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Abstract

High throughput mRNA expression profiling can be used to characterize the response of cell

culture models to perturbations such as pharmacologic modulators and genetic perturba-

tions. As profiling campaigns expand in scope, it is important to homogenize, summarize,

and analyze the resulting data in a manner that captures significant biological signals in

spite of various noise sources such as batch effects and stochastic variation. We used the

L1000 platform for large-scale profiling of 978 representative genes across thousands of

compound treatments. Here, a method is described that uses deep learning techniques to

convert the expression changes of the landmark genes into a perturbation barcode that

reveals important features of the underlying data, performing better than the raw data in

revealing important biological insights. The barcode captures compound structure and tar-

get information, and predicts a compound’s high throughput screening promiscuity, to a

higher degree than the original data measurements, indicating that the approach uncovers

underlying factors of the expression data that are otherwise entangled or masked by noise.

Furthermore, we demonstrate that visualizations derived from the perturbation barcode can

be used to more sensitively assign functions to unknown compounds through a guilt-by-

association approach, which we use to predict and experimentally validate the activity of

compounds on the MAPK pathway. The demonstrated application of deep metric learning to

large-scale chemical genetics projects highlights the utility of this and related approaches to

the extraction of insights and testable hypotheses from big, sometimes noisy data.

Author summary

The effects of small molecules or biologics can be measured via their effect on cells’ gene

expression profiles. Such experiments have been performed with small, focused sample

sets for decades. Technological advances now permit this approach to be used on the

scale of tens of thousands of samples per year. As datasets increase in size, their analysis
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becomes qualitatively more difficult due to experimental and biological noise and the fact

that phenotypes are not distinct. We demonstrate that using tools developed for deep

learning it is possible to generate ‘barcodes’ for expression experiments that can be used

to simply, efficiently, and reproducibly represent the phenotypic effects of cell treatments

as a string of 100 ones and zeroes. We find that this barcode does a better job of capturing

the underlying biology than the original gene expression levels, and go on to show that it

can be used to identify the targets of uncharacterized molecules.

This is a PLOS Computational Biology Methods Paper.

Introduction

Pharmacology is generally explored in a linear and iterative manner, starting from the observa-

tion of an activity, that is then optimized for selectivity and potency via various methods, and

subsequently tested in preclinical and randomized controlled clinical studies for safety and

efficacy. In general, the activity of compounds on targets other than the intended one(s) is lim-

ited, though such ‘off-target’ activities may lead to adverse events. The detection of polyphar-

macology is desired and could be facilitated by comprehensive profiling of drug candidates on

a general phenotyping platform, i.e. a consistent method to broadly assess the phenotypic

effects of compound treatment. Such a platform could be used in order to uncover unexpected

phenotypic signals beyond the originally identified mechanism-based phenotype. The infer-

ence of mode of action or mode of toxicity from gene expression changes has been extensively

studied in the past [1–3]. Different methods using only gene expression, or expression in the

context of prior biological knowledge, have shown success in identifying the efficacy and toxic-

ity targets of compounds [4, 5].

Phenotypic screening is considered by some to be a return to pharmacology’s roots [6], and

by others a new discipline, that will need to prove itself over the coming decades [7]. In either

case, there is increased interest in applying cell-based pathway or phenotype screens to identify

unknown/unexpected targets along with tool compounds that can be used for target valida-

tion, and potentially as starting points for drug discovery. One major hurdle in phenotypic

screening approach versus a target-based approach lies in the identification of the target(s) of

molecules that show an activity in cell-based (or organismal) assays [8]. A general phenotyping

platform could be used to infer mode of action of unknown compounds based on induced

expression profiles’ similarity to those of annotated compounds. Such data can also in some

cases be used to propose new indications for known molecules [1].

Lastly, a general phenotyping platform will allow one to monitor compounds through their

maturation and optimization in order to prioritize series based on selectivity and to quickly

identify potential polypharmacology and safety warning signals [9].

We suggest that mRNA is a promising analyte for a general phenotyping platform, although

the domain of applicability remains to be fully understood. Whereas gene expression changes

are often distal to signaling and metabolic pathways that drug discovery aims to modulate,

most perturbations of cellular pathways eventually lead to the nucleus [10], and to transcrip-

tional changes that propagate, amplify, or compensate for the immediate effects of a perturba-

tion [11]. mRNA also has the beneficial property that its measurement is fairly easy to
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generalize, such that any set of target sequences can be measured quantitatively and in parallel

[12]. Thus, a potentially broadly useful general phenotyping platform would quantitate

mRNA, be medium to high throughput, be affordable to apply to thousands of samples, and

produce highly reproducible data.

The L1000 platform [13] has the potential to be just such a general phenotyping platform,

one that can be used in various stages of drug discovery, including target identification and

validation, hit-to-lead, lead optimization, as well as safety assessment and repurposing. 978

genes were selected to be representative of the expression of the remainder of the transcrip-

tome [14], and the platform is used to capture the transcriptional phenotypes using this

reduced set of ‘landmark’ genes. The high throughput and relatively low cost of the bead array

based implementation permits comprehensive application to large numbers of perturbations,

be they different compounds, different cellular contexts, titrations, compound series, etc.

However, if such a platform is applied for large sets of perturbations, spanning years of dif-

ferent project stages and various programs, then data analysis, and particularly homogeniza-

tion, become important. Large scale expression profiling projects such as the Connectivity

Map [1] and applications presented herein have to contend with day-to-day variation in cellu-

lar responses. Indeed, batch effects were previously considered a nuisance that was dealt with

using robust rank-based statistics (connectivity score, [1]), and via use of biologically moti-

vated data summaries such as Gene Set Enrichment Analysis [15, 16]. It is not clear that such

nonparametric approaches, which depend on prior knowledge (biological pathways or previ-

ous expression experiments), yield the highest possible sensitivity and specificity for down-

stream analyses.

Herein we present a novel method of representing the expression profiles of the L1000 plat-

form as a short binary barcode. The approach starts by training a deep model that learns to dis-

tinguish replicate from nonreplicate profiles. The internal state of the model thus learned

demonstrated properties previously ascribed to deep neural network models, namely a hierar-

chical representation that captures the regularities and underlying structure of the input data

[17, 18]. The internal state represents a robust, abstracted representation of the data, one that

captures inherent aspects of the biology such as similarity of compound targets and pleiotropy.

We go on to apply this framework to prospectively predict the targets of compounds based on

the transformation of their induced expression profiles.

Results

Transforming gene expression profiles

We first introduce the data generation process and highlight the need for improved analyses.

The disparity between replicate profiles motivates the development of a metric learning

approach that improves upon the current state of the art for this type of data analysis.

High throughput expression profiling

The experimental approach used in this work is depicted in Fig 1A. Cells can be treated, lysed,

and measured in medium throughput (384-well) formats. The use of commodity consumables,

reagents, and technology permits relatively low cost profiling of hundreds to thousands of

compound-treated samples at a time [13]. Reader intensity measurements are normalized

using control samples and genes. Next, each perturbation’s expression is compared to an inter-

nal (within-batch) negative control. Twelve to sixteen vehicle (DMSO) controls are measured

on each 384-well assay plate, and the expression of the remainder of samples is standardized to

the average (median), and scale of variation (median absolute deviation), of these vehicle con-

trols to yield robust z-scores, henceforth referred to as z-scores for brevity.

High throughput gene expression barcodes
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Large scale gene expression profiling is known to have significant ‘batch’ effects that con-

found interpretation [19]. These effects are a result of differences in cell response from day to

day. The effects can be controlled for by performing replicate experiments, but the level of rep-

lication required to eliminate the batch effects is not practical for high throughput experimen-

tation, which requires knowledge to be extracted from 1–2 replicates. Additional approaches

to reduce the influence of experimental batch include normalization of data within a batch

such that all perturbations are compared to an internal negative control in the same batch. In

spite of measures to control batch effects, it is nevertheless observed that there is variability in

cell response that makes it difficult to interpret data obtained on different days [20]. As an

example, for the dataset described below, we can assess the similarity of biological replicates’

gene expression profiles using Euclidean distance of the normalized expression changes versus
control. Looking at the similarity of each sample profile to every other in the dataset, the

median rank of a sample’s biological replicate is approximately the 3rd percentile. While this

ranking can be considered an enrichment (versus a null hypothesis of ~50th percentile), the 3rd

percentile in our dataset nevertheless implies that >200 treatment profiles are more similar to

a given treatment than a sample that was treated identically on a different day.

As mentioned above, the z-score data is confounded by batch effects that reduce the appar-

ent similarity of expression responses deriving from identical treatments. In order to improve

on the performance of the z-scores, another strategy that was explored is that of gene set

enrichment analysis (GSEA, [16]). GSEA is a technique used to extract interpretable informa-

tion from expression profiles, and is useful for placing the up- and down-regulation of genes

into a biological context (e.g. biological pathway, disease state). In addition, GSEA profiles (i.e.

enrichment scores of a sample across many different gene sets), can be thought of as a means

of averaging, and potentially making more robust, the expression profiles by using biological

context as a prior. Thus, it might be expected [21] that GSEA profiles might be more reproduc-

ible, and more predictive, than raw expression data. Indeed, when one looks at the correlation

of pairs of samples treated with the same compound, one sees that GSEA profiles show higher

concordance than z-score profiles day-to-day and cell-to-cell (Fig A in S1 Text). In the

Fig 1. Experimental setup and architecture of the deep model used. (A) Cells treated with compounds in 384-well plates. (B) Cell lysate

used for ligation mediated PCR with gene-specific probe pairs, and the gene expression measured using an optically addressed bead array

technology. (C) Raw intensity is normalized and converted to relative expression changes versus control (z-scores) on a plate-wise basis.

Variability is observed between biological replicates.

doi:10.1371/journal.pcbi.1005335.g001
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previously mentioned measure of average rank of replicates, GSEA yields a median rank of

~1%, with ~70 profiles more similar to a given sample than its biological replicate.

Deep metric learning

Since there is room for improvement over both of the previously described methods, we

sought to evaluate alternate strategies to increase the sensitivity and specificity of interpreta-

tions and predictions derived from relatively large data sets that we are currently generating

on the L1000 platform. In particular, as a first step, we sought to increase the concordance of

samples that should exhibit the same phenotypic response, while separating them from those

that should be distinct. Using the similarity of biological replicates as a gold standard, the goal

was to recast the data in a way that maximizes the similarity of replicates in contrast to non-

replicate samples. This can be thought of as a metric learning problem, whereby one learns a

new measure of distance or similarity between points, one that distinguished replicates from

non-replicates. Initial experimentation with linear and kernel methods [22] failed to yield

significant improvements over the raw data, thus deep neural network models were next

evaluated.

Deep learning is an extension of decades-old artificial neural networks, and has recently

shown impressive performance on a number of image and speech recognition tasks [23, 24].

As the properties and capabilities of these models have begun to be elucidated, it is becoming

more feasible and reproducible to create highly accurate multilayer neural network models. In

addition, advances in model design have been complemented by increased computational

power and larger datasets that enable the training of comprehensive, expressive models, whose

generalization performance is facilitated by regularization [17, 18]. In addition to providing a

flexible model that is able to fit complicated datasets, deep networks have the additional advan-

tage of learning a hierarchical representation of the data, whereby lower layers of the model

learn to represent the fine-grained detail of the input data, and higher layers represent increas-

ing layers of abstraction. Thus, inspecting the higher layers of a model has the potential of

revealing the underlying high-level structure of the data, with reduced sensitivity to noise and

contextual details. We thus explored a multilayered network with the dual goal of developing a

suitable distance metric, and also developing a robust data representation for downstream

analyses.

Most machine learning methods consider a single input sample at a time, though each sam-

ple is generally represented by multiple variables, or features. The goal of this effort was to

learn not about individual samples, but about the comparison of pairs of inputs in order to

learn a new metric that better captures what is known about the data. Thus, a method was cho-

sen that permits comparative learning in a neural network framework. We implemented a ver-

sion of a siamese neural network [25, 26] to perform metric learning on a dataset of L1000

data (Fig 2).

A number of model architecture properties (also known as hyperparameters) need to be set

prior to the optimization of model weights of a neural network by gradient descent. These

include number of layers, layer sizes, activations of layers, regularization types and weights,

and cost type and any parameters. We undertook a greedy manual search of hyperparemters,

optimizing the validation set accuracy for predicting replicate vs. nonreplicate pairs. Signifi-

cantly, other characteristics of the model and its representation, such as those described below

and in Table 1 (rows 2–5), were not measured during the model selection process, and only

replicate identification accuracy was used to select a final model. Among over 60 models

tested, we settled on the architecture described below since it provided the best classification

accuracy of replicates/nonreplicates on validation data.

High throughput gene expression barcodes
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The final model that emerged from optimization of the neural network architecture per-

forms the following: a pair of 978-dimensional z-score vectors representing two different

expression profiles is given to the network as input, the data is transformed by two layers of

noisy sigmoid layers, and then the representations of the members of the pair are compared to

each other by calculating a Euclidean distance. A margin loss is calculated based on the dis-

tance versus the known target status of the pair (i.e. replicates or not replicates). The cost is

used to train the network via backpropagation of the cost gradients [27]. While siamese net-

works have been previously depicted as a linked pair of networks transforming the pair of

inputs for comparison (see [25, 26]), in practice we found it simpler to implement the siamese

network model as a single network that processes pairs of samples as adjacent inputs (Fig 2).

In this architecture, the paired input is provided as two consecutive vectors to one network

that processes the elements of the pair through the aforementioned hidden layers and then cal-

culates the cost.

Fig 2. (A) Metric learning network: a pair of 978-element z-score vectors is input to the network as adjacent vectors. Data is transformed

through two layers (400 followed by 100 units), of nonlinearities (noisy sigmoid activation functions). The activations of the second hidden

layer (H2(x1) and H2(x2)) are combined in the output layer by calculating a Euclidean distance between the two representations. The margin

cost is calculated based on the -1/1 (non-replicate/replicate indicator) target and the squared distance. (B) Once the model is trained,

expression profiles are converted to barcodes by passing them through the first two (now noisless sigmoid) hidden layers and thresholding

the activation of the second hidden layer to yield perturbation barcodes.

doi:10.1371/journal.pcbi.1005335.g002

High throughput gene expression barcodes
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The network was trained on 80% of the compounds, using a validation held-out set of 10%

to select model architecture and detailed configuration (hyperparameters), and a final test set

of 10% was used to estimate generalization performance of the selected model. The trained

model was able to correctly categorize 97% of test pairs as replicates/non-replicates (F1 = 0.87,

[28]). As a baseline, a model that randomly samples from the empirical distribution of repli-

cates/non-replicates has an accuracy of 56% (F1 = 0.33). A nontrivial reference for comparison

would be a model that thresholds the gene expression changes for each sample to generate a

binary 978-dimensional representation. Depending on whether the threshold is shared among

all genes or is gene specific, and on whether the threshold is applied to raw expression changes

or absolute changes, a variety of models can be created. The best performance in terms of accu-

racy on the validation data was observed for a model that uses gene-specific thresholding on

the original scale, with thresholds learned from the training data set, this model gave a test set

accuracy of 67% (F1 = 0.66). Another nontrivial model one could apply would use random

projections of the data as is done in locality sensitive hashing [29]. Such a model, using 100

random projections, showed an accuracy of 33% (F1 = 0.50). Optimizing the projections to

maximize training set discrimination yields a linear model. A 100-dimensional linear model

yielded an accuracy of 71% (F1 = 0.47). These results show that the learned deep model is supe-

rior in classification accuracy to trivial and nontrivial comparator models.

Having demonstrated that it is possible to recast the data in a way that captures the similar-

ity of identically treated samples, we set out to determine if the learned model can be used to

improve interpretability of large scale expression profiling campaigns. Since the model can

separate replicates from nonreplicates, and since the model output is a function of a simple

Euclidean distance calculated on the internal representation (hidden layer activations), we rea-

soned that this internal representation captures the discriminatory power learned by the

model. We explored whether this internal representation has additional useful properties, as

for example do the internal word representations of skip-gram language models [30] to repre-

sent semantic and syntactic relationships. The internal representation was extracted from the

learned model by using the activation of 100-dimensional second hidden layer as the learned

feature vector of each data point (Fig 2B). This representation is a short, fixed-length, almost

Table 1. Performance of learned perturbation barcodes compared to z-scores and GSEA scores.

metric z-score GSEA perturbation barcode

Median rank of replicates (of 7573) 225 72 24

Distance by shared target, t statistic -1 -38 -43

Structural clustering overlap with expression clustering 0.01 0.03 0.17

Correlation of HTS profiles with expression 0.04 0.02 0.12

Promiscuity prediction by SVR, R2 0.21 0.16 0.34

(Row 1) For each sample with replicates in the dataset, profiles are ranked based on Euclidean distances calculated from the various representations, and

the median value of the replicates’ ranks across samples is reported. (Row 2) Distance of pairs of profiles of compounds that share a target annotation

compared to those that do not. Significance of difference in mean distance measured with a t statistic. For reference, a permutation analysis of the target

labels in the barcode dataset yielded a minimum t statistic of -5.8 from 100 random permutations (p<0.01). (Row 3) Compounds clustered based on

structure and on the expression profiles they induce. The overlap of the structural and expression clustering is measured by the Adjusted Rand Index on a

0–1 scale. For reference, a permutation analysis of the cluster labels in the barcode dataset yielded a maximum ARI of 0.002 from 100 random

permutations (p<0.01). (Row 4) Similarity of phenotypic profiles measured either by activity across HTS assays, or by induced expression changes. The

correlation of each expression measure to the HTS fingerprint data is shown. For reference, a permutation analysis of the sample labels in the barcode

dataset yielded a maximum correlation of 0.001 from 100 random permutations (p<0.01). (Row 5) A support vector regression model was trained using the

various expression features to predict compound promiscuity (fraction HTS screens in which a compound is active). Crossvalidation performance is

measured using R2 of predicted vs. observed promiscuity. The standard error of barcode R2 values was 0.06 (p<0.01).

doi:10.1371/journal.pcbi.1005335.t001
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binary representation that captures expression profile changes. In order to facilitate computa-

tion of similarities and hash-based lookup, the almost-binary representation (~95% of activa-

tions>0.9 or< 0.1), was thresholded to be exactly binary (i.e. values� 0.5 were set to 1, rest

to 0). This binary representation of cellular gene expression profile changes in response to

treatments is referred to as a ‘perturbation barcode.’

Thus the model yields a new encoding of the original data, a representation that was

designed only to increase the similarity of biological replicates relative to non-replicates. Infor-

mation is necessarily lost in reducing 978-dimensional continuous data to 100-dimensional

binary representations. The question that remains is whether biologically interesting aspects of

the data are retained in the simplified encoding.

Thus, we evaluated whether the model described herein learns useful, generalizable aspects

related to compound effects on cells as a byproduct of learning to identify replicates. The per-

turbation barcodes were assessed for their ability to identify similarities between compounds

in a variety of contexts (Table 1). Furthermore, we directly compared the performance of the

barcodes to the minimally processed z-score data and the gene set enrichment score profiles.

The median rank (out of 7573) of each sample’s biological replicate is shown in Table 1. For

each sample, the similarity of all other samples’ profiles is ranked, and the median rank across

samples of the biological replicate is reported. For the z-score data this value is 225, indicating

that, on average, there are 223 profiles more similar to a given sample (itself ranked #1), than

the sample’s biological replicate. The median rank for GSEA score data is 72, and for perturba-

tion barcodes it is 24. The result on the perturbation barcodes demonstrates that the training

objective was met: samples that are replicates are more similar under the features derived from

the metric learning than they are in the original data space.

1. Comparison of perturbation barcode with state of the art. Next, one might ask

whether a model trained to recognize samples treated with the same compound would also

retain additional relationships related to biological function and chemical similarity. In order

to avoid re-discovering the similarity of replicates, for this and subsequent comparisons, repli-

cates were resolved to a single representation by averaging the hidden layer activations of the

replicate samples before thresholding to barcodes, and analogously, z-scores and GSEA results

represent the average of replicates.

We tested the ability of the different representations to recognize different compounds tar-

geting the same cellular factor as having similar profiles. Due to compound-specific polyphar-

macologies, one shouldn’t expect any pair of distinct compounds to have identical profiles, but

one should expect compounds sharing a target to have profiles that are more similar, on aver-

age, than pairs of compounds not sharing a molecular target. We looked at those compounds

for which target annotation was available (1297 compounds having annotated targets modu-

lated with potency < 1μM), and asked if compounds that share a target are more similar to

each other in induced gene expression profiles than compounds that do not. Using a t statistic

for the difference of mean distances of shared versus unshared targets, the comparison on the

z-score data is not significant, with a t statistic of -1. The GSEA-summarized data is more sig-

nificant with t~-38, while the barcode data shows the highest preferential similarity of profiles

of compounds sharing a target annotation: t~-43. This indicates that the latter two methods

are able to encode the expression profiles of compounds in a way that emphasizes biological

similarity.

A well-studied approach to categorize compounds is by similarity of chemical structure,

with one underlying assumption being that similarity of structure is related to similarity in

function. Thus molecules are clustered using descriptors designed to allow molecules consid-

ered similar by a chemist to be grouped together, to the exclusion of dissimilar molecules [31].

Analogously, expression profiles can be clustered to find sets of genes or of samples that are

High throughput gene expression barcodes
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more similar to each other than to other instances, in an attempt to identify cohesive func-

tional groupings [32]. One might expect a significant but imperfect overlap between com-

pound structural clusters and those derived from expression profiling. The expectation of

significant overlap comes from the fact that compounds with shared scaffolds or similarly

arranged functional groups would be more likely to target the same cellular factors and thus

yield similar expression profiles. Imperfect overlap would be expected because small changes

in structure can lead to significant changes in activity, a phenomenon studied in structure-

activity relationships of chemical series [33]. In order to compare overlap of structure and phe-

notype, a comparison of the clusterings of the two types of data was performed. Compound

structures were clustered using hierarchical clustering of fragment-based descriptors with a

minimum similarity criterion to define clusters. Expression data was clustered using hierarchi-

cal clustering followed by a dynamic tree cutting [34] approach to generate discrete, well sepa-

rated-clusters. The overlap of clusterings is measured with the Adjusted Rand Index [35]

which varies from 1.0 for perfect overlap, to 0 for overlap expected by chance. The z-score data

shows little overlap of expression clustering with the structural clusters (1%, Table 1), and the

GSEA-based clusters modesty better (3%). In contrast, the perturbation barcode clusters have

significantly higher overlap with structural clusters than z-scores (17%). These results are not

sensitive to the clustering algorithm nor to compound structural descriptors, as similar obser-

vations were obtained with affinity propagation clustering and atom pair descriptors [36].

Next we set out to determine whether the barcode reveals insight into biological function.

In order to compare two different measures of biological activity, the profile of 3471 com-

pounds across multiple High Throughput Screens (HTS) was compared to the L1000

expression profiles. The activity profiles across HTS assays could be thought of a biological

fingerprint, as it represents the activity of the compound in a multitude of disparate assays,

both cell-based and biochemical. Such profiles do not evenly span all potential biological

responses since they opportunistically derived, depending on the history of each compound

and the organization performing the HTS campaigns. However, in some ways the HTS pro-

files are more relevant to drug discovery since many of the constituent assays directly mea-

sure the molecular activities of interest rather than induced transcriptional programs. The

correlation matrix of HTS fingerprints (HTS-FP, [37]) of the compounds was compared to

the correlation matrices of z-scores, GSEA scores, and perturbation barcodes. The correla-

tion of the triangular correlation matrices (Mantel statistic) was used as a measure of how

similar the HTS activity profiles are to z-score, GSEA, and perturbation barcodes. The per-

turbation barcodes show more than three times the similarity to HTS profiles compared the

other two scores (Table 1).

Finally, it was of interest to explore if there is a difference in the ability of the three data rep-

resentations to predict a high-level property of compounds, namely their promiscuity. The

promiscuity of a compound is defined here as the fraction of the HTS assays in which the com-

pound was scored as active, ranging from 0 to 0.5 in our dataset (median 0.04, 3836 compounds

with data). Promiscuity of compounds is of interest in drug discovery, wherein modulators that

are both potent and specific (i.e. non-promiscuous) are generally sought. One way to ascertain

if promiscuity information is present in the different expression profile representations is to

assess the ability of each representation to generate a model that can quantitatively predict this

property for samples not in the training set. Predictive support vector regression models were

trained on each data representation, and the average cross-validation coefficient of determina-

tion (R2) was used as measure of the ability of the models to predict properties of compounds

on the basis of the profiling data (Table 1). Given that the perturbation barcodes are derived

solely from the z-score data, and that they are in some ways a more impoverished representa-

tion of the original data (978 dimensional real values to 100-dimensional binary values), it was

High throughput gene expression barcodes
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surprising to find that models trained on the barcodes are able to explain ~60% more promis-

cuity compared to the z-scores.

To test whether the feature mapping can be applied to other datasets, we trained an identical

model architecture on a sample of L1000 data generated by the LINCS consortium [14]. For

the comparisons we could make, we found the same benefits of the perturbation barcode ver-

sus the raw data. Table 2 shows that the learned barcode brought biological replicates closer to

each other (median in top 1% most similar profiles versus top 27% for z scores). Furthermore,

average profiles of distinct compounds sharing a target are significantly closer to each other in

the perturbation barcode space than in the original space: for each annotated target of com-

pounds in the dataset, the distances of compounds sharing versus not sharing the target were

compared via a t-statistic, and the mean of these statistics was found to be non-significantly

higher (+1) for the z-score data but significantly smaller (-37) for the barcodes (Table 2).

Finally, although this dataset contained a relatively small number of structurally distinct com-

pounds, we could still detect a greater than 2-fold increase in correspondence between cluster-

ing of transcriptional profiles and structural descriptors in the perturbation barcodes versus

the z-scores (Table 2).

2. Prospective activity prediction. In order to compare the ability of the learned features

to capture the biological activity of tested perturbations in an exploratory setting, the predictive

ability of the perturbation barcodes was tested. We compared the ability of the perturbation

barcodes and z-scores to retrieve molecules with similar targets in both a two-dimensional

visualization, and by nearest neighbor searches in the respective native data spaces. t-SNE [38]

is a dimensionality reduction technique used for visualization in large datasets. The transfor-

mation provided by t-SNE is not quantitative and does not preserve all aspects of the original

data space, but in a 100-1000-dimensional data space, t-SNE is the best system we have found

for exploring such data sets. Large-scale themes as well as local clustering of biological mecha-

nisms can be seen in the t-SNE map. For example, compounds derived from different profiling

projects occupy different domains of the map, and compounds targeting some protein families

are seen to cluster on the map (Fig B in S1 Text). It is important to note that while some pro-

tein families are tightly clustered (e.g., histone deacetylases), there are a number of areas in the

t-SNE map where multiple families overlap. This suggests that while in some cases target fami-

lies may offer distinct profiles, in other cases a number of different mechansims may share

induced expression profiles.

The predictive fidelity of the t-SNE map derived from expression z-scores was compared to

that of a t-SNE map derived from the perturbation barcodes in order to ascertain how much

information one can hope to glean by studying the visualization of a large dataset (Fig 3A–3C).

This use case was studied because it is representative of a common query one may want to

pose of a dataset: given knowledge about the molecular mechanism of action of some com-

pounds, can we expect compounds nearby to them in a visualization to share similar mecha-

nisms? Three known inhibitors of the EGF/MAPK pathway that were tightly clustered in both

maps were chosen as seeds, and 31 unknown compounds found nearby the known MAPK

pathway actives in either or both t-SNE maps were tested for their ability to block signaling

Table 2. Performance of perturbation barcodes on public LINCS data. Analyses correspond to Rows

1–3 of Table 1.

metric z-score perturbation barcode

Median rank of replicates (of 79890) 21496 649

Distance by shared target, mean t statistic 1 -37

Structural clustering overlap with expression clustering 0.004 0.010

doi:10.1371/journal.pcbi.1005335.t002
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from EGF to AP1 using a reporter gene assay. The compounds selected in this way were struc-

turally diverse, with only two of the compounds sharing the same structural cluster. Fig 3E

shows that there were two unknown compounds that were identified in the z-score t-SNE

maps and were confirmed to be active in MAPK signaling. By comparison, the barcode map

revealed the same two and also four additional novel unknowns (Fig 3F). Negative control

compounds selected to be far away from the MAPK tools in both maps showed no specific

AP-1 reporter activity (Fig C in S1 Text). One compound that was a known pathway inhibitor

did not confirm in this assay as it showed high potency (IC50~35nM), but low efficacy

(Emax~41%), thus not meeting the activity threshold. The additional actives discovered only in

the barcode map demonstrate that the visualization derived from the barcodes has increased

sensitivity to capture biological activities versus the raw data-derived visualization. Signifi-

cantly, none of the newly identified AP-1 reporter inhibitors were structurally similar to the

known actives (Dice similarity less than 0.6).

Finally, we looked at the neighborhood of the same known MAPK actives in the original

data space for both the z-scores (978-dimensional) and the barcodes (100-dimensional) rather

than the reduced 2-dimensional t-SNE space. Nearest neighbors were chosen by Euclidean dis-

tance and tested in the reporter assay as above. Fig 3G & 3H show that a larger number and

fraction of unknowns identified as candidates from the barcode data were confirmed to have

AP-1 reporter activity compared to the z-scores.

Fig 3. Visualizations of the data based on z-scores or perturbation barcodes were examined to select candidate compounds in the

phenotypic neighborhood of a series of known MAPK pathway inhibitors. (A–D) t-SNE maps of the data, z-scores on top, perturbation

barcode maps on the bottom. (A, B) the entire dataset is shown with the tested compounds in dark blue. (C,D) The neighborhood of the

query MAPK pathway inhibitor compounds (orange) is shown. Common MAPK tools used for nearest neighbor analysis are circled. (E,F)

Results of AP-1 reporter assays. Known MAPK actives are distinguished from unknowns predicted to be active in (C,D). (G,H) Rather than

selecting neighbors of seed MAPK tool compounds in the t-SNE map, nearest neighbors in the native datasets were selected and tested in

the AP-1 reporter assay. Key as in (E,F). See Fig C in S1 Text for breakdown by categories, including overlaps.

doi:10.1371/journal.pcbi.1005335.g003
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Discussion

We present here a straightforward way to extract features from gene expression data that are

in many ways more expressive and robust than the original gene expression changes. While

training of a deep network is a somewhat specialized process, once an adequate model is

trained, additional samples can efficiently be converted to perturbation barcodes with no (or

little), further optimization needed, as evidenced by the simple transfer of the model to exter-

nal (LINCS) data.

Others have proposed novel methods for analyzing L1000 data. In particular, Liu et al [39]

presented a pipeline that incorporates raw intensity processing and gene assignment through

gene set enrichment and production of features informed by protein interaction data. While

this type of biological annotation is potentially useful, our proposed perturbation barcode is

self-contained, and does not rely on noisy and incomplete biological databases for utility. In

addition, the improvements in performance of the learned features compares favorably with

other approaches used in the field, including GSEA. Finally, it was shown that the perturbation

barcodes can be used to meaningfully predict pathway modulation activity of compounds pro-

spectively. This ability is of value in uncovering unknown modes of action (either primary or

secondary) of compounds of interest, and the fact that it can be read directly from a visualiza-

tion, shows the potential of the approach to simplify and enhance hypothesis generation from

big data.

We demonstrate that similarity in the barcode space is indicative of more similarity in com-

pound target and compound structure, activity across biological assays, and predictivity of bio-

logical action. It should be pointed out that even with the improved data representation, the

level of concordance between the gene expression data and reference data (compound struc-

tural features, target annotation), remains imperfect. There are a number of potential explana-

tions for this. Firstly, the gene expression experiments were conducted in one or two cell lines

per compound, and for some compounds the (known or unkown) efficacy targets are not

expressed, thus limiting the potential correlation to target annotation. Additionally, many

compounds were unoptimized screening hits or lightly characterized tools, and thus likely

have significant polypharmacology, only some of which is known, and only some of which is

consistent within chemotypes due to ‘activity cliffs.’ Next, target annotation is incomplete, so

an apparent false positive association between a compound and an activity may in fact be a

genuine connection that has not yet been discovered. Lastly, there is little doubt that obtaining

higher data density (more doses, replicates, time points, cell lines, structural neighbors), would

complement the sparse dataset explored herein, and in doing so, possibly tie more compounds

to benchmark annotations than was possible with the current data.

We made the somewhat unexpected observation that models of general compound proper-

ties like promiscuity can be better built using the learned features than the data that the fea-

tures were learned from, indicating that there are positive side effects of the compressive data

encoding. We attribute this phenomenon to the denoising property of the learned features, or

equivalently, extraction of robust underlying biological factors from the corrupted versions

observed in experimentation (due to measurement error, batch effects, and stochastic variation

in response).

We anticipate that elaborations of approaches such as this one will be fruitful for other

applications in biological and chemical domains, as they have been in artificial intelligence. A

more ambitious goal of algorithmic design of molecules may be based on the combination of

phenotypic information, quantitative structure-activity relationships, and pharmacokinetic/

pharmacodynamic models with generative models for chemical structures. In the meantime,

the direct application of the described metric learning-based representation technique to other
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high volume, high dimensional data has the potential to significantly reduce the effects of

noise and to improve interpretability and the quality of generated hypotheses.

Methods

L1000 data generation

Doses for treatment were chosen using the following hierarchy of approaches: for compounds

with known biological activity and toxicity, the dose with the highest therapeutic window was

selected. For compounds with only biological activity, the EC80 was used. For compounds

without relevant cell-based assay activity, the highest non-toxic dose was used, up to 20μM.

Two cell lines were used: PC3 and ME180. A number of compounds were profiled in both cell

lines, the rest were profiled in just one of the two. Most compounds were profiled as biological

replicates by performing identical treatments and lysis on separate days, some compounds

were only represented by a single instance. Compound treatment time was 6 hours, after

which cells were lysed, frozen, and shipped to Genometry for processing. A total of 3699 com-

pounds were screened. Compounds were selected based on being tool bioactive compounds,

active compounds for ongoing phenotypic screening programs, and compounds of interest for

particular compound optimization programs. Compound profiling was performed in four

independent campaigns over the course of 14 months.

Data processing

Initial data processing was conducted by Genometry using a standard pipeline. Briefly, Lumi-

nex intensity measurements were assessed for consistency of relative expression of control

genes. Samples passing well and plate level thresholds were summarized by conversion of

intensity data to calculated log2 Genechip-equivalent intensities and normalized based on con-

trol gene intensities. Finally, the data on each plate was standardized based on the median and

median absolute deviation of the vehicle control samples to calculate z-scores for each gene.

These z-scores were the input for the deep metric learning, and were also analyzed directly as a

baseline for data interpretation.

Deep metric learning

A metric learning cost module that takes consecutive pairs of training examples and calculates

a distance between them, and thereby a cost, was implemented using the Pylearn2 framework

[40]. Internal data representing L1000 data as z-scores of 7573 profiles of 3699 compounds was

used. Train/validation/test datasets were made from the initial data by selecting respectively

80, 10, and 10% of the initial 3.7k compounds. Within a dataset, a sample of pairs of profiles

representing biological replicates was used for positive examples (n = 40k), and in addition a

sample of twice the number of pairs of samples that were not biological replicates was used as

negative examples. Hyperparameters (number and type of layers, regularization, dropout),

were tuned manually based on replicate/non-replicate prediction accuracy of the model on the

validation dataset, and the model depicted in Fig 2 emerged as the best performing. In order to

build a model that facilitates application to large scale profiling datasets, it was of interest to

bias the model to produce a representation that could be used akin to locality sensitive hashing

[41], or semantic hashing [42], whereby large collections of profiles can be queried for similar

expression profiles without performing global similarity calculations (which become prohibi-

tive as datasets increase in size). Hashing of L1000 data is the subject of ongoing work, and is

not explored further here. Nevertheless, it was found a model designed to facilitate hash-based

lookup (i.e. having saturated, nearly binary internal representations), gave a higher validation
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set accuracy than other models tested, so this is the model that was used for downstream

analyses.

The model uses an input layer of 978 z-scores, followed by two hidden layers of 400 and 100

units, using a noisy sigmoid nonlinearity:

y ¼ σðWx þ bþN ð0; 0:25IÞÞ ð1Þ

σðzÞ ¼ ð1þ e� zÞ� 1
ð2Þ

Independent Gaussian noise with mean 0 and variance 0.25 ðN ð0; 0:25IÞÞ, is added to the

weighted sum of inputs plus bias (Wx + b) before applying sigmoid nonlinearity σ. Noise was

added to favor saturated (0/1) activations. Dropout [43] (p = 0.5) and L1 weight decay (λ =

10−5–10−6) are also used in hidden layers for regularization. Finally, the cost layer uses a recti-

fied loss function with a squared distance margin of 5:

c ¼ softplusð1 � yðm � d2ÞÞ ð3Þ

softplusðxÞ ¼ lnð1þ exÞ ð4Þ

y ¼
1 if pair are replicates

� 1 if pair are non � replicates
ð5Þ

(

Here c is the cost, m is the margin, y is the training target (-1 for non-replicate, +1 for repli-

cate), d2 is the squared Euclidean distance between hidden vectors. Theano [44] automatic dif-

ferentiation is used to backpropagate the cost to the model weights (including regularization)

via the pylearn2 [40] framework. The model parameters are optimized using the RMSprop

[45] algorithm for adaptive minibatch stochastic gradient descent. The model described herein

can be trained on the dataset described (120K pairs) in approximately 1 hour on a laptop com-

puter with a 2.5 GHz CPU. While the approach has not yet been applied to transcirptome-

wide profiling, the nature of the stochastic gradient descent learning method allow it to be

computationally tractable for such data, the only requirement is a large enough corpus (thou-

sands of samples), of homogeneous full-transcriptome profiles.

After training the model, the weights were extracted and used to generate the activation

state of the last hidden layer for each input sample. While noise was added during training to

regularize the model and encourage saturation, no noise was added during barcode generation

in order to yield a deterministic transformation. Perturbation barcodes are generated by

thresholding activations of the last hidden layer to create a binary representation. See ‘Avail-

ability of supporting material’ for software.

For comparison, several baseline models were created to compare replicate recognition

accuracy to that of the neural network model. A model that randomly emits 1/-1 with proba-

bilities 0.33/0.67 is a naïve model that predicts replicates independent of input with a fre-

quency that matches that of replicate pairs in the training data. A series of models that

threshold the gene expression data to generate binary representations (978 dimensional) can

also be made. The thesholding was applied to the original scale (marking those with expression

greater than the threshold as 1, 0 otherwise), or on the absolute value scale (where either upre-

gulation or downregulation greater than the threshold result in 1, 0 otherwise). The thresholds

were either set to be equal for all genes or were selected separately for each gene. Some hashing

approaches use random projections of the data, in order to determine if the learned neural

model is superior to this approach, a 100 random projection model was tested for classification
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of pairs as replicates vs. nonreplicates. Finally, the random projections can be replaced with

learned linear projections optimized to minimize classification error, also known as a linear

model. The above models with tunable parameters (thresholds, projections), were learned

using gradient descent, minimizing margin error on the training set, and tested on the test set.

Gene set enrichment analysis

GSEA was conducted using 6034 gene sets derived from experimental gene signatures of up-

and down-regulated genes curated by Nextbio (Santa Clara, CA). Enrichment was measured

using a Wilcoxon test, and the resulting rank sum test z statistic was used as a score for a given

gene set’s enrichment in a sample.

LINCS consortium data

Data downloaded from the NCBI GEO repository, accession GSE70138. The file GSE70138_B-

road_LINCS_Level4_ZSVCINF_mlr12k_n78980x22268_2015-06-30.gct.gz was downloaded

in December 2015. This dataset represents 273 compounds tested in 6-point dose response at

two time points in 15 cell lines. The level 4 (z-score vs. vehicle control) data was utilized. The

first 978 landmark (i.e. measured) gene measurements of the data matrix were analyzed. In

order to train the perturbation barcode model on the LINCS data, a subset of the data was

selected: 10 and 1 μM treatments at 24 hours. 80% of the data was used for training, and 20%

for validation, and the same hyperparameters were used for the model (see section Deep Met-

ric Learning). After the model was trained, the entire dataset was encoded with the perturba-

tion barcodes learned from the training set. Targets for 149 of the compounds were found to

be annotated in Chembl [46] or Metabase [47] databases, only those targets affected with

potencies<1μM were considered. For each target, distances between profiles derived from dis-

tinct compounds sharing the target were compared to a sample not sharing the target via a t

statistic. Compound structures were clustered by hierarchical clustering of ECFP4 fingerprints,

and gene expression profiles were clustered by the clara [48] algorithm using cluster numbers

(k) determined from optimal cuts of hierarchical clustering trees of samples of the datasets.

The clusterings were compared via the Adjusted Rand Index.

Other analyses

Crossvalidated support vector regression was performed with the caret package [49], cluster-

ing, and correlation analyses were performed in R [50].

For visualization, data, either z-scores or barcodes, were reduced to two dimensions using

the t-distributed stochastic neighbor embedding (t-SNE [38]) algorithm (implemented in tsne

[51] package for R). Data was visualized by plotting the t-SNE features in Spotfire (Tibco).

Compound structures were clustered using in-house fragment-based descriptors [52], and

hierarchical clustering with a threshold of Dice similarity>0.6. Promiscuity was defined based

on the frequency with which each compound was considered a ‘hit’ across HTS assays. Proj-

ect-specific hit calling was used for each assay.

Known target annotation

Merck’s chemogenomic database, the Chemical Genetic Interaction Enterprise (CHEM-

GENIE) was used to annotate compounds with their known targets. CHEMGENIE contains

harmonized data from external (e.g., ChEMBL, Metabase, and PDB) sources as well as internal

sources (e.g., project team data, kinase profile panels, counterscreen panels, etc.) where com-

pounds are represented as desalted InChIKeys and targets are represented with their Entrez

High throughput gene expression barcodes

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1005335 February 9, 2017 15 / 19



Gene ID and/or UniProt Accession. All target-based dose response data was added to each

compound, and the highest affinity target was selected as a representative target for each

compound.

High Throughput Screening Fingerprints (HTS-FP)

HTS fingerprints were constructed as described in the past [37]. Briefly, the z-scores of pri-

mary HTS screens at Merck were calculated for all screens where> 1e6 compounds had been

screened (344 total screens). The z-score for each screen was then stored as a vector for each

compound. Any z-scores > 20 or<-20 was assigned a value of 20 or -20, respectively, so that

artifactual values would not impact Pearson correlation calculations as significantly. The Pear-

son correlation of HTS-FPs was calculated between pairs of compounds by calculated the cor-

relation of z-scores for assays that were in common between them (all other z-scores were

ignored). 3471 compounds possessed HTS-FPs and were used in this analysis.

Activity prediction

t-SNE visualizations of z-scores representing the normalized L1000 data, and also of the

100-dimensional (nonthresholded) perturbation barcodes derived from the metric learning

network were generated. The locations of known EGFR/MEK/MAPK inhibitors on these

maps were plotted, and points (i.e. representing compound treatments), that were surrounded

by these known actives were selected for testing from each of the two maps. Separately, in

order to select actives from the full 978-dimensional z-score or 100-dimensional barcode

space, the ten nearest neighbors (by Euclidean distance) of each of the seed compounds were

identified, and available compounds were tested for activity. Compounds were tested in dose

titration assay in 1536 well plate format using a previously optimized reporter gene assay. Cells

(CellSensor ME-180 AP-1-bla, Life Technologies) were plated in the manufacturer’s recom-

mended assay medium at 3000 cells/well in 9μl in black/clear tissue culture treated 1536 well

plates (Greiner), and allowed to adhere overnight. Compounds were added from DMSO serial

dilution plates (50μM maximum assay concentration, 8-point, 3-fold dilutions), using a 50nl

pintool (GNF Systems), and the cells incubated 30 min in a tissue culture incubator. The cells

were then stimulated with Epidermal Growth Factor (EGF, Life Technologies) at 10ng/ml final

concentration by adding 1μl 10x stock, and allowed to respond for 5 hours in a tissue culture

incubator. Beta-lactamase detection reagents (ToxBlazer, Life Technologies), were added per

manufacturer’s instructions (2μl 6x mix), plates were incubated 2 hours at room temperature,

and read using a bottom-reading multimode reader (Pherastar, BMG). Data was normalized

to no-stimulation (100% inhibition), and stimulation + DMSO (0% inhibition), controls, and

percent inhibition was plotted along with logistic regression curve fits using Spotfire (Tibco).

Compounds were classified as active if they exceeded 50% inhibition of reporter activity with-

out toxicity at concentrations below 10μM.

Availability of supporting materials

Code for performing deep metric learning and a demonstration of the analysis on the LINCS

data are available at https://github.com/matudor/siamese.

Supporting information

S1 Text. Additional figures. Figures showing sample correlation, sample space depiction, and

details of prospective prediction results.

(PDF)
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