
RESEARCH ARTICLE

Bioenergetics-based modeling of Plasmodium

falciparum metabolism reveals its essential

genes, nutritional requirements, and

thermodynamic bottlenecks

Anush Chiappino-Pepe1, Stepan Tymoshenko1,2, Meriç Ataman1, Dominique Soldati-
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Abstract

Novel antimalarial therapies are urgently needed for the fight against drug-resistant para-

sites. The metabolism of malaria parasites in infected cells is an attractive source of drug

targets but is rather complex. Computational methods can handle this complexity and allow

integrative analyses of cell metabolism. In this study, we present a genome-scale metabolic

model (iPfa) of the deadliest malaria parasite, Plasmodium falciparum, and its thermody-

namics-based flux analysis (TFA). Using previous absolute concentration data of the intraer-

ythrocytic parasite, we applied TFA to iPfa and predicted up to 63 essential genes and

26 essential pairs of genes. Of the 63 genes, 35 have been experimentally validated and

reported in the literature, and 28 have not been experimentally tested and include previously

hypothesized or novel predictions of essential metabolic capabilities. Without metabolomics

data, four of the genes would have been incorrectly predicted to be non-essential. TFA also

indicated that substrate channeling should exist in two metabolic pathways to ensure the

thermodynamic feasibility of the flux. Finally, analysis of the metabolic capabilities of P. fal-

ciparum led to the identification of both the minimal nutritional requirements and the genes

that can become indispensable upon substrate inaccessibility. This model provides novel

insight into the metabolic needs and capabilities of the malaria parasite and highlights

metabolites and pathways that should be measured and characterized to identify potential

thermodynamic bottlenecks and substrate channeling. The hypotheses presented seek to

guide experimental studies to facilitate a better understanding of the parasite metabolism

and the identification of targets for more efficient intervention.

Author summary

Almost half of the world population is at risk of infection by malaria parasites. The rise in

drug-resistant parasites requires better understanding and targeting of their metabolism.
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In this study, we present a genome-scale metabolic reconstruction (iPfa) of the deadliest

malaria parasite, Plasmodium falciparum, and its thermodynamics-based flux analysis

(TFA). Our results support and extend the available experimental evidence on the essen-

tial genes and nutritional requirements of this organism. Besides, we identify metabolites

that give rise to thermodynamic bottlenecks and suggest substrate channeling. Overall,

these results provide novel insight into the metabolism of P. falciparum and may guide

experimental studies to develop a better characterization of the parasite metabolism and

the identification of antimalarial drug targets.

Introduction

Malaria remains a major global health care concern, with almost half of the world population

at risk of infection that ultimately results in over half a million deaths each year [1]. Of the

five Plasmodium species capable of infecting humans, P. falciparum is responsible for most

malaria-related deaths. The current increase in parasites with resistance to most of the clini-

cally used antimalarial drugs, including artemisinin, renders the treatment of this disease more

challenging [1]. The development of more efficient antimalarial treatments is, therefore, a

highly pressing need. Because it is essential for cell development, metabolism represents a

potential source for identifying novel targets. Computational methods can handle its complex-

ity and thus facilitate the discovery of drug targets (as demonstrated for other pathogens [2, 3])

that are particularly interesting for malaria research.

Genome-scale metabolic models (GEMs) represent an invaluable platform for the integra-

tive analysis of cell metabolism [4]. Currently, two lineages of independently developed GEMs

exist for P. falciparum, iTH366 [5] and PlasmoNet [6]. Since 2010, these GEMs have been

slightly modified to study the metabolism of the parasite in the liver stage [7] or in the blood

stages [8]. However, no study, to our knowledge, has developed an independent reconstruction

of P. falciparum metabolism that updates, among other important features, the functional

annotation of the genome, the localization of the enzymes and the definition of the available

substrates according to the currently existing data.

The standard approach for analyzing different phenotypes using GEMs is flux balance anal-

ysis (FBA) [9, 10]. FBA predictions provide a good understanding of the metabolism at a sys-

tems level [11], and they can be further enhanced by integrating context-specific information

in the form of constraints. FBA considers mass balance constraints for each metabolite in the

metabolic network [9, 10]. Thermodynamics-based flux analysis (TFA) [12, 13] further

accounts for thermodynamic constraints and provides a framework for the integration of

metabolomics data in GEMs [12–17]. Thermodynamic constraints determine the feasible

direction under which the reaction can operate, defined as reaction directionality [14–16].

Thermodynamic bottlenecks arise when alternative metabolic pathways are thermodynam-

ically impeded although, based on network topology, they could have theoretically served a

metabolic function. Unfavorable thermodynamics imposed by bulk-phase metabolite concen-

trations can be circumvented with substrate channeling. Substrate channeling involves the

coupling of two or more reactions, and the common intermediate is transferred from the first

enzyme to the second without escaping into the bulk phase. Such process has a major effect on

the thermodynamics and kinetics of the involved catalytic functions and might determine spe-

cific responses to regulatory mechanisms. Techniques such as isotope dilution or enrichment,

competing reaction or enzyme buffering have been traditionally used to detect and character-

ize substrate channeling for an enzyme pair or larger metabolon [18]. Such methods require
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systematic approaches, such as TFA, that generate and test thermodynamically consistent

hypotheses to ultimately enhance our understanding of metabolism.

The primary goal of this study is to provide new insight into the essential metabolic capabil-

ities and the nutritional requirements of P. falciparum that can reveal potential targets in its

metabolism for efficient intervention. We also seek to identify metabolites whose intracellular

concentrations give rise to thermodynamic bottlenecks and pathways where substrate channel-

ing may exist. These analyses can guide metabolomics and biochemical studies on the metabo-

lism of the parasite. For this purpose, we developed a GEM of P. falciparum (iPfa) and

performed thermodynamically consistent studies using TFA and integrating the metabolite

concentration ranges previously measured in intraerythrocytic P. falciparum [19–22]. We

present here the TFA results for iPfa that suggest the essential genes, bottleneck metabolites,

pathways with substrate channeling, and nutritional requirements of P. falciparum.

Results

Reconstruction of iPfa

We combined semi-automated approaches with a manual curation process based on the avail-

able literature on P. falciparum metabolism to reconstruct iPfa. A detailed description of the

steps followed for the reconstruction process is provided in the S1 Methods. This process was

performed in agreement with the standard protocol defined for the high-quality component-

by-component (bottom-up) reconstruction of GEMs [23].

iPfa includes 325 genes and 670 metabolic reactions localized within five intracellular com-

partments: the cytosol, the mitochondrion, the apicoplast, the endoplasmic reticulum and the

nucleus (Table 1). Nearly 13% of all metabolic reactions (excluding transport reactions) are

orphans, i.e., enzymatic reactions that are not associated with any particular gene in the

genome (S1 Methods). Orphan reactions in iPfa render feasible 24 of the 73 total metabolic

tasks. Metabolic tasks are defined here as the production of biomass building blocks [3, 24].

The identified orphan reactions and alternatives might serve as a reference for further bio-

chemical characterization of non-annotated genes in Plasmodium species (S1 Table).

iPfa also accounts for transport reactions: 236 potential uptakes, i.e. transports from the

medium (host cell cytosol or blood serum) to the parasite’s cytosol, and 155 transports between

intracellular compartments (Table 1). Due to the high uncertainty in the exact type and num-

ber of proteins that serve as transporters in Plasmodium spp., we included transport reactions

based on a set of assumptions about the metabolite transportability (S1 Methods). These

assumptions prevent the introduction of ad hoc constraints in iPfa and serve as an upper

bound on the metabolite transportability. Such an approach leads to an underestimated num-

ber of essential genes. Nearly 98% of the transport reactions in iPfa remain orphan (Fig 1B).

The metabolic enzymes included in iPfa are distributed in six classes according to the E.C.

identifiers. The majority of the metabolic enzymes in iPfa are transferases (43%), followed by

oxidoreductases (24%), ligases (12%), hydrolases (12%), lyases (7%) and isomerases (2%) (Fig

1A). Regarding the metabolic subsystems, a significant percentage of metabolic reactions in

iPfa can be classified as part of lipid metabolism (31%), followed by a broad and diverse group

involving reactions related to the biosynthesis of cofactors, vitamins and redox molecules

(21%). A similar number of metabolic reactions are involved in amino acid metabolism (17%),

nucleotide metabolism (16%) and carbohydrate metabolism (15%) (Fig 1B).

The GEM iPfa presents an unbiased bottom-up reconstruction and an updated database of

P. falciparum metabolism. For example, based on recent findings [25], the pyruvate dehydroge-

nase activity of the mitochondrial BCKDH complex was included in iPfa, whereas it was absent in

the previous GEMs of the malaria parasite, iTH366 [5], PlasmoNet [6] and their modifications [7,
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8] (see S1 Methods for more details). The coverage of metabolic enzymes (Fig 1A) is consistent

with the ones reported in iTH366 and in the model of the related apicomplexan parasite Toxo-
plasma gondii, ToxoNet1 [3]. In contrast to the earlier GEMs of P. falciparum, iPfa is capable of

growing on an in silico rich medium composed of 236 substrates that allow less restrictive condi-

tions in the analyses. iPfa includes 245 common genes with iTH366 and 80 additional genes.

Regarding metabolic tasks, iPfa accounts for 73 biomass building blocks of which 40 are common

with iTH366 [5] and PlasmoNet [6], and nine are unique to iPfa. For example, some cofactors

and the nucleotide sugars that are monomers of the essential GPI-anchor proteins [26] were not

present in previous GEMs of P. falciparum. A detailed comparison of iPfa with the previous

reconstructions iTH366 [5] and PlasmoNet [6] is provided in the S1 Methods.

We integrated various omics data in iPfa, which include available uptake and secretion

rates of important metabolites, such as lactate [27], glucose [27] and L-isoleucine [28] (S1

Methods). Within the TFA framework, iPfa integrated the ranges of metabolite concentration

measured at the blood stage of the malaria infection [19–22] to study the effect of the concen-

tration ranges on the reaction directionality and gene essentiality. The results of these analyses

validate that iPfa serves as a scaffold for the integration of context-specific information.

Table 1. Description of iPfa.

Metabolites 1258

Intracellular metabolites 1017

Cytoplasm 499

Mitochondrion 171

Apicoplast 209

Endoplasmic reticulum 119

Nucleus 19

Extracellular metabolites 241

Unique metabolites 673

Reactions 1066

Metabolic reactions 670

Cytoplasm 374

Mitochondrion 97

Apicoplast 125

Endoplasmic reticulum 67

Nucleus 7

Transport reactions 396

Cytosol—extracellular 241

Cytosol—mitochondrion 58

Cytosol—apicoplast 58

Cytosol—endoplasmic reticulum 34

Cytosol—nucleus 5

Unique metabolic reactions 558

Gene-protein-reaction associations 586

Cytoplasm 328

Mitochondrion 83

Apicoplast 113

Endoplasmic reticulum 50

Nucleus 7

Transport 5

Unique genes 325

doi:10.1371/journal.pcbi.1005397.t001
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Gene and reaction essentiality predictions per metabolic task with iPfa

We used iPfa to study single and double gene essentiality in silico (S2 Table and S3 Table). To

understand the effect of the simulated knockouts on specific metabolic tasks of P. falciparum,

we designed an analysis that identifies which metabolic tasks cannot be fulfilled in iPfa upon

disruption of each in silico gene (Materials and Methods).

We first performed essentiality studies without accounting for thermodynamic constraints

and identified 55 genes that are essential for growth (S2 Table). The genes are involved in 26 of

the 73 total metabolic tasks that are defined in iPfa. The essentiality of 31 of the 55 genes has

been previously validated experimentally through gene knockouts, suppressed transcription or

inhibition of enzyme activity by drugs in P. falciparum, whereas the remaining 24 genes have

not been examined empirically, to our knowledge. We grouped the 24 non-validated genes in

two classes: the first class is composed of 14 genes that participate in metabolic pathways

where other genes have been experimentally defined as essential, and the second class contains

10 genes that are associated with functions or pathways where other genes have not been

reported as indispensable. Therefore, we could not hypothesize the latter class of genes to be

essential based on previous context-dependent information. For example, the MEP/DOXP

pathway in the apicoplast is essential in P. falciparum for the production of isopentenyl diphos-

phate and isoprenoid derivatives [29]. There are nine genes in iPfa that are involved in the

MEP/DOXP pathway, and all nine genes are predicted as essential for the synthesis of three

biomass building blocks: isopentenyl diphosphate, geranylgeranyl diphosphate and ubiqui-

none-8 (S2 Table). Experimental evidence validates the predicted essentiality of four of the

nine genes [30–33], while the other five genes of the pathway remain to be tested and, based

on our classification of non-validated genes, are allocated to the first class. The results of such

studies could be used for further model validation and refinement. The second class involves

genes that are essential for the synthesis of cardiolipin, ubiquinone-8 (downstream enzymes

from the MEP/DOXP pathway), sugar nucleotides and nucleotides (S2 Table).

Next, we performed essentiality analysis using TFA, which includes information about the

Gibbs free energy of reaction (ΔrG’) and allows the integration of metabolomics data (Materi-

als and Methods). We applied two different approaches within the TFA framework. In the

first approach, we allowed the concentration of every intracellular metabolite to vary between

1 μM and 50 mM. Besides, the concentration of extracellular metabolites (e.g., present in the

Fig 1. Metabolic capabilities (A) and subsystems (B) defined in iPfa.

doi:10.1371/journal.pcbi.1005397.g001

Bioenergetics-based modeling of Plasmodium falciparum metabolism

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1005397 March 23, 2017 5 / 24



parasitophorous vacuole, red blood cell or blood serum) varied between 0.01 μM and 100 mM.

Such concentration limits are similar to the physiological ranges used in previous TFA studies

[12, 13]. The constraints in the first TFA approach set 57 reactions in iPfa to be unidirectional

(S4 Table), which allowed the identification of three additional essential genes (S2 Table). The

three genes are involved in 12 tasks, including two tasks not identified with FBA, i.e., the pro-

duction of GTP and phosphatidylserine. The essentiality of one of the genes, the gene encoding

a serine palmitoyl transferase (E.C. 2.3.1.50), has been validated experimentally [34]. The other

two genes encode the ATP:UMP and ATP:GMP phosphotransferases (E.C. 2.7.4.4 and E.C.

2.7.4.8), which were predicted to be essential for the tasks involving nucleotides and sugar

nucleotides.

The study of the tasks using TFA provided additional insight into the effect of simulated

knockouts on the growth. Earlier studies on the pyrimidine biosynthetic pathway have tar-

geted the gene encoding the orotidine 5’-monophosphate decarboxylase (E.C. 4.1.1.23) with

antimalarial inhibitors [35]. Despite the suggestions that the gene is only involved in the syn-

thesis of the pyrimidine nucleotides CTP and UTP [35], TFA proposed an additional explana-

tion for its essentiality: the disrupted synthesis of dCTP, dTTP, and the nucleotide sugars

UDP-N-acetyl-D-glucosamine, UDP-glucose, and UDP-D-galactose (S2 Table). The identifi-

cation of a high number of biomass building blocks impacted upon knockout of a gene sug-

gests that the inhibitory effect of the antimalarial drug on the parasite’s growth is higher than

believed. This result indicates a thermodynamic dependency between the production of phos-

phorylated and sugar nucleotides. The actual drug action mechanism should be further inves-

tigated with experiments and kinetic analysis.

In the second approach within the TFA framework, we integrated ten available metabolo-

mics data sets, i.e., absolute concentrations measured in mature P. falciparum trophozoites

[19–22] (Materials and Methods and S1 Methods). After the metabolomics data had been

simultaneously integrated, 31 additional reactions in iPfa became unidirectional, and five

additional genes were then identified to be essential (S1 Methods, S2 Table, and S4 Table).

Interestingly, four of the genes had been assessed experimentally; three were found to be essen-

tial, and one was dispensable but growth reducing during the blood stages. The four genes

encode a phosphatidyl serine carboxylase (E.C. 4.1.1.65) [36], a thioredoxin and glutathione

oxidoreductase (E.C. 1.8.1.7) [37, 38] and a glycerol kinase (E.C. 2.7.1.30) [39]. The fifth gene,

whose essentiality has not been assessed, encodes a glycerol 3-phosphate oxidoreductase (E.C.

1.1.1.21). All genes are associated with the production of phospholipids in the endoplasmic

reticulum (ER) and are required to maintain the energy and redox balance in this compart-

ment (see the next result section for further discussion). Although FBA identified alternative

metabolic routes in iPfa for the production of phospholipids, TFA suggested that the alterna-

tive pathways were not thermodynamically feasible and that the five genes were essential. We

also performed TFA with the simultaneous integration of the concentration data sets and iden-

tified 26 synthetic lethal pairs (S3 Table). Overall, the accuracy score of the gene essentiality

predictions with iPfa (as defined in the Materials and Methods section) is 59%.

TFA identifies bottleneck metabolites and suggests substrate channeling

in iPfa

The number of reactions whose directionality was affected by thermodynamic constraints and

the number of essential genes identified by TFA varied depending on the metabolite concen-

tration ranges, and on the metabolomics data set used. With the generic concentration range,

TFA predicted three additional essential genes compared with the FBA prediction. When each

data set was independently integrated, three to five additional essential genes were identified

Bioenergetics-based modeling of Plasmodium falciparum metabolism
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(S2 Table). We evaluated the impact of the metabolite concentrations on the identification of

the eight essential genes using TFA, and we identified bottleneck metabolites in iPfa. The bottle-
neck metabolites are the metabolites whose concentrations give rise to thermodynamic bottle-

necks and are responsible for constraining the directionality of sets of reactions and for

rendering any of these eight genes essential.

We first studied the effect of the generic concentration bounds on the prediction of the

three essential genes. The lower and upper bound of the generic concentration range (1 μM—

50 mM) were allowed to vary from 0.1 fM to 500 mM (Materials and Methods). While increas-

ing the upper limit of the concentration range did not impact the essentiality of the three

genes, decreasing the lower bound was critical for their essential function (Table 2).

When the intracellular concentrations were decreased and allowed to vary between

0.01 μM and 50 mM, the gene encoding a serine palmitoyl transferase (E.C. 2.3.1.50) was

incorrectly predicted as non-essential [34]. The essential function of the ATP:UMP and ATP:

GMP phosphotransferases (E.C. 2.7.4.4 and E.C. 2.7.4.8) was only lost when the lower bound

of the intracellular concentrations was reduced four and ten orders of magnitudes, respec-

tively, with reference to 1 μM. The available kinetic data, such as the Michaelis constant KM,

provides a measure of the substrate concentration required for effective catalysis to occur. The

KM of the enzymes usually varies between 10−1 and 10−7 M. The KM values found in the litera-

ture indicate that metabolite concentrations of 1 fM are not physiologically relevant, which

further supports the essential function of the P. falciparum genes predicted with TFA and

generic concentration ranges.

We next sought the bottleneck metabolites and the associated reactions in iPfa whose direc-

tionalities were constrained and led to the essential function of the genes (Materials and Meth-

ods). The analysis of bottleneck metabolites suggests that AMP and ATP constitute a single

minimal set of metabolites that is responsible for rendering three genes essential (Table 2). The

three genes associated with the bottleneck metabolites AMP and ATP are essential for main-

taining the AMP/ATP ratio in the ER, which varies between 2.4 and 1.9 mol/Lcell / mol/Lcell

based on the absolute minimum and maximum experimentally measured concentrations [19–

22] (S1 Methods).

We also found four alternative minimal sets of metabolites that are responsible for the essen-

tial function of one gene of the five genes that become essential with TFA and metabolomics

data. Each of these four sets includes four metabolites from an overall set containing CMP, cho-

line, AMP, ATP, ADP and CTP. The bottleneck analysis allowed the identification of metabo-

lites involved in additional alternative sets of larger size (Materials and Methods, Table 2).

Overall, we identified 18 bottleneck metabolites whose concentration ranges played a criti-

cal role in the directionality of reactions in the ER and cytosol (Table 2). The bottleneck metab-

olites are phosphorylated nucleotides, sugar nucleotides, and intermediates in the production

of phospholipids that link the pyrimidine, aminosugar and phospholipid metabolism in P.

falciparum.

Two bottleneck metabolites are CTP and ethanolamine, which are involved in the synthesis

of phosphatidylethanolamine (PE) from ethanolamine through the Kennedy pathway (Fig 2).

The bottleneck analysis indicates that the directionality of the reactions and the essential func-

tion of the gene products in the ER and the Kennedy pathway are very sensitive to the concen-

tration values of CTP and ethanolamine. These metabolites impact the metabolism with

generic (broad) and experimentally measured (narrow) concentration values (Table 2).

TFA with metabolomics data rendered the Kennedy pathway thermodynamically infeasi-

ble. However, the genes of P. falciparum involved in the Kennedy pathway are expressed in the

blood stages [40], and evidence reported in the literature indicates that the Kennedy pathway

is essential in the rodent malaria parasite Plasmodium berghei [41], which further suggests that

Bioenergetics-based modeling of Plasmodium falciparum metabolism
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the pathway is functional. The analysis of thermodynamic bottlenecks identified CDP-ethanol-

amine, CDP and ethanolamine phosphate as the bottleneck metabolites that block the reaction

from CDP-ethanolamine to PE in the Kennedy pathway. Previous studies have also identified

a thermodynamic impediment in the Kennedy pathway based on metabolite concentrations

and have suggested channeling between ethanolamine phosphate and PE through the enzymes

E.C. 2.7.7.14 and E.C. 2.7.8.1 [42]. When we simulated the presence of such channeling in TFA

Table 2. Bottleneck metabolites and affected reactions that determine the essential function of eight genes in iPfa.

Essential Gene (E.

C.)

Min. set of bottleneck

metabolites

Reaction impacted after

integration of the bottleneck

metabolites concentration

ranges1 (Reaction

directionalities2)

All bottleneck metabolites

among alternatives

Data set description

PF3D7_1415700

(2.3.1.50)

(i) CTP[r], Ethanolamine[c] (Table SIII A and Table SIII D in S1

Methods)

CTP[r], Ethanolamine[c],

Ethanolamine[r]

Required lower bound of

0.1 μM(i) CTP[r], Ethanolamine[r]

PF3D7_0111500

(2.7.4.-)

(i) UDP-N-acetyl-D-

glucosamine[c], UTP[c], UDP-

glucose[c], UDP-D-galactose[c]

(Table SIII B and Table SIII D in S1

Methods)

UDP-N-acetyl-D-glucosamine[c],

UTP[c], UDP-glucose[c], UDP-D-

galactose[c]

Required lower bound of

1 nM

PF3D7_0928900

(2.7.4.8)

(i) GTP[c] (Table SIII C and Table SIII D in

S1 Methods)

Diphosphate[c], GTP[c],

2,5-Diaminopyrimidine

nucleoside triphosphate[c], GDP-

mannose[c]

Required lower bound of

1 fM(ii) 2,5-Diaminopyrimidine

nucleoside triphosphate[c]

PF3D7_0927900

(4.1.1.65)

(i) CDP[r], CDP-ethanolamine

[r], Ethanolamine phosphate[r]

R02057_r (B) CDP[r], CDP-ethanolamine[r],

Ethanolamine phosphate[r]

MS 2012 [21]

R01468_r (B)

R02038_r (B)

T_c_to_r_C00189 (B)

R02055_r (F)

T_c_to_r_C00065 (F)

T_c_to_r_C00011 (R)

PF3D7_1351600

(2.7.1.30)

(i) CMP[r], Choline[r], AMP[r],

ADP[r]

R01021_r (F) CMP[r], Choline[r], AMP[r], CTP

[r], ADP[r], ATP[r]

MS 2012 [21], NMR 2009

[19], NMR 2014 only

strains 3D7, 7G8, C2

(GC03), C4(Dd2), C6

(7G8) [20]

R01890_r (F)

R01321_r (F)

(ii) CMP[r], Choline[r], AMP[r],

ATP[r]

R01280_r (F)

R00127_r (F)

R00094_r (F)

(iii) CMP[r], Choline[r], AMP[r],

CTP[r]

T_c_to_e_C00116 (F)

T_c_to_r_C00111 (F)

R00842_r (R)

(iv) CMP[r], Choline[r], CTP[r],

ADP[r]

R00847_r (R)

T_c_to_r_C00013 (R)

T_c_to_r_C00116 (R)

PF3D7_1419800.1

(1.8.1.7)

(i) AMP[r], ATP[r] R00094_r (F) ADP[r], AMP[r], CDP-choline[c],

ATP[r], CTP[r], CTP[c], CMP[r]

All the data [19–21]

R01280_r (F)

PF3D7_0923800.2

(1.8.1.7)

R00127_r (F)

T_c_to_r_C00111 (F)

PF3D7_1216200

(1.1.1.21)

R00842_r (R)

T_c_to_r_C00013 (R)

1Reaction names as defined in iPfa. Metabolic reactions are defined with their R-5 digit identifier as obtained from the KEGG database. Transport reactions

are marked with T_. Cellular compartments are defined with the reaction name: _r, endoplasmic reticulum; _c, cytosol; _e, extracellular (outside the

parasite’s cell)
2Reaction directionalities obtained with Thermodynamic Variability Analysis (TVA): (B) blocked, (F) forwards, (R) reverse. See the S4 Table for the reaction

description.

doi:10.1371/journal.pcbi.1005397.t002
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(Materials and Methods and S1 Methods), the Kennedy pathway became feasible (Fig 2) and

the phosphatidylserine carboxylase (E.C. 4.1.1.65) is predicted as non-essential (further discus-

sion in S1 Methods). These results demonstrate how TFA and the bottleneck metabolite analy-

sis can be used to integrate biochemical studies and hypothesis testing.

Study of nutritional requirements with iPfa

Obligate intracellular parasites, such as P. falciparum, depend on the availability of a broad

array of metabolites provided by the host cell and its surroundings. To characterize the nutri-

tional requirements of P. falciparum, we followed and extended the approach previously

applied to the related pathogen T. gondii to study the in silico minimal medium (IMM) [3].

The in silico minimal medium (IMM) in iPfa. We used iPfa and an in silico rich medium

composed of 236 substrates (S1 Methods) and searched for the IMM, defined as the minimum

number of substrates required for growth [3]. The minimum number of substrates was 23, and

there are 10,032 such IMM sets, which are generated by the alternative combination of only 52

substrates (S1 Methods, Table 3). We further identified 16 constitutive substrates, i.e., metabo-

lites that were present in all alternative IMMs, and 36 non-constitutive substrates, i.e., metabo-

lites that varied in each alternative IMM. In theory, one would expect 36!/((36–7)!�7!) =

8,347,680 combinations (S1 Methods); the relatively small number of alternatives suggests a

limited ability of the 36 substrates to substitute for each other.

Next, we investigated the reasons for the limited number of alternatives. Given the require-

ment of minimal utilization of substrates in the IMM studies, one would expect that some of the

non-constitutive substrates that do not appear in the same IMM could substitute for each other.

We created groups of non-constitutive substrates that did not belong to the same IMM and

found that 20 of the 36 components were substitutable, suggesting that each of these compo-

nents serve a specific biosynthetic requirement. However, ten can be substituted by one or more

than one substrate in the IMM, which indicates that they serve multiple biosynthetic needs. For

example, S-adenosyl-L-methionine can be substituted by S-adenosyl-L-homocysteine alone, or

by two substrates simultaneously. In the latter case, one substrate is a source of the purines, such

Fig 2. Bottleneck metabolites and substrate channeling in the production of PE. Arrows denote

reaction fluxes. Circles define metabolites. Reactions are described by their 4-digit E.C. identifier. (*) are

bottleneck metabolites.

doi:10.1371/journal.pcbi.1005397.g002
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as adenine, guanine, hypoxanthine or xanthine, and the other serves as a source of carbon in the

form of a ribose, such as nicotinate D-ribonucleoside or N-ribosylnicotinamide (Materials and

Methods). This result demonstrated that the non-appearance of two substrates in the same

IMM is a necessary but not sufficient condition to define the substrate substitutability.

We further searched for a measure that could determine whether two substrates are substi-

tutable and found that the molecular structure of the 36 non-constitutive substrates could

provide information on this criterion. Specifically, we identified eight common molecular sub-

structures (here referred as backbone moieties) among the non-constitutive substrates, which

allowed us to cluster the 36 non-constitutive substrates of the IMM (Table 3). Twenty-six sub-

strates contain a unique backbone moiety out of five backbone moieties (Table 3). Importantly,

substrates that contain the same unique backbone moiety are substitutable. Ten substrates

contain two out of three backbone moieties (Table 3). These substrates can be substituted by

one or more than one substrate in the IMM, as in the case of S-adenosyl-L-methionine dis-

cussed above.

The identification of the backbone moieties sheds light on the metabolic capabilities of P.

falciparum. Analysis of the metabolic fate of the backbone moieties suggested that the cell may

Table 3. Composition of the in silico minimal media (IMMs) that allow growth of iPfa and essentiality.

Constitutive metabolites of the IMM Essential1

Source of amino acids L-Isoleucine; Oxyhemoglobin E; NE

Source of inorganic sulfur Sulfate; Sulfur donor E; E

Source of inorganic iron Heme NE2

Cofactors and others not synthesized de

novo

Biotin; Methylcobalamin; Thiamine; Cholesterol E; E; E; E

Precursors for lipoylation Lipoate; Apoprotein E; E

Precursors of lipid components Choline; N-Acylsphingosine E; NE2

Precursor of FMN/FAD Riboflavin E

Precursors of isoprenoids 4-Hydroxybenzoate; HCO3- E; E

Non-constitutive metabolites of the IMM3

Source of inorganic phosphate Orthophosphate or Diphosphate NE2

Precursors of CoA Pantothenate or Pantetheine or N-((R)-Pantothenoyl)-L-cysteine E

Source of pyridine ring (* and source of

carbon)

Nicotinate D-ribonucleoside* or N-Ribosylnicotinamide* or Nicotinate or Nicotinamide E

Source of DNA nucleotides (* and source

of carbon)

S-adenosyl-L-methionine* or S-adenosyl-L-homocysteine* or S-adenosylmethioninamine* or

Se-adenosyl-L-selenohomocysteine* or Adenosine* or Inosine* or Guanosine* or Xanthosine*
or Adenine or Guanine or Hypoxanthine or Xanthine

NE2

Source of folate and derivatives Tetrahydrofolate (THF) or 5,10-MethyleneTHF or 10-FormylTHF or 5-MethylTHF or

5,10-MethenylTHF or Dihydrofolate or Folate or Dihydropteroate or 4-Amino-4-deoxychorismate

or Chorismate or 4-Aminobenzoate

E

Source of pyrimidine ring (precursors of

UMP)

Orotate or (S)-Dihydroorotate E

Source of C2/C4 for acetyl-CoA

(precursors of nucleotide sugars)

Acetate or L-2-Amino-3-oxobutanoic acid E

1Phenotype observed in the simulation after one-by-one depletion of the substrate or group of substrates in the in silico rich medium of 236 substrates: E,

essential; NE, non-essential.
2See the next result section for explanation.
3The 10,032 alternative IMMs are generated through the combination of the constitutive metabolites and one non-constitutive metabolite from each group

reported in Table 3. Note that the following constraints in the combinations should be considered: (a) the IMM should provide a ribose-containing molecule,

which serves as source of carbon (marked with * in Table 3) and (b) the presence of orthophosphate and S-adenosylmethioninamine in the same IMM is not

allowed (S1 Methods for more details).

doi:10.1371/journal.pcbi.1005397.t003
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not be able to synthesize these backbone moieties de novo and must scavenge them from the

substrates provided by the host cell. For example, the IMM analysis correctly identified the fol-

lowing nutritional requirements: the substrates pantothenate [43], hypoxanthine [44] or nico-

tinate [45], which are provided by default in vitro to maintain the cultures of P. falciparum
[46]. However, our analysis suggested that each of these molecules could be substituted with

other derivatives (Table 3). Nicotinate belongs to a group of substitutable substrates, which

includes nicotinamide, nicotinate D-ribonucleoside, and N-ribosylnicotinamide. The four

substrates contain the pyridine ring as a backbone moiety and this ring is also preserved in the

final NAD+ molecule and its derivatives. Similar observations were obtained for the remaining

backbone moieties (see next result section). Additionally, intraerythrocytic parasites rely on

the uptake of exogenous niacin to synthesize NAD+ via the canonical Preiss-Handler salvage

pathway [45]; however, to our knowledge, no one has studied the possibility of its substitution

with D-ribonucleoside or N-ribosylnicotinamide, or with other molecules that provide the

corresponding backbone moiety required for growth. The malaria parasites might be able to

use a medium with fewer metabolites that contain the essential backbone moieties. Hence, the

knowledge of nutritional requirements based on molecular structures will be used to simplify

to its maximum extent the medium formulation, design synthetic media [47], and study the

uptake mechanism and the metabolic fate of the backbone moieties.

Essentiality of IMM components. Although the components of the IMM serve all the

essential functions in iPfa, they may not be essential when a rich medium of 236 substrates is

available because other substrates could substitute for them. We removed one constitutive sub-

strate at a time from the rich medium and found that 13 of the 16 constitutive substrates were

essential, i.e., they are also required in a rich medium (Table 3). The other three substrates are

heme, oxyhemoglobin, and N-acylsphingosine. They need more than one alternative substrate

for their synthesis by the cell, e.g., heme. Or they serve as a single source of multiple compo-

nents that are available in the rich medium or can be derived from it, e.g., hemoglobin, a

source of various amino acids that exist in the rich medium.

To identify the essential functions served by the non-constitutive components of the IMM

(Table 3) in iPfa, we analyzed the essentiality of the backbone moieties present in these compo-

nents. Here, we removed the whole set of molecules that contained a backbone moiety (one

moiety at a time) from the rich medium and found that five of the eight backbone moieties

identified in the IMM were essential. This result suggests two fulfilled conditions for the five

backbone moieties. There is a lack of other molecules (besides the 36 non-constitutive sub-

strates of the IMM, Table 3) in the rich medium that can directly provide the five moieties, and

P. falciparum is unable to synthesize the moieties from any other substrate available in the rich

medium.

The essentiality analysis of the backbone moieties also indicates that other molecules

(besides the 36 non-constitutive substrates of the IMM, Table 3) in the rich medium could pro-

vide three of the eight backbone moieties. The three backbone moieties are the sources of car-

bon, phosphate, and purines. We next performed iterative IMM analyses until we found new

sets of substrates that provided the three backbone moieties (Fig 3). Interestingly, all of the

new sets of substrates contained the three backbone moieties (Fig 3). The essentiality analysis

(Materials and Methods) of all molecules that contained the three backbone moieties con-

firmed that these three backbone moieties are also essential. This observation suggests that iPfa

does not possess the biosynthetic capabilities to produce the three backbone moieties and indi-

cates that P. falciparum must scavenge the eight backbone moieties from the host cell or its

surrounding.

We validated our results with available experimental work on the nutritional requirements

of P. falciparum [43, 46, 48–51]. Although glucose, hypoxanthine, and pantothenate are

Bioenergetics-based modeling of Plasmodium falciparum metabolism
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known to be the preferred carbon, purine, and CoA sources respectively [43, 51], we have

identified for the first time all alternative metabolites that are thermodynamically allowed to

serve these functions (Fig 3). We further suggest that P. falciparum might use acetate or

2-amino-3-oxobutanoate to produce acetyl-CoA in the cytosol, which is then converted into

the biomass building block UDP-N-acetyl-D-glucosamine.

Orotate is an intermediate metabolite in the canonical and highly conserved biosynthetic

pathway of UMP, a common precursor of pyrimidine nucleotides. TFA of iPfa suggested that

the biosynthetic pathway of pyrimidines is thermodynamically infeasible and hence the orotate

backbone moiety, provided by orotate and (S)-dihydroorotate, needs to be taken up. However,

the biosynthetic pathway of UMP, which involves six enzymes, is known to be functional [40]

and essential in Plasmodium spp. given that the malaria parasites cannot salvage pyrimidines

[50, 52]. We performed a comparative FBA against TFA to identify the thermodynamically

constrained reaction(s) and found that the dihydroorotase reaction (DHOase, E.C. 3.5.2.3),

which produces (S)-dihydroorotate from carbamoyl-L-aspartate, was not thermodynamically

feasible. The malarial enzyme DHOase shares some characteristics with both types I (e.g.,

mammals) and II (e.g., Escherichia coli) enzymes [53]. Previous experimental [54] and compu-

tational [55] studies in DHOases of type II have hypothesized that channeling exists from car-

bamoyl phosphate to (S)-dihydroorotate through the enzymes E.C. 2.1.3.2 and E.C. 3.5.2.3.

When TFA was used to simulate the presence of such channel in iPfa (Materials and Methods

Fig 3. Nutritional requirements of P. falciparum concerning essential backbone moieties. Note: the presence of orthophosphate and S-

adenosylmethioninamine in the same medium is not allowed. When P. falciparum grows on orthophosphate and S-adenosylmethioninamine as the only

sources of phosphate and purines, it cannot synthesize enough ATP. The ATP limitation impedes the production of other phosphorylated nucleotides, sugar

nucleotides, sphingomyelin and phospholipids in the stoichiometrically required amounts. As suggested throughout the manuscript, these metabolic

processes are thermodynamically dependent (more details in the S1 Methods).

doi:10.1371/journal.pcbi.1005397.g003
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and S1 Methods), the pyrimidine biosynthetic pathway became thermodynamically feasible,

and this backbone moiety could be synthesized by the parasite. Interestingly, previous attempts

to develop the malaria parasites axenically have suggested that orotate incorporation can be

used as a direct measurement of parasite development [50]. The presence of orotate in the

medium has been shown to inhibit the function of the DHOase enzyme [53].

Gene essentiality studies in the IMM. The essentiality of the medium components sug-

gests a complex interplay between the chemical structure of the substrates and the catalytic

capabilities of the cell. To identify these links in P. falciparum, we evaluated single gene essenti-

ality in iPfa for each of the alternative IMMs (S1 Methods). We identified 96 essential genes;

the 63 genes predicted to be essential in the in silico rich medium (less restrictive condition)

(S2 Table) remained indispensable in the alternative IMMs (more restrictive condition). We

identified nine essential genes that were common in all IMMs (S5 Table), and the remaining

24 essential genes were distributed among the alternative IMMs with the number of genes

varying among the alternative IMMs (S5 Table).

Discussion

In this work, we reconstructed a GEM for P. falciparum and performed thermodynamics-

based flux analysis to study the essential metabolic capabilities and the nutritional require-

ments of the parasite. Besides, we identified thermodynamic bottlenecks and hypothesized

substrate channeling in the metabolic pathways. The results from this work, which have been

compared with available experimental evidence, demonstrate that iPfa and its TFA can be

used to fill in the knowledge gaps regarding the critical aspects of P. falciparum metabolism.

The highest accuracy score (59%) in the prediction of essential genes for growth was

obtained using TFA with metabolomics data. Such approach revealed up to 63 lethal genes

and 26 synthetic lethal pairs in iPfa (S2 Table and S3 Table). Existing empirical evidence sup-

ports the essential function of 35 genes, and 26 genes have been targeted with antimalarial

drugs. Our analysis identifies 28 essential genes for which no experimental validation was

found in the literature. Previous studies have hypothesized the essential function of 15 of the

28 genes. Overall, 13 essential metabolic capabilities had not been previously identified and

one of them, which is critical for the production of cardiolipin, is not similar to any human

protein (S2 Table). The 28 non-supported predictions require further testing for their valida-

tion as potential antimalarial drug targets, as suggested in the iterative cycle of systems biology

[11].

The analysis of metabolic tasks identifies the effect of the gene knockouts on the parasite’s

growth and suggests that the disruption of the 63 essential genes impair the production of up

to 30 biomass precursors (S2 Table). When thermodynamics is taken into account, the number

of metabolic tasks impacted by the knockout of one gene increases and it provides additional

evidence for the complex interactions between genes, reactions, and metabolites in the meta-

bolic networks. Such is the case of genes required to produce pyrimidines, such as the oroti-

dine 5’-monophosphate decarboxylase, which represents an attractive antimalarial drug target

(S2 Table). The knockout of orotidine 5’-monophosphate decarboxylase in iPfa impedes the

assembly of pyrimidines, sugar nucleotides, and some DNA nucleotides. This result suggests

the thermodynamically dependent function of the metabolic pathways producing phosphory-

lated nucleotides and sugar nucleotides in P. falciparum.

We identify eighteen bottleneck metabolites in iPfa, whose intracellular concentrations

determine the directionality of a set of reactions and render eight genes essential (Table 2).

The bottleneck metabolites are phosphorylated nucleotides, sugar nucleotides, and intermedi-

ates in the production of phospholipids. The concentrations of the bottleneck metabolites play
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a critical role on the directionality of reactions in the cytosol and ER that are mainly involved

in the production of phospholipids. Specifically, the genes identified as essential were required

to maintain the redox and energy balance in the ER. Additional analysis using the TFA frame-

work helped us quantify the effect of the metabolite concentrations on the reaction directional-

ities and can guide future metabolomics studies on the malaria parasites (S1 Methods, S1

Dataset). The results of these studies further suggest that there exists in P. falciparum a thermo-

dynamic dependency between the production of phospholipids, phosphorylated nucleotides,

and sugar nucleotides through the concentrations of the bottleneck metabolites. The knowl-

edge of metabolic subsystems that are thermodynamically dependent can be used to design

drugs that synergistically target these parts of the metabolism and prevent their metabolic reg-

ulation and rise of drug-resistant parasites.

Through the analysis of thermodynamic bottlenecks, we identify two thermodynamically

infeasible pathways, i.e. the Kennedy and the pyrimidine biosynthesis pathway, that are

functional in P. falciparum [40]. The presence of substrate channeling between ethanolamine

phosphate and PE in the Kennedy pathway and between carbamoyl phosphate and (S)-dihy-

droorotate in the pyrimidine biosynthetic pathway turns them thermodynamically feasible.

Hypotheses on substrate channeling through these pathways have been suggested in other cell

types based on the metabolite concentration levels and thermodynamic studies [42, 54, 56].

We demonstrate that network thermodynamics can provide a framework for integrating and

testing hypotheses on enzyme mechanisms and their function in metabolic networks [14, 16].

The final validation of substrate channeling in P. falciparum requires the experimental charac-

terization of the enzymatic mechanisms using techniques such as isotope dilution [18].

The definition and identification of the IMM provide important insight into the nutritional

requirements of P. falciparum. The IMM analysis suggests that P. falciparum requires at least

23 substrates for growth and 13 of them are indispensable (Table 3). Certain substrates, such

as pantothenate [43], hypoxanthine [44] and nicotinate [45], which are provided by default in
vitro, might be substituted by other substrates to support growth. The ability of substrates to

substitute for each other is better understood by considering backbone moieties, which are

defined here as molecular substructures shared between substrates that can replace each other

to support growth. We find that eight backbone moieties exist in the metabolic network of P.

falciparum and that seven substrates can provide these eight backbone moieties. The analysis

of the requirement of the IMM components in a rich medium indicated that P. falciparum is

auxotrophic for the eight backbone moieties (S1 Methods). The malaria parasites might grow

on a medium with fewer metabolites that contain the essential backbone moieties. However,

not all combinations of substrates support the growth of P. falciparum. An infeasible combina-

tion involves orthophosphate and S-adenosylmethioninamine as the only sources of phosphate

and purines. These substrates do not allow the distribution of ATP for the production of phos-

phorylated nucleotides, sugar nucleotides, sphingomyelin and phospholipids (S1 Methods).

The knowledge of nutritional requirements based on molecular substructures will be used to

simplify to its maximum extent the medium formulation, design synthetic media [47], and

study the uptake mechanism and the metabolic fate of the backbone moieties.

Based on available high-throughput gene knockout data for P. berghei [57, 58], we expect

that most of the genes that TFA predicted to be essential for P. falciparum development (S2

Table) will also be essential in vivo. The study of P. falciparum metabolism on particular life

stages metabolism will allow the identification of additional essential metabolic capabilities

and nutritional requirements, such as the need to uptake oleic acid [48]. New methods, such as

high-throughput gene knockout [57, 58] and metabolomics techniques, can be applied to Plas-
modium species and can provide large omics data sets on specific life stages of the malaria

infection. iPfa is an ideal scaffold to integrate such context-specific information and to perform
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integrative studies of P. falciparum metabolism. A future comparison of in vivo knockout

high-throughput data and the essentiality analysis on the IMM will advance our understanding

of the substrates that are accessible to the malaria parasite in the host. The GEM iPfa should be

further developed to keep it up-to-date, and the detailed description of the reconstruction pro-

cess provided in the S1 Methods serves as a reference for this purpose. Modifications of iPfa

will allow the study of context-specific cases, i.e., modeling of the blood stage or liver stage

metabolism [59] (S1 Methods).

In conclusion, the results from the TFA of iPfa fill a significant knowledge gap regarding

the essential metabolic capabilities and needs of P. falciparum. The studies on bottleneck

metabolites and substrate channeling provide hypotheses for future analysis of the endometa-

bolome and the enzyme mechanisms in malaria parasites. The model, the analysis framework

and the results presented here are a valuable resource that can facilitate the ongoing experi-

mental efforts to obtain a better understanding of P. falciparum’s physiology and identify

novel drug targets for antimalarial intervention.

Materials and methods

Reconstruction of iPfa

The P. falciparum 3D7 genome sequence was retrieved from PlasmoDB [60]. The enzymatic

functions of the proteins were annotated using the RAVEN Toolbox [24] (S6 Table). A detailed

description of the reconstruction process, the software and the data used is provided in the S1

Methods.

Flux balance analysis (FBA)

FBA is a well-established approach for the computational analysis of large-scale metabolic net-

works [9, 10]. FBA was performed on iPfa, with the maximization of biomass growth as the

objective function.

Thermodynamics-based flux analysis (TFA)

We integrated the thermodynamic properties of the metabolites and reactions in iPfa in the

form of thermodynamic constraints following the systematic approach defined within the

framework of Thermodynamics-based Flux Analysis (TFA) [13, 61, 62], which has been also

referred to as Thermodynamics-based metabolic Flux Analysis (TMFA) [13] and Thermody-

namics-based Flux Balance Analysis (TFBA) [15, 63]. Thermodynamic constraints determine

the feasible range of ΔrG’ and hence reduce the uncertainty in the reaction directionalities and

with it the feasible solution space that is characteristic of highly underdetermined problems

like the analysis of metabolic networks with Flux Balance Analysis (FBA). These constraints in

iPfa accounted for the intracellular conditions, like the pH, the membrane potential and the

intracellular concentration ranges of the metabolites (S1 Methods). TFA further allowed the

integration of experimentally measured concentration ranges of metabolites [19–22].

Integration of metabolomics data sets

We created a thermodynamically curated version of iPfa where we allowed the concentration

of every intracellular metabolite to vary between 1 μM and 50 mM, which is the physiological

range used in similar TFA studies [12, 13]. The concentrations of metabolites outside the

parasite cell were allowed to vary between 0.01 μM and 100 mM. We also generated various

thermodynamically curated versions of iPfa integrating one-at-a-time each of the ten metabo-

lomics data set considered in this study [19–21]. Nine metabolomics data sets were measured
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with NMR: eight were obtained from different isolates of P. falciparum trophozoite-infected

red blood cells [20] and one from isolated trophozoites [19]. The remaining data set was mea-

sured with LC-MS in isolated trophozoites [21]. The physiological or generic range of concen-

tration (defined above) was considered for a metabolite if no data was available in the

metabolomics sets. For the metabolites present in more than one intracellular compartment of

iPfa, the same concentration range was defined in all of these compartments. We also gener-

ated a combined metabolomics data set [19–22], in which one unique concentration range was

calculated for each metabolite appearing in multiple data sets. This unique concentration

range comprised all the measured concentration values for that metabolite, i.e. the minimum

value and the maximum value measured. Overall, there are absolute concentrations ranges for

a total of 61 metabolites [19–22].

We translated the reported values and measurement errors into ranges of concentration

expressed in mol/Lcell. The concentration ranges are integrated within TFA and constrain the

allowable ΔrG’ range of the reactions in which the metabolites participate and with it the flux

ranges of the neighboring reactions. We integrated the metabolomics data sets one-by-one

and simultaneously to study the number of bidirectional reactions and the predictions of

essential genes. The essential genes varied among data sets, and the data set measured with

LC-MS [21] and the combined metabolomics data set allowed the identification of the maxi-

mum number of essential genes.

Gene essentiality per metabolic task

This analysis allowed the identification of the metabolic tasks or biomass building blocks that

could not be performed or produced, respectively, upon knockout of the essential genes. The

analysis involved two steps: first, the essential genes for biomass growth were identified follow-

ing standard procedures (S1 Methods). Second, the disruption of each essential gene was

applied in iPfa, and the production of each biomass building block was tested. The building

blocks that could not be produced individually were identified. An MILP formulation was

defined to identify the groups of building blocks that could not be produced at the same time

due to stoichiometric requirements. A gene was defined as essential when its knockout led to a

specific growth rate slower than 10% of the optimal growth value predicted (S1 Methods). The

optimal growth value was the same in all scenarios, i.e. using FBA and TFA. The threshold

used does not have any impact on the identification of essential genes and reactions in this

study (see Fig SII A and Fig SII B in S1 Methods) since no knockouts led to in silico growth

reducing phenotypes. No additional filtering was applied to identify essential genes and pairs

of genes.

Comparison of predictions with experimental data

The genes predicted as essential in iPfa with FBA and TFA were compared with experimental

information available in the literature. We used primarily experimental data for P. falciparum
(in vitro) available in the literature. Information for other Plasmodium spp. was also used for

comparison. An accuracy score was calculated as (TP+TN)/(TP+TN+FP+FN), where TP (true

positive) and TN (true negative) define predictions that correctly simulate growth and non-

growth, respectively, based on the available experimental data. While FP (false positive) and

FN (false negative) describe predictions that incorrectly simulate growth and non-growth,

respectively. The accuracy score served to evaluate the prediction of essential genes. For the

predictions with TFA and metabolomics data integrated, an accuracy score of 59% is obtained

based on the data available for P. falciparum in the literature (references reported in S2 Table

and previous reviews [64]). Overall in the literature, we found information about the essential

Bioenergetics-based modeling of Plasmodium falciparum metabolism

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1005397 March 23, 2017 16 / 24



function of 71 genes out of the total 325 genes in iPfa. We also evaluated the predictions with

the available data from the high-throughput genetic screening of the mouse malaria parasite P.

berghei in the blood stages (PlasmoGEM data) [57, 58]. The accuracy score based on Plasmo-

GEM data is 51%, and it provides information for 233 orthologous genes out of the total 325

genes in iPfa.

We further tested whether the enzymes predicted as essential in iPfa are similar to any

human protein. We define similarity between the essential enzymes in iPfa and the human

proteome when there exists at least one matching protein in non-redundant human proteome

(txid9606) with the standard protein BLAST settings in the bioinformatics software blastp ver-

sion 2.6.0+ [65]: cutoff value 1E-10, matrix BLOSUM62 [66].

Sensitivity analysis on the concentration bounds in TFA

We reduced the lower bound ten orders of magnitudes (minimum intracellular concentration

of 0.1 fM) and increased the upper bound ten fold (maximum intracellular concentration of

500 mM). We then recalculated the feasible range of ΔrG’ and tested the gene essentiality of the

three genes. These are the three genes that were further identified as essential with TFA using

the generic concentration ranges (1 μM—50 mM) with reference to the FBA prediction (S2

Table). The minimum concentration bound required to predict each of the three genes as

essential with TFA was identified and reported in Table 2.

Identification of bottleneck metabolites

This study identified the metabolites responsible for the thermodynamic bottlenecks, which

determined the directionality of a set of reactions and allowed the identification of eight genes

as essential (Table 2). iPfa was used with generic concentration ranges (1 μM—50 mM) or

simultaneous integration of the experimental concentration ranges, and each of the eight

genes was knocked out separately (S2 Table). These models were feasible with FBA, but not

with TFA. An MILP formulation was defined to search for the minimal number of metabolites

whose concentration ranges should be relaxed to make the model feasible in TFA. All the alter-

native solutions were obtained, and the minimal sets were formed by picking one metabolite

from each alternative. The minimal set should involve at least one metabolite from each alter-

native. The metabolites that were shared among more alternatives appeared in the minimal

sets.

Thermodynamic Variability Analysis (TVA) and inference of reaction

directionality

The Gibbs free energy of a reaction (ΔrG’) is a measure of its thermodynamic potential and

based on the second law of thermodynamics, defines the thermodynamically feasible direction

under which the reaction can operate, defined as reaction directionality [14–16]. The ΔrG’
accounts for the standard Gibbs free energy of a reaction (ΔrG0’), which was calculated using

the group contribution method (GCM) [61, 62], and for the concentration of the metabolites

involved in the reactions. The uncertainty associated with the values of ΔrG0’ and the metabo-

lite concentrations is expressed within TFA in the form of ranges that ultimately define the

feasible range of ΔrG’ associated with each reaction. The range of ΔrG’ was known with Ther-

modynamic Variability Analysis (TVA) [13], which follows the same principles as the Flux

Variability Analysis (FVA) [67]. We applied TVA with a requirement of 90% of the optimal

growth. When the whole range of ΔrG’ is negative, then we define the reaction to be unidirec-

tional in the forward direction. When the range of ΔrG’ is positive and negative, then we define

the reaction as bidirectional.

Bioenergetics-based modeling of Plasmodium falciparum metabolism
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Substrate channeling integration within TFA

The presence of substrate channeling between two enzymes (E1 and E2) was simulated within

the TFA framework. The reactions R1 and R2 catalyzed by E1 and E2 were lumped to define an

overall reaction (L = R1+R2). The overall reaction eliminates the common intermediates and

recycled metabolites since they are produced in the first reaction R1 and consumed in the sec-

ond reaction R2 and vice versa, respectively. For example, if R1 involves the transformation

A + B! I + C and R2 is defined as I + D! P + B, the final lumped or overall reaction L is

defined as A + D! P + C. The overall reaction L does not involve the intermediate metabolite

I and the recycled metabolite B. It is important to note that reactions R1 and R2 should be first

defined in the direction that satisfies mass balances and allows flux through the pathway of

study. Then the lumped reaction can be formed. For a pathway of study that contains reactions

R1 and R2 the starting and product metabolites are usually A and P, respectively. Then, the

reactions R1 and R2 should be defined as A + B! I + C and I + D! P + B. Other definitions,

such as A + B! I + C and P + B! I + D, do not satisfy mass balances. In this study, the

reactions of the pyrimidine biosynthesis pathway and the Kennedy pathway were defined to

allow production of UMP and PE, respectively. The overall reaction was then allowed to be

bidirectional. Thermodynamic properties were calculated for the overall reactions and TFA

and Thermodynamic Variability Analysis (TVA) [13] were performed to determine the

thermodynamically feasible directionality of the overall reactions. Substrate channeling was

suggested when the directionality of the overall reaction allowed flux through the biosynthetic

pathway that would be otherwise thermodynamically infeasible. The directionality of the reac-

tions was known from the sign of the range in the ΔrG’ obtained from TVA.

Studies on in silico minimal medium (IMM)

The IMM analysis was performed following the strategy defined before [3]. Here, TFA was

applied with the combined metabolomics data set integrated into iPfa (S1 Methods).

Identification of groups of substrates that can substitute for each other

for growth

This study was performed on the substrates of iPfa to validate their ability to substitute for

each other and support growth. Groups of substrates were created based on the IMM analysis.

Substrates were grouped if they never appeared in the same IMM and presented a common

molecular substructure or backbone moiety. We validated these groups in two steps. First, we

tested that iPfa could not grow when all substrates in a group were removed from the in silico
medium of 52 metabolites identified in the IMM. Second, we tested that under such condi-

tions, the inclusion of each substrate of the group individually allowed simulated growth in

iPfa. This analysis was also performed in the rich medium of 236 substrates to validate the

groups of substrates that contained the three backbone moieties (the sources of carbon, phos-

phate, and purine).

The tools and methods used are described in more detail in S1 Methods.

Supporting information

S1 Methods. Describes in more detail the tools and methods used in this study.

(PDF)

S1 Table. Gap-filling reactions and alternatives that determine the thermodynamic feasi-

bility of the metabolic tasks in iPfa and the in silico rich medium. 1Gap-filling reactions

are defined with their R-5 digit identifier as obtained from the KEGG database. Transport
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reactions are marked with T_. Cellular compartments are defined with the reaction name: _r,

endoplasmic reticulum; _c, cytosol; _m, mitochondrion; _a, apicoplast. Note that the same

gap-filling reaction can be suggested for more than one metabolic task.

(XLSX)

S2 Table. Single essentiality predictions in iPfa. 1Genes predicted as essential for iPfa growth

in the in silico rich medium (composed of 236 substrates, S1 Methods). 2Life stage of the

malaria infection at which the experiment reported in the literature was performed: B, blood

stages; L, liver stage; M, mosquito stage. The experimental description of the gene is defined in

parenthesis: (e) essential; (gr) growth reducing; (ne) non-essential. 3Impact of the gene knock-

out on the metabolic tasks of iPfa is explainable based on the annotated function of the gene.
4This gene is involved in an essential pathway and is thus presumed to be essential. 5None of

the reactions associated with this gene is single essential; the gene is essential when two or

more associated reactions are knocked out. 6We define similarity between the essential en-

zymes in iPfa and the human proteome when there exists at least one matching protein in

non-redundant human proteome (txid9606) with the standard protein BLAST settings in the

bioinformatics software blastp version 2.6.0+ [65]: cutoff value 1E-10, matrix BLOSUM62

[66].

(XLSX)

S3 Table. Synthetic lethal pairs in iPfa. 1Pairs of genes predicted as essential for iPfa growth

with TFA and the MS data (2012, Vo Duy et al.) in the in silico rich medium (composed of 236

substrates, S1 Methods).

(XLSX)

S4 Table. List of reactions that become unidirectional with TFA. 1Reaction I.D. in iPfa. Cel-

lular compartments are defined after “_” in the reaction I.D.: (_c) cytosol, (_m) mitochon-

drion, (_r) endoplasmic reticulum, (_e) extracellular. Transport reactions are marked with

T_. 2Values of the standard Gibbs free energy of reaction (ΔG0') calculated with the group con-

tribution method (GCM), as explained in the S1 Methods. Note that ΔG0' does not determine

the reaction directionality. 3Reaction directionalities determined with Thermodynamic Vari-

ability Analysis (TVA). 4The reactions R02057_r, R01468_r, R02038_r, and T_c_to_r_C00189

are unidirectional (forwards) using TVA and generic concentration ranges, or blocked using

TVA and metabolomics data (see Table 2).

(XLSX)

S5 Table. Single essentiality predictions in iPfa among the alternative in silico minimal

media (IMMs). 1Genes predicted as essential for iPfa growth with TFA and the MS data (2012,

Vo Duy et al. [21]) in the alternative IMMs (10032 alternative IMMs, each composed of 23

substrates, see Table 2). 2Genes commonly essential in all alternative IMMs. 3If more than one

reaction is associated with the gene, one enzyme name was chosen.

(XLSX)

S6 Table. Genes of P. falciparum and associations with K-Orthology groups obtained with

the RAVEN Toolbox. 1Gene IDs were obtained from PlasmoDB. 2K-ID or Orthology groups

were obtained from the KEGG database. 3The E-value denotes the goodness of the annotation

to the assigned metabolic function. The annotation process is described in detail in S1 Meth-

ods.

(XLSX)

S7 Table. Localization evidence and scores for the genes in the draft metabolic network of

iPfa. 1Localizations from the ApiLoc database. Intracellular compartments are defined by
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letters, such as c, cytosol; m, mitochondrion; a, apicoplast; er, endoplasmic reticulum; fv, food

vacuole; e, extracellular space/parasitophorous vacuole; n, nucleus; ag, Golgi apparatus.

(XLSX)

S1 Dataset. Ranking of metabolites based on the Reduction of Uncertainty (RoU) in the

Gibbs free energy of the reactions (ΔrG’). The concentration range of each metabolite was

integrated separately in iPfa following two approaches. In the first approach, the concentration

of the metabolite was integrated at-a-time in all compartments of iPfa where the metabolite

appears (sheet S1 A and sheet S1 B in S1 Dataset). In the second approach, the concentration

of the metabolite was integrated separately in each compartment of iPfa where the metabolite

appears (sheet S1 C and sheet S1 D in S1 Dataset). The RoU in the ΔrG’ was calculated in both

approaches. The reactions in iPfa were ranked based on two ranking criteria: the number of

reactions impacted by each metabolite (sheet S1 A and sheet S1 C in S1 Dataset), and the global

RoU (sheet S1 B and sheet S1 D in S1 Dataset) as defined in the S1 Methods. Note: we consider

that a metabolite impacts a reaction if the RoU in ΔrG’ is higher than 0.1%.

(XLSX)
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