different firing behaviors. We found that the covariation

of correlations with firing rates—a phenomenon observed in feed-forward networks—occurs

here in one firing regime, but not the other. We then found that this could be explained in

terms of how single cells responded to fluctuations in inhibitory conductance. Finally, we

show that when correlations covary with firing rates, the correlation matrix admits a low-rank

approximation.

Asynchronous firing in heterogeneous networks

We performed Monte Carlo simulations of recurrent, randomly connected E/I networks, as

described in Methods: Neuron model and network setup. To connect to previous literature

on asynchronous spiking, we compared networks with and without single-cell variability—

referred to as heterogeneous and homogeneous respectively. Heterogeneity was introduced by

allowing cell threshold to vary, which induced a corresponding range of firing rates (see Meth-

ods: Neuron model and network setup for details). We first chose parameters so that the

When do correlations increase with firing rates?
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networks exhibited the classical asynchronous irregular (Asyn) regime, in which each neuron

has irregular Poisson-like spiking, correlations are low, and the population power spectra are

flat [42]. In Fig 1A we show raster plots from both the heterogeneous and homogeneous net-

works, in this regime. The heterogeneous network shows a gradient in its raster plot, because

cells are ordered by decreasing firing rate. The population power spectra were flat, for both E

and I cells and in both homogeneous and heterogeneous networks (Fig 1C).

When we increased excitation (by increasing both WEE and WIE, where WXY is the conduc-

tance strength from type Y to X; see Table 1 for parameter values), we observed occasional

bursts of activity. However, the bursts do not occur at regular intervals and do not involve the

entire population (we found excitatory bursts involved at most 25% of the population). The

Fig 1. Two firing regimes in heterogeneous networks. Monte Carlo simulations illustrating two firing regimes we consider in this paper. (A) Raster

plots from the asynchronous (Asyn) regime. (B) Raster plots from the strong asynchronous (SA) regime, showing occasional bursts of activity. (C)

Power spectra in the asynchronous regime. (D) Power spectra in the strong asynchronous regime. (E) Firing rates in the asynchronous (top panel)

and SA (bottom panel) regimes. In (A-B), cells are ordered by increasing threshold value. Power spectra (C-D) are normalized to their maximum

value and expressed in decibels/Hz.

https://doi.org/10.1371/journal.pcbi.1005506.g001

Table 1. Excitatory connection strengths mediate between different firing regimes.

Parameter WEI (I! E) WIE (E! I) WEE WII σi(i 2 E) σi(i 2 I)

Asynchronous

Str. Asynch.

10

10

5

8

0.5

9

5

5
2=

ffiffiffi
2
p

1:5=
ffiffiffi
2
p

3=
ffiffiffi
2
p

2:5=
ffiffiffi
2
p

% connectivity 35% 20% 40% 40%

Here WYX denotes X! Y connections; e.g. WIE denotes the strength of excitatory connections onto inhibitory neurons. The parameter σi denotes the

strength of background noise in units of (scaled) voltage, and depends only on cell type (E or I).

https://doi.org/10.1371/journal.pcbi.1005506.t001
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network is still moderately inhibition-dominated and neurons are spiking irregularly; example

raster plots are shown in Fig 1B. The population power spectra (Fig 1D) are no longer flat

(compare to the asynchronous regime, Fig 1C); they show local maxima around 8 Hz, but it is

not a pronounced peak. We will refer to this as the strong asynchronous (SA) regime [43].

In both Fig 1C and 1D, we note that—despite the apparent differences in the distribution

of spikes across the network, evident in the raster plots—both the autocorrelation functions

(Fig 1C and 1D, insets) and the power spectra from the heterogeneous and homogeneous net-

works are very similar. Thus, we have a fair comparison to examine the role of heterogeneity,

independent of other characteristics of the network.

The distribution of both excitatory and inhibitory firing rates are extremely narrow in the

homogeneous network, but broad in the heterogeneous network (Fig 1E). This is expected, as

each excitatory (inhibitory) cell in the homogenous network has the same uncoupled firing

rate; because the number of synaptic inputs is likewise fixed, population variability in synaptic

input is limited. The heterogeneous networks have a range of firing rates, which allows us to

investigate the possibility of a relationship between (variable) firing rate and pairwise correla-

tions. Population-averaged firing rates were very similar between the heterogeneous and

homogeneous networks: in the asynchronous regime hhnEii = 10.6 Hz (heterogeneous) and

hhnEii = 10.1 Hz (homogeneous), while hhnIii = 44.3 Hz (heterogeneous) and hhnIii = 43.5 Hz

(homogeneous). In both regimes Fano factors ranged between 0.9 and 1.1, consistent with

Poisson-like spiking (more statistics are given in S1 and S3 Tables).

Correlation increases with firing rate in the strong asynchronous regime

We next sought a possible relationship between pairwise correlations—quantified via the Pear-

son’s correlation coefficient for spike counts, rij � Cov Tðni; njÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var TðniÞVar TðnjÞ

q
—and

single-cell firing rates. Such relationships have been found in feed-forward networks [22, 30,

31], and impact information transfer when considered in concert with stimulus selectivity (i.e.

signal correlations) [7, 8, 15, 19]. In heterogeneous networks, the large range of firing rates—

equivalently the large range of operating points—admits the possibility that cells at different

operating points may differ in their ability to transfer correlations.

To investigate this we plotted pairwise correlations for each distinct excitatory pair ρij, ver-

sus the geometric mean of the firing rates
ffiffiffiffiffiffiffi
ninj
p

, in both regimes (asynchronous and strong

asynchronous), for a range of time scales (blue stars in Fig 2). We focus here on excitatory-

excitatory (E-E) pairs, because excitatory synaptic connections provide the predominant

means of propagating cortical sensory information to higher layers. Our results show a striking

difference between the two spiking regimes; while there is no clear relationship with firing rate

in the asynchronous regime (Fig 2, top row), the strong asynchronous regime shows a distinct

positive trend with firing rate (Fig 2, bottom row). We can quantify a hypothesized relation-

ship between n and ρ with linear regression, and indeed find that geometric mean firing rate

explains a substantial part of the variability of correlations in the strong asynchronous regime

obtained from the Monte Carlo simulations, with R2 values (i.e. percentage of variability

explained) of 0.41, 0.37, and 0.34 for time windows of T = 5, 50, and 100 ms respectively (in

contrast, R2 values for the asynchronous network are below 0.005).

In recurrent networks, the response of each cell is shaped by both direct and indirect con-

nections through the network. We used the linear response theory described in Methods: Lin-

ear Response Theory and Methods: Computing statistics from linear response theory to

predict the full correlation matrix CT at various time scales, including the limit of long time

scales: ~Cð0Þ ¼ limT!1
1

T CT . We found that this theory successfully captured E-E correlations,
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both the full distribution of values and coefficients of individual cell pairs (details, including

figures, can be found in: Supporting Information: S1 Text).

We then plotted the predicted correlation, ~Cij=

ffiffiffiffiffiffiffiffiffiffiffi
~Cii

~Cjj

q

, vs. geometric mean firing rate
ffiffiffiffiffiffiffi
ninj
p

(magenta circles in Fig 2). The predicted correlations captured the same positive relationship

observed in Monte Carlo results, with R2 values of 0.47, 0.4, and 0.36.

Decomposition of correlation by graph motifs shows strong role for

second-order motifs

Why does a correlation/firing rate relationship emerge in one spiking regime, but not the

other? In feed-forward networks, a positive correlation/firing rate relationship results from

transferring common input through fluctuation-driven, asynchronously-firing cells [22, 30].

In contrast, the amount of shared input into two cells in a recurrent network is determined by

both direct and indirect connections through the network. To separate the impact of different

network pathways, we decomposed the linear response-predicted correlations at long time

scales (i.e. ~Cð0Þ ¼ limT!1
1

T CT) into normalized contributions from n-th order motifs, as

described in Methods: Quantifying the role of motifs in networks. Common input from a

divergent connection, for example, results from the 2nd-order motif K�C0K. In Fig 3, we plot

the summed contributions up to sixth order—i.e. ~Rk
ij, for k = 1, 2, . . .6—versus geometric

Fig 2. Correlation increases with firing rate in the strong asynchronous regime. E-E correlation ρij vs.

geometric mean firing rate
ffiffiffiffiffiffiffi
ninj
p

, cell-by-cell comparison of Monte Carlo simulations (blue stars) and linear

response (magenta circles), in a heterogeneous network. Left to right: time window T = 5 ms and 100 ms. Top

row: asynchronous regime. Bottom row: strong asynchrony.

https://doi.org/10.1371/journal.pcbi.1005506.g002
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mean firing rate,
ffiffiffiffiffiffiffi
ninj
p

. The total normalized correlation, ~Cij=

ffiffiffiffiffiffiffiffiffiffiffi
~Cii

~Cjj

q

, is shown as well. In all

cases, we plot long time scale correlations ω = 0; each distinct E-E pair is represented.

In the asynchronous regime (top panel of Fig 3A), first-order contributions (~R1) separate

into three distinct “curves”, reflecting a 1-1 relationship with firing rate conditioned on first-

order connectivity (no connection between i and j; one connection between i and j; bidirec-

tional connection between i and j). Second-order contributions are overall positive while

third-order contributions are overall negative (consistent with [28]); neither appear to have a

relationship with firing rate. Second-order contributions are conspicuously dominant; fifth

and sixth order terms are near zero.

This qualitative picture changes when we consider the strong asynchronous regime (bottom

panel of Fig 3A). First-order contributions follow a similar pattern as in the asynchronous

regime, and second-order contributions are likewise positive. However, third-order contribu-

tions are positive, and in the heterogeneous network they have a distinctly positive relationship

with firing rate (top panel). Thus, in the asynchronous regime, negative third-order contribu-

tions partially cancel with positive second-order contributions; in the strong asynchronous

regime, first, second, and third-order motifs reinforce each other, contributing to an overall

positive relationship with firing rate (black dots).

Despite these differences, second-order contributions are the major determinant of total

correlation in both regimes. In Fig 3B we plot the same data (~Rk
ij) vs. total correlation, rather

Fig 3. Pairwise correlations are built from graph motifs. Contributions of different orders to prediction of

E-E correlations with linear response theory. (A) Normalized contributions to pairwise correlation (~Rk
ij ) vs.

geometric mean firing rate (
ffiffiffiffiffiffiffi
ninj
p

) for heterogeneous networks in the asynchronous (top panel) and strong

asynchronous (bottom panel) regimes. (B) As in (A), but plotted vs. total predicted normalized correlation

(~C ij=

ffiffiffiffiffiffiffiffiffiffiffi
~C ii

~C jj

q

). See main text for further discussion. (C) To quantify the relative importance of different motifs,

we report the fraction of variance explained (R2) from linear regressions, in which we regressed total

correlation (~C ij=

ffiffiffiffiffiffiffiffiffiffiffi
~C ii

~C jj

q

) against the contributions at each specific order (~Rk
ij ). As suggested by (B), second-

order contributions (red) overwhelmingly determine total correlations in the asynchronous network (R2 values

for first- and third-order terms are shown, but barely visually distinguishable; R2 values for higher orders are

also small, within 0.08 up to k = 6). (D) Fraction of total correlation from each order, strong asynchronous

regime.

https://doi.org/10.1371/journal.pcbi.1005506.g003
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than geometric mean firing rate. In the asynchronous regime, second-order contributions

cluster near the unity line, suggesting they are strongly predictive of total correlation. To quan-

tify this intuition we computed the fraction of variance explained (R2) by performing a linear

regression of total normalized correlation (~Cij=

ffiffiffiffiffiffiffiffiffiffiffi
~Cii

~Cjj

q

) against contributions of each order

(Fig 3C); in the asynchronous regime R2 values for ~R1
ij,

~R2
ij, and ~R3

ij were 0.004, 0.969, and

0.0002, respectively. R2 values for higher orders were likewise small: for ~R4
ij,

~R5
ij, and ~R6

ij they

were 0.047, 0.034, and 0.074.

This statistic was more ambiguous in the strong asynchronous regime, where R2 values for

~R1
ij,

~R2
ij, and ~R3

ij were 0.595, 0.474, and 0.509 respectively. However, note that ~R1
ij and ~R3

ij were

positive for all cell pairs; ~R2
ij and total correlation were negative for less than 0.3% of cell pairs.

Thus, we considered how each motif contributed to the total correlation by taking the ratio of

each contribution to the total, averaged over all cell pairs (Fig 3D). By this measure, second-

order contributions were largest; fraction explained for ~R1
ij,

~R2
ij, and ~R3

ij were 0.239, 0.601, and

0.420, respectively. Note that this measure cannot be used for the asynchronous (Asyn) regime

because of the negative values of ~Rk
ij.

Taken together, this evidence points to a distinguished role for second-order motifs (~R2
ij) in

determining total correlation. In the asynchronous regime in particular, ~R2
ij is a near-perfect

predictor of total correlation.

Inhibitory common input is the most important second-order motif

We next analyzed contributions from specific second-order motifs in Fig 4. There are four

distinct second-order motifs that can correlate two E cells. There are two types of chains, from

Fig 4. Inhibitory common input is the dominant second-order motif in both asynchronous and strong

asynchronous networks. (A) Contributions of different 2nd-order motifs to prediction of E-E correlations in a

heterogeneous network, in the asynchronous (top) and strong asynchronous (bottom) regimes. (B) As in (A),

but plotted vs. total contribution from second-order motifs ~R2. In both panels, inhibitory common input

(magenta) clusters near the unity line. (C) To quantify the relative importance of different motifs, we report the

fraction of variance explained (R2) from linear regressions, in which we regressed the total contribution from

second-order motifs (~Rk
ij ) against the contribution from specific motifs types.

https://doi.org/10.1371/journal.pcbi.1005506.g004
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K2C0 and C0 (K�)2. An E! E! E chain tends to positively correlate, while an E! I! E
chain will negatively correlate; these are shown as blue and green respectively. There are two

types of common input, from KC0(K�); they correspond to common input from E and I cells,

i.e. E E! E and E I! E. They both lead to positive correlations and are shown as red

and magenta respectively.

In the asynchronous regime (left panel of Fig 4A), the dominant contributions are I com-

mon input (magenta) and negative (E! I! E) chains (green); correlating chains (blue) and

excitatory common input (red) are barely visible, as they are clustered near zero. In the strong

asynchronous case (right panel), blue and red dots are now visible and show a clear 1-1 trend

with firing rate. In both regimes, inhibitory common input appears to be the dominant second-

order motif. In Fig 4B we plot the contribution from different second-order motifs vs. the total

contribution from second-order motifs, ~R2
ij (rather than geometric mean firing rate,

ffiffiffiffiffiffiffi
ninj
p

). In

both panels, the inhibitory common input (magenta) clusters around the unity line, showing it

is the best predictor of the total second-order contribution. In Fig 4C we quantify this observa-

tion by reporting fraction of variance explained (R2) from linear regressions: the R2 value for

inhibitory common input exceeds 0.8 in both networks, while the R2 values for all other motifs

types are less than 0.1.

In conclusion, decomposition of pairwise correlations into graph motifs has shown us two

important things: first, while third-order motifs probably contribute to the positive correla-

tion/firing rate relationship observed in the SA regime, second-order motifs still dominate in

both regimes. Second, inhibitory common input is the most important second-order motif

in both regimes (Fig 4B).

Susceptibility to inhibition can either increase or decrease with firing rate

In feedforward networks—i.e., in the absence of a path between two cells—correlations in out-
puts (i.e. spike trains) must arise from correlations in inputs; for example, through shared or

common inputs. We have found that inhibitory common input is the dominant contributor to

pairwise correlations in both the asynchronous and strong asynchronous regimes; we now

turn our attention to modeling this term (inhibitory common input) specifically.

Previous work that analyzed the relationship between the long-time correlation and firing

rate in feedforward networks [22, 30] quantified a susceptibility function that measures the

ratio between output and input correlations:

S �
r

c
: ð1Þ

If both cells receive a large (but equal) number of uncorrelated inputs, c would be the fraction

of inputs that are common to both i and j.
In the networks examined here, each cell had a fixed in-degree for both excitatory and

inhibitory cells; however, for any given pair of cells i and j, the number of E and I inputs that

synapsed onto both cells will vary from pair to pair. Thus, we next considered the possibility

that our (negative) finding in the asynchronous network could be explained by accounting for

variable cij.
We focus on inhibitory common input, which is the dominant second-order contribution

in the asynchronous network (Fig 4). We segregated pairs by whether they had 0, 1, 2, etc..

common inhibitory inputs; we then use this number as a proxy for c (recall that each excitatory

cell had exactly 7 inhibitory inputs, so that this number divided by 7 approximates the com-

mon input fraction; two common inputs imply c� 0.28 for example). We plot the results for

the asynchronous network in Fig 5A, top panel (data for each distinct value of c is presented by

color). As we might expect, correlation increases as c increases. However, for a fixed c, there is
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not an apparent relationship between firing rate and correlation; if anything, there appears to

be a slight decrease. Correlation also increases with c in the strong asynchronous network

(Fig 5A, bottom panel); however, here we also see a modest increase with geometric mean fir-

ing rate
ffiffiffiffiffiffiffi
ninj
p

.

Previous theoretical work [22, 30] identified an increase in susceptibility with firing rates in

current-driven neurons; we next considered the possibility that this fails to hold for conduc-

tance-driven neurons. As described in Methods: Quantifying correlation susceptibility, we

estimated correlation susceptibility for each pair of neurons, by using the susceptibility func-

tion for each neuron to conductance fluctuations (computed as part of the linear response the-

ory), divided by a measure of the long-timescale spike count variance:

ShgI iij ¼
~AhgI i;ið0Þ~AhgI i;jð0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

~Ciið0Þ
~Cjjð0Þ

q ð2Þ

We plotted the results for both networks in Fig 5B; while susceptibility increases with firing

rate in the strong asynchronous network (except for the largest firing rates), it actually

decreases with firing rate in the asynchronous network.

We can contrast with the estimated susceptibility to current fluctuations (i.e. Aμ,i, with

μi, τeff,i, and σeff,i as in Eq 29) which we also computed for the same set of cell pairs, shown in

Fig 5C.

Sm

ij ¼
~Am;ið0Þ

~Am;jð0Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~Ciið0Þ

~Cjjð0Þ

q ð3Þ

Here, we see that Sm
ij increases with firing rates, in both networks.

Fig 5. Susceptibility to conductance fluctuations can explain correlation-firing rate relationships. In

(A-C): heterogeneous asynchronous (top) and heterogeneous strong asynchronous (bottom). (A) Correlation (ρ)

from I common inputs vs. firing rate, segregated based on the number of common inhibitory inputs. (B)

Estimated correlation susceptibility to fluctuations in inhibitory conductances vs. firing rate (SgIij ). (C) Correlation

susceptibility to fluctuations in inhibitory currents vs. firing rate (Sm

ij ).

https://doi.org/10.1371/journal.pcbi.1005506.g005
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Understanding the susceptibility function

We next sought to understand how susceptibility depends on neural parameters; that is, we

define the single-cell susceptibility

ShgI ii �
~AhgI i;ið0Þ

ffiffiffiffi
ni
p ð4Þ

where

ni ¼ f hgI;ii; sI;i; hgE;ii; sE;i; si; yi

� �
ð5Þ

~AhgI i;ið0Þ ¼
@f
@x1

hgI;ii; sI;i; hgE;ii; sE;i; si; yi

� �
: ð6Þ

(“ @

@x1
” indicates that derivative is taken with respect to the first argument, hgI, ii). We have also

used the asynchronous spiking assumption, that ~Ciið0Þ � ni (compare with Eq 3).

This quantity is shown in Fig 6, where it is plotted vs. firing rate ni (blue stars). Note that

this is a negative quantity; since the susceptibility for a neuron pair ShgI iij ¼ ShgI ii ShgI ij is the prod-

uct (and therefore positive), an increase in ShgI ii will result in a decrease in ShgI iij and vice versa.

In principle, the firing rate function (Eq 5)—and therefore susceptibility—can depend on

all six parameters defining the cell: our next step was to reduce the dimensionality of the prob-

lem. We first looked for any possible relationship between single-cell firing rates and cell

parameters (see S1 Text: Approximating single-cell susceptibility in a heterogeneous net-

work, S6 and S7 Figs): in both networks, only threshold θi had an obvious relationship with fir-

ing rate. Among the remaining parameters, the mean inhibitory conductance hgIi had the

greatest relative range of values in the asynchronous network (S6A Fig). Therefore, we hypoth-

esized that we could accurately capture ShgI ii , by approximating it as a function of the two

parameters θi and hgIi.

Fig 6. How firing rate diversity is achieved in a heterogeneous network will affect susceptibility. Single-cell

susceptibility function(s) for a conductance-based LIF neuron, as a function of firing rate ν. Successive approximations

shown are: original single-cell susceptibility, ShgIii (Eq 4, blue stars); most parameters set to average value, ŜhgIii (Eq 7, red

triangles); all parameters but θi set to average value,
^̂S hgIii (Eq 9, gold squares); and θ fixed, ŜhgIiy¼1 (Eq 10, purple diamonds).

(A) Asynchronous regime. (B) Strong asynchronous regime.

https://doi.org/10.1371/journal.pcbi.1005506.g006
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We reevaluated the firing rate function, where σI,i, hgE,ii, σE,i and σi have been replaced by

their average values: i.e.

ŜhgI ii �
1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
FðhgI;ii; yiÞ

q
@F
@x1

hgI;ii; yi

� �
ð7Þ

where

FðhgI;ii; yiÞ � f hgI;ii; hsI;iip; h hgE;ii ip; hsE;iip; hsiip; yi

� �
ð8Þ

and h � ip denotes the population average. The results are also illustrated in Fig 6 (red triangles).

In the asynchronous regime (Fig 6A), the results are remarkably close to the original quanti-

ties, indicating that using average parameter values has little effect; in the strong asynchronous

regime (Fig 6B) the difference is larger, but the points appear to occupy the same “cloud”.

However, we can now visualize the susceptibility as a function of only two parameters, and we

do so in Fig 7 by evaluating ŜhgI ii on a (θ, hgIi) grid; the points corresponding to the actual excit-

atory cells in our network are illustrated in red. In both the asynchronous and strong asyn-

chronous regimes, the red stars form a scattered cloud around the average value hhgI,iiip, with

no obvious relationship with θi.
This fact motivated a further simplification,

^̂S hgI ii �
1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Fðh hgI;iiip; yiÞ

q
@F
@x1

h hgI;ii ip; yi

� �
ð9Þ

i.e., we replaced hgI,ii with its population average, hhgI,iiip, in essence approximating a one-

dimensional “path” that the cells take through parameter space. The results are shown in Fig 6

(gold squares) and, as we should expect, allow us to discern a functional relationship with fir-

ing rate ni; importantly, it appears to capture the average behavior of the actual susceptibility

values ShgI ii . Here, we can see clearly that in the asynchronous regime, correlations should

Fig 7. Susceptibility as a function of inhibitory conductance and threshold. Single-cell susceptibility function for a

conductance-based LIF neuron, as a function of mean inhibitory conductance hgIi and threshold θ: ŜhgIiðhgIi; yÞ (defined in Eq

7). Other parameters are set to the population average. Overlays show (hgI,ii, θi) values of the actual cells in the network (red

stars) and an alternative curve through the plane, (hgIi, 1), along which comparable firing rate diversity can be observed (black

squares). (A) Asynchronous regime. (B) Strong asynchronous regime.

https://doi.org/10.1371/journal.pcbi.1005506.g007
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actually decrease with firing rate, for ni> 5 Hz. In the strong asynchronous regime, correla-

tions will increase with firing rate, saturating around 10–15 Hz.

Susceptibility depends on the mechanism underlying firing rate diversity

Finally, recall that our actual network sampled a relatively small part of the (θ, hgIi) plane. This

may be attributed to the fact that we generated firing rate diversity (and therefore heterogene-

ity), by modulating cell excitability through the cell threshold θi. How might our results have

changed, if we had generated firing rate diversity through some other mechanism? In both

regimes, we can increase firing rates by either decreasing hgI,ii, or by decreasing θ (see S7 Fig).

To explore this, we computed susceptibility values along another curve in the (θ, hgIi) plane;

specifically, we held θ fixed and instead varied hgIi (illustrated with black squares on Fig 7); i.e.

ŜhgI iy¼1ðhgIiÞ �
1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GðhgIi; yÞ

p
@G
@x1

hgIi; yð Þ

�
�
�
�
�

y¼1

ð10Þ

where

GðhgIi; yÞ ¼ f hgIi; hsI;iip; h hgE;ii ip; hsE;iip; hsiip; y
� �

Results are shown in Fig 6 (purple diamonds) and show a strikingly different relationship with

firing rate; in the asynchronous regime, correlations should increase with firing rate for n< 15

Hz; in the strong asynchronous regime correlations will increase with firing rate, saturating

near 20 Hz.

To summarize the previous two subsections, we first defined a single-cell susceptibility

function (Eq 4), which captures a linear approximation to the cell’s response to input. This

quantity relies on an underlying firing rate, which is a function of all parameters that define

single-cell dynamics; in this case, six. Each cell occupies a point in this six-dimensional param-

eter space. We found that in each network studied here, the occupied points approximately lie

along a one-dimensional path through this parameter space, along which we could visualize

the susceptibility. Finally, we considered the consequences of taking other paths through this

parameter space: these paths can be interpreted as generating firing rate heterogeneity using

other network mechanisms.

Low-rank structure in neural correlations is mediated by correlation-firing

rate relationship

Previous work has identified low-dimensional structure in neural correlation matrices [25,

38–41]; its origin is not always known [3]. We next hypothesized that the positive correlation-

firing rate relationship we observed in the strong asynchronous regime, might be reflected in

low-dimensional structure in the correlation matrix. For simplicity, suppose that correlations

were really represented by a function of firing rate (as in [22]): i.e. ρij = cS(ni)S(nj). Then we

could represent the off-diagonal part of the correlation matrix as CT = cSST, where S is a length

N vector such that Si = S(ni); that is, CT would be a rank-one matrix.

We followed the procedure outlined in Methods: Low-rank approximation to the correla-

tion matrix to approximate each correlation matrix, CT, as the sum of a diagonal matrix and

low-rank matrix:

CT � CdiagþR1

T ¼ lIþ ðs1 � lÞu1uT
1

ð11Þ
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where λ is given in closed form by the eigenvalues of CT:

l ¼ l1 �

P
j>1
ðl1 � ljÞ

2

P
j>1

l1 � lj
ð12Þ

and σ1, u1 are the first singular value and singular vector of CT.

In Fig 8, we show the results from heterogeneous networks in both the asynchronous (top

panel in each subfigure) and strong asynchronous (bottom panel in each subfigure) regimes.

We first show CT − λI, where λ is given by Eq 12, in Fig 8A. Cells are ordered by (decreasing)

firing rate. While no pattern is visible in the asynchronous state (top panel), the strong asyn-

chronous state (bottom panel) shows larger values in the upper left corner, suggesting that cor-

relation increases with firing rate. This is even more visible in the rank one approximation,

ðs1 � lÞu1uT
1
, shown in Fig 8B.

We now use CdiagþR1

T to approximate CT, and compare the results, cell pair-by-cell pair

(Fig 8C). In the asynchronous network, the approximated correlations take on a narrow range

(between 0 and 0.01, compared to between −0.015 and 0.03 for the measured coefficients) and

do not show an obvious positive relationship. In the strong asynchronous regime, the range is

more accurate (between 0.02 and 0.1, vs. 0.01 and 0.15 for the measured coefficients) and the

points cluster around the unity line.

In Fig 8D, we plot the weight of each cell in the first singular vector, (u1)j vs. the firing rate

nj. We can clearly see a positive relationship in the strong asynchronous regime (bottom

panel), suggesting that the positive relationship between correlation and firing rate is related to

the success of the low-rank approximation.

Discussion

We simulated heterogeneous, asynchronous networks of leaky integrate-and-fire model neu-

rons in order to investigate a possible relationship between firing rates and pairwise

Fig 8. Low-rank structure in correlation matrices. Approximating correlation matrices for the heterogeneous networks as a

diagonal plus rank-one. Neurons are ordered by firing rate (highest to lowest). In each column of (A-D), the asynchronous (top)

and strong asynchronous (bottom) regimes are shown; T = 100 ms.(A) The shifted E-E correlation matrix, CT − λI, for an

appropriately chosen λ. (B) A rank-one approximation to CT − λI. (C) True correlation coefficients vs. rank-one approximation, cell-

by-cell. (D) Weight in the first singular vector, u1 vs. geometric mean firing rate
ffiffiffiffiffiffiffi
ninj
p

.

https://doi.org/10.1371/journal.pcbi.1005506.g008
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correlations in recurrent networks. We found that correlations can either increase or decrease

with firing rates; this could be attributed to differences in how cells responded to fluctuations

in inhibitory conductances. When correlations did increase with firing rates, this relationship

was reflected in low-dimensional structure in the correlation matrix.

This study offers an example of a practical consequence of the difference between treating

synaptic inputs as conductances rather than currents; while most synaptic currents are more

accurately modeled as conductances, current-based formulations are often used for analytical

and computational simplicity. Although it is known that neural models responding to currents

vs. conductances differ in their response dynamics [44–46], this approach is supported by find-

ings that steady-state firing rates are qualitatively similar in both settings (e.g. [47]). Here, we

found that refined features of the steady-state firing rate surface will govern susceptibility to

common input in asynchronous networks; two “cuts” through this surface may yield divergent

behavior with respect to correlation susceptibility, despite yielding similar firing rates.

In other words, the relationship between pairwise correlations and firing rate will depend

on the means through which firing rate diversity is achieved. In our study, we created firing

rate diversity by regulating cell excitability; if we had instead varied mean inhibitory input (by

varying the number of inhibitory connections) or a background excitatory current (which

would model diversity in stimulus tuning from feed-forward inputs), we would likely have

seen a different pattern. Finally, the recurrent network will also shape the path the cells follow

through the “firing rate surface”; to generalize [22] to recurrent networks, we need to identify

both how firing rates are produced and how they are shaped by the recurrent network.

Thus far, we have not directly connected the presence or absence of a positive correlation-

firing rate relationship to other firing statistics (such as being in the asynchronous vs. strong

asynchronous state, for example). We believe this will be a challenging question to answer;

indeed, we showed earlier (in Results: Susceptibility depends on the mechanism underlying

firing rate diversity) that we can construct a network with asynchronous firing, but where

correlations do increase with firing rate. Therefore, our goal with this paper is to present a

detailed procedure for analyzing how correlations will vary with firing rates in recurrent net-

works, along with a few illustrative (and nonintuitive) examples.

Finally, while the networks considered in this paper had fixed in-degrees (rather than

Erdős-Rényi), this is not necessary. We have reproduced these results in Erdős-Rényi net-

works, in which parameters are identical to those chosen here, except that each network con-

nection was chosen independently with a probability that depended only on E/I identity. In S9

Fig, we show correlations vs. geometric firing rates, for all excitatory pairs (as in Fig 2), con-

firming that correlations increased with firing rates in the strong asynchronous network, but

not in the asynchronous network. Furthermore, we hypothesize that any difference between

fixed in-degree and Erdős-Rényi networks will become less rather than more important with

increasing network size, as the variance in synaptic inputs decreases.

Low-dimensional structure has been a common finding in many large-scale neural record-

ings [25, 38–41]; while the origin is not always known, it is often interpreted as arising from a

global input or top-down signal. This is an interpretation that arises naturally from the tech-

nique of factor analysis, in which one seeks to explain a data vector as the sum of a random vec-

tor and the linear combination of some number of latent factors [48] (for Gaussian random

variables, each latent factor can literally be interpreted as a global input with a distinct pattern

of projection onto the observed variables). In our network, we found that a single latent factor

was effective at capturing correlations in the strong asynchronous regime; however, this latent

factor did not reflect common input (there was no global external input into the network) but

rather modulation from single-cell characteristics. Thus, we identify a novel mechanism that

can contribute to low-dimensional structure in neural recordings.
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Impact on stimulus coding

The networks studied here were not encoding a stimulus; correlations were generated by

recurrent activity, given that each neuron had a baseline firing rate in the absence of recurrent

input. However, we can readily connect this network to a stimulus coding task, in order to

understand how the correlation-firing rate relationship can impact coding.

Consider a population of cells that is responsible for encoding a single scalar stimulus θ,

such as movement direction or orientation of a visual stimulus, and that each cell has roughly

a bell-shaped tuning curve. Furthermore, we model an incoming stimulus by modulating a

stimulus-dependent background current Ii,(θ); i.e., cells which prefer the current stimulus

have a higher level of current, and thus a higher firing rate, than cells which prefer an orthogo-

nal or opposite stimulus. The network we studied here would model the response to a single

stimulus θ0; that is, the firing rate diversity we observe is present because some cells are

strongly tuned to the current stimulus, while others are not.

We could extend this model, by resetting background currents to model a complete set of

stimuli {θ1, θ2, . . .θn − 1}. For each stimulus θj, correlations would show the rough firing rate

dependence displayed in the strong asynchronous network, resulting in a stimulus-dependent
correlation structure in which pairwise correlations vary like geometric mean firing rate. This

is the structure analyzed in [21, 27]: the authors found that such a stimulus-dependent correla-

tion code enhances information, when compared to a stimulus-independent code with the

same average correlation level. Intuitively, the mean population response lives on the surface

of a (hyper-)sphere in neural response space; the population encodes location on this surface.

Positive correlations between similarly tuned cells produce response distributions that are

stretched in the radial direction, “orthogonal” to this sphere, and thus have a minimal impact

on the encoded variable.

Moreover, the mechanism that produced stimulus-dependent correlations in [21, 27] was

similar to that shown here (see also [25]); common input modulated by stimulus-dependent

gain factors. Here, we demonstrated how these stimulus-dependent gain factors might arise

(or not) in a recurrent network. If excitation is tuned to put the network in the strong asyn-

chronous regime, then the (stimulus-dependent) correlation structure that results will be

favorable to coding. If excitation is tuned to put the network in the asynchronous regime, then

correlations are overall low and not stimulus-dependent (although, given that average correla-

tions are not matched, we do not here compare information contained within the two

networks).

Future work

This work has, necessarily, focused only on a subset of network attributes that might affect fir-

ing statistics. One important feature is the frequency of higher-order graph motifs; experi-

ments have shown that specific motifs will occur more frequently, than would be expected in

an Erdős-Rényi network with fixed single-cell connection probability [49]. Theoretical work

has found that in networks of integrate-and-fire neurons, an overabundance of divergent and

chain motifs will lead to enhanced correlation [33] (this finding does depend on the dynamical

regime; different motifs impact correlations in networks of coupled oscillators [32]). In [33],

the authors use the assumption of homogeneous single-cell characteristics to find parsimoni-

ous and instructive formulae for the average correlation, and give a roadmap for how this

might be generalized to heterogeneous networks. We look forward to considering the com-

bined effect of single-cell and network heterogeneity in future work.

Another source of cell-to-cell heterogeneity is how cells respond to stimuli, as emphasized

in the previous discussion [17, 20, 21, 27, 50] (see [19] for a review). Here, we did not consider
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a specific sensory system with tuning but rather focus on the general question of how the dis-

tribution of correlation values arise in recurrent networks. Given the previous discussion, one

next step will be to investigate how correlations covary with firing rates, when cell-to-cell het-

erogeneity is produced by stimulus tuning in a structured network responding to a single vari-

able (such as direction or orientation).

Finally, for numerical tractability our simulations here were performed in relatively small

networks. While high average correlations have been measured in experiments [51], theoreti-

cal models of asynchronous networks have found that correlations must go to zero as the sys-

tem becomes large (N!1) [2]. However, recent work has found that this does not have to be

true, as long as spatial structure is introduced into the network [52]. We anticipate that this

may carry over to other forms of heterogeneity, such as single-cell variability, and that there-

fore the effect we observe here persists for larger networks. We look forward to reporting on

this in future work.

Methods

Neuron model and network setup

We considered randomly connected networks of excitatory and inhibitory neurons. Each cell

was a linear integrate-and-fire model with second-order alpha-conductances, i.e. membrane

voltage ni was modeled with a stochastic differential equation, as long as it remained beneath a

threshold θi:

tm
dni

dt
¼ � ni � gE;iðtÞðni � EEÞ � gI;iðtÞðni � E IÞ þ si

ffiffiffiffiffi
tm
p

xiðtÞ; ð13Þ

When ni reaches θi, it is reset to 0 following a refractory period:

niðt þ trefÞ ! 0; niðtÞ � yi ð14Þ

Each neuron was driven by a Gaussian, white background noise, with magnitude σi depending

only on the cell type; that is, hξi(t)i = 0 and hξi(t)ξi(t + s)i = δ(s). The membrane time constant,

τm, and excitatory and inhibitory synaptic reversal potentials, EE and E I , are the same for every

cell in the network.

Each cell responded to synaptic input through conductance terms, gE,i and gI,i, which are

each governed by a pair of differential equations:

td;X

dgX;i
dt
¼ � gX;i þ gð1ÞX;i ð15Þ

tr;X
dgð1ÞX;i

dt
¼ � gð1ÞX;i þ tr;XaX

WYX

NYX

� �
X

j2X;j!i

X

k

dðt � tj;kÞ ð16Þ

where Y = {E, I} denotes the type of cell i and X = {E, I} denotes the type of the source neuron j.
Each spike is modeled as a delta-function that impacts the auxiliary variable gð1ÞX;i ; here tj,k is the

k-th spike of cell j. The rise and decay time constants τr,X and τd,X and pulse amplitude αX
depend only on the type of the source neuron; i.e. they are otherwise the same across the popu-

lation. The parameter WYX denotes the strength of X! Y synaptic connections, which are

(once given the type of source and target neurons) identical across the population. The “raw”

synaptic weight (listed in Table 1) is divided by NYX, the total number of X! Y connections

received by each Y-type cell.

We chose connections to be homogeneous and relatively dense, consistent with the local

architecture of cortex. Connection probabilities ranged from 20%–40%, consistent with
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experimentally measured values [53–55]. For our baseline network state, we then chose synap-

tic weights so the network is moderately inhibition-dominated (αEWIE< αIWII and αEWEE<

αIWEI); that is both E and I cells receive more inhibition than excitation) and shows noisy spik-

ing consistent with the classical asynchronous state. Each neuron receives a fixed number of

incoming connections, the identities of which are chosen randomly. (The specific cell ID num-

bers differ in the different simulations shown below.) For most of the networks we discuss

here N = 100 with the 80/20 ratio typical of cortex (i.e nE = 80, nI = 20). Each excitatory cell

receives NEE = 32 (40%) excitatory and NEI = 7 (35%) inhibitory connections; each inhibitory

cell receives NIE = 16 (20%) and NII = 8 (40%) inhibitory projections.

In heterogeneous networks, the threshold θi varied across the population. For both excit-

atory and inhibitory neurons, the thresholds θi were chosen from a log-normal distribution

between 0.7 and 1.4 (where the rest potential, Vr = 0). To be precise, log θi was chosen from a

(truncated) normal distribution with mean � s2
y
=2 and standard deviation sθ. With this choice,

θi has mean 1 and variance: es2y � 1. Thus we can view sθ as a measure of the level of threshold

heterogeneity.

Throughout this paper, we set sθ = 0.2, which results in a wide range of firing rates com-

pared to the homogeneous case. This was the only source of cell-to-cell heterogeneity; all other

parameters were identical across the population, conditioned on neuron type (values listed in

Table 2). In homogeneous networks, the threshold was the same across the population: θi = 1.

Monte Carlo simulations were performed using the stochastic forward- Euler method

(Euler-Maruyama), with a time step much smaller than any time scale in the system (Δt = 0.01

ms). Each network was simulated for one second of simulation time, after an equilibration

time. Then, a large number of realizations of this interval (nR = 105) were simulated. Spike

counts were retained in each 1 ms window (for a total of 1000 windows) within a realization.

With this large number of realizations/trials, the error bars on the resulting time-dependent

firing rates were small. Therefore we emphasize that the firing rate pattern is largely driven by

network connectivity; while firing is driven by random fluctuations in the background noise,

any cell-to-cell variability in the trial-averaged firing rates are not an artifact of the finite num-

ber of trials.

Linear response theory

In general, computing the response of even a single neuron to an input requires solving a com-

plicated, nonlinear stochastic process. However, it often happens that the presence of back-

ground noise linearizes the response of the neuron, so that we can describe this response as a

perturbation from a background state. This response is furthermore linear in the perturbing

input and thus referred to as linear response theory [56]. The approach can be generalized to

yield the dominant terms in the coupled network response, as well; we will use the theory to

predict the covariance matrix of activity.

Table 2. Other parameters used in network simulations.

Parameter Definition X = E X = I

τr,X Synaptic rise time 1 ms 2 ms

τd,X Synaptic decay time 5 ms 10 ms

τm Membrane time constant 20 ms 20 ms

τref Refractory time 2 ms 2 ms

αX Pulse amplitude 1 2

EX Synaptic reversal potential 6.5 -0.5

https://doi.org/10.1371/journal.pcbi.1005506.t002
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We first consider the case of a single cell: an LIF neuron responding to a mean zero current

�Xi(t)

tm
dni

dt
¼ � ðni � ELÞ þ Ei þ si

ffiffiffiffiffi
tm
p

xiðtÞ þ �XiðtÞ:

(otherwise, the mean of Xi can simply be absorbed into Ei).
For a fixed input �Xi(t), the output spike train yi(t) will be slightly different for each realiza-

tion of the noise ξi(t) and initial condition ni(0). Therefore we try to work with the time-

dependent firing rate, ni(t)� hyi(t)i, which is obtained by averaging over all realizations and

initial conditions. Linear response theory proposes the ansatz that the firing rate can be

described as a perturbation from a baseline rate proportional to the input �Xi:

niðtÞ ¼ ni;0 þ ðAi � �XiÞðtÞ; ð17Þ

ni,0 is the baseline rate (when X = 0) and Ai(t) is a susceptibility function that characterizes this

firing rate response up to order � [22, 29, 57].

We now consider the theory for networks; here cell i responds to the spike train of cell j,
yj(t), via the synaptic weight matrix W, after convolution with a synaptic filter Fj(t):

tm
dni

dt
¼ � ðni � ELÞ þ Ei þ si

ffiffiffiffiffi
tm
p

xiðtÞ þ
X

j

WijFj � yjðtÞ

In order to consider joint statistics, we need the trial-by-trial response of the cell. We first pro-

pose to approximate the response of each neuron as:

yiðtÞ � y0

i ðtÞ þ Ai �
X

j

ðJij � yjÞ

 !

ðtÞ; ð18Þ

that is, each input Xi has been replaced by the synaptic input, and Jij = WijFj(t) includes both

the i j synaptic weight Wij and synaptic kernel Fj (normalized to have area 1); Ai(t) is the

susceptibility function from Eq 17. In the frequency domain this becomes

~yiðoÞ ¼ ~y0

i þ
~AiðoÞ

X

j

~JijðoÞ~yjðoÞ

 !

ð19Þ

where ~yi ¼ F ½yi � ni� is the Fourier transform of the mean-shifted process (ni is the average fir-

ing rate of cell i) and ~f ¼ F ½f � for all other quantities. In matrix form, this yields a self-

consistent equation for ~y in terms of ~y0:

I � ~KðoÞ
� �

~y ¼ ~y0 ) ~y ¼ I � ~KðoÞ
� �� 1

~y0 ð20Þ

where ~KijðoÞ ¼
~AiðoÞ

~JijðoÞ is the interaction matrix, in the frequency domain. The cross-

spectrum is then computed

h~yðoÞ~y�ðoÞi ¼ I � ~KðoÞ
� �� 1

h~y0ðoÞ~y0�ðoÞi I � ~K�ðoÞ
� �� 1

ð21Þ

To implement this calculation, we first solve for a self-consistent set of firing rates: that is, ni is

the average firing rate of

tm
dni

dt
¼ � ðni � ELÞ þ ðEi þ E½fi�Þ þ si

ffiffiffiffiffi
tm
p

xiðtÞ ð22Þ

where E[fi] = ∑j Wijnj.
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We must then compute the power spectrum h~y0ðoÞ~y0�ðoÞi and the susceptibility Ai(ω),

which is the (first order in �) response in the firing rate riðtÞ ¼ r0
i þ �AiðoÞ exp ðıotÞ in

response to an input current perturbation X(t) = � exp(ıωt) (here ı is used for
ffiffiffiffiffiffiffi
� 1
p

, while i
denotes an index). Both can be expressed as the solution to (different) first-order boundary

value problems and solved via Richardson’s threshold integration method [47, 58].

In our simulations, we used conductance-based neurons; this requires modification, com-

pared with the simpler current-based models. We first approximate each conductance-based

neuron as an effective current-based neuron with reduced time constant, following the discus-

sion in [59]. First, separate each conductance into mean and fluctuating parts; e.g. gE,i! hgE,ii

+ (gE,i − hgE,ii). Then we identify an effective conductance g0,i and potential μi, and treat the

fluctuating part of the conductances as noise, i.e. gE,i − hgE,ii!σE,i ξE,i(t):

tm
dni

dt
¼ � g0;iðni � miÞ þ sE;ixE;iðtÞðni � EEÞ þ sI;ixI;iðtÞðni � E IÞ þ

ffiffiffiffiffiffiffiffiffi
s2
i tm

p
xiðtÞ ð23Þ

where

g0;i ¼ 1þ hgE;ii þ hgI;ii ð24Þ

mi ¼
EL þ Ei þ hgE;iiEE þ hgI;iiE I

g0;i
ð25Þ

s2

E;i ¼ Var gE;iðtÞ
� �

¼ E gE;iðtÞ � hgE;ii
� �2
h i

ð26Þ

s2

I;i ¼ Var gI;iðtÞ
� �

¼ E gI;iðtÞ � hgI;ii
� �2
h i

ð27Þ

We next simplify the noise terms by writing

ni � EE ¼ ni � mi þ mi � EE ð28Þ

and assume that the fluctuating part of the voltage, ni − μi, is mean-zero and uncorrelated with

the noise terms ξE,i(t) [59]. That allows us to define an effective equation

teff;i
dni

dt
¼ � ðni � miÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s2
eff;iteff;i

q

Zeff;iðtÞ ð29Þ

where

teff;i ¼
tm

g0;i
ð30Þ

s2

eff;i ¼
s2
E;iðmi � EEÞ

2
þ s2

I;iðmi � E IÞ
2
þ s2

i tm

g0;itm
ð31Þ

and the fluctuating voltage, ni(t) − μi, now makes no contribution to the effective noise

variance.

Finally, we consider how to model the conductance mean and variance, e.g. hgE,ii and s2
E;i.

In our simulations, we used second order α-functions: each conductance gX,i is modeled by
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two equations that take the form

tr;X
dgð1ÞX;i

dt
¼ � gð1ÞX;i þ tr;X âX;i

X

k

dðt � tkÞ ð32Þ

td;X

dgX;i
dt
¼ � gX;i þ gð1ÞX;i ð33Þ

where X = E, I and the summation is over all type-X spikes incoming to cell i. (For notation

purposes, âX;i includes all factors that contribute to the pulse size in Eq 16, including synapse

strength and pulse amplitude.) The time constants τr,X, τd,X may depend on synapse type; the

spike jumps âX;i may depend on synapse type and target cell identity. We assume that each

spike train is Poisson, with a constant firing rate: i.e. each spike train is modeled as a stochastic

process S(t) with

hSðtÞi ¼ n

hSðtÞSðt þ tÞi � n2 ¼ ndðtÞ

Then a straightforward but lengthy calculation shows that

hgX;iðtÞi ¼ âX;inX;itr;X ð34Þ

Var gX;iðtÞ
� �

¼
1

2
â2

X;inX;itr;X

� �
tr;X

tr;X þ td;X

 !

ð35Þ

where nX,i is the total rate of type-X spikes incoming to cell i.
We now describe how these considerations modify the linear response calculation. First, for

the self-consistent firing rate calculation, Eq 22 is replaced by an equation with a modified

time constant, conductance, and noise (Eq 29).

We next compute the susceptibility in response to parameters associated with the conduc-

tance, i.e. hgE,ii and s2
E;i. This differs from the current-based case in two ways: first, there is volt-

age-dependence in the diffusion terms, which results in a different Fokker-Planck equation

(and thus a different boundary value problem to be solved for the power spectrum

h~y0ðoÞ~y0�ðoÞi). Second, modulating the rate of an incoming spike train will impact both the

mean and variance of the input to the effective equation, Eq 23 (via μi and σX,i). Furthermore,

this impact may differ for excitatory and inhibitory neurons, giving us a total of four parame-

ters that can be varied in the effective equation. However, neither consideration presents any

essential difficulty [47].

Therefore we apply Richardson’s threshold integration method directly to Eq 23:

tm
dni

dt
¼ � g0;iðni � miÞ þ sE;ixE;iðtÞðni � EEÞ þ sI;ixI;iðtÞðni � E IÞ þ

ffiffiffiffiffiffiffiffiffi
s2
i tm

p
xiðtÞ ð36Þ

When we compute susceptibilities, the parameter to be varied is either a mean conductance—

hgE,i i ! hgE,ii0 + hgE,ii1 exp(ıωt) or hgI,ii ! hgI,ii0 + hgI,ii1 exp(ıωt)—or a variance—s2
E;i !

ðs2
E;iÞ0 þ ðs

2
E;iÞ1 exp ðıotÞ or s2

I;i ! ðs
2
I;iÞ0 þ ðs

2
I;iÞ1 exp ðıotÞ. Thus we have a total of four sus-

ceptibility functions ~AhgEi;iðoÞ, ~AhgI i;iðoÞ, ~As2
E ;i
ðoÞ, and ~As2

I ;i
ðoÞ. Since the Fokker-Planck equa-

tion to be solved is linear, we can compute both susceptibilities separately and then add their
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effects. We now have the interaction matrix:

~KijðoÞ ¼

~AhgEi;iðoÞ~J ijðoÞ þ
~As2

E ;i
ðoÞ~LijðoÞ; j excitatory

~AhgI i;iðoÞ~JijðoÞ þ
~As2

I ;i
ðoÞ~LijðoÞ; j inhibitory

8
><

>:
ð37Þ

where ~LðoÞ plays a similar role as ~J, but for the effect of incoming spikes on the variance of

conductance. Its relationship to ~J (either in the frequency or time domain) is given by the

same simple scaling shown in Eq 35: i.e., for j excitatory,

~LijðoÞ ¼
~J ijðoÞ �

âE;i

2

� �

�
tr;E

tr;E þ td;E

 !

ð38Þ

where the first factor comes from the effective spike amplitude âE;i (and is the scale factor pro-

posed in [47], Eq (64)), and the second arises from using second-order (vs. first-order) alpha-

functions.

We use a modified version of the implementation given by [29] for Richardson’s threshold

integration algorithm [47, 58] to compute rate ni, power h~y0
i ðoÞ~y

0�
i ðoÞi, and the various suscep-

tibilities (~AhgEi;iðoÞ, ~AhgI i;iðoÞ, ~As2
E ;i
ðoÞ, and ~As2

I ;i
ðoÞ) for an LIF neuron. We validated our code

using exact formulas known for the LIF [60], and qualitative results from the literature [61].

Computing statistics from linear response theory

Linear response theory yields the cross spectrum of the spike train, h~yiðoÞ~y�j ðoÞi, for each dis-

tinct pair of neurons i and j (see Eq 21). To recover a representative set of statistics, we rely on

several standard formulae relating this function to other statistical quantities.

The cross correlation function, Cij(τ), measures the similarity between two processes at

time lag τ, while the cross spectrum measures the similarity between two processes at fre-

quency ω:

CijðtÞ � hðyiðtÞ � niÞðyjðt þ tÞ � njÞi ð39Þ

~CijðoÞ � h~yiðoÞ~yjðoÞi ð40Þ

The Weiner-Khinchin theorem [56] implies that fCij;
~Cijg are a Fourier transform pair: that is,

~CijðoÞ ¼

Z 1

� 1

CijðtÞe
� 2pıot dt ð41Þ

In principle, the crosscorrelation C(t) and cross-spectrum ~CðoÞmatrices are functions on

the real line, reflecting the fact that correlation can be measured at different time scales. In par-

ticular, for a stationary point process the covariance of spike counts over a window of length T,

ni and nj, can be related to the crosscorrelation function Cij by the following formula [4]:

CovTðni; njÞ ¼

Z T

� T
CijðtÞ T� j t jð Þ dt ð42Þ

The variance of spike counts over a time window of length T, ni, is likewise given by integrat-

ing the autocorrelation function Cii:

VarTðniÞ ¼

Z T

� T
CiiðtÞ T� j t jð Þ dt ð43Þ
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It can be helpful to normalize by the time window, i.e.

CovTðni; njÞ

T
¼

R T
� T CijðtÞ 1 �

j t j

T

� �

dt; ð44Þ

we can now see that for an integrable cross correlation function (and bearing in mind that the

cross-spectrum is the Fourier transform of the cross correlation), that

lim
T!1

CovTðni; njÞ

T
¼

R1
� 1

CijðtÞdt ¼ ~Cijð0Þ ð45Þ

while

lim
T!0

CovTðni; njÞ

T2
¼

1

T

Z T

� T
CijðtÞ 1 �

j t j

T

� �

dt � Cijð0Þ ð46Þ

Thus, we can use ~Cijð0Þ and Cij(0) as measures of long and short time correlations respectively.

Finally, the Pearson’s correlation coefficient of the spike count defined as:

rT;ij ¼
CovTðni; njÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarTðniÞVarTðnjÞ

q ð47Þ

is a common normalized measure of noise correlation, with ρ 2 [−1, 1]. While CovT and VarT

grow linearly with T (for a Poisson process, for example), ρT,ij in general will not (although it

may increase with T). In general, ρT,ij depends on the time window T; however for readability

we will often suppress the T-dependence in the notation (and use ρij instead).

Quantifying the role of motifs in networks

We next explain how we can use the results of linear response theory to give insight into the

role of different paths in the network. We begin with our predicted cross-spectrum (Eqs 21

and 40) and apply a standard series expansion for the matrix inverse:

~CðoÞ ¼ I � ~KðoÞ
� �� 1 ~C0ðoÞ I � ~K�ðoÞ

� �� 1
ð48Þ

¼
X1

k¼0

~KðoÞ
� �k

" #

~C0ðoÞ
X1

l¼0

~KðoÞ
� �l

" #

ð49Þ

¼
X1

k¼0

X1

l¼0

~KðoÞ
� �k ~C0ðoÞ ~KðoÞ

� �l
ð50Þ

where ~C0ðoÞ is a diagonal matrix containing the power spectra of the unperturbed processes;

i.e. ~C0
ii � h~yiðoÞ~yiðoÞi. This double sum will converge as long as the spectral radius of ~K is less

than 1 [29].

By truncating this double sum to contain terms such that k + l� n, we define the nth

approximation to the cross-spectrum:

~CðoÞ � ~CnðoÞ ð51Þ

¼ ~C0ðoÞ þ
Xn

k¼1

Xk

l¼0

~KðoÞ
� �k� l ~C0ðoÞ ~K�ðoÞ

� �l
" #

ð52Þ
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Each distinct term in the inner sum can be attributed to a particular undirected path of length

k. Terms of the form ~Kk ~C0 and ~C0ð~K�Þk account for unidirectional paths from j! i and i! j
respectively; the term ð~KðoÞÞk� l ~C0ðoÞð~K�ðoÞÞl captures the contribution from a cell that has a

length l path onto cell j and a length k − l path onto cell i. Thus, we can use Eq 52 to decompose

the correlation into contributions from different motifs ([28], see also [31, 62]).

We can also consider the contribution from all length-n paths; that is,

~Pn ¼ ~CnðoÞ � ~Cn� 1ðoÞ ¼
Xn

l¼0

~KðoÞ
� �n� l ~C0ðoÞ ~K�ðoÞ

� �l

If the sum in Eq 50 converges, we should expect the magnitude of contributions to decrease as

n increases.

We will also show the normalized contribution from length-n paths, which we define as fol-

lows: let Λ(ω) be the diagonal matrix with ΛiiðoÞ ¼
~CiiðoÞ. Then we define the matrix of con-

tributions from length-n paths ~Rn as follows:

~RnðoÞ ¼ Λ� 1=2
ðoÞ~PnðoÞΛ� 1=2

ðoÞ ð53Þ

Equivalently, ~Rn
ijðoÞ ¼

~Pn
ijðoÞ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~CiiðoÞ

~CjjðoÞ

q

. This effectively normalizes the cross correla-

tion by the autocorrelation; in particular, we can use this to decompose the correlation coeffi-

cient (Eq 47) for long time windows, because limn!1

Pn
k¼0

~Rkð0Þ ¼ limT!1 rT;ij.

In general, we will show long-timescale correlation (e.g. ~Cð0Þ or ~Rnð0Þ) (Eq 45); results

were qualitatively similar for other timescales.

Quantifying correlation susceptibility

We next consider how to quantify the (linear) susceptibility of correlation to a change in

parameter. Returning to Eq 17, but written in terms of the single-cell response:

yiðtÞ ¼ yi;0 þ ðAm;i � XmÞðtÞ ) ð54Þ

~yiðoÞ ¼ ~yi;0ðoÞ þ
~Am;iðoÞ

~XmðoÞ ð55Þ

Here, Xμ(t) is a (possibly) time-dependent change in a parameter, such as input current or

mean inhibitory conductance; yi,0 is the baseline spike train (when X = 0). Aμ,i(t) is a suscepti-
bility function that characterizes the cell’s response (to the parameter variation) as long as Xμ(t)
is small [22, 29, 57]. Following [22], the cross-spectrum of y can now be approximated as:

~CijðoÞ � h~y
�

i ~yji � h~y
�

i;0~yj;0i þ h
~A�

m;i
~X �

m
~yj;0i þ h

~Am;j
~Xm~y�i;0i þ ~A�

m;i
~Am;jh

~X �
m
~Xmi ð56Þ

¼ ~A�
m;iðoÞ

~Am;jðoÞ
~CmðoÞ ð57Þ

where ~CmðoÞ is the spectrum of the parameter variation. The susceptibility has an appealing

interpretation in the limit ω! 0, as the derivative of the classical f-I curve:

lim
o!0

~Am;iðoÞ ¼
dni

dm
ð58Þ

where ni is the steady-state firing rate of cell i, assuming we can measure it for specific values of
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the parameter μ.

lim
T!1

rT;ij ¼ lim
T!1

Cov Tðni; njÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var TðniÞVar TðnjÞ

q ¼
~Cijð0Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~Ciið0Þ

~Cjjð0Þ

q ð59Þ

�
~Am;ið0Þ

~Am;jð0Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~Ciið0Þ

~Cjjð0Þ

q ~Cmð0Þ ð60Þ

This motivates the definition of a correlation susceptibility, which approximates the change in

pairwise correlation induced by a parameter change experienced by both cells i and j:

Sm
ij ¼

~Am;ið0Þ
~Am;jð0Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~Ciið0Þ

~Cjjð0Þ

q ð61Þ

If this increases with firing rate—that is, if
dSm

ij
dn
> 0—then correlations will also increase with fir-

ing rate.

We can further analyze this quantity by making an assumption for asynchronous spiking,

that spike count variance is equal to spike count mean; i.e. VarTðniÞ ¼ Tni )
~Cii ¼ ni. Then

Sm
ij �

1
ffiffiffiffiffiffiffi
ninj
p ~Am;ið0Þ

~Am;jð0Þ ¼
~Am;ið0Þ
ffiffiffiffi
ni
p

~Am;jð0Þ
ffiffiffiffi
nj
p ð62Þ

which motivates the definition of the single-cell quantity

ShgI ii �
~AhgI i;ið0Þ

ffiffiffiffi
ni
p

In general, the firing rate depends on all single cell parameters included in Eqn.; i.e. there exists

some function f such that

ni ¼ f hgI;ii; sI;i; hgE;ii; sE;i; si; yi

� �
ð63Þ

~AhgI i;ið0Þ ¼
@f
@x1

hgI;ii; sI;i; hgE;ii; sE;i; si; yi

� �
ð64Þ

(recall that the susceptibility for ω = 0 is the derivative of the firing rate with respect to the

appropriate parameter (here, mean inhibitory conductance hgIi).

Low-rank approximation to the correlation matrix

We consider the correlation matrix of spike counts, as measured from Monte Carlo simula-

tions; while these are in principle related to the cross-correlation functions C(t) defined in

Methods: Computing statistics from linear response theory we will use CT to denote the

matrix of correlation coefficients measured for time window T; i.e.

CTð Þij ¼ rT;ij ð65Þ

Furthermore, we will restrict to the E-E correlations; i.e. CT will be a nE × nE matrix, with ones

on the diagonal (as ρT,ii = 1).

When we examined the singular values of the E-E correlation matrices obtained from

Monte Carlo simulations, we noticed a consistent trend: there was usually one large cluster
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with one positive outlier. This motivates the following simple idea: by subtracting off a multi-

ple of the identity matrix, λI, we shift the cluster towards zero; consequently CT − λI is close to

a rank-1 matrix. We then propose to use the sum of the two as an approximation to CT:

CT � lIþ ðs1 � lÞu1uT
1
: ð66Þ

We seek the value λ which maximizes the fraction of the Frobenius norm explained by the

first singular vector: i.e. in terms of the singular values,

l ¼ max
l

~s2
1

Xr

j¼1

~s2

j
ð67Þ

¼ max
l

ðs1 � lÞ
2

Xr

j¼1

ðsj � lÞ
2 ð68Þ

Since CT is symmetric semi-positive definite, the singular values σj are equal to the eigenvalues

λj: here σ1� σ2� � � � � σr� 0 and r is the rank of CT. This has an exact solution:

l ¼ l1 �

X

j>1

ðl1 � ljÞ
2

X

j>1

l1 � lj

ð69Þ

Because we have subtracted a multiple of the identity matrix, none of the singular vectors will

have changed. We then have

CT � lIþ ðCT � lIÞ ð70Þ

¼ lIþ
Xr

i¼1

ðsi � lÞuiu
T
i ð71Þ

By truncating this sum, we approximate C with a shifted low-rank matrix:

CT � CdiagþR1

T � lIþ ðs1 � lÞu1uT
1

ð72Þ

This procedure is similar to factor analysis, in which one seeks to explain a data vector as the

sum of a random vector (u) and the linear combination of some number of latent factors (z)

[48]:

x ¼ Lzþ u;

the entries of x would then have the correlation matrix C + ΛΛT, where C is a diagonal matrix

containing the variances of u.
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Rényi networks.

(TIF)

S1 Table. Statistics from heterogeneous vs. homogeneous networks: Asynchronous regime.

(PDF)

S2 Table. Statistics in recurrent networks: Monte Carlo vs. linear response theory, asyn-

chronous regime.

(PDF)

S3 Table. Statistics from heterogeneous vs. homogeneous networks: Strong asynchronous

regime.

(PDF)

S4 Table. Statistics in recurrent networks: Monte Carlo vs. linear response theory, strong

asynchronous regime.

(PDF)

Acknowledgments
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