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Abstract

Elementary flux modes (EFMs) emerged as a formal concept to describe metabolic path-

ways and have become an established tool for constraint-based modeling and metabolic

network analysis. EFMs are characteristic (support-minimal) vectors of the flux cone that

contains all feasible steady-state flux vectors of a given metabolic network. EFMs account

for (homogeneous) linear constraints arising from reaction irreversibilities and the assump-

tion of steady state; however, other (inhomogeneous) linear constraints, such as minimal

and maximal reaction rates frequently used by other constraint-based techniques (such as

flux balance analysis [FBA]), cannot be directly integrated. These additional constraints fur-

ther restrict the space of feasible flux vectors and turn the flux cone into a general flux poly-

hedron in which the concept of EFMs is not directly applicable anymore. For this reason,

there has been a conceptual gap between EFM-based (pathway) analysis methods and lin-

ear optimization (FBA) techniques, as they operate on different geometric objects. One

approach to overcome these limitations was proposed ten years ago and is based on the

concept of elementary flux vectors (EFVs). Only recently has the community started to rec-

ognize the potential of EFVs for metabolic network analysis. In fact, EFVs exactly represent

the conceptual development required to generalize the idea of EFMs from flux cones to flux

polyhedra. This work aims to present a concise theoretical and practical introduction to

EFVs that is accessible to a broad audience. We highlight the close relationship between

EFMs and EFVs and demonstrate that almost all applications of EFMs (in flux cones) are

possible for EFVs (in flux polyhedra) as well. In fact, certain properties can only be studied

with EFVs. Thus, we conclude that EFVs provide a powerful and unifying framework for con-

straint-based modeling of metabolic networks.
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Introduction

Over the last 25 years, stoichiometric and constraint-based modeling (CBM) has emerged as a

fundamental computational framework to analyze properties and capabilities of metabolic net-

works or to identify suitable targets for rational metabolic engineering [1,2,3,4,5,6]. Numerous

CBM-based studies of realistic (up to genome-scale) metabolic networks demonstrated the

broad applicability and acceptance of the methodology. The evolution of CBM techniques was

driven by the goal to find appropriate mathematical formalisms to describe and analyze meta-

bolic networks, in particular, in the case of insufficient knowledge of kinetic data. Due to their

nature, CBM-related formalisms and methods are based on techniques from certain mathe-

matical disciplines, including linear algebra, linear programming, convex analysis, and compu-

tational geometry. In fact, in some cases, CBM enforced the development of new theoretical

concepts (if a suitable mathematical framework was not yet available) and of new algorithmic

approaches to speedup computations in large metabolic network models. Elementary flux

modes (EFMs), introduced by Schuster and Hilgetag in 1994 [7], represent one such example.

EFMs arose as a conceptual development to describe metabolic pathways and to characterize

the space of feasible steady-state flux distributions in metabolic networks. Various applications

of EFMs proved the value of this approach [3,8,9,10]. Moreover, over the last 15 years, the sci-

entific community achieved remarkable algorithmic developments, which speedup the com-

putation of EFMs by several orders of magnitude [11,12,13,14,15,16], now outperforming

standard implementations from computational geometry.

EFMs explicitly account for steady state and known reaction irreversibilities. However,

other linear constraints such as minimal and maximal reaction rates, which are frequently

used by many CBM techniques, cannot be directly integrated into EFM analysis. These addi-

tional constraints further restrict the space of steady-state flux distributions in the network

and change it from a polyhedral cone to a general polyhedron. Differences in the shape and

nature of these spaces hampered a clear correspondence between EFM-based pathway analysis

methods and optimization-based methods such as flux balance analysis (FBA) [17]. Thus,

there was a need to generalize the concept of EFMs to also characterize polyhedral spaces aris-

ing from arbitrary linear constraints on the network fluxes. It was only in 2007, 13 years after

the first paper on EFMs, that Urbanczik [18] presented such an approach by introducing the

concept of elementary flux vectors (EFVs). It took several more years until the community

started to recognize the potential of EFVs, in particular, that they represent exactly the concep-

tual development required to generalize the idea of EFMs from flux cones to flux polyhedra. A

recent publication demonstrated how EFVs can be used in a realistic application (for metabolic

engineering purposes) [19], whereas another paper discussed theoretical properties of elemen-

tary vectors in the context of polyhedral geometry [20].

This work aims (i) to provide a motivation and profound introduction to EFVs; (ii) to

explain important theoretical properties of EFVs; (iii) to discuss similarities and differences

between EFMs and EFVs; and (iv) to highlight applications of EFVs that were not possible

with existing techniques.

Flux cones

In a minimal description, a metabolic network is given by (i) the stoichiometric matrix

N 2 Rm×n containing the net stoichiometric coefficients ofm internal metabolites in n reac-

tions and (ii) irreversibility constraints for certain reactions. The steady—state assumption

(concentrations of internal metabolites do not change) leads to the fundamental equation

Nr ¼ 0; ð1Þ
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where r is the n-dimensional vector of net reaction rates, also called rate vector, flux vector, or

flux distribution. Only if Eq 1 is fulfilled, consumption and production of each intracellular

metabolite over all reactions in the network will be balanced as required for steady state. The

set of flux vectors r satisfying Eq 1 is the nullspace of N, having dimension n − rank(N). Irre-

versible reactions, contained in the set Irr, have sign restrictions on their rates which can be

expressed by the inequalities

ri � 0 for i 2 Irr: ð2Þ

The right-hand sides of Eqs 1 and 2 contain only zeros and are therefore homogeneous con-
straints on the flux vectors r. The set FC of flux vectors r satisfying Eqs 1 and 2

FC ¼ fr 2 Rn j Nr ¼ 0; ri � 0 for i 2 Irrg; ð3Þ

is a subset of the nullspace of N. More precisely, it is the intersection of the nullspace with the

nonnegative halfspaces corresponding to the irreversible reactions. In geometrical terms, this

set is a convex polyhedral cone, which, in the context of metabolic network analysis, is called

the flux cone (denoted here by FC).

Example: To illustrate the theoretical concepts, we consider a running example, namely

the minimal network shown in Fig 1. Although very simple, a similar network was recently

used to model the Warburg and the Crabtree effect [21,22]. It consists of one internal

metabolite (A), three external metabolites (S, P, Q), and three reactions, where reactions R1

and R3 are assumed to be irreversible. The corresponding stoichiometric matrix amounts to

N = (1, −1, −1), and the index set of irreversible reactions is given by Irr = {1,3}. Fig 2 shows

the nullspace {r 2 R3 | Nr = 0}, having dimension n − rank(N) = 3 − 1 = 2. Thus, any two

linearly independent vectors fulfilling Eq 1 form a basis of the nullspace; for example, we

may choose the basis z1 = (1,2,−1)T and z2 = (0,−1,1)T. Note that these vectors are a valid

basis of the nullspace but z1 violates the sign restrictions of Eq 2. Fig 3 shows the flux cone

FC = {r 2 R3 | Nr = 0 and r1,r3� 0} of the example network. As can be seen, the flux cone is,

by definition, a subset of the nullspace, and the vector z1 = (1,2,−1)T is not contained in the

flux cone as it violates the sign restriction for reaction R3.

As mentioned above, the flux cone is a special polyhedral cone. A general polyhedral cone C
can be represented as

C ¼ fx 2 Rn j Ax � 0g ð4Þ

with a suitable matrix A 2 Rq×n and is thus an intersection of q halfspaces passing through the

Fig 1. A simple example network.

https://doi.org/10.1371/journal.pcbi.1005409.g001
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origin. Flux cones are special as they are contained in a lower-dimensional subspace (the null-

space) and involve only equality and nonnegativity constraints (see also [20]). Still, the flux

cone (Eq 3) can be written in the general form (Eq 4) by setting

A ¼

N

� N

IIrr

0

B
@

1

C
A;

where IIrr 2R|Irr|×n is a matrix representing the nonnegativity constraints (and |Irr| is the num-

ber of irreversible reactions). In the example, we have

A ¼

1 � 1 � 1

� 1 1 1

1 0 0

0 0 1

0

B
B
B
B
@

1

C
C
C
C
A
:

As a key property of cones, for every nonzero element x of a polyhedral cone C, the whole

ray {βx | β� 0} is contained in the cone. A cone may have a nontrivial lineality space contain-

ing all vectors x 2 C for which also −x 2 C. In other words, the lineality space contains all lines

of the cone. Note that the lineality space of a cone C, as given by Eq 4, equals the nullspace of

A, that is, {x 2 Rn | Ax = 0}. A cone is pointed if it does not contain a line, that is, if its lineality

space is trivial (contains the zero vector only). The lineality space has important consequences

for the geometry and the generators (see below) of a cone. If a cone is pointed, then the zero

vector is the only vertex (extreme point) of the cone, whereas a cone with nontrivial lineality

space does not have a vertex at all. A vertex cannot be written as a convex linear combination

of other vectors (see below).

The lineality space contains reversible steady-state flux vectors. In general, chemical reac-

tions are reversible, and the lineality space of a network can be nontrivial. In this case, there

are flux vectors which use only reversible reactions (and have zero entries for irreversible reac-

tions). In metabolic networks under typical biological conditions, many reactions are practi-

cally irreversible and reversible flux vectors occur only rarely in metabolic network models (in

Fig 2. The nullspace of the example network. The red lines indicate that the nullspace is unbounded (in all

directions). The blue arrows are basis vectors, which are also depicted as flux distributions.

https://doi.org/10.1371/journal.pcbi.1005409.g002
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fact, opposite metabolic pathways such as glycolysis and gluconeogenesis often use slightly dif-

ferent routes for thermodynamic reasons). In other words, metabolic network models often

give rise to pointed flux cones.

Example: In our example in Fig 1, there is no reversible flux vector (the nullspace of A is

trivial) and hence the flux cone is pointed (Fig 3).

As an alternative to the so-called implicit representation (Eq 4), every polyhedral cone can

be written explicitly as a sum of finitely many generators. More precisely, as a conical (nonneg-

ative linear) combination of vectors yj 2 Rn (j 2 J), which are not in the lineality space, plus a

linear combination of vectors zk 2 Rn (k 2 K) of the lineality space, where J and K are finite

index sets [23,24,25]:

C ¼ fSj2J bjy
j þ Sk2K gkz

kjbj � 0; gk 2 Rg: ð5Þ

However, the set of generators yj and zk is not unique. In fact, not even a minimal set of gen-

erators (with smallest number of generators) is unique. Only if the cone is pointed (the lineal-

ity space is trivial), there exists a unique minimal set of generators. In this case, generators zk of

the lineality space are not needed and the generators yj are unique (up to positive scalar multi-

plication); they are a set of extreme vectors of the pointed cone, each representing an extreme

ray of the cone. Formally, a nonzero vector x 2 C is extreme if it cannot be written as a sum

x = x1 + x2 of linearly independent vectors x1,x2 2 C. The corresponding extreme ray is given

by {βx | β� 0}. Geometrically, extreme rays are the “edges” of a pointed cone.

For nonpointed cones (cones with nontrivial lineality space), the situation is more involved.

In particular, extreme rays do not exist. A (nonunique) minimal set of generators consists of

Fig 3. The flux cone of the example network. The flux cone (dark grey) is obtained from the nullspace in Fig

2 by removing the halfspaces corresponding to the backward directions of the irreversible reactions R1 and

R3 (removed part shown in light grey). The red dotted lines indicate the unbounded directions of the cone. The

cone is bounded by its extreme rays (bold black dotted lines), which are represented by the extreme vectors

y1 and y2(full blue arrows). Both extreme vectors are also elementary flux modes, and a third elementary flux

mode exists in the interior of the cone (dashed blue arrow). The extreme vectors and elementary flux modes,

respectively, are also depicted as flux distributions. Note that the flux cone is unbounded, however, it appears

as a rectangle because it is cropped by the bounding box.

https://doi.org/10.1371/journal.pcbi.1005409.g003
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suitable vectors yj and basis vectors zk of the lineality space. (Regarding the vectors yj, one may

choose, for example, the extreme vectors of a pointed cone that is obtained by intersecting the

original cone with the [orthogonal] complement of its lineality space [23].)

Example: In our running example (Fig 1), the flux cone is pointed and generated by the

two extreme vectors y1 = (1,1,0)T and y2 = (0,−1,1)T, each representing an extreme ray (see

Fig 3). If we set reaction R3 reversible, then the flux cone is not pointed anymore. The lineality

space would then involve the reversible reactions R2 and R3 and could be described by the sin-

gle basis vector (0,−1,1)T. For the generators in Eq 5, we could then choose y1 = (2,1,1)T (from

the orthogonal complement of the lineality space) and z1 = (0,−1,1)T, a basis vector of the line-

ality space. Note that we could replace y1, for instance, by y1 + z1 = (2,0,2)T, indicating the non-

uniqueness of the minimal set of generators.

In metabolic pathway analysis, one is often interested in minimal pathways and cycles (with

as few reactions as possible operating at steady state) to characterize the flux cone. In mathe-

matical terms, minimal pathways are support-minimal vectors of the flux cone. Formally, a

nonzero flux vector r 2 FC is support minimal if there is no nonzero vector r0 2 FC such that

supp(r0)� supp(r), where supp(r) = {i | ri 6¼ 0} and� indicates a proper subset. The question

arises whether extreme vectors are such minimal pathways. In fact, in pointed flux cones FC,

the extreme vectors (forming the minimal set of generators) are indeed always support mini-

mal (which is not true for general pointed cones C). However, even in pointed flux cones, the

set of extreme vectors need not cover all support-minimal flux vectors.

Example: In our example network, S!P, S!Q, and P!Q are the minimal pathways repre-

sented by the support-minimal vectors e1 = (1,1,0)T, e2 = (0,−1,1)T, and e3 = (1,0,1)T, respec-

tively (Fig 3). In fact, e1 and e2 coincide with the extreme vectors y1 and y2, whereas e3 = e1 + e2

is not an extreme vector, because it can be written as a sum of e1 and e2. Hence, the pathway

S!Q would clearly be missed when restricting the analysis to the minimal set of generators

given by the extreme vectors.

We note that extreme vectors of flux cones have been proposed as alternative concepts for

metabolic pathway analysis, cf. extreme currents and extreme pathways [6,26]. For a compari-

son of the different concepts, see [27,28,29,30].

Elementary (flux) modes

As stated above, the minimal set of generators need not be unique and need not contain all

support-minimal vectors of the flux cone. These facts were the main motivation to introduce

the concept of elementary fluxmodes (EFMs): EFMs are defined as the nonzero, support-mini-

mal vectors of the flux cone. That is, a nonzero vector e 2 FC is an EFM, if there is no nonzero

vector r 2 FC such that

suppðrÞ � suppðeÞ:

Clearly, if e 2 FC is an EFM, then all nonzero elements of the ray {βe | β� 0} are EFMs

(having the same support as e). Typically, one chooses one representative EFM on each ray.

The set of representative EFMs is thus unique up to positive scalar multiplication. In addition

to being support minimal, EFMs are often also described as nondecomposable [7] or irreducible
vectors of the flux cone.

An EFM is called irreversible if its support contains at least one irreversible reaction (and

hence can operate in only one direction). Otherwise, it is called reversible (and can run in both

directions). Clearly, reversible EFMs exist if, and only if, the lineality space is nontrivial. In our

example network, the pointed flux cone contains three irreversible EFMs e1, e2, and e3, each

representing one minimal pathway connecting external metabolites (Fig 3).
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The defining property of EFMs (support minimality) implies three important theoretical

properties which turned out to be extremely useful for metabolic network analysis:

• (T1) The set of EFMs generates the flux cone (i.e., EFMs form a set of generators): every ele-

ment of the flux cone FC can be written as a conical (nonnegative) linear combination of

EFMs. Formally, let ej (j 2 J) be a set of representative EFMs. Then,

FC ¼ fSj2J bje
j j bj � 0g: ð6Þ

In particular, the set of EFMs contains the extreme vectors if the cone is pointed or a basis

of the lineality space if the latter is nontrivial. However, the set of EFMs is usually not a mini-

mal set of generators, cf. Fig 3. Importantly, if a (representative) EFM e is reversible, then also

−e is an EFM. In the sum in Eq 6, the term βe + β0(−e) with β, β0 � 0 can then be replaced by γe
with γ 2 R, giving rise to a sum as in Eq 5.

• (T2) After deleting a set of reactions, the set of EFMs of the resulting subnetwork needs not

be recalculated. It can be directly derived from the EFMs of the full network, namely as the

subset of EFMs not involving the deleted reactions. In other words, the set of EFMs of the

full network contains the sets of EFMs of all possible subnetworks.

Example: In our example (Fig 3), if we delete reaction R2, then the EFMs e1 and e2 get elim-

inated, while e3 is the only remaining support-minimal vector. The resulting flux cone equals

the ray determined by e3. Note that a similar procedure is not possible with the shown extreme

vectors y1 and y2 as both would get eliminated.

To formulate the third property, we introduce the concept of conformality. Let r1,r2 2 FC be

two flux vectors. The sum r = r1 + r2 is called conformal if ri = 0 implies r1
i ¼ r

2
i ¼ 0, ri> 0

implies r1
i ; r

2
i � 0, and ri< 0 implies r1

i ; r
2
i � 0 for all i 2 {1, . . ., n}. In other words, a confor-

mal sum does not involve cancellations.
Example: In our example, e3 = e1 + e2 is not a conformal sum, because e1

2
¼ 1 and e2

2
¼ � 1.

• (T3) Every element of the flux cone can be written as a sum of EFMs without cancellations.
In fact, the set of EFMs is the unique minimal set of conformal generators of the flux cone

[20].

As it turns out, EFMs can be defined as conformally nondecomposable vectors of the flux

cone. In other words, an EFM cannot be written as a sum of other flux vectors of the flux cone

without cancellations [20]. This definition immediately implies (T3) and further the other

properties (T1) and (T2) stated above. As we will see later, the definition of EFMs as confor-

mally non-decomposable vectors (but not the definition as support-minimal vectors) can be

extended from flux cones to general polyhedral cones.

By definition, a flux vector is a vector of net reaction rates. Then, only a conformal decom-

position of a flux vector (a decomposition without cancellations) is biochemically meaningful,

because a chemical reaction cannot have a net rate in different directions in the contributing

EFMs. Thus, conformality accounts for a fundamental constraint arising from the second law

of thermodynamics, which states that a reaction can only carry flux in the direction of negative

Gibbs free energy of reaction.

Applications of EFMs

EFMs have become a standard tool for analyzing medium-scale metabolic networks (typically

models of the central metabolism) in which their computation is feasible. Here, we list a selec-

tion of applications (see also [3,8,9]):
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• (A1) Due to their support minimality, EFMs correspond to minimal subnetworks that per-

form a certain function at steady state and have therefore been used to identify minimal con-

version routes (pathways) or cycles in metabolic networks.

• (A2) EFMs can be used to predict network properties such as gene/reaction essentialities,

structural couplings, blocked reactions, etc.

• (A3) Using EFMs, all yield-optimal routes for product or biomass synthesis can be identified.

Moreover, EFMs have been used to investigate metabolic trade-offs [31] and to characterize

optimal solutions of enzyme allocation problems in metabolic networks with kinetic infor-

mation [21].

• (A4) EFMs are frequently used to identify intervention strategies for a targeted modification

(engineering) of metabolic networks [32,33,34], including techniques,such as minimal meta-

bolic functionality [35], FluxDesign [36], or minimal cut sets [37,38]. Most of these methods

make heavy use of EFM property (T2), which facilitates a directed search for suitable inter-

ventions by blocking undesired while preserving desired phenotypes.

• (A5) Several approaches have been presented in the literature to decompose a flux distribu-

tion into metabolic pathways (that is, EFMs) to identify the contribution of certain modules

to a given metabolic phenotype (e.g., [39,40]).

EFMs have also been used for a network-based analysis of experimental data including gene

expression data [41,42] or metabolome data to identify thermodynamic bottlenecks

[43,44,45,46].

Some of the network properties listed above (including essentialities, coupled reactions,

and maximum yields) can also be studied with dedicated optimization-based approaches (e.g.,

FBA or flux variability analysis [5]). However, when an explicit enumeration of (optimal) path-

ways, intervention strategies, etc. is needed, that is, when (all) alternative solutions have to be

identified, the concept of EFMs becomes the method of choice.

Inhomogeneous constraints and (flux) polyhedra

The concept of EFMs can be applied as long as we operate on the flux cone FC, generated by

the two homogeneous constraints in Eqs 1 and 2. However, further linear constraints are fre-

quently used to confine the set of feasible fluxes. This includes, in particular, lower (lb) and

upper (ub) flux bounds,

rlb
i � ri � r

ub
i ;

typically known for certain (exchange) reactions i. In our example, we add an upper flux

bound for reaction R1(r1� 2) and a lower flux bound for reaction R2 (r2� −1); see Fig 4. Flux

bounds and other linear constraints can be written in the general form

Gr � h; ð7Þ

For the example in Fig 4 we write

� 1 0 0

0 1 0

 !

r �
� 2

� 1

 !

:

Equality constraints can also be integrated in Eq 7. For instance, we could be interested in

the space of optimal solutions for a given objective function [25]. In our example, we might

optimize the production of P and Q, that is, we maximize the objective function r2 + r3. Using

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005409 April 13, 2017 8 / 22

https://doi.org/10.1371/journal.pcbi.1005409


FBA (with flux bounds as defined above), we would find that the maximum value is 2. For

describing the optimal solution space, we add the equality constraint for the optimum; this

equality constraint can again be represented by two corresponding inequality constraints and

we obtain:

� 1 0 0

0 1 0

0 1 1

0 � 1 � 1

0

B
B
B
B
@

1

C
C
C
C
A

r �

� 2

� 1

2

� 2

0

B
B
B
B
@

1

C
C
C
C
A
: ð8Þ

In contrast to the homogeneous inequality constraints (Eq 2) in the definition of the flux

cone, the inhomogeneous constraints (Eq 7) are “game changers,” because the vector h has then

nonzero entries, as in the examples above. The set FP of flux vectors r satisfying the homoge-

neous and inhomogeneous constraints (Eqs 1, 2 and 7),

FP ¼ fr 2 Rn j Nr ¼ 0; ri � 0 for i 2 Irr; Gr � hg; ð9Þ

forms a (bounded or unbounded) polyhedron, which, in the context of metabolic network

analysis, is called the flux polyhedron. Clearly, FP is a subset of the flux cone FC (Eq 3). Some

EFMs of the flux cone may still be contained in the flux polyhedron, but, in general, not a sin-

gle EFM might fulfill the additional constraints.

Example: In our example network, if we used the flux bounds r1� 2 and r2� 1, then only a

part of the ray determined by the EFM e3 = (1,0,1)T is contained in the flux polyhedron

Fig 4. A bounded flux polyhedron in the example network. The two additional inhomogeneous constraints (an

upper flux bound for reaction R1 and a lower flux bound for reaction R2) give rise to two hyperplanes r1 = 2 and r2 =

−1 (green and yellow). These hyperplanes cut out the bounded flux polyhedron (dark grey) from the unbounded flux

cone of Fig 3 (light grey). The polyhedron has five elementary flux vectors (full/dashed blue arrows and the zero

vector), four of which correspond to vertices (full blue arrows and zero). The vertices and elementary flux vectors of

the polyhedron are also depicted as flux distributions.

https://doi.org/10.1371/journal.pcbi.1005409.g004
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(namely where r1� 2), whereas the entire rays determined by the EFMs e1 = (1,1,0)T and

e2 = (0,−1,1)T do not fulfill the additional constraints. If we use instead the flux bounds r1� 2

and r2� −1, then none of the EFMs is contained in the flux polyhedron anymore.

Evidently, in general, EFMs of the flux cone cannot describe a flux polyhedron. For this rea-

son, there has always been some gap between EFM analysis (operating on the flux cone) and

linear optimization techniques such as FBA (operating on a flux polyhedron arising from addi-

tional inhomogeneous constraints) [47]. The key question is whether, similar to EFMs, desig-

nated vectors can be identified for a flux polyhedron, which share the key properties (T1)–(T3)

and allow for applications (A1)–(A5). Ideally, in the special case of a flux cone, this set of vec-

tors should coincide with the set of EFMs.

Similarly, as the flux cone is a special polyhedral cone, the flux polyhedron is a special poly-

hedron because it is contained in a lower-dimensional subspace (the nullspace of the stoichio-

metric matrix). A general polyhedron is given by

P ¼ fx 2 Rn j Ax � bg ð10Þ

for some matrix A 2 Rq×n and some vector b 2 Rq. That is, a polyhedron is an intersection of q
(affine) halfspaces. The flux polyhedron (Eq 9) can also be written as in Eq 10 by setting

A ¼

N

� N

IIrr
G

0

B
B
B
B
@

1

C
C
C
C
A

and b ¼

0

0

0

h

0

B
B
B
B
@

1

C
C
C
C
A
: ð11Þ

Polyhedral cones, as given by Eq 4, are special types of polyhedra where b = 0 in (10). Every

polyhedron P has an associated polyhedral cone CP = {x 2 Rr | Ax� 0}, called the recession
cone, which contains the (unbounded) directions of the polyhedron [23]. Most importantly,

every polyhedron can be written as a bounded polyhedron (a polytope) plus its recession cone,

and hence a polyhedron is unbounded whenever its recession cone is nontrivial. The associ-

ated polytope is a convex combination of finitely many “bounded" generators pi 2 Rn (i 2 I),
whereas the recession cone, analogous to Eq 5, is a combination of the “unbounded” genera-

tors yj 2 Rn (j 2 J) and zk 2 Rn (k 2 K):

P ¼ fSi2I aip
i þ Sj2J bjy

j þ Sk2K gkz
k j ai; bj � 0; gk 2 R; Si2I ai ¼ 1g: ð12Þ

The recession cone is crucial for properties and generators of the polyhedron. A polyhedron

is pointed if its recession cone is pointed (has trivial lineality space) and thus no generators of

type zk exist. As in the case of polyhedral cones, only if the polyhedron is pointed, there exists a

unique minimal set of generators of the polyhedron. It is given by the unique set of extreme

vectors yj (corresponding to the extreme rays) of the recession cone and the unique bounded

generators, which are the vertices (extreme points) of the polyhedron. Formally, a vector x 2 P
is a vertex if it cannot be written as a convex combination x = λx1 + (1 − λ)x2 of distinct vectors

x1,x2 2 P with 0< λ< 1. If the polyhedron is not pointed, it does not have vertices and the

minimal set of generators is not unique, as in the case of cones.

We emphasize again that metabolic network models often give rise to pointed flux cones or

pointed flux polyhedra where reversible flux vectors do not exist. Moreover, in many flux opti-

mization studies, the recession cone of the flux polyhedron is even trivial (equals the zero vec-

tor) meaning that (unrealistic) unbounded flux vectors do not exist (see also [25]).

A bounded polyhedron has a trivial recession cone. In this case, no unbounded generators

yj and zk exist in Eq 12, and the polyhedron is minimally generated by the set of its vertices. As
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already mentioned, a polyhedral cone is a special case of a polyhedron. In fact, the only vertex

of a pointed cone is the zero vector, whereas a non-pointed cone does not have a vertex at all.

In both cases, the first sum in Eq 12 yields the zero vector, hence, one obtains Eq 5.

Example: In our example with additional flux constraints r1� 2 and r2� −1, the resulting

flux polyhedron is bounded (a polytope) because its recession cone is trivial, and no

unbounded generators exist (Fig 4). It is minimally generated by its vertices p1 = (0,0,0)T,

p2 = (2,2,0)T, p3 = (2,−1,3)T, and p4 = (0,−1,1)T.

The explicit representation (Eq 12) of a (flux) polyhedron using minimal generators is use-

ful for some applications, but it comes with the same disadvantages as with the representation

of flux cones in Eq 5: minimal generators usually do not satisfy the theoretical properties (T1)–

(T3). In particular, support-minimal flux vectors need not be contained in a minimal set of

generators, and hence deletion studies and target identification applications (A4) are not possi-

ble. This can also be seen in our example, in which the additional vector v5 is support minimal,

but not contained in the minimal set of generators (Fig 4). If we delete reaction R2 (the flux is

set to zero), the vertices p2, p3, p4 become infeasible, and no nonzero flux vector remains in the

minimal set of generators. However, the additional generator v5 = (2,0,2)T is still operable and

generates, together with p1 = (0,0,0)T, the flux polyhedron of the resulting subnetwork.

We note that Kelk et al. [25] used minimal generators, as in Eq 12, to characterize the

growth-rate optimal flux space (a flux polyhedron). Thereby, some important (e.g., support-

minimal) flux vectors might be missed, as was later pointed out in [47]. In fact, as in the case of

flux cones, we need another set of vectors to characterize flux polyhedra and we finally

approach the concept of elementary (flux) vectors, which will take over the role of EFMs.

Elementary (flux) vectors

Elementary vectors (EVs) of linear subspaces were introduced by Rockafellar [48], whereas

EVs of general polyhedral cones (Eq 4) were first used by Urbanczik and Wagner to analyze

so-called conversion cones of metabolic networks [49]. Later, Urbanczik extended the concept

to general (flux) polyhedra by using the method of homogenization [18]. Here, we give a more

direct definition: EVs of a polyhedron are obtained by intersecting the polyhedron with all

(closed) orthants. The resulting subpolyhedra have unique minimal sets of generators and

their union forms the set of EVs of the polyhedron.

More formally, an orthantΩs 2 Rn is defined by a sign pattern s 2 {−1,1}n,

Ωs ¼ fx 2 R
n j xisi � 0 for i ¼ 1; . . . ; ng;

that is, by specifying a sign (direction) for every coordinate (reaction). Clearly, there are 2n

orthants in Rn. Given a polyhedron P and an orthantΩs, we introduce the subpolyhedron

Ps = P \Ωs, it is pointed by definition, because all elements have a unique sign pattern s.

Hence, it is minimally generated by its vertices and extreme vectors (one for each extreme ray

of its recession cone). The set of EVs of P is now defined as the union of the minimal genera-

tors of all subpolyhedra. Hence, by definition, the set of EVs consists of bounded EVs (the ver-

tices of the subpolyhedra) and unbounded EVs (the extreme vectors of the subpolyhedra’s

recession cones). The bounded EVs are unique, and the unbounded EVs are unique up to pos-

itive scalar multiplication.

A flux polyhedron (Eq 9) is a special case of a general polyhedron (Eq 10), and its EVs are

also called elementary flux vectors ((EFVs) [18]; see Fig 5. Further, a general polyhedral cone

(Eq 4) is a special case of a polyhedron (Eq 10), and its EVs are the extreme vectors of the

pointed subcones obtained when intersecting the cone with all closed orthants [49]. Finally, a

flux cone (Eq 3) is a special case of both a flux polyhedron (Eq 9) and a general polyhedral

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005409 April 13, 2017 11 / 22

https://doi.org/10.1371/journal.pcbi.1005409


cone (Eq 4), and its nonzero EFVs coincide with its EFMs (Fig 5). Hence, EVs (of polyhedra)

generalize EFMs (of flux cones), and the three key theoretical properties of EFMs are

preserved:

• (T1’) The set of EVs generates the polyhedron: every element of the polyhedron P can be

written as a convex combination of bounded EVs plus a conical (nonnegative) linear combi-

nation of unbounded EVs. Formally, let vi (i 2 I) and uj (j 2 J) be the sets of bounded and

unbounded EVs, respectively. Then,

P ¼ fSi2I aiv
i þ Sj2J bju

j j ai; bj � 0; Si2I ai ¼ 1g: ð13Þ

In particular, the set of bounded EVs contains the set of vertices (for pointed polyhedra).

However, as for EFMs, the set of EVs is not minimal (see also the example below).

If an unbounded EV u lies in the lineality space of the polyhedron, then also −u is an

unbounded EV. In the sum in Eq 13, the term βe + β0(−e) with β, β0 � 0 can then be replaced

by γe with γ 2 R, and one obtains a sum of the form as in Eq 12.

We also note that, whenever the zero vector is contained in the polyhedron P, it is a vertex

of all subpolyhedra Ps and thus constitutes an EV. While it is essential to keep the zero EV to

generate the polyhedron, as in Eq 13, some applications exclude it (implicitly) from the analy-

sis to focus on nontrivial flux distributions.

• (T2’) After deleting a set of reactions, the set of EVs/EFVs of the resulting subnetwork can be

directly derived from the EFVs of the full network, namely as the subset of all EFVs not

involving these reactions. In other words, the set of EFVs of the full network contains the

sets of EFVs of all possible subnetworks. Thus, like EFMs, EFVs “anticipate” the deletion of

any set of reactions and immediately provide a new set of generators after network

modification.

• (T3’) Every element of a polyhedron can be written as a sum of EVs, as in Eq 13, without can-
cellations. In fact, the EVs form the unique minimal set of conformal generators of the poly-

hedron [20].

As it turns out, bounded EVs can be defined as convex-conformally nondecomposable vec-

tors of the polyhedron, whereas unbounded EVs can be defined as conformally nondecompo-

sable vectors of its recession cone [20]. That is, an EV cannot be written as a sum of other

vectors of the polyhedron without cancellations.

Fig 5. Relationships between (flux) polyhedra and (flux) cones and their Elementary Vectors (EVs)/Elementary Flux Vectors

(EFVs)/Elementary Flux Modes (EFMs).

https://doi.org/10.1371/journal.pcbi.1005409.g005
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Despite the shared key properties (T1)–(T3), there is also an important difference between

EFMs and EVs/EFVs. As already mentioned above, a definition of EVs using support minimal-

ity (as for EFMs) is not possible. In particular, an EV need not be support minimal, as will be

exemplified below. However, (T3’) immediately implies that, for every vector x 2 P, there

exists a (bounded or unbounded) EV v 2 P with supp(v)� supp(x). In particular, if a vector

x 2 P has minimal support, there exists an EV v 2 P with supp(v) = supp(x), hence, all minimal

(support) patterns of flux vectors appear in the set of EVs.

Example: We return to our example (Fig 4). The flux polyhedron is bounded and has five

(bounded) EFVs v1, . . ., v5. The first four EFVs coincide with the vertices p1, . . ., p4 of the poly-

tope, which form the minimal set of generators. The additional EFV v5 = (2,0,2)T is not a vertex

(and thus not part of the minimal set of generators) because it is a convex combination of

v2 = (2,2,0)T and v3 = (2,−1,3)T, namely v5 ¼ 1

3
v2 þ 2

3
v3. This decomposition is not conformal,

and v5 is an EFV because it results as a vertex of a subpolyhedron. In fact, the flux polyhedron

consists of two subpolyhedra obtained by the intersection of the entire flux polyhedron with

the orthants specified by (1,1,1) and (1,−1,1). The first subpolyhedron is a triangle with vertices

v1, v2, and v5, and the second one is a rectangle generated by the vertices v1, v5, v3, and v4 (Fig

4). By definition, the union of the minimal generating sets (here: vertices) of the subpolyhedra

forms the set of EFVs of the entire polyhedron. Furthermore, note that v3 is not support mini-

mal. To illustrate property (T2’), we delete reaction R2 (fix its rate to zero). Then, the resulting

flux polyhedron is the line segment between v1 = (0,0,0)T and v5 = (2,0,2)T, and v1 and v5 form

the new set of EFVs. This demonstrates why v5 is needed as EFV.

Computation of EFVs

Obviously, to make use of EFVs in metabolic network analyses, we need algorithms to effi-

ciently compute EFVs. Methods based on EFMs were initially limited to comparably small net-

works because only a few thousand EFMs could be calculated. Due to a number of algorithmic

developments in recent years [11,12,13,14,15], huge progress could be made and the calcula-

tion of millions or even billions of EFMs is now possible considerably increasing the size of the

networks that can be treated. The total number of EFVs depends on size and structure of the

inhomogeneous constraints; there can be fewer or more EFVs than EFMs. For this reason, effi-

cient routines for calculating EFVs are as important as for EFMs.

Urbanczik proposed an algorithm for calculating EVs by a homogenization of the polyhe-

dron under study [18]. For the general polyhedron (Eq 10), this yields

A � bð Þ
x0

λ

 !

� 0 with l � 0: ð14Þ

Eq 14 defines a general polyhedral cone as in Eq 4. Any solution (x0, λ) of Eq 14 can be

mapped to a solution x of Eq 10 as follows: if λ = 0 then x = x0 and if λ 6¼ 0 then x = x0/λ. Every

solution x of Eq 10 has at least one (possibly an infinite number of) corresponding solution(s)

in Eq 14, hence, the solution space of the system in Eq 10 can be generated from the solutions

of Eq 14. Likewise, the EVs of Eq 14 can be directly mapped to EVs of the original polyhedron

(Eq 10). To calculate the EVs from Eq 14 Urbanczik used an algorithm presented in the earlier

work on conversion cones [49].

Eq 14 cannot directly be handled with standard algorithms for computing EFMs, as it

forms a general polyhedral cone (Eq 4), but not a flux cone (Eq 3). We therefore use a further

transformation to obtain a system in which EFM algorithms can be applied to determine the

EVs of the original polyhedron in Eq 10 [18]. Concretely, by additionally introducing
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nonnegative slack variables s, the inequalities in Eq 14 can be transformed to equalities:

A � I � bð Þ

x0

s

λ

0

B
@

1

C
A ¼ 0 ; l � 0; s � 0: ð15Þ

The general polyhedral cone in Eq 15 has the form of a flux cone (Eq 3), in which inequali-

ties occur only as nonnegativity constraints, and the support-minimal vectors (the EFMs) of

this cone correspond to the EVs of the polyhedron in Eq 10. For the flux polyhedron (Eq 9), an

analogous transformation results in the system

Dw :¼
N 0 0

G � I � h

 ! r

s

λ

0

B
@

1

C
A ¼ 0 ; ri � 0 for i 2 Irr; l � 0; s � 0: ð16Þ

Viewing Eq 16 as a flux cone (with D as the “stoichiometric matrix”) and computing the

EFMs of this cone yield the EFVs of the flux polyhedron FP in Eq 9. Each EFM w = (r, s, λ)T of

Eq 16 corresponds to an EFV of FP in the following way: if λ = 0, then u = r is an unbounded

EFV, and if λ 6¼ 0, then v = r/λ is a bounded EFV, cf. Eq 13. Note that a calculated unbounded

EFV u is an element of the lineality space (of the flux polyhedron’s recession cone) if, in the

associated vector w, it holds that s = 0 and ri = 0 for i 2 Irr (otherwise it represents a ray of the

flux polyhedron’s recession cone).

To summarize, the “flux cone” in Eq 16 is obtained from the flux polyhedron (Eq 9) via

homogenization and introduction of slack variables. Hence, sophisticated algorithms and tools

developed for EFMs (of flux cones) can be used to compute EFVs (of flux polyhedra).

Applications of EFVs

Because the main theoretical properties of EFMs are preserved for EFVs, the same holds true

for many applications. For some applications, only the support-minimal EFVs are of interest.

In those cases, all EFVs whose support is a proper superset of any other EFV can be dropped

prior to the analysis. This procedure has been used, for example, in [19] to find suitable (sup-

port-minimal) EFVs that indicate feasibility of growth-coupled product synthesis.

• Application (A1’): Similar to EFMs, the support-minimal EFVs can be considered as mini-

mal functional subnetworks for the given constraints. However, whereas EFMs typically cor-

respond to pathways and cycles, EFVs may involve more reactions than EFMs because, apart

from the steady state and reversibility constraints, also inhomogeneous flux constraints must

be taken into account. For this reason, EFVs may correspond to combinations of EFMs and

thus of pathways or cycles. Still, the support-minimal EFVs indicate minimal (irreducible)

sets of reactions required to fulfill all constraints and can thus be used to identify minimal

functional subnetworks (e.g., for synthesizing a certain product) under the given constraints.

• Application (A2’) of EFMs is also possible for EFVs: Essential, blocked, or coupled reactions

can be identified via EFVs. A reaction is essential if it occurs in all (nonzero) bounded EFVs

or, in case no such EFV exists, if it occurs in all unbounded EFVs. A reaction is blocked if it

has zero rate in all EFVs. A pair of reactions is fully coupled if for each EFV either both reac-

tions have zero rate or both reactions have nonzero rate with a constant flux ratio in all

EFVs. Also, pairs of partially coupled reactions (same as for fully coupled reactions but a

constant flux ratio is not required) and directionally coupled reactions (if, in each EFV, a
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nonzero rate of the first reaction implies a nonzero rate of the second reaction) [50] can be

identified with EFVs.

• Application (A3’) of EFMs (finding optimal flux vectors) gets a largely extended scope for

EFVs. Because EFMs are unbounded, EFM analysis can only deal with relative flux relation-

ships (yields). In contrast, EFVs of a bounded flux polyhedron allow the direct consideration

and analysis of both (optimal) yields and optimal (absolute) reaction rates. The optimization

of a single reaction rate (or of a linear combination of fluxes) is expressed by a linear objec-

tive function cTr that is to be maximized or minimized within the flux polyhedron. If it is

bounded, we know from the theory of linear programming that the optimal value is attained

at a vertex (extreme point), that is, at a bounded EFV. The optimum can be immediately

identified by testing which EFV maximizes the objective function. If multiple optimal solu-

tions exist, then the space of optimal solutions forms a (sub-) polyhedron generated by the

optimal bounded EFVs. For a linear optimization problem over an unbounded polyhedron

with a bounded optimum, the set of optimal solutions forms again a subpolyhedron, gener-

ated by the optimal bounded EFVs together with all unbounded EFVs. Furthermore, a linear

optimization problem with an unbounded optimal value can only arise if the objective func-

tion is unbounded on the recession cone. This occurs if the product of an unbounded EFV

with the linear objective function yields a positive (in case of maximization) or negative (in

case of minimization) value.

To summarize, the set of EFVs contains all qualitatively distinct optimal solutions for all pos-
sible linear objective functions (with bounded optimum), and the solution space of a given

linear optimization problem is generated by a subset of certain EFVs. Thus, EFVs allow for a

comprehensive analysis of solution spaces arising in FBA optimization problems which is

not possible with standard FBA techniques alone.

Example: In the flux polyhedron shown in Fig 4, if we aim to maximize synthesis of product

P (i.e., the rate of reaction R2), it is easy to see that the optimal solution is given by v2,

whereas v3 is the optimal solution for maximizing the production rate of Q. Note that the lat-

ter solution does not correspond to an EFM. If the rate of reaction R1 is to be maximized, we

see that three optimal EFVs exist (v2, v3, v5) spanning the optimal solution space for this

objective function. Note again that v5 would not be needed to span the optimal subpolyhe-

dron; however, it represents a support-minimal and, therefore, a qualitatively distinct opti-

mal solution. Without v5, the remaining two EFVs could suggest that reaction R2 is essential

for obtaining a maximal solution for R1, which is clearly not the case.

Importantly, similar results follow for the maximization of yields, i.e., for the optimal ratio of

two reaction rates ri/rj or, more generally, for optimal ratios of linear combinations of fluxes:

cTr/dTr. From the theory of linear-fractional programming [51], we can conclude that the

maximum of this objective function over a bounded flux polyhedron FP (with dTr> 0 for r
2 FP) is attained at an extreme point, hence, at a bounded EFV. If multiple yield-optimal

solutions exist, then, as for optimal reaction rates, the space of yield-optimal solutions forms

a (sub-) polyhedron generated by the optimal bounded EFVs. In the next section, we will see

that maximal synthesis rates and maximal yields of certain products are sometimes but not

always attained at the same optimal EFV(s).

If the flux polyhedron FP (with dTr > 0 for r 2 FP) is unbounded, but the maximum yield

(per EFV) is attained at a bounded EFV, then the yield-optimal subpolyhedron is again gen-

erated by the optimal EFVs, which may also comprise unbounded EFVs. On the other hand,

if the maximum yield per EFV is attained at an unbounded EFV, then this maximum yield is

not attained within the flux polyhedron. It can only be approached by making the contribu-

tion of the optimal unbounded EFV arbitrarily large. To illustrate the latter case, we set the
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inhomogeneous constraint r2� 1 in our example network (Fig 1). The resulting flux polyhe-

dron has a bounded EFV v = (1,1,0)T and an unbounded EFV u = (1,1,0)T. We might be

interested in the yield of Q per used substrate S (quantified by the ratio r3/r1). Regarding the

two EFVs, the maximum yield is attained at the unbounded EFV u, for which r3/r1 = 1. How-

ever, within the flux polyhedron v + βu. the maximum yield 1 can only be approached for β
!1, that is, for large r1 and r3.

For all cases discussed above, if the flux polyhedron FP contains the zero vector and if

dTr> 0 for r 2 FP (except for r = 0), then the zero vector is a vertex of the FP and the yield-

optimal subpolyhedron is generated by the yield-optimal EFVs and the zero vector. In par-

ticular, this includes the case of the flux cone (see application [A3]) if the restriction dTr> 0

for r 2 FP (except for r = 0) holds true. A detailed treatment of yield optimization on flux

polyhedra is currently being prepared by some of the authors.

• Application (A4’): As EFMs, EFVs can analogously be used for computational strain and

metabolic network design: due to property (T3), the effects of reaction knockouts can

directly be predicted using EFVs and tailored intervention strategies blocking undesired

while preserving desired phenotypes can be identified. In particular, as already pointed out

in [19], (constrained) minimal cut sets can be determined from EFVs in exactly the same

manner (and with the same algorithm) as used for EFMs in flux cones [37,52]. This allows,

for instance, the calculation of metabolic engineering strategies in microorganisms that cou-

ple growth with product synthesis. For these calculations, it is again sufficient to focus on the

support-minimal EFVs.

• Application (A5’): As for EFMs, any flux distribution within the flux polyhedron can be

decomposed into EFVs, cf. Eq 13. The decomposition is again, in general, not unique and

one may use similar decomposition heuristics as used in EFM-related studies. However, the

interpretation might be less straightforward compared to the case of EFMs, because EFVs

often involve more reactions than EFMs (see [A1’]).

Because a full enumeration of EFMs and EFVs is normally not feasible in genome-scale

metabolic networks, the applications mentioned above are usually restricted to medium-scale

networks, for example, to models of the central metabolism of the organisms under study.

However, we believe that for a thorough understanding of constraint-based analysis tech-

niques (often operating on flux polyhedra) one has to be aware of the notion and properties of

EFVs and that these distinguished flux vectors capture key properties of the whole system. Fur-

thermore, a number of recent studies have demonstrated that a particular subset of EFMs (e.g.,

the shortest EFMs [53] or EFMs involving certain reactions [54]) can be enumerated also in

genome-scale networks and similar applications will also be feasible with EFVs. Finally, Kelk

et al. [25] have shown that minimal generating sets of flux polyhedra spanning optimal solu-

tion spaces of FBA problems can be computed in genome-scale models. Although a minimal

generating set contains only a subset of the EFVs, we anticipate that computation of all EFVs

of optimal solution spaces will be feasible as well.

Example: EFMs and EFVs in a model of the central metabolism in

Escherichia coli

In this section, we analyze and compare sets of EFMs and EFVs in a real-world example and

exemplify applications of EFVs. We used a slightly modified version of the model of the central

metabolism of E. coli published in [55], which we extended by an export reaction for lysine as a

biotechnologically relevant product. In the analysis, we were particularly interested in optimal

production (in terms of yield and maximal synthesis rates) for biomass, acetate, and lysine.
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We first calculated the EFMs for this network (without any flux bounds) and then the EFVs

after setting an upper bound for the substrate (glucose) uptake rate (10 mmol/gDW/h) and a

lower flux bound (8.39 mmol/gDW/h) for the reaction consuming ATP for nongrowth-associ-

ated maintenance processes (we denote this reaction as ATPmaint). The latter two constraints

are normally used in conjunction with flux optimizations (FBA) and transform the flux cone

into a flux polyhedron. Key properties of the flux cone, for example, reaction essentialities or

maximal product yields as determined by EFM analysis, may not be valid anymore for the

obtained flux polyhedron and requires now analysis of EFVs.

Using the CellNetAnalyzer toolbox [56], we calculated 314,241 EFMs for the flux cone and

247,947 EFVs for the flux polyhedron. Thus, in this particular case, there are fewer EFVs than

EFMs. All EFVs are bounded, hence, the flux polyhedron is bounded as well, in contrast to the

unbounded flux cone spanned by the EFMs. The set of EFVs contains 27,864 support-minimal

patterns (no EFV uses a proper subset of the reactions of any of these EFVs), thus, quite a large

fraction of the EFVs is not support minimal and can be neglected for certain analyses (e.g., for

reaction essentialities or computation of cut sets, but not for finding optimal flux vectors). Fur-

thermore, because a minimum flux has been demanded for the ATPmaint reaction, the zero

vector is not part of the flux polyhedron and therefore not contained in the set of EFVs. Reac-

tion essentialities as indicated by the EFMs and EFVs, respectively, are almost identical, except

that the ATPmaint reaction is contained in all bounded EFVs, and therefore, as expected,

essential for all flux distribution in the polyhedron (but not in the cone). The maximal biomass

yield decreases from 0.10448 gDW/mmol glucose (achievable by 11 biomass-yield optimal

EFMs) in the cone to 0.10002 gDW/mmol glucose (achievable by 10 biomass-yield optimal

EFVs) in the inhomogeneous case (Fig 6). In contrast, the maximum possible yield of acetate

(2 mmol/mmol glucose exhibited by 198 EFVs) and of other (native) byproducts contained in

the model (formate, succinate, lactate, and ethanol) did not change when introducing the con-

straints for glucose uptake and ATPmaint. However, we found that the maximum lysine yield

reduced from 0.79730 mmol/mmol glucose in the EFMs to 0.76328 mmol/mmol glucose in

the EFVs (5 yield-optimal EFVs exist). Importantly, for growth and lysine synthesis we found

that the yield-optimal EFVs also correspond to the respective rate-optimal EFVs. Hence, with

a maximal glucose uptake rate of 10 mmol/gDW/h, the maximal growth rate (biomass) and

maximal production rate for lysine in the respective rate-optimal EFVs are 1.0002 h-1 and

7.6328 mmol/gDW/h, respectively. In case of acetate, we found that 156 out of the 198 yield-

optimal EFVs are also rate-optimal for acetate synthesis (20 mmol/gDW/h), whereas the

remaining 42 yield-optimal EFVs involve lower substrate uptake rates and hence also lowered

acetate production rates.

Next, we used EFVs to characterize the impact of oxygen-limiting constraints in addition to

the constraints for glucose uptake rate and ATPmaint. We set the upper boundary for the (pre-

viously unbounded) oxygen uptake reaction to 5 mmol/gDW/h resulting in 316,150 EFVs. As

was highlighted above, EFVs can be used to identify both all yield-optimal as well as all rate-

optimal solutions for the production of certain compounds. We therefore selected again all

yield-optimal and all rate-optimal solutions for the production of biomass, acetate, and lysine

(see Fig 6). As expected, for biomass we found that the maximal yield decreases compared to

unlimited respiration (0.084 gDW/mmol glucose exhibited by 7 optimal EFVs). The same can

be seen for the maximal growth rate (0.618 h-1 displayed by one EFV); however, this time bio-

mass-yield optimal and growth-rate optimal EFVs really differ. The yield-optimal EFVs con-

sume glucose only up to the maximum level where fully respiratory growth is possible (i.e.,

where the maximum uptake of oxygen is reached). In contrast, growth-rate optimal EFVs con-

sume the maximum amount of glucose, which requires the activation of fermentative routes

lowering the biomass yield but still maximizing the growth rate. Similar results can be seen for
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acetate (optimal yield of 2 mmol/mmol glucose [188 EFVs] and maximal production rate of 15

mmol/gDW/h [164 EFVs]) and for lysine (optimal yield of 0.743 mmol/mmol glucose [7

EFVs] and maximal production rate of 7.085 mmol/gDW/h [3 EFVs]). Interestingly, we note

that the number of EFVs under moderate oxygen limitation is now larger than the number of

EFMs under aerobic conditions.

When switching to fully anaerobic growth (oxygen uptake is zero) we obtain, as expected

(and similar to the EFM analysis), much fewer EFVs (45,372) and reduced yields and maximal

production rates for biomass, acetate and lysine (Fig 6). In this case, a single EFV is optimal for

both biomass yield and growth rate and the same can be seen for maximal lysine yield and pro-

duction rate. For acetate, the situation is again somewhat more complex, there are 190 yield-

optimal EFVs (1 mmol/mmol glucose),165 of which are also rate-optimal (10 mmol/gDW/h).

The demonstrated analysis of yield- and rate-optimal solutions underlines one great advan-

tage of EFVs that would, for example, not be possible with standard FBA techniques. In partic-

ular, because standard FBA problems maximize certain reaction rates, yield-space optimal

solutions are usually not identified (except if they coincide with the rate-optimal solutions).

Also, a full enumeration of the respective optimal EFVs allows one to find all optimal flux dis-

tributions and pathways and to get insights in properties of optimal solutions spaces. Usually,

flux variability analysis is used to characterize this space, e.g., to identify which reactions are

Fig 6. Comparison of Elementary Flux Modes (EFMs) (no flux bounds) and of Elementary Flux Vectors (EFVs) obtained by setting

inhomogeneous flux constraints. The latter include (i) maximal substrate (glucose) uptake rate, (ii) ATP maintenance demand, and (iii) certain levels of

oxygen availability. Glucose (Glc) was used as substrate in all scenarios. (a) maximal biomass yield (gDW/mmol Glc); (b) maximal growth-rate (h-1); (c)

maximal acetate yield (mmol/mmol Glc); (d) maximal acetate production rate (mmol/gDW/h); (e) maximal lysine yield (mmol/mmol Glc); and (f) maximal

lysine production rate (mmol/gDW/h). Maximal production rates are not given for the EFMs because EFMs can be scaled to infinity. The number of optimal

EFMs/EFVs is displayed in each bar. The white circles in (c) and (e) represent the maximal guaranteed product yields for growth-coupled product

synthesis (minimal demanded biomass yield is 0.01 gDW/mmol Glc).

https://doi.org/10.1371/journal.pcbi.1005409.g006
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essential/exchangeable/not involved in optimal flux distributions. However, this analysis can-

not extract all relevant properties, for instance, which (e.g., minimal) combinations of reactions

yield optimal flux vectors. Another kind of subtle information that can only be obtained at the

level of EFVs is feasibility of growth-coupled product synthesis, including the corresponding

maximal guaranteed product yields under coupling [19]. The latter are indicated for lysine and

acetate (for the different scenarios) in Fig 6 (a minimal biomass yield of 0.01 gDW /mol glu-

cose was assumed).

We also emphasize that EFVs allow for easy implementation of thermodynamic feasibility

conditions. For example, as in our case study, any EFV not involving substrate uptake corre-

spond to thermodynamically infeasible flux distribution arising from the unbounded genera-

tors and can be eliminated. Furthermore, thermodynamic feasible EFVs can be easily obtained

by the imposition of additional constraints derived from Gibbs free energy of the reactions as

shown in a previous study involving EFMs [43,44,46].

Conclusions

EFM analysis is an established tool to explore the space of stationary flux distributions in meta-

bolic networks. However, EFMs cannot account for inhomogeneous constraints, such as

known flux bounds or flux values normally used in the context of FBA. A first attempt to cope

with inhomogeneous flux constraints was presented in [57]; however, this approach focused

on the very special case in which all reactions in the network are irreversible and in which

some fluxes are fixed to specific values (other constraints such as flux bounds were not consid-

ered). In order to generalize EFMs from flux cones to flux polyhedra, the concept of EFVs was

proposed by Urbanczik one decade ago [18]. So far it has attracted much less attention than

EFMs, possibly because the concept seems, at a first glance, to be more involved, although the

main theoretical properties of EFMs are shared by EFVs. Moreover, apart from some specific

uses, the whole spectrum of potential applications of EFVs has not been clearly communicated

so far. The goal of the present work was to increase the awareness about EFVs. We explained

the mathematical background of EFVs, emphasized the close relationships between EFMs and

EFVs, and highlighted that almost all applications of EFMs are, in an analogous manner, possi-

ble with EFVs in flux polyhedra (partially with an even extended scope). EFVs close the gap

between EFM analyses (operating on the flux cone) and FBA and related optimization tech-

niques (usually operating on a flux polyhedron due to inhomogeneous constraints). Another

reason for the so far limited use of EFVs by the community might be that their computation

seemed to be less straightforward. However, it could be shown that EFVs can be calculated by

well-established algorithms for computing EFMs, and this obstacle is not present anymore

which should boost the applicability of the approach.

As was emphasized herein, support minimality, often considered as defining property of

EFMs, is only partially preserved by the EFVs (the set of EFVs contains all minimal [support]

patterns of flux vectors but possibly also nonsupport-minimal vectors). As it turns out, the key

theoretical property shared by both EFMs and EFVs is (T3) / (T3’) stating that every element

of the flux cone/flux polyhedron can be written as a sum of EFMs/EFVs without cancellations.
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