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Abstract

To understand how excitable tissues give rise to arrhythmias, it is crucially necessary to

understand the electrical dynamics of cells in the context of their environment. Multicellular

monolayer cultures have proven useful for investigating arrhythmias and other conduction

anomalies, and because of their relatively simple structure, these constructs lend them-

selves to paired computational studies that often help elucidate mechanisms of the

observed behavior. However, tissue cultures of cardiomyocyte monolayers currently require

the use of neonatal cells with ionic properties that change rapidly during development and

have thus been poorly characterized and modeled to date. Recently, Kirkton and Bursac

demonstrated the ability to create biosynthetic excitable tissues from genetically engineered

and immortalized HEK293 cells with well-characterized electrical properties and the ability

to propagate action potentials. In this study, we developed and validated a computational

model of these excitable HEK293 cells (called “Ex293” cells) using existing electrophysio-

logical data and a genetic search algorithm. In order to reproduce not only the mean but also

the variability of experimental observations, we examined what sources of variation were

required in the computational model. Random cell-to-cell and inter-monolayer variation in

both ionic conductances and tissue conductivity was necessary to explain the experimen-

tally observed variability in action potential shape and macroscopic conduction, and the spa-

tial organization of cell-to-cell conductance variation was found to not impact macroscopic

behavior; the resulting model accurately reproduces both normal and drug-modified conduc-

tion behavior. The development of a computational Ex293 cell and tissue model provides a

novel framework to perform paired computational-experimental studies to study normal and

abnormal conduction in multidimensional excitable tissue, and the methodology of modeling

variation can be applied to models of any excitable cell.
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Author Summary

One of the major challenges in trying to understand how arrhythmias can form in cardiac

tissue is studying how the electrical activity of cardiac cells is affected by their surround-

ings. Current approaches have focused on studying cardiac cells in vitro and using compu-

tational models to elucidate the mechanisms behind experimental findings. However,

tissue culture techniques are limited to working with neonatal, rather than adult, cells,

and computational modeling of these cells has proven challenging. In this work, we have a

developed a new approach for conducting paired experimental and computational studies

by using a cell line engineered with the minimum machinery for excitability, and a

computational model derived and validated directly from this cell line. In order to create a

model that reproduces the diversity, rather than simply the average behavior, of experi-

mental studies, we have incorporated a simple yet novel method of inherent variability,

and explored what types of experimental variation must be incorporated into the model

to recapitulate experimental findings. Using this new platform for paired experimental-

computational studies with inherent variability, we will be able to study and better under-

stand how changes in cardiac structure such as fibrosis and heterogeneity lead to conduc-

tion slowing, conduction failure, and arrhythmogenesis.

Introduction

One of the major challenges in the field of cardiac electrophysiology is quantifying the electri-

cal dynamics of myocytes in the context of their environment. The electrical activity of cardio-

myocytes in vivo is modulated by the other excitable and unexcitable cells to which they are

coupled, as well as the complex interstitial space in which they are embedded. Making multi-

site measurements of the transmembrane potential is technically difficult to perform in situ
and hence limited information is available to characterize the cells’ complex response to sti-

muli and drugs. One approach to studying excitable cells in context is to develop detailed in sil-
ico computational models of isolated excitable cells and tissues, and to use these models to

infer the behavior of the real cells on which they are based. In most cases, computational mem-

brane models are derived from experimental data obtained using various patch clamp tech-

niques, often performed in different labs, under different conditions and often in cells from

different species [1]. Moreover, because the details of the complex native tissue environment

are poorly understood, most computational tissue models make use of significantly simplified

representations of the native 3D tissue structure.

An alternative approach for studying cells’ electrical dynamics in context with other cells is

to use in vitro cell cultures. While typically limited to two dimensions and lacking a defined

interstitial space, cultured cell monolayers can reproduce many features of the natural tissue

through the manipulation of cell orientation, spacing and shape [2–5]; engineered monolayers

have previously been used to study complex phenomenon such as conduction block, re-entry

and spiral wave formation in 2D [6]. At present, these methods are limited to the use of neona-

tal cells as culturing of adult cardiac cells into confluent, electrically coupled monolayers has

proven difficult. Unfortunately, the intrinsic currents of neonatal cells have been difficult to

model as they change rapidly through development. As a result, there is currently no robust

and tractable framework for the careful comparison of computational predictions with biologi-

cally analogous experimental measurements in multidimensional tissue.

Kirkton and Bursac recently demonstrated the ability to genetically engineer a synthetic

excitable cell line through the addition of only two ion channels (Nav1.5 and Kir2.1) into the
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immortalized and non-excitable HEK293 cell line. They further were able to electrically

enhance the intercellular connectivity of these excitable HEK293 cells (named Excitable-293 or

Ex293 cells) by overexpressing connexin-43 gap junctions to form an excitable, engineered

monolayer capable of propagating action potentials [7]. These excitable monolayers were sub-

sequently used to study a wide range of electrophysiological behaviors such as reentry and con-

duction failure [8,9]. The limited number of ionic currents in these novel biological constructs

as well as their relative stability over time (compared to maturing neonatal cells) suggest the

strong potential to be modeled computationally with high fidelity.

Despite their monoclonal origin and relatively simple electrophysiology compared to adult

cardiomyocytes, Ex293 cells and tissues exhibit moderate variability in their action potential

characteristics (e.g. action potential duration, maximum upstroke velocity, etc) and conduc-

tion properties [7,9]. This observed variability results from a combination of beat-to-beat vari-

ability in single cells, cell-to-cell variability within a monolayer, and variability between

different tissue-cultured monolayers. While biological variability has a relatively moderate

impact on macroscopic conduction under well-coupled normal conditions [10–12], it will

likely play a more significant role in experimental scenarios replicating disease states such as

fibrosis, cellular uncoupling, reduced excitability, and premature stimuli [13]. As such, it is

important to consider intrinsic variability when developing computational membrane models

that are intended for the study of complex conduction behavior. In general, most computa-

tional models are constructed using mean experimental-derived properties, and efforts at

modeling variability have been focused on regional differences (epicardial vs endocardial, or

apex vs base) or on variability between isolated cells [14,15]; the concept of simulating tissues

with variable membrane properties has only recently been explored [12].

In this study, we expanded on the work of Kirkton and Bursac [7] by using published exper-

imental single cell and monolayer data to develop a computational model of the Ex293 cell

that can be used for future paired experimental-computational studies. In doing so, we exam-

ined what sources of variability were required in the model of this highly-simplified excitable

cell in order to reproduce experimental behavior. Our results show that the incorporation of

cell-to-cell and inter-monolayer ionic conductance variation as well as inter-monolayer con-

ductivity variation was necessary to reproduce the behavior of propagating action potentials in

Ex293 monolayers over a range of experimental conditions. Moreover, we demonstrate that

non-random spatial organization of cell-to-cell variation does not significantly affect macro-

scopic conduction, indicating that random spatial distribution of cell-to-cell ionic variation

can adequately capture the impact of experimental ionic variability.

Results

Development of the Base Membrane Model

The Ex293 membrane model includes four constitutive currents: the inward rectifying potas-

sium current (IK1, carried by the Kir2.1 channel) and the fast voltage-gated sodium current

(INa, carried by the Nav1.5 channel), both of which are transfected into HEK293 cells to create

the Ex293 line; as well as two endogenous HEK293 currents, a voltage gated sodium current

[16] and a delayed-rectifier potassium current [17–19]. As described in Methods, mathematical

descriptions of each current were formulated directly from previously reported mean experi-

mental data from Kirkton and Bursac [7] and others [16,17]. The inward rectifying potassium

current was modeled using a single activation gate and the resulting model is able to reproduce

the current-voltage curve for the peak K+ current (Fig 1A, dotted line) as well as the time

courses of potassium current elicited by a step change in membrane potential at room temper-

ature (Fig 1B). The transfected voltage gated sodium current was modeled with three identical
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activation gates, and one inactivation gate with fast and slow components. At room tempera-

ture (23˚C), the model is able to recapitulate the experimentally observed current-voltage

curve for the peak Na+ current (Fig 1C, dotted line) as well as the dynamics of the sodium cur-

rent in response to step changes in membrane potential (Fig 1D).

Fitting of the Membrane Model

Because the published electrophysiological data provides insufficient information to fully spec-

ify the Ex293 membrane model at 35˚C, a multiobjective genetic search algorithm was used to

Fig 1. Model recapitulates experimental current properties. (A,C) The Ex293 membrane model replicates (dotted line) the experimentally observed

peak current-voltage relationships (closed circles) of the transfected potassium and sodium channels at 23˚C. An increase in current density and shift in

voltage dependence is seen in the model at physiological temperature (dashed line) (B,D) The model (left panel) also replicates the dynamics of channel

activity (right panel). Note that the model conductances in panels B and D were selected to match the experimental traces; these are not the same as the

mean model conductances.

doi:10.1371/journal.pcbi.1005342.g001
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determine optimal values for several free parameters in order to match experimentally

observed conduction properties. Eight free parameters were fit using the genetic search tech-

nique, including the maximal current densities for each of the four currents and the bulk tissue

conductivity (see Table 1 for all fitted parameters). For each trial parameter set, conduction

was simulated in a two dimensional continuous monodomain (Fig 2A) using the Cardiowave

Table 1. Model optimization via genetic search algorithm (n = 9 runs).

Model parameter Mean (SD) Units Search Range

GNa 90.76 (0.77) mS/cm2 0–200

GK 6.623 (0.11) mS/cm2 0–30

GNa, wt 0.645 (0.052) mS/cm2 0–2

GK, wt 0.147 (0.022) mS/cm2 0–1

V1/2 for b1 (IK,wt activation) 16.29 (7.14) mV -20–40

k for b1 (IK,wt activation) 34.80 (4.44) mV 10–40

τb (IK,wt time constant) 0.56 (0.04) ms 0.01–1.0

σ (Bulk tissue conductivity) 1.143 (0.014) mS/cm 0–2

Root mean square error 1.11 (0.211) mV

Absolute CV error 0.068 (0.060) cm/s

Results using mean parameter estimates Units

Root mean square error 1.66 mV

Absolute CV error 0.116 cm/s

Results using selected parameter estimates Units

Root mean square error 1.109 mV

Absolute CV error 0.0001 cm/s

doi:10.1371/journal.pcbi.1005342.t001

Fig 2. Model action potential replicates experimental action potential. (A) Model fitting was performed by simulating conduction in a 2-D monolayer

and recording an action potential 6 mm from the stimulus site (asterisk). Dashed lines are isochrones of activation at intervals of 5 ms. (B) The action

potential generated by the fitted Ex293 membrane model (solid black line) replicates the morphology of the experimentally-recorded Ex293 action

potential from [7] (dashed gray line).

doi:10.1371/journal.pcbi.1005342.g002
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system [20], and two error functions: (1) the root mean square error of the simulated action

potential compared to a representative experimental action potential, and (2) the absolute

error in simulated conduction velocity (CV) were calculated. The genetic algorithm was exe-

cuted nine times, yielding different solutions, and the parameter set from each Pareto front

that minimized the mean square action potential error was selected.

Each run of the genetic algorithm required an average of 112 generations to converge; the

mean parameter values identified by the genetic algorithm across multiple runs are shown in

Table 1. While the genetic algorithm searched a large parameter space, multiple runs resulted

in parameter estimates with relatively little variability, indicating a strong likelihood that the fit

results recreate the biological behavior. The parameter set that provided the lowest mean

square error of action potential fit was used in the 35˚C model. Fig 2B shows that action poten-

tial generated by these parameter values reproduces the representative experimentally

recorded action potential with a high degree of accuracy, with a root-mean-square error of

1.109 mV and a CV error of 0.0001 cm/s. In addition, the simulated action potential replicates

several other metrics characterizing experimental action potentials obtained from multiple

cells (S1 Table, Columns 1 and 2).

Based on the genetic algorithm fits, the change in temperature from 23˚C to 35˚C resulted

in an approximately 3-fold increase in the INa maximum conductance, and a 50% increase in

the IK1 maximum conductance, which is in line with previous studies [21–23]. The total tem-

perature-induced changes in the current-voltage relationships of the INa and IK1 currents, due

to both temperature-dependent conductance changes (as determined by the genetic algorithm

fits) and temperature-dependent shifts in activation and inactivation (as determined based on

previous studies), are shown in Fig 1A and 1C (dashed lines). The model qualitatively matches

the net ionic current recorded experimentally during single-cell action potential (AP) clamp

recordings at 23˚C (S1A and S1C Fig). At 35˚C, the model shows temperature induced

changes in ionic currents (S1D Fig) including a substantial increase in inward sodium current.

Examination of the role of the individual currents shows that the INa current is responsible for

rapid depolarization while the IK1 current resists depolarization and is responsible for rapid

repolarization. In addition, the model suggests that an endogenous HEK293 potassium current

plays an important role in the repolarization of the Ex293 cell as its low outward current gives

the plateau phase of the action potential its shape, and lowers the membrane potential from

peak voltage (~ 20 mV) to a voltage where the transfected IK1 current activates and initiates the

rapid depolarization phase. In contrast, a relatively small endogenous sodium current within

HEK293 cells appears to only play a minor role in the Ex293 action potential.

Addition of Variation to the Base Model

To replicate the observed experimental variability in action potential and conduction proper-

ties, variation of ionic conductances and of tissue conductivity was incorporated into the

model by scaling model parameters by a factor randomly selected from a normal distribution

with a mean of one and a specified standard deviation. Action potential shape properties were

measured from a single location in the monolayer (i.e. a single node in the computational

grid), to compare to experimental data from sharp intracellular electrode recordings; conduc-

tion properties were measured by simulated optical mapping (see Methods) of 2-D computa-

tional monolayers. Experimentally observed variability in [7] was attributed either entirely to

cell-to-cell variation (each cell has slightly different properties), entirely to inter-monolayer

variation (each monolayer has slightly different properties), or to a combination of both types

of variation. The addition of cell-to-cell ionic conductance variation to the model with stan-

dard deviations of variation as high as 0.50 led to a small degree of variability in single cell
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maximum upstroke velocity that was insufficient to match that seen experimentally (variances

unequal by Levene’s test, p< 0.01) and almost no variability in either single cell action poten-

tial duration (APD) or macroscopic monolayer CV (Fig 3, Column 2). Cell-to-cell variation

was then eliminated and all experimentally observed variability was instead modeled as due to

inter-monolayer current variation. Random normal variation of the ionic conductances for

each monolayer with a standard deviation of 0.125 approximately replicated variability in sin-

gle cell APD; however, insufficient variability was seen in mean monolayer CV (p< 0.01), and

the lack of cell-to-cell variation resulted in insufficient variability in maximum upstroke veloc-

ity compared to experimental observations (p< 0.05) (Fig 3, Column 3)

A combination of inter-monolayer conductance variation and cell-to-cell conductance vari-

ation (termed “dual variation”) was explored. Random normal variation with standard devia-

tion of 0.125 was used to select each monolayer’s mean conductances, and within each

monolayer, further random normal variation with standard deviation of 0.125 was used to

Fig 3. Comparison of methods of modeling variability. Modeling of cell-to-cell conductance variation and inter-monolayer conductance variation

alone, or in combination (“dual variation”) is not sufficient to match all experimental variability. The addition of inter-monolayer bulk conductivity variation

(“triple variation”) allowed for the replication of experimentally observed variability in single cells (A and B), as well as in macroscopic conduction velocity

(C). Box plots to the left of each histogram indicate mean +/- one standard deviation. Asterisks indicate that variances are significantly different (p < 0.05)

from experimental variability, using Levene’s test for equal variances.

doi:10.1371/journal.pcbi.1005342.g003
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select ion channel conductances of individual tissue nodes (Fig 4B). The resulting conduc-

tances, when pooled across multiple monolayers, were normally distributed a coefficient of

variation of 0.177, comparable to that reported for current density in isolated cells (0.22 for IK

in Ex293 [7], 0.13 for the endogenous potassium current in HEK293 [17]), and well within the

range of intraclonal protein expression variation seen in monoclonal cell lines [24]. This for-

mulation was found to result in simulated variability that approximately matched experimen-

tally observed single cell upstroke velocity variability, as well as experimental APD variability;

however, dual variation failed to capture the degree of variability seen in the mean monolayer

CV (p< 0.05) (Fig 3, Column 4). Inter-monolayer conductivity variation (i.e., variation of

bulk tissue conductivity for each monolayer) was then added to the dual variation model to

yield “triple variation”. Each monolayer’s tissue conductivity was perturbed with random nor-

mal variation with standard deviation of 0.25. Ultimately, this combination of model parame-

ter variation was able to faithfully replicate the degree of variability observed experimentally in

macroscopic conduction properties (mean CV and APD) as well as the variability in experi-

mental single cell action potential properties (APD and maximum upstroke velocity) (Fig 3,

Fig 4. Modeling variability. (A) Types of variation and their relative impacts on measured properties. Significant linkages are shown with solid lines while

weak effects are shown with dashed lines. Types of variation marked with an asterisk are not described in depth but are included for completeness (B) In

order to model both cell-to-cell and inter-monolayer conductance variability, a mean monolayer conductance (black dashed line) is selected from a random

normal distribution (blue distribution). The conductance of each node within the monolayer is then selected from a random normal distribution around the

mean monolayer conductance (red distribution)

doi:10.1371/journal.pcbi.1005342.g004

Modeling an Excitable Biosynthetic Tissue for Paired Computational-Experimental Studies

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1005342 January 20, 2017 8 / 26



Column 5; and S1 Table). The effects of each type of variation on measured variability are sum-

marized on Fig 4A. While cell-to-cell variability is likely to remain constant between experi-

mental studies, the degree of experimental inter-monolayer variability, which depends on

culture conditions, initial cell seeding and monolayer confluence, will vary between experi-

mental preparations. Indeed, a moderate decrease in mean monolayer APD and CV variability

during 2Hz pacing was noted between experimental results in [7] and later studies in [9]. A

50% reduction in the inter-monolayer variability of ionic conductances and tissue conductivity

was necessary to match the experimental variability noted observed in [9].

A sensitivity analysis was performed to understand how variation in each of the Ex293 con-

ductances (see Eqs 3, 5, 7 and 8 and S2 Table) affect macroscopic conduction properties, and

to ensure that small perturbations in model parameters led to physiologically reasonable

behavior. Maximum channel conductances in monolayers with no variability were scaled from

0.5 to 1.5-fold, individually. Perturbations in the exogenous sodium current (INa) had a sub-

stantial, non-linear effect on CV and APD (S3 Fig), with a 40% decrease in conductance lead-

ing to a 35% decrease in CV and 24% decrease in APD, while a 40% increase in conductance

led to 17% conduction speeding and a minimal increase (6%) in APD. The effect of perturba-

tions in the exogenous potassium current (IK) on CV was nearly linear (R2 = 0.995) with a

slope of -0.17 (% change in CV / % change in conductance), while the effects on APD were

drastically non-linear (40% increase and decrease in conductance lead to 25% decrease and

79% increase in APD, respectively). The effect on APD is consistent with the dominant role of

the INa and IK1 currents in the upstroke and downstroke of the action potential, respectively.

In addition, during the action potential upstroke, the inward INa current that causes depolari-

zation is opposed by the outward IK1 current, which drives the membrane potential towards

rest; the effects of perturbations in INa and IK1 on CV are consistent with the roles of these cur-

rents during the action potential upstroke. In contrast with the effects of perturbation of the

exogenous currents, perturbations in endogenous currents (IK,wt and INa,wt) substantially

affected APD without significantly altering CV. This is consistent with the activity of the IK,wt

and INa,wt currents in the plateau and early repolarization of the action potential and the lack

of activity during the depolarization and late repolarization.

Evaluation of Dynamic Properties

The Ex293 model was validated over a range of experimental conditions that had been studied

previously [7–9]. For example, Kirkton and Bursac measured the CV and APD restitution by

examining the response of a monolayer to a premature stimulus delivered following pacing of

the monolayer at a constant rate. The restitution properties were obtained in the model by

stimulating a strip of tissue at 2Hz (S1) and applying a premature stimulus (S2) at incremen-

tally earlier times. Fig 5A shows that baseline mean Ex293 model is able to reasonably repro-

duce the experimentally observed CV restitution (Fig 5A) and APD restitution (Fig 5B) curves,

with R2 values of 0.97 and 0.82, respectively. The significant variability noted in experimental

APD restitution curves [9] is approximately replicated by the inclusion of cell-to-cell and

inter-monolayer variability in the Ex293 model (Fig 5, dashed lines represent one SD above

and below the mean).

Kirkton and Bursac also explored the effects of the ion channel blockers tetrodotoxin

(TTX) and barium chloride (BaCl2) on the Ex293 cells. Because both the exogenous and

endogenous sodium currents are sensitive to TTX [7,16], simultaneous perturbation of both

sodium channels is analogous to application of TTX in an experimental preparation. TTX

blocks sodium current in a dose dependent but not voltage sensitive manner [25]. While sup-

pression of the sodium currents in the model cannot be correlated with a specific TTX dose in
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the absence of an Ex293 TTX dose-response curve, the effect of simulated sodium channel

blockade (Fig 6B) is qualitatively similar to the response of Ex293 monolayers to TTX in Kirk-

ton and Bursac (Fig 6A) [7], with increasing sodium block leading to accelerating decreases in

CV and APD until conduction failed when sodium conductance was reduced by more than

45% (Fig 6B).

Barium chloride acts as a blocker of some potassium channels: while the transfected Kir2.1

potassium channels are sensitive to barium chloride [7], the endogenous potassium currents

in HEK-293 cells are not affected [26]; therefore, reductions in the transfected potassium con-

ductance are analogous to treatment of Ex293 cells with BaCl2. However, barium chloride

blocks potassium current not only in a dose-dependent manner, but also in a voltage-sensitive

manner [27–29]. Based on data from published figures from [27–29], a description of barium

chloride block was incorporated that reflects the variation in block as a function of membrane

potential (S4 Fig). Using this model, our simulated Ex293 monolayers behave similarly to

experimental monolayers when exposed to barium chloride (Fig 6C and 6D). As the potassium

current is blocked, there is an increase in CV up to 27.1 cm/s due to decreased outward current

(i.e., that opposes depolarizing inward sodium current) during the upstroke of the action

potential. When the potassium current at low membrane potentials is decreased by more than

75% (corresponding to a decrease by 26% at 0 mV), conduction slowing occurs, due to sodium

channel inactivation as the resting potential rises. Simulated barium chloride-induced reduc-

tion in potassium current also results in a up to 20-fold monotonic, exponential increase in

APD, as shown by Kirkton and Bursac [7].

Finally, because the IK1 conductance is dependent on extracellular potassium concentration

([Ko]), the effect of varying this concentration was also examined. While neonatal rat ventricu-

lar myocytes require a 12 mM increase in extracellular potassium before conduction fails,

experimental Ex293 monolayers experience conduction block when extracellular potassium is

increased by as little as 2 mM from 5.4 mM to 7.4 mM [30]. In our simulated Ex293 monolay-

ers, increases in extracellular potassium result in conduction slowing by up to 35.2% with a 1.6

mM increase in [Ko]; any further increase in extracellular potassium results in a failure to fire

Fig 5. Ex293 restitution behavior. The base model (solid line) is able to closely mimic the experimentally observed (open circles) conduction velocity (A)

and action potential duration (B) restitution profiles (R2 = 0.97 and 0.82, respectively). Model variability (dashed lines represent +/- 1 SD) approximates the

degree of experimental variability. Note that experimental data from [9] is plotted as mean ± s.d.

doi:10.1371/journal.pcbi.1005342.g005
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and propagate action potentials (Fig 7). This effect is due to a combination of increased IK1

conductance [31,32]; changes in the IK1 driving force due to an raised potassium reversal

potential; and sodium channel inactivation due to elevation of the resting membrane potential.

The threshold for causing conduction failure is lower than that observed experimentally. How-

ever, when the model is adjusted such that the change in resting membrane potential due to

changes in extracellular potassium are not perfectly Nernstian (based on data from Bailly et al.

[32], using a change in reversal potential of 51 mV per decade change in [K+]o, rather than 58

mV as predicted by the Nernst equation), the extracellular potassium concentration must be

increased by at least 2.2 mM to trigger conduction failure, comparable to the threshold

observed experimentally.

Examining Spatial Organization of Variation

Because monolayers and in vivo tissues arise from a smaller number of parent cells that divide

and grow to confluence, it is possible that cell-to-cell level variability is spatially organized

rather than randomly distributed. The impact of this spatial organization of variation on

Fig 6. Comparison of simulated channel blockade with experimental findings. Simulated blockade of the sodium

currents via TTX (B) and of IK1 current via barium chloride (D) qualitatively replicates the effects of experimental blockade (A:

experimental TTX; C: experimental BaCl2). Note that there is a sigmoidal relationship between drug dose and degree of

block, and that the x-axis of panels B and D has been inverse-sigmoidally transformed to allow for direct comparison of

simulated response and experimental results. Panels A and C from [7], used with permission.

doi:10.1371/journal.pcbi.1005342.g006
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macroscopic conduction was examined using an idealized scenario with a central region of

prolonged APD (due to reduced mean IK1 conductance) and reduced cell-to-cell variation.

The distribution of ionic properties in the remainder of the monolayer was adjusted such that

the overall distribution of IK1 conductance was not altered.

The addition of the central region of prolonged APD and reduced variance does not signifi-

cantly affect APD or CV during 1Hz pacing (Fig 8B). In addition, no statistically significant

change in restitution behavior or in minimum viable S1-S2 interval were observed (Fig 8C–

8E). Because it is well established that cell-to-cell variation is masked by strong coupling of the

tissue, we examined how spatial organization of variation affected macroscopic conduction in

tissue with functional decoupling via simulated, idealized fibrosis.

Fibrosis was simulated via the addition of a regular field of non-conductive obstacles (Fig

8A), which results in a 18.1% reduction of mean CV and 6.0% reduction in mean APD during

1 Hz pacing (Fig 8B), as well as exaggerated conduction slowing at shortened diastolic intervals

below 300 ms when compared to non-fibrotic tissues (normalized to 1Hz CV) (Fig 8D). In

addition, the tissue with regular fibrosis-like obstacles exhibits increased variability in conduc-

tion failure behavior compared to the control tissue: only 2.5% monolayers fail to conduct at

an S1-S2 interval longer than 100 ms in the control case, while in the fibrotic monolayer, 25%

fail at S1-S2 intervals greater than 100 ms (p< 0.05).

The addition of the central region with reduced variation and prolonged APD to the

fibrotic tissue results in no significant change in macroscopic conduction behavior at 1Hz or

in behavior at shortened diastolic intervals, beyond those observed in the fibrotic tissue alone

Fig 7. Conduction slowing due to increased extracellular potassium. An increase in extracellular

potassium concentration in experimental Ex293 monolayers leads to conduction slowing, and conduction

failure for concentrations greater than 7.4 mM (closed circles). The model shows similar behavior, but

conduction failure occurs at a lower concentration (open diamonds). When the model is modified to reflect

non-Nernstian changes in potassium reversal potential, conduction slowing more closely replicates

experimental observations (open squares).

doi:10.1371/journal.pcbi.1005342.g007
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Fig 8. Spatial organization of ionic variation does not affect macroscopic conduction. The introduction of a central region

with reduced variance and prolonged APD (A, red) into a tissue model with and without non-conductive fibrosis-like obstacles (A.

yellow) does not cause additional conduction slowing and APD shortening at 1 Hz pacing beyond the effect of fibrosis alone (B). A

fibrosis induced exaggeration of CV slowing (D), but not APD shortening (C), at short diastolic (S1-S2) intervals (plotted as

mean +/- standard error) is also unaffected by the spatial organization of variation. In addition, spatial organization maintains but

does not enhance premature failure, as characterized by minimum S1-S2 intervals able to fully conduct across the domain (E).

(* p < 0.05 main effect of fibrosis)

doi:10.1371/journal.pcbi.1005342.g008

Modeling an Excitable Biosynthetic Tissue for Paired Computational-Experimental Studies

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1005342 January 20, 2017 13 / 26



(Fig 8B, 8C and 8D). Further, the addition of a central region of prolonged APD and reduced

variance does not further increase failure variability (30% failure rate at S1-S2 interval greater

than 100 ms vs 25% in fibrotic tissue without central region).

Discussion

The goal of this work was the develop a mathematical model that allows for paired computa-

tional-experimental studies using a simple, synthetic excitable Ex293 cell, and to examine what

types of variability were necessary in the model to replicate experimentally observed behaviors

in both normal and abnormal conduction conditions. We modeled individual ionic currents

using Hodgkin-Huxley formulations and used a parallelized multiobjective genetic search

algorithm to identify unknown model parameters to recreate experimental action potential

traces. To capture the variability in the electrical properties of the cultured Ex293 cells, we

added random variation to current and tissue properties to replicate the degree of electrical

variability observed experimentally, and we validated the resulting model across a series of test

conditions. Our model captures both the mean behavior and the experimental variability of

the engineered cells in vitro over a range of conditions, opening the possibility of using this

novel computational/experimental framework to explore mechanisms of conduction failure

under a variety of conditions.

Developing Ex293 Membrane Model

Various groups have reported extensively on the presence of endogenous potassium ([17–

19,33–35]), sodium ([16,36]), calcium ([37,38]) and chloride ([34]) currents in HEK293 cells

[39]. In our model, we chose to include two of these currents: the endogenous potassium

current, which has been implicated in allowing spiking behavior in HEK293 cells expressing

exogenous sodium channels [40]; and the endogenous sodium currents of relatively large mag-

nitude whose presence would affect plateau behavior of the action potential. An in-depth dis-

cussion of the description of individual membrane currents is presented in Supplementary

Text 1. We have shown that Hodgkin-Huxley style currents definitions, as built using pub-

lished literature current descriptions and adapted to physiological temperatures, are sufficient

to faithfully reproduce both the single-current (Fig 1) and whole-cell properties (S1 Fig) seen

in experimental recordings.

In our studies, the membrane model’s free parameters (including current densities of each

current and temperature-dependent effects on the endogenous potassium currents) were fitted

to match a representative action potential recorded in a tissue cultured monolayer using a

microelectrode, by coupling a multiobjective genetic search algorithm [41–43] with 2-D con-

tinuous model simulations. While membrane models have traditionally been constructed in

the context of a single isolated cell, several groups have recently attempted to fit a propagating

action potential rather than one obtained from an isolated cell in order to account for the elec-

trotonic coupling of neighboring cells [44,45]. Kaur et al. demonstrated that two sets of param-

eters that generate nearly identical action potentials in an isolated cell model can generate

drastically different action potentials in a model of 2-D propagation [42]. In this work, we uti-

lized an approach of fitting both the action potential morphology and the tissue CV simulta-

neously by searching for the optimal membrane free parameters and the tissue bulk

conductivity. Recently, Johnstone et al. showed that fitting with a single action potential was

sufficient to accurately estimate up to 6 channel conductances [46], and as such, we believe

that our methodology that faithfully reconstructed the Ex293 action potential shape and CV

(Fig 2, S1 Table) also allowed us to accurately estimate true channel conductances.
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Introduction of Variation to Replicate Experimental Variability

Variability in ionic currents can lead to changes in steady state macroscopic conduction prop-

erties, as well changes in dynamic behaviors such as restitution [47], making its incorporation

into computational models critical to accurately predict behavior under arrhythmogenic con-

ditions. Variability in cardiac electrophysiological models has typically been considered on a

regional basis (i.e. atria vs ventricles, epicardial vs endocardial [48]); more recent work has rec-

ognized the important of modeling other sources of variability including beat-to-beat varia-

tion, cell-to-cell variation, and inter-subject variation, as each of these impact measured

electrical variability (Fig 8A). Several studies have developed populations of cell models with

cell-to-cell variability where model parameters are distributed in a range around the original

model parameter values [14,49]. However, the majority of these efforts have focused on model-

ing and studying isolated single cells, and studies that have developed models of tissues with

cell-to-cell variability have generally introduced variability to only a single current [10,50].

Recently, Walmsley et al. conducted a more comprehensive examination of the effects of beat-

to-beat variability and cell-to-cell variability in two dimensional tissue simulations and found

that while the effects of both are muted in well-coupled tissues, the effect of cell-to-cell variabil-

ity predominates as tissue coupling is reduced [12]. Finally, it is well-known that electrophysi-

ological properties vary between subjects, and models have been developed to capture this

variability by recreating experimental action potentials from different subjects [13,43,51], but

no models known to us have used the combination of inter-subject and within-subject varia-

tion to explain experimentally recorded variability.

In order to recreate previously reported experimental variability in Ex293 behavior, we

sought to identify the type and degree of variation that was required in the Ex293 model [7,9].

We chose to model only cell-to-cell variation and inter-subject variation because the effect of

beat-to-beat variation is largely masked by that of cell-to-cell variation [12,52]. Inter-subject

(with monolayers being considered as different subjects) variation of ionic currents could

result from small differences in culture conditions, as well as from variability in the properties

of cells used to initially seed each monolayer. In addition to inter-monolayer ionic conduc-

tance variation, we also considered inter-monolayer conductivity variation, which would

result from variability in monolayer confluence and degree of coupling at the time of experi-

mental recordings. We found that only combined “triple variation” in cell-cell conductance,

inter-monolayer conductance, and inter-monolayer conductivity was necessary and sufficient

to replicate experimental variability in single cell properties, and mean monolayer APD and

CV (Fig 3), as well as several other properties including resting membrane potential and action

potential amplitude (S2 Table, S5 Fig).

The need for multifactorial variation is congruent with analysis of experimental intra-mono-

layer variability (S2 Fig). Experimental variability in APD within a single monolayer is substan-

tially smaller than the variability between monolayers, indicating that the strong coupling

within each monolayer masks any inherent cell-to-cell APD variability. However, the degree of

cell-to-cell upstroke velocity variability within a single monolayer is comparable in magnitude

to inter-monolayer upstroke velocity variability, indicating that both forms of variation are

essential in recreating overall experimental variability. While a model that only considered

inter-monolayer variability could feasibly reproduce the range of macroscopically observed

conduction behavior under normal conditions, small differences in local upstroke velocity

could be crucially vital to determining macroscopic behavior (i.e. whether conduction block

occurs) under critical regimes of conduction such as reduced excitability and poor coupling.

While we incorporated variation as a normal distribution around the baseline model

parameters, others have previously used uniform variation on the range of [-100%,+100%] and
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performed a post-hoc screening to identify those models whose action potential properties fall

within predefined, experimentally-based inclusion criteria [15]. This approach is useful for

studying the relative contributions of each current and the interactions between currents, but

the post-hoc screening step makes it challenging to use this approach for the generation of

numerous tissue models with randomly generated cell-to-cell variability. Instead, we chose to

vary each model parameter around a baseline value determined using a representative action

potential recording, as described above, with a degree of variation selected to match the distri-

bution, rather than the range, of output properties. Both this method, and the uniform distri-

bution method with post-hoc selection resulted in a normal-like distribution of output

properties (S5 Fig, and Fig 3 of [15]). While our method of normally distributed variation

might be less suited for mechanistic or sensitivity analysis, it allows for the simulation of tissues

where the properties of each node are randomized and determined at the time of simulation

initiation without the need for calibration or screening.

Model Validation in Diverse Conditions

In order to use computational simulations and derive meaningful conclusions from their

results, the underlying model must be validated under conditions beyond a single action

potential measured at a regular pacing rate. It has previously been noted that variation in

channel conductance can lead to significant variation in restitution behavior [47] and this

effect is clearly seen in experimental restitution behavior. The Ex293 membrane model with

triple variation was able to closely match both the mean degree and the variability of experi-

mental restitution behavior (Fig 5) with CV restitution being recapitulated more closely

than APD restitution. We note that the model CV restitution curve is steeper than that of

APD restitution, a behavior that is seen across other experimental and computational stud-

ies; however, the Ex293 experimental APD restitution curve is much steeper than the CV

restitution curve, suggesting that additional study of this anomalous relationship is

warranted.

In addition to modeling restitution properties, we examined how tetrodotoxin (TTX),

barium chloride (BaCl2), and the extracellular potassium concentration ([K+]o) affect con-

duction in simulated Ex293 monolayers compared to experimental observations. The simu-

lated response of the Ex293 model to TTX and BaCl2 was qualitatively similar to that in

experimental monolayers (Fig 6). Under BaCl2 treatment, however, the minimum achieved

CV before failure was lower experimentally than in the model, and consequently, the experi-

mental results exhibited longer APD than the model. This is likely because the discrete

nature of experimental monolayers leads to local variation in conductivity that allows for

propagation of a slow, non-planar wavefront that cannot occur in a continuous representa-

tion of tissue. We also note that direct comparison of experimental and simulated results is

not possible in the absence of a dose-response relationship; as such differences in the shape

of the BaCl2 response curves may be due to scaling of figure axes, or to uncertainty in volt-

age-dependent model of BaCl2 block. Furthermore, the Ex293 model and experimental

monolayers behave similarly when subject to increased [K+]o, although the model failed to

conduct at lower [K+]o than experimental monolayers. This may be because the changes in

reversal potential due to changing [K+]o are slightly less than predicted by the Nernst for-

mula [32], which would lead to less sodium inactivation and facilitate conduction in cases

where the model predicted failure. Such modification of the model resulted in a [K+]o failure

threshold comparable to that observed experimentally, suggesting that modification of bio-

physical models to include “real-world” behavior is necessary in order to faithfully simulate

the complexity of experimental preparations.
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Impact of Spatial Organization of Variation

The importance of cell-to-cell ionic conductance variation in reproducing experimental vari-

ability raises the question of whether ionic properties should be varied randomly across a tissue

or whether a more complex spatial organization of variation is needed. Because in vitro and in
vivo tissues develop through the repeated growth and division of an initial population of cells,

it is conceivable that each tissue contains regions of reduced variance due to common cellular

lineage, paracrine effects, and local metabolic conditions. We thus analyzed an extreme case of

spatial organization, where the central region of the tissue exhibits reduced IK1 conductance

and reduced ionic conductance variance (Fig 8A) and found that the presence of a spatial orga-

nization of variation did not significantly impact conduction behavior in well-coupled mono-

layers (Fig 8B–8D). Because the strong coupling can mask effects of cell-to-cell variation, the

impact of functional decoupling of the monolayer through simulated fibrosis was examined.

Simulated conduction in fibrotic tissue with random cell-to-cell variation showed conduction

slowing at basal pacing rates, a further exaggerated slowing at shorter diastolic intervals, and

an increase in variability in the minimum diastolic interval able to sustain conduction across

the tissue (Fig 8B–8E), compared to control well-coupled tissue, in line with previous studies

[53,54]. The addition of spatial organization of variation to fibrotic tissue had no significant

impact on macroscopic conduction at 1 Hz pacing (Fig 8B), or at shortened diastolic intervals

(Fig 8C and 8D). In addition, conduction failure behavior in these tissues was similar to

fibrotic tissues without a central region (Fig 8E).

These results suggest that cell-to-cell variation can be incorporated randomly into a tissue

model without the consideration of the spatial distribution of that variation. In addition, while

it is clear that fibrosis increases arrhythmogenic potential by slowing conduction and inducing

premature conduction failure, it appears unlikely that the presence of fibrosis unmasks any

additional pro-arrhythmogenic effect from the variability of cellular properties of the underly-

ing tissue.

Conclusions

This study describes a new computational model of the engineered excitable Ex293 cell that

reproduces experimentally observed behavior in a range of normal and abnormal conduction

conditions. We have identified the key components of experimental variability that are neces-

sary to include in the model–namely, inter-monolayer conductivity variation, and cell-to-cell

and intra-monolayer ionic conductance variation—and implemented a simple yet novel

method of stochastic normal random variation to allow for the simulation of the full range of

experimental outcomes rather than simply the mean. While experimental approaches are lim-

ited in their ability to simultaneously gather data at high spatial and temporal resolution,

computational simulations can provide tissue-wide high resolution recordings that can help

elucidate the subcellular electrophysiological mechanisms behind observed macroscopic

behavior. As such, we believe that this paired experimental-computational platform will enable

unique future insights into the effects of microstructural variation on microscopic and macro-

scopic impulse conduction

Limitations

The computational model of Ex293 cell was developed under the assumption that the tissue is

a continuum rather than discrete structure with individual cells and sub-cellular regions. Such

a formulation may fail to capture the effects of changes in tissue properties or electrical behav-

ior that occur on the spatial scale of individual cells (for example, [55]). However, the valida-

tion studies were performed in well-coupled tissue and most tissue structural changes either
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occur on larger spatial scales (e.g. collagen deposition) or can be simulated via alteration of

local properties in the continuous model (e.g. tissue decoupling, cell death etc). In addition,

the Ex293 model can easily be incorporated into a discrete model of tissue structure, as previ-

ously described by our group [56], if necessary for further replication of experimental

observations.

Our model incorporates only two of the endogenous currents that have been identified in

HEK293 cells—the endogenous potassium and sodium currents. Chloride currents were

excluded from the model because they are poorly characterized under physiological condi-

tions, and there remains significant uncertainty as to their rectification behavior, calcium

dependence, and peak density. In addition, we chose not to include endogenous calcium cur-

rents because of their relatively small magnitude compared to the other currents [35]. The volt-

age dependence of the described endogenous calcium currents appears qualitatively similar to

that of the endogenous and transfected sodium currents [37], and given the transfected

sodium current conductance in our model is approximately 100x the literature-reported con-

ductance of the endogenous calcium current, exclusion of the calcium current from the model

likely had minimal effect, even in cases of partial sodium channel blockade.

While the degree of channel conductance variation is likely different for each channel type,

we considered a single degree of variation for all channels because of limited information into

each channel’s variability. In addition, our model does not incorporate cell-to-cell variability

in tissue conductivity. While the variations used in this work were able to reproduce the vari-

ability seen in experimental results, the degrees of inter-monolayer variation in different

experimental set will need to be modified to match specific experimental variability due differ-

ent culture conditions, monolayer seeding and handling.

Methods

Model Development

The excitable cell membrane of a single cell is modeled by the following differential equation:

Cm
dVm

dt
¼ � ðIstim þ IionicÞ ð1Þ

where Cm is the membrane capacitance, Vm is the transmembrane voltage, Istim is the externally

applied stimulus current, and Iionic is the sum of the individual ionic currents (whose dynamics

are described by a system of ordinary differential equations) that contribute to the action

potential:

Iionic ¼ INa þ IK þ INa;wt þ IK;wt ð2Þ

Transfected inward rectifying potassium current (IK1). The IK1 current was modeled

with a single activation gate, n, with fast and slow components (n1 and n2, respectively), and a

dependence on extracellular potassium concentration:

IK1 ¼ GK

ffiffiffiffiffiffiffiffiffiffi
½Kext�

5:4

r

ðf � n1 þ ð1 � f Þ � n2Þ ðVm � EKÞ ð3Þ

where f is a constant that describes the relative contribution of the fast activation component,

and [Kext] is the extracellular concentration of potassium. The steady state values of the activa-

tion gate (n1) was described as a function of membrane potential by a Boltzmann sigmoid

curve, n1 ¼ ð1 � nresÞ=ð1þ eðV� V1=2Þ=kÞ þ nres, where V is the membrane potential, V1/2 is the

voltage at which n1 = 0.5, k is the slope factor, and nres is the residual value of the gating
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parameter, independent of membrane potential. Parameters for the Boltzmann equation were

determined by fitting experimental data from Kirkton and Bursac [7], obtained as described

therein, corrected by subtracting currents measured in wild-type HEK293 cells using the same

protocols. The mean currents were then divided by the driving force (Vtest − EK), where EK is

the potassium reversal potential, and normalized before fitting to the Boltzmann curve.

Time constants of activation as well as the relative contribution of the fast and slow activa-

tion components were determine by fitting experimental voltage traces following step voltage

change from a holding potential of -40 mV. Voltage traces were converted to conductance

traces by dividing by the driving force (Vm − EK) and then normalized across all traces. Each

resulting conductance trace for test potential v was then fit to the equation:

gðv; tÞ ¼ n1ðvÞ f � 1 � e�
t

tn1ðvÞ

� �
þ ð1 � f Þ 1 � e�

t
tn2ðvÞ

� �� �
ð4Þ

where, n1 is the previously determined value of the activation gate at the test potential, τn1 and

τn2 are the unknown fast and slow activation time constants, respectively. Fitted values of τn1
and τn2 were then used to formulate a functional definition of the time constants as a function

of membrane potential.

A Q10 value of 1.419 was used to adjust model time constants to account for dynamic dif-

ferences between behavior at 23˚C and 35˚C, based on temperature dependence studies in

guinea pigs from Martin et al. [22]. In addition, a 8.25 mV left shift in the V1/2 of the potassium

steady state activation curves was determined by using data from Martin and by assuming lin-

earity in temperature dependence, as previously done by others [57].

Transfected fast voltage-gated sodium current (INa). The INa current was modeled with

three identical activation gates, and one inactivation gate with fast and slow components, simi-

lar to the work of Lindbald et al. [58]:

INa ¼ GNam
3 ðdh1 þ ð1 � dÞh2Þ ðVm � ENaÞ ð5Þ

where m is the sodium activation gate, h1 and h2 are the fast and slow components of the inac-

tivation gate, respectively, and d is a constant that describes the relative contribution of the

faster inactivation component. While both h1 and h2 have the same steady-state value (h1),

they differ in their rate of inactivation, τh1 and τh2. The steady state inactivation curve (h1)

was described by a Boltzmann sigmoid curve, fit to data from Kirkton and Bursac [7], obtained

by applying a 20 ms test pulse at -20 mV after a 500 ms inactivating pre-pulse at voltages rang-

ing from -130 mV to -40 mV. As explained in the Supplementary Text 1, the steady state activa-

tion curve, as well as activation and inactivation time constants were determined by fitting of

experimental sodium current recordings following depolarization from a holding potential

of -100 mV. The recordings were converted to conductance traces and normalized to the over-

all maximum conductance across all test potentials; the resulting traces were then each fitted

to the equation

gðv; tÞ ¼ m1ðvÞ
3 e�

t
tmðvÞ � h1ðvÞ � d � 1 � e�

t
th1ðvÞ

� �
þ ð1 � dÞ 1 � e�

t
th2ðvÞ

� �� �
ð6Þ

where h1 is the value of the previously defined sodium inactivation gate, and m1 was allowed

to be a fitted parameter along with the time constants of activation (τm) and inactivation (τh1
and τh2) as well as the relative contribution of the two inactivation components (d). The result-

ing steady state activation curve was normalized across voltages and based on its shape, fitted

to the form of the sum of two Boltzmann sigmoid curves. The inactivation time constants mea-

sured for test potentials above -45 mV were combined with time constants from recovery from

inactivation to define the functional definitions of the inactivation time constant.
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Time constants were temperature-adjusted using a Q10 = 2.79, as calculated by Ten

Tusscher et al. [57] using data from Nagatoma et al. [21]. Rightward shifts of 5.16 mV and 5.64

mV in the V1/2 of the sodium steady state activation and inactivation curves, respectively, were

determined using data from Nagatoma and by assuming linearity in temperature dependence.

Endogenous sodium current (INa,wt). The INa,wt current was modeled based on the

Hodgkin and Huxley formulation with three identical activation gates and one inactivation

gate.

INa;wt ¼ GNa;wto
3p ðVm � ENaÞ ð7Þ

Because of limited experimental data on the endogenous channel in Kirkton and Bursac

[7], the steady-state activation and inactivation curves as well as the relevant time constants for

the endogenous sodium current were derived from the findings of He and Soderlund [16].

The inactivation curves was right-shifted by 5.76 mV to account for difference in temperature,

and time constants were scaled with a Q10 of approximately 3 based on temperature depen-

dence data of Nav1.7 channels from Han et al. [59],

Endogenous potassium current (IK, wt). The IK, wt current was modeled using the form

of a slow delayed rectifier current from Ten Tusscher et al. [57], with two identical activation

gates:

IK;wt ¼ GK;wtb
2 ðVm � EKÞ ð8Þ

The steady state activation curve and activation time constant were determined by fitting to

activation data at 22˚C from Yu and Kerchner [17]. Because the molecular identity of the

endogenous potassium current is unknown [19], temperature-dependent changes in the acti-

vation curve and the time constant were used as free parameters during the fitting process.

Model Fitting

A multi-objective genetic search algorithm was used to identify the optimal ion channel con-

ductances, tissue conductivity and other free parameters necessary to reproduce the experi-

mental action potential waveform and CVs in Ex293 monolayers. An initial population of 600

“parent” parameter sets was generated by randomly choosing values from the physiologically

reasonable search range for each parameter (Table 1). A custom MATLAB script ran the 2-D

tissue simulation for each trial parameter set (see Numerical Methods), and computed the val-

ues of the two error functions: the root mean squared error (RMSE) between an experimental

AP recording and the simulated AP, and the absolute difference between the experimental and

simulated CV. 2-D simulation was performed in a 140 node x 140 node monolayer (dx = dy =

50 micron) with no-flux boundary conditions. The tissue domain was paced at 1Hz at one cor-

ner and the action potential tracing of the third action potential from a node 0.6 cm diagonally

from the stimulus site was recorded. CV was determined from activation times (50% AP

amplitude) at nodes 0.2 cm and 0.8 cm from the stimulus site. RMSE was calculated by align-

ing the experimental action potential (recorded via sharp electrode in [7]) and simulated

action potentials at the upstroke crossing of -40 mV.

The multi-objective genetic algorithm was configured to run in parallel across 32 cores

using MATLAB’s Parallel Computing Toolbox and Global Optimization Toolbox [60], with

heuristic crossover, tournament selection and a small Pareto fraction, and terminated when

the average change in the spread of the Pareto front was less than 0.001 over 50 generations.

The genetic algorithm was run 9 times to examine diversity of results; the parameter set that

minimized the RMSE was selected from each Pareto front.
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Data Analysis

In order to compare macroscopic conduction properties of simulation results with those

obtained experimentally using a voltage sensitive dye and an optical fiber recording array,

averaging of local simulated membrane potentials in small circular regions was performed to

simulate optical recording of model results. While the experimental optical fiber array has

fibers with diameter of 750 μm arranged in a 20-mm diameter hexagonal bundle, spacing

between the optical fiber array and the tissue sample results in a wider effective field of view

for each fiber. As a result, while our simulated optical sensors were spaced with 750 μm center-

to-center spacing, each sensor averaged potentials over a circular region of diameter 1100 μm.

The resulting voltage traces for each of the 504 simulated optical sensors was analyzed using

custom MATLAB software developed for analysis of experimental optical mapping recordings,

and the CV and APD80 (action potential duration at 80% repolarization) were calculated, as

previously described [5,7].

Incorporation of Variation and Sensitivity Analysis

Inter-monolayer variation of conductances and conductivity was generated by selecting scal-

ing factors for each monolayer from random normal distributions with mean 1 and specified

standard deviation. Base model parameters were then scaled by these factors and the new

monolayer-specific mean parameters were provided to the Cardiowave simulator. Cell-to-cell

variability was incorporated directly into the membrane model. Each node’s channel conduc-

tance is randomly selected at the start of the simulation from a random normal distribution

with the selected mean monolayer channel conductance and a specified standard deviation

(see Fig 4B). Simulated variability was compared to experimentally variability measured in [7]

including macroscopic CV recorded via optical mapping in n = 39 independent monolayers,

and single cell APD and maximum upstroke velocity recorded via sharp electrode recording in

6 different (biological replicate) monolayers (n = 4–5 cells per monolayer; 27 total recordings).

The sensitivity of the membrane model to perturbation was assessed by independently

altering the conductance of each current in a range from 50% to 150%, and measuring the

impact on conduction properties. Sensitivity was measured in a simulated strand of tissue (600

x 10 nodes; dx = dy = 20 micron, no-flux boundary conditions). In addition to the macro-

scopic conduction properties measured using simulated optical sensors, several addition prop-

erties were measured using the action potential traces from the center-point of the strand,

analogous to experimental sharp electrode recording. These properties included the maximum

upstroke velocity (dVm dt-1), resting membrane potential, APD and action potential

amplitude.

Validation Studies Using the Membrane Model

Restitution of APD and CV was measured in a 2D strand continuous monodomain model

(600 x 10 nodes; dx = dy = 20 micron). The standard (S1-S2) protocol was used wherein the

strand was stimulated from one end at 2 Hz for 10 pulses (S1) followed by a premature stimu-

lus of the same amplitude (S2), and the CV and APD resulting from the S2 stimulus were

recorded. The S1-S2 interval was decreased until the S2 pulse no longer elicited an action

potential.

Pharmacological channel blockade due to tetrodotoxin (TTX) was simulated by simulta-

neously altering the conductance of both the INa and INa,wt currents. Blockade of the IK1 chan-

nel due to BaCl2 was simulated by scaling the IK1 conductance based on the degree of block at

-100 mV and the membrane potential (S4 Fig). The effect of varied extracellular potassium

concentration was simulated by scaling the sodium conductance proportional to the square
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root of extracellular potassium, as included above in eq 3, and by altering the reversal potential

of potassium, as predicted by the Nernst equation. The physiological intracellular potassium

concentration was estimated by assuming that the resting potential during sharp electrode

recordings of HEK cells transfected with only the Kir2.1 channel (with control extracellular

potassium concentration of 5.4 mM) is equivalent to the potassium Nernst potential [7]. The

reversal potential as a function of extracellular potassium is then calculated using this estimate

of intracellular potassium concentration.

Impact of Spatial Organization of Variation

Conduction was simulated in a 2D continuous monodomain model (600 x 200 nodes; dx =

dy = 10 micron). Non-conductive fibrosis-like obstacles were added to the tissue domain, with

each obstacle 100 μm x 100 μm in size and with 100 μm spacing between obstacles. Obstacles

were decoupled from neighboring tissue nodes to establish no-flux boundary conditions. A

central region of homogeneity with a diameter of 140 μm (70% of strand width) was estab-

lished. Within this region, the mean potassium conductance was one standard deviation

(12.5%) below the monolayer mean, and the standard deviation of cell-to-cell variation was

narrowed to 0.0625 for all ionic properties to create relative homogeneity with preserved but

reduced cell-to-cell variability. Cell-to-cell ionic variation in the remainder of the tissue was

resampled in order to preserve the distribution of cell-to-cell variation across the full tissue.

The central region remained fully coupled to the surrounding tissue. The previously described

standard S1-S2 protocol was used to assess restitution behavior.

Numerical Methods

All simulations were performed using the Cardiowave software package [20], a cardiac simula-

tion system that incorporates numerous modules for various membrane models, time integra-

tion methods and linear solvers (available online at cardiowave.duke.edu). The governing

equations were discretized using finite differences and propagation was simulated using a

semi-implicit Crank-Nicholson scheme with adaptive time steps between 5 μs and 100 μs. A

biconjugate gradient stabilized method solver with tridiagonal preconditioner was used to sim-

ulate each time-step. Potentials were recorded at intervals of 10 μs at selected individual points

and across the domain using spatial averaging across simulated optical sensors, as described

earlier.

Statistical Methods

All data is presented as mean +/- standard deviation unless otherwise specified. Comparison

of model and experimental variability was performed using Levene’s test for equality of vari-

ances with an alpha value of 0.05. Comparison of macroscopic CV, APD and failure behavior

in the presence of fibrosis and spatial organization of variability was performed using a two-

way ANOVA with two between-subjects measures (fibrosis and organization). Comparison of

restitution behavior was performed using three-way ANOVA with one within-subjects mea-

sure (S1-S2 interval) and two between-subjects measures (fibrosis and organization), and post-

hoc pairwise comparison was performed using Fisher’s LSD.

Supporting Information

S1 Text. Supplementary discussion of methodology of ion channel modelling.

(PDF)
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S1 Fig. Comparison of membrane currents. (A) Experimentally recorded currents during

“AP-clamp”. Note that the duration of the experimental action potential used to generate this

recording is longer than the mean duration which was matched by the model. (B) Action

potential trace used for simulated AP clamp (C) Model currents at 23C qualitatively matches

experimental currents. (D,E) Model currents at 35C. Temperature induced variation in con-

ductances and activation/inactivation properties lead to a much larger inward sodium current.

(PDF)

S2 Fig. Intra-monolayer variability. Standard deviations of measured single cell APD and

upstroke velocity were obtained for each experimental monolayer (n = 6). Monolayers exhibit

relatively little APD variability but substantially more maximal upstroke velocity variability

within each monolayer. The standard deviation of each parameter between monolayers is indi-

cated by the dashed red line. The degree of cell-to-cell upstroke velocity variation within indi-

vidual monolayers is comparable to the variation seen between different monolayers, while

cell-to-cell variation of action potential duration within individual monolayers is 3-5x smaller

than that seen between different monolayers. Models that include only inter-monolayer vari-

ability and not cell-to-cell variability fail to reproduce the experimentally observed variability

of upstroke velocity within individual monolayers.

(PDF)

S3 Fig. Sensitivity analysis. Current densities of each of the four constitutive currents were

independently varied from 50% to 150% and the effect of on conduction and action potential

shape properties was measured. Variation in INa and IK led to changes in both CV and APD

while variation of the endogenous currents affected APD without affecting CV. Variation in

both INa and IK,wt led to changes in action potential amplitude, while only INa variation affected

the maximal upstroke velocity.

(PDF)

S4 Fig. Model of voltage and dose dependent barium chloride induced block. IK1 block due

to barium chloride was modeled as dependent on membrane potential and degree of block at

-100 was used as a substitute for drug dose.

(PDF)

S5 Fig. Simulated variability in single cell properties. The model is able to replicate experi-

mental variability in several isolated single cell properties other than those used to set levels of

conductance variation.

(PDF)

S1 Table. Comparison of model and experimental Ex293 cells.

(PDF)

S2 Table. Model equations.

(PDF)
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