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Abstract

Infectious diseases impose considerable burden on society, despite significant advances in

technology and medicine over the past century. Advanced warning can be helpful in mitigat-

ing and preparing for an impending or ongoing epidemic. Historically, such a capability has

lagged for many reasons, including in particular the uncertainty in the current state of the

system and in the understanding of the processes that drive epidemic trajectories. Presently

we have access to data, models, and computational resources that enable the development

of epidemiological forecasting systems. Indeed, several recent challenges hosted by the U.

S. government have fostered an open and collaborative environment for the development of

these technologies. The primary focus of these challenges has been to develop statistical

and computational methods for epidemiological forecasting, but here we consider a serious

alternative based on collective human judgment. We created the web-based “Epicast” fore-

casting system which collects and aggregates epidemic predictions made in real-time by

human participants, and with these forecasts we ask two questions: how accurate is human

judgment, and how do these forecasts compare to their more computational, data-driven

alternatives? To address the former, we assess by a variety of metrics how accurately

humans are able to predict influenza and chikungunya trajectories. As for the latter, we

show that real-time, combined human predictions of the 2014–2015 and 2015–2016 U.S. flu

seasons are often more accurate than the same predictions made by several statistical sys-

tems, especially for short-term targets. We conclude that there is valuable predictive power

in collective human judgment, and we discuss the benefits and drawbacks of this approach.

Author summary

Despite advanced and widely accessible health care, a large number of annual deaths in

the United States are attributable to infectious diseases like influenza. Many of these cases

could be easily prevented if sufficiently advanced warning was available. This is the main

goal of epidemiological forecasting, a relatively new field that attempts to predict when

and where disease outbreaks will occur. In response to growing interest in this endeavor,
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many forecasting frameworks have been developed for a variety of diseases. We ask

whether an approach based on collective human judgment can be used to produce reason-

able forecasts and how such forecasts compare with forecasts produced by purely data-

driven systems. To answer this, we collected simple predictions in real-time from a set of

expert and non-expert volunteers during the 2014–2015 and 2015–2016 U.S. flu seasons

and during the 2014–2015 chikungunya invasion of Central America, and we report sev-

eral measures of accuracy based on these predictions. By comparing these predictions

with published forecasts of data-driven methods, we build an intuition for the difficulty of

the task and learn that there is real value in collective human judgment.

Introduction

Context

It is perhaps unsurprising that societal advances in technology, education, and medicine are

concomitant with reduced morbidity and mortality associated with infectious diseases [1].

This is exemplified by the staggering drop in infectious disease mortality in the United States

during the 20th century [2]. Yet despite continued technological advances, the U.S. death rate

due to infectious disease has not improved significantly since around the 1960s, and in fact has

been rising since the 1980s [3]. It is evident that incremental advances in medical treatment

are failing to reduce overall infectious disease mortality. One way in which the situation can be

improved is through expanding our capacity for preparedness and prevention—we need fore-

warning [4]. This is the defining problem out of which the nascent field of epidemiological

forecasting has risen.

There is widespread interest in predicting disease outbreaks to minimize losses which

would otherwise have been preventable given prior warning. In recent years, the U.S. Centers

for Disease Control and Prevention (CDC) has sponsored three challenges to predict Influenza

epidemics [5–7], Defense Advanced Research Projects Agency (DARPA) has sponsored a chal-

lenge to predict the invasion of chikungunya [8, 9], several agencies working together under

the Pandemic Prediction and Forecasting Science and Technology (PPFST) Working Group

have sponsored a challenge to predict Dengue outbreaks [10], and the Research and Policy for

Infectious Disease Dynamics (RAPIDD) group of the National Institutes of Health hosted a

workshop for forecasting Ebola outbreaks [11]. Given the magnitude of time, energy, and

resources collectively invested in these challenges by both participants and organizers, it is crit-

ical that qualitative and quantitative assessments be made to help understand where epidemio-

logical forecasting excels and where it lags.

Related work

As exemplified by the fields of meteorology and econometrics, statistical and computational

models are frequently used to understand, describe, and forecast the evolution of complex

dynamical systems [12, 13]. The situation in epidemiological forecasting is no different; data-

driven forecasting frameworks have been developed for a variety of tasks [14–16]. To assess

accuracy, forecasts are typically compared to pre-defined baselines and to other, often compet-

ing, forecasts. The focus has traditionally been on comparisons between data-driven methods,

but there has been less work toward understanding the utility of alternative approaches,

including those based on human judgment. In addition to developing and applying one such
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approach, we also provide an intuitive point of reference by contrasting the performance of

data-driven and human judgment methods for epidemiological forecasting.

Methods based on collective judgment take advantage of the interesting observation that

group judgment is generally superior to individual judgment—a phenomena commonly

known as “The Wisdom of Crowds”. This was illustrated over a century ago when Francis Gal-

ton showed that a group of common people was collectively able to estimate the weight of an

ox to within one percent of its actual weight [17]. Since then, collective judgment has been

used to predict outcomes in a number of diverse settings, including for example finance, eco-

nomics, politics, sports, and meteorology [18–20]. A more specific type of collective judgment

arises when the participants (whether human or otherwise) are experts—a committee of

experts. This approach is common in a variety of settings, for example in artificial intelligence

and machine learning in the form of committee machines [21] and ensemble classifiers [22].

More relevant examples of incorporating human judgment in influenza research include pre-

diction markets [23, 24] and other crowd-sourcing methods like Flu Near You [25, 26].

Contribution

Here we assess the performance of a forecasting framework based on collective human judg-

ment—“Epicast”. In particular, we assess its performance as a competitor in the aforemen-

tioned influenza and chikungunya forecasting challenges. Each of these challenges dealt with a

different set of data and objectives, and we analyze them separately. For both influenza chal-

lenges, the data of interest was population-weighted percent influenza-like illness (wILI) in 10

regions of the U.S. and the U.S. as a whole. wILI is syndromic surveillance defined as the per-

cent of patients having flu-like symptoms (fever over 100˚F and either cough or sore throat)

without a known cause other than influenza. wILI is reported voluntarily by health care pro-

viders through ILINet and distributed by CDC [27, 28]. The DARPA chikungunya challenge

focused instead on predicting case counts within 55 countries and territories in the Americas.

The data of interest was the number of weekly cases (including suspected, confirmed, and

imported) within each location, cumulatively since the beginning of 2014. These case counts

are published by the Pan American Health Organization (PAHO) [29].

In regards to terminology in subsequent discussion, there is an important distinction to be

made between a prediction and a forecast. These words are often used interchangeably else-

where, but here we use them to refer to subtly different concepts. A prediction makes an abso-

lute statement about the future and says nothing about other potential outcomes. In contrast, a

forecast is a generalization of a prediction in which a probability is assigned to all possible out-

comes. In the case of Epicast, we collect a prediction from each participant—a single possibil-

ity. Epicast aggregates many such predictions to produce a forecast—a probability distribution

over all possibilities. Because predictions and forecasts make different claims, they are evalu-

ated by different metrics; we use mean absolute error (MAE) to assess predictions and mean

negative log likelihood (based on “logarithmic score” [30], also known as “surprisal” in other

contexts [31]) to produce a figure of merit for forecasts.

As part of our evaluation of the Epicast system in forecasting flu, we compare with several

competing statistical and/or data-driven systems. For the 2014–2015 flu contest, we compare

Epicast with “Empirical Bayes” and “Pinned Spline”; for the 2015–2016 flu contest, we com-

pare Epicast with “Stat” and “ArcheFilter”. All of these systems were serious and successful

competitors in their respective contest years. Consequently, the performance of these systems

provides a measure of the state of the art in flu forecasting. None of these competing systems

were used in both flu contests, hence we compare against a different set of systems in different

years.

A human judgment approach to epidemiological forecasting
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The Empirical Bayes system [32] is based on the notion that future epidemics will generally

resemble past epidemics, up to basic transformations and noise. This system defines a prior dis-

tribution over wILI trajectories, draws samples from that distribution, assigns a likelihood-

based weight to each sample, and finally produces a posterior distribution over trajectories. The

reported forecast for each target is derived from the posterior distribution of wILI trajectories.

The Pinned Spline system [33] attempts to smoothly interpolate current and past wILI. To

do this, two partial wILI trajectories are defined. The first partial trajectory spans the start of the

season through the current week and is defined to be wILI as published by CDC for the current

season. The second partial trajectory spans the next week through the end of the season and is

defined to be the week-wise mean of the wILI trajectories of past epidemics over the same span.

Finally, the two partial trajectories are connected with smoothing splines. In subsequent analy-

sis we only evaluate point predictions—not forecasts—made by the Pinned Spline system.

The Stat system is a weighted ensemble of statistical methods, including both Empirical

Bayes and Pinned Spline. It additionally contains baseline components (including a uniform

distribution and an empirical distribution) and other non-mechanistic methods (including

delta density and kernel density methods). The cross-validation weight assigned to each con-

stituent method is recomputed for each forecast. Stat forecasts are a weighted combination of

the forecasts of each method.

The ArcheFilter system [33] assumes that there is a latent archetype wILI trajectory, and

that the observed wILI trajectory of each flu epidemic is a transformed, noisy version of the

archetype. The ArcheFilter defines this archetype roughly as the peak-aligned, week-wise

mean wILI trajectory of all past epidemic seasons. As an epidemic progresses, a Kalman filter

is used to estimate the time-shift and wILI-scale parameters that, when applied to the arche-

type, most parsimoniously explain the observed wILI trajectory of the current epidemic.

Uncertainty in the state of the filter—the shift and scale parameter values—gives rise to a dis-

tribution over wILI trajectories from which the forecast for each target is derived.

Methods

Ethics statement

This study was granted Carnegie Mellon University IRB exemption with ID

STUDY2015_00000142.

Collecting predictions

We developed a website [34] for collecting predictions of epidemiological time series (Fig 1).

Participants were shown a partial trajectory and were asked to hand-draw a continuation of

the trajectory as a prediction. At regular intervals, user-submitted trajectories were collected

and an aggregate forecast was generated. Participants were not shown the predictions made by

other participants. We produced, in real-time, forecasts for the 2014–2015 and 2015–2016 U.S.

flu seasons and predictions for the 2014–2015 chikungunya invasion of the Americas. For

influenza, we collected predictions from the general public; for chikungunya, we only collected

predictions from a set of selected experts in related fields. All three forecasting challenges were

carried out as the event (epidemic or invasion) progressed; we did not produce retrospective

forecasts.

Each week during the 2014–2015 and 2015–2016 flu seasons, we asked participants to pre-

dict wILI for each remaining week of the season. Each individually submitted prediction was a

trajectory of varying length (depending on the week of submission) of wILI values, and we

asked users to provide such predictions for each of the HHS and U.S. regions. Similarly, once

each month, from August, 2014 through January, 2015, we asked participants to predict the

A human judgment approach to epidemiological forecasting
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cumulative weekly chikungunya case count in each of the 55 Pan American Health Organiza-

tion (PAHO) locations through the end of February 2015.

Each predicted trajectory was extended to cover the entire time series of interest by

concatenating the observed time series at the time of submission with the predicted time series.

By doing this, all time series were made to have the same length (for example, 32 weekly wILI

values spanning the 2014–2015 flu season).

Forecasting targets

The objectives of the influenza challenges were to forecast a number of features, or “targets”, of

the weekly wILI time series. These included: “Peak Height”, the maximum value of wILI reported

throughout the flu season; “Peak Week”, the Morbidity and Mortality Weekly Report (MMWR)

week number [35] on which wILI reaches its maximum value; and the next four values of wILI,

called “1–4 Week Lookaheads”. Each of these values was forecasted separately for each of the ten

Health and Human Services (HHS) regions of the U.S. and also for the U.S. as a whole—a super-

region which we include in our analysis as one of eleven total regions. The forecast for each target

in each region consisted of a set of probability bins over a pre-defined range of outcomes and a

prediction of the single most likely outcome. The chikungunya challenge objective was simply to

predict the trajectory of cumulative case counts in each country or territory.

Of the six flu targets, two are season-wide: Peak Week and Peak Height. The rest—the 1–4

Week Lookaheads—are short-term targets. Peak Week is an integer representing the number

of weeks elapsed between the start of the season and the week during which wILI peaks. The

start of the season is defined as MMWR week 40 of the first year of the season, written as

“2014w40” or “2015w40”, depending on the season. The remaining five targets are measured

in wILI on a continuous scale from 0% to 100%. An additional season-wide target, the

MMWR week of epidemic onset, is discussed in S1 Text.

Aggregating predictions

The Epicast point prediction for any target was defined as the median of the target values mea-

sured on user predictions. The Epicast forecast for any target was a Student’s t distribution

Fig 1. Epicast user interface. A screenshot of the Epicast user interface for predicting flu in the United States. On any

given week, the wILI trajectory of the current season (solid black) is only partially observed. A user’s prediction is a

continuation of this trajectory over weeks in the future (dashed black). wILI trajectories of past seasons show the typical

course of influenza epidemics (colored lines).

doi:10.1371/journal.pcbi.1005248.g001
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with location equal to the median value (the point prediction), scale equal to the sample stan-

dard deviation of values, and degrees of freedom equal to the number of participants. The

same general methodology was used for both forecasting challenges, with the exception that

we produced both a prediction and a forecast for influenza and only a prediction for

chikungunya.

Evaluating outcomes

We primarily assess the quality of predictions in terms of mean absolute error (MAE). Given a

set of N true outcomes, y, and corresponding predictions, ŷ, MAE can be written as:

MAE ¼
1

N

XN

i¼1

j yi � ŷ i j :

We further assess wILI and case-count predictions (for example, Peak Height) by measur-

ing how often predictions fall within some range (± 10%, 20%, 30%, 40%, or 50%) of ground

truth. We similarly assess predictions of weeks (for example, Peak Week) by measuring how

often predictions fall within some range (± 1, 2, 3, 4, or 5 weeks) of ground truth. We report

the fraction of the time that predicted values fall within each range, aggregated over regions

and potentially also weeks. We refer to these analyses as “fraction of predictions accurate

within a target range”.

We assess the quality of flu forecasts in terms of a likelihood-based score. We define the

“log score” as the negative average of the logarithm of the probability assigned to a range of val-

ues surrounding the true outcome. In the case of Peak Week, we consider the log score of the

range of the actual Peak Week plus or minus one week (for example, if the Peak Week was 5,

we compute the log likelihood of the probability assigned to a peak being on week 4, 5, or 6).

Suppose that PkWkobs
r denotes the observed value of Peak Week in region r and that P(� � �) rep-

resents the probability assigned by the forecaster to a given outcome. Then the score across all

regions can be written as:

score ¼ �
1

11

X11

r¼1

log PðPkWkr 2 ½PkWkobs
r � 1;PkWkobs

r þ 1�Þ:

For the five wILI targets, we only have available a set of probability bins each of width 1

wILI, as this is what was required by CDC’s 2014–2015 flu contest. To determine which bins to

include in the likelihood calculation, we select (1) the wILI bin containing the actual value and

(2) the adjacent wILI bin nearest to the actual value. For example, the actual Peak Height in

the U.S. National region was 6.002, and we select the two bins which together give the proba-

bility assigned to the event that actual Peak Height falls between 5 and 7. Suppose a forecast

was made that P(5� wILI< 6) = 0.215 and P(6� wILI< 7) = 0.412; the log score assigned to

this forecast is − log(0.215 + 0.412) = 0.467. For Peak Height (and similarly for the Lookahead

targets) across all regions:

score ¼ �
1

11

X11

r¼1

log PðPkHtr 2 ½roundðPkHtobs
r Þ � 1; roundðPkHtobs

r Þ þ 1�Þ:

To compensate for the varying difficulty over time of predicting and forecasting, we often

treat accuracy as a function of “lead time”, the number of weeks preceding the region-specific

Peak Week. Positive, zero, and negative lead times indicate predictions and forecasts made

before, on, and after the epidemic peak, respectively. We consider lead times for the 2014–

A human judgment approach to epidemiological forecasting
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2015 flu season that range from +10 to −10 weeks. However, due to the unusually late Peak

Week within most regions in the 2015–2016 flu season, we constrain lead times in that season

to the range of +10 to −5 weeks.

To contextualize the accuracy of both predictions and forecasts, we compare Epicast with

individual participants and/or other forecasting methods. To further contextualize log scores,

we show also the log score of a hypothetical “Uniform” system in which uniform probability is

assigned to all plausible outcomes. For Peak Week, we define this as a uniform distribution

over weeks 2014w46 through 2015w12 and 2015w45 through 2016w12 (p ¼ 1

20
per week, per

season), and for the wILI targets we define this as a uniform distribution over 0% to 12% wILI

(p ¼ 1

12
per bin). The Uniform system is intended to provide a lower bound on the perfor-

mance of a reasonable forecaster.

Our main challenge in presenting results is that the space in which comparisons can be

made consists of several orthogonal dimensions: regions (U.S. and 10 HHS regions), targets

(Peak Week, Peak Height, and 1–4 Week Lookaheads), season weeks (depending on season

and target, up to 32), and error metrics (MAE and log score). To concisely compare system per-

formance, we are given the non-trivial task of reducing this dimensionality, otherwise we

would come to thousands of separate figures of merit. Several confounding issues impede

aggregation along any one axis; forecasting difficulty varies over time as the season progresses,

the various regions may peak at different times in the season, long-term targets are often more

difficult to predict than short-term targets, and targets are measured in different units. To work

around these complications in the case of point predictions, we rank systems and participants

in terms of absolute error and perform our analysis on the relative ranking assigned to each

predictor. More specifically, we consider the pairwise ranking in absolute error of Epicast ver-

sus individual participants and statistical frameworks. For each lead time, region, and target,

we ask whether Epicast or the competitor had a smaller absolute error, and we measure the

fraction of instances where Epicast had the smaller error—a “Win Rate”. To assess the statistical

significance of each result, we use a Sign test with the null hypothesis that the pair of forecasters

is equally accurate. It should be noted that this test assumes that all observations are indepen-

dent, but results across adjacent weeks, for example, are likely to be correlated to some extent.

We define ground truth to be the version of wILI published by CDC 15 weeks after the end

of each flu season—MMWR week 35. Specifically, we use values published on 2015w35 and

2016w35 for evaluating the results of the 2014–2015 and 2015–2016 flu contests, respectively.

Results

Influenza

For the 2014–2015 flu season we gathered a total of 5,487 trajectories from a set of 48 volunteer

participants during the 32 week period spanning 2014w41 through 2015w19. For the 2015–

2016 flu season we gathered a total of 3,833 trajectories from a set of 23 volunteer participants

during the 30 week period spanning 2015w42 through 2016w19. Participants varied in self-

identified skill, from experts in public health, epidemiology, and/or statistics, to laypersons.

Participation varied over time with an average of 16 participants per week during the 2014–

2015 season and 12 participants per week during the 2015–2016 season (Fig 2). In the follow-

ing analysis we did not handle expert and non-expert predictions differently, but we compare

the performance of the two groups in S1 Text—the experts on average made slightly more

accurate predictions. In what follows, we group errors across regions for brevity, but a break-

down of performance within each region is also given in S1 Text.

We first consider the fraction of predictions accurate within a target range, aggregated over

weeks of the season (Fig 3). For the four short-term Lookahead targets, the Epicast prediction

A human judgment approach to epidemiological forecasting
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is within 10% of the actual value just under half the time when predicting one week into the

future; this falls to roughly one quarter of the time when predicting 4 weeks into the future.

The trend is similar, though perhaps less abrupt, at other accuracy thresholds. Accuracy within

50% is achieved near or above 85% of the time, even predicting up to 4 weeks ahead.

We next consider the number of regional predictions accurate within a target range, as a

function of lead time (Fig 4). For 2, 3, and 4 weeks ahead, the lead time with lowest accuracy is

roughly 2, 3, and 4 weeks ahead of the Peak Week, respectively, which suggests that there is a

distinct challenge in forecasting the Peak Height. This is to be expected because there is signifi-

cantly more volatility around the peak of the epidemic. In general, accuracy in season-wide tar-

gets rises sharply 2–5 weeks before the epidemic peak and remains high through the

remainder of the season.

Fig 2. Overview of Epicast participation. Top: time series of the number of active participants per week. Bottom:

timeline of weekly participation. (Assigned colors are for visualization purposes only and are consistent across figures.).

doi:10.1371/journal.pcbi.1005248.g002

A human judgment approach to epidemiological forecasting
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For the 2015–2016 season, short-term accuracy (relative, not absolute) is surprisingly low

in several regions around 10 weeks before the peak. This is likely due to the fact that the Peak

Week in most regions was exceptionally late during this season. As a result, wILI was still near

to baseline values for several weeks after predictions were made. Predicting a premature rise in

wILI when ground truth was small in magnitude resulted in errors exceeding 50% of the actual

value in several regions. Once it became clear that this would likely turn out to be a mild and/

or late-peaking season, accuracy rose to nominal pre-peak levels.

The remainder of our analysis is focused on comparing the accuracy of Epicast with indi-

vidual participants and competing methods; we begin with Win Rate (Fig 5). Overall,

Fig 3. Relative prediction accuracy on short-term targets. The percent of regions and submission weeks (n2014 = 352,

n2015 = 330) where the Epicast point prediction was accurate within some range of the actual value is shown separately for

each of the four short-term targets.

doi:10.1371/journal.pcbi.1005248.g003
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considering all targets, Epicast has Win Rates above 0.5 (lower absolute error than a competi-

tor on a majority of predictions) when compared with all but one individual participant and

all four statistical frameworks. In season-wide targets, Epicast performs reasonably well; how-

ever, six participants and the ArcheFilter method bring Epicast’s Win Rate below 0.5. In short-

term targets, Epicast has Win Rates uniformly above 0.5. Epicast has a Win Rate significantly

higher than the Spline method in all categories and significantly higher than the Empirical

Bayes and ArcheFilter methods both overall and in short-term targets. Epicast never has a sig-

nificantly lower Win Rate than any of the competing statistical systems.

Next, we compare predictions in terms of MAE. We calculate, separately for each target,

MAE across regions as a function of lead time (Fig 6). In agreement with previous results, Epi-

cast MAE in season-wide targets generally decreases with lead time and is highest in short-

term targets when predicting the peak value of wILI. MAE is occasionally elevated in short-

term targets on the Peak Week (lead time = 0), suggesting a relative increase in uncertainty

immediately after the true peak (which is not known at the time to be so). Compared with the

statistical methods, Epicast particularly excels when predicting short-term targets.

Finally, we compare forecasts in terms of log score. Our analysis in this context does not

include the 2014–2015 Spline method, but the hypothetical Uniform method is included for

both seasons. We compute the average log score for Epicast and competing methods separately

for each target and lead time (Fig 7). In the 2014–2015 season, Empirical Bayes scored within

Fig 4. Number of regions accurate within a target range by lead time. The number of regions where the Epicast point

prediction was accurate within some range of the actual value is plotted as a function of lead time. Subplots show accuracy

in (A; G) Peak Week, (B; H) Peak Height, and (C–F; I–L) wILI at 1, 2, 3, and 4 weeks ahead, respectively.

doi:10.1371/journal.pcbi.1005248.g004

A human judgment approach to epidemiological forecasting
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Fig 5. Epicast Win Rate against individuals and competing systems. All plots show, for each predictor

(users participating on at least half of the weeks and statistical systems Empirical Bayes (EB), Pinned Spline

(SP), Stat (ST), and ArcheFilter (AF)), Win Rate: the fraction of instances where Epicast had lower absolute

error than the competitor, across all regions and lead times (n2014 = 231, n2015 = 176 per target). A Win Rate

above the reference line of 0.5 implies that Epicast had lower absolute error more frequently than the indicated

A human judgment approach to epidemiological forecasting
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the bounds of the Uniform system more consistently than Epicast. However, in the 2015–2016

season, all systems consistently scored within the Uniform bounds for wILI targets, likely due

at least partly to a relatively low peak wILI in this season. Across both seasons, Epicast has aver-

age log score in short-term targets as good as, or better than, that of the statistical systems.

However, the statistical systems almost uniformly outperform Epicast in season-wide targets.

Chikungunya

In total, we gathered 2,530 trajectories from a set of 12 volunteers with expertise in vector-

borne diseases, public health, and/or epidemiology (Fig 8). Predicting chikungunya funda-

mentally differed in two ways from predicting flu. First, the chikungunya invasion of the

Americas was a rare event for which little historical precedent was available, whereas flu epi-

demics are a regular occurrence for which we have significant historical data. Second, errors in

(cumulative) chikungunya predictions accumulated over weeks, whereas errors in (non-cumu-

lative) flu predictions were separated out across weeks. While it would have been trivial to

predictor. Statistical significance is determined by Sign test; *: p < 10−2; **: p < 10−5. Subplots show Win Rate

considering (A; D) all six targets, (B; E) the two season-wide targets, and (C; F) the four short-term targets.

doi:10.1371/journal.pcbi.1005248.g005

Fig 6. Comparison of mean absolute error by lead time. Mean absolute error across regions (n = 11) is plotted as a

function of lead time for of Epicast, Empirical Bayes (E. Bayes), Pinned Spline (Spline), Stat, and ArcheFilter (A-Filter).

MAE averaged over lead times is shown for each method on the right side of each subplot. Subplots show MAE in (A; G)

Peak Week, (B; H) Peak Height, and (C–F; I–L) wILI at 1, 2, 3, and 4 weeks ahead, respectively.

doi:10.1371/journal.pcbi.1005248.g006

A human judgment approach to epidemiological forecasting

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1005248 March 10, 2017 12 / 19



convert a cumulative trajectory into a non-cumulative trajectory, the published counts which

were defined to be ground truth are only available sporadically over time, preventing us from

converting the true cumulative trajectory into a non-cumulative trajectory. The increased diffi-

culty of the task is reflected by a reduction in accuracy. At best (1 week ahead), less than one in

three predictions were within 10% of the actual value; and at worst (10 weeks ahead), over half

of the predictions were off target by more than 50%. Even in such conditions, when comparing

pair-wise absolute error between Epicast and each user, Epicast more frequently predicts closer

to the true value than any individual user.

Discussion

Outcomes

Epicast was one of two winning methods in the 2014–2015 flu contest [7]. Epicast was one of

three winning methods in the 2015–2016 flu contest [36] (the other winners were Stat and

ArcheFilter). We expect a future CDC publication to provide additional details and analysis.

Epicast was not selected as one of the six chikungunya challenge winners [37], but we are told

that it ranked in the top quartile of submissions.

There are two caveats to point out regarding our incarnation of the crowd prediction

method for forecasting flu. First, the ILINet data we showed participants, and also asked them

Fig 7. Comparison of log score by lead time. Log score, averaged across regions (n = 11), is plotted as a function of

lead time for of Epicast, Empirical Bayes (E. Bayes), Stat, ArcheFilter (A-Filter), and Uniform. Log score averaged over

lead times is shown for each method on the right side of each subplot. Subplots show log score by (A; G) Peak Week, (B;

H) Peak Height, and (C–F; I–L) wILI at 1, 2, 3, and 4 weeks ahead, respectively.

doi:10.1371/journal.pcbi.1005248.g007
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to predict, was subject to weekly revision—in some cases significantly so (for example, wILI in

HHS region 2 on 2015w03 was first reported as 6.2%, and then the next week as 5.6%; the

final, stable value was reported as 5.0%). The changing values are due to a backfill process

whereby data from late-reporting providers is used to retrospectively update prior values of

wILI. This is one reason, for example, that MAE after the Peak Week is non-zero; even once

the peak has been observed with high confidence, there is still some non-negligible chance that

a subsequent update due to backfill will result in a revision of the peak timing. A further dis-

cussion of the effects of backfill can be found in S1 Text. Second, the data used in our present

analysis is the same data collected for the various contests, but our methodology in the 2014–

Fig 8. Overview of chikungunya predictions. (A) Similar to Fig 2, participation is shown per month (top) and per expert

(bottom). (B) As in Fig 3, percent of predictions within some range of the target value as a function of the number of weeks

in advance that the prediction was made (45� n� 84). (C) As in Fig 5, the fraction of instances where Epicast had lower

absolute error than each individual participant, across all countries and weeks (336� n� 795; Sign test; *: p < 10−2; **:

p < 10−5).

doi:10.1371/journal.pcbi.1005248.g008
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2015 flu contest differed slightly from what we present here. Namely, our 2014–2015 contest

submissions assumed a normal distribution over user inputs, whereas here, and in our 2015–

2016 contest submissions, we assumed a Student’s t distribution.

Advantages and disadvantages

There are several important limitations of the human judgment approach relative to purely

data-driven methods that should be made clear. First, these results are only representative of two

flu seasons and a single chikungunya outbreak. This highlights one of the biggest shortcomings

of this approach—collecting predictions is a tedious and time-consuming process. Unlike statis-

tical methods which can be applied retrospectively to any outbreak, the approach here requires a

significant amount of work from a large number of participants. For example, because of this we

are unable to perform cross validation across seasons. Second, these results do not necessarily

provide us with an improved understanding of epidemiological dynamics. In contrast, statistical

methods aim to learn from past data in order to better describe and model the epidemic process.

On the other hand, the human judgment approach does have unique advantages over purely

data-driven systems. Humans have the innate and powerful ability to assimilate, with little to no

effort, diverse data sources and considerations. An example of this is using news headlines,

which we display within the Epicast interface, to inform predictions. Another advantage of

human judgment is the ability to make reasonable predictions for events with little historical

precedent, like the outbreak of a new disease or a disease invasion in a new location.

The task of predicting trajectories is not trivial, and we asked each of the participants to

provide us with many such trajectories over quite a long period of time. This resulted in some

tedium, which we suspect is the reason for the relatively high attrition rate in the flu Epicast.

There are many guidelines describing ways to make crowd work streamlined and sustainable,

and we made every effort to implement these ideas. To minimize the overall amount of effort

required and to streamline the process as much as possible we: allowed participants to use

their previously entered forecasts as a starting point; accepted any number of regional predic-

tions (not requiring all eleven to be completed); reduced the entire process to one drag and

one click per region; and sent URLs tailored with a unique identifier via email each week to

bypass having to manually login. Additionally, we tried to increase interest and participation

by including a leader board of both weekly and overall high scores. We also had the competing

objective of collecting the most informed forecasts from the participants. To this end we

included a section of links to educational resources, and for the flu Epicast we embedded

within each participant’s home page a Google news feed on the topic of “flu”.

Epicast is not well suited for all forecasting situations. “Wisdom of crowds” methods are

robust to high variance among individual predictions, but require that the overall distribution

of predictions is unbiased. By showing wILI trajectories of past flu epidemics on Epicast’s fore-

casting interface, we undoubtedly bias predictions toward typical flu seasons. While this may

be beneficial when forecasting a typical flu season, it is almost certainly harmful when predict-

ing highly atypical flu epidemics, and especially pandemics. Epicast is not robust to “long-tail”

events such as these. In general, Epicast is best suited for situations where: (1) the event is regu-

larly occurring, (2) historical surveillance data is available for many examples of the event, and

(3) ongoing surveillance data is available with relatively short lag in comparison to the length

of the event. This may explain the increased difficulty of Epicast in predicting the chikungunya

invasion: it was a one-time event with no historical data and relatively lagged and intermit-

tently available ongoing data.

Alternative prediction methods which solicit and aggregate human judgment exist; the Del-

phi method [38] is one such example. Both the Delphi method and the Epicast method herein
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collect predictions from human participants and produce a single output prediction. However,

the Delphi method is iterative, requiring more time, effort, and coordination. The Delphi

method requires from each participant not only a prediction, but also reasoning or justifica-

tion for that prediction. Then, all participants are shown the predictions, and reasons for

them, of all other participants. Participants are then given the opportunity to revise their pre-

dictions, and the process continues iteratively either until convergence or some other stopping

criteria are met. One of the design goals of Epicast was to minimize human time and effort

required, and so we did not pursue the Delphi method. However, it would be of value to com-

pare the Epicast and Delphi methods to learn the relative advantages and disadvantages of

each method in terms of both human effort and prediction accuracy.

Future work

It was our hope that the number of participants would grow organically, for example through

word of mouth and social media. Instead, we found it difficult to recruit new participants and

to maintain participation throughout the flu season. The failure to achieve a true “crowd” is

most likely due to the tedium of the task, and we are working on ways to both reduce this

tedium and to make the task more gratifying for participants. While we strove to design the

user interface in a way that minimizes the level of effort required to input predictions, there is

always room for further improvement. One option we considered, but did not implement

because of the small number of participants, is to reduce workload by asking participants to

provide a prediction only for a randomized subset of regions. Another option we considered,

but did not completely implement due to time constraints, was gamification. This was partially

implemented in the form of leader boards, but it would be difficult to provide a more immedi-

ate reward because of the inherent delay between prediction and revelation of true outcomes.

There are several additional ways in which the Epicast method could be improved. First,

there is an important relationship between a prediction, and the level of confidence in that pre-

diction, that we were unable to capture. We asked participants to give us their best point pre-

dictions, but there was no way for them to communicate with us their level of confidence in

those and other predictions—a forecast. We made the implicit assumption that disagreement

among user predictions implies lack of confidence, which is probably true to some extent. The

inverse however—that uniformity in predictions implies high confidence—is clearly untrue.

Consider as an example the case where everyone believes that next week’s wILI has a 60%

chance of staying the same as this week’s wILI, resulting in all point predictions strongly con-

centrated on the same wILI, and the distributional spread being very narrow, in contrast with

the participants’ beliefs. It would be ideal to collect from each user a more informative measure

of their confidence, but this would undoubtedly complicate the user interface and degrade the

overall experience (which we were averse to).

Another improvement to consider is a weighted combination of predictions whereby par-

ticipants who have historically had more accurate predictions are given more weight in the

aggregation process. This is similar in spirit to weighting user recommendations and rankings,

which has been shown to increase accuracy in those settings [39, 40]. In the case of Epicast,

there is limited evidence suggesting that some participants are overall more (or less) accurate

than other participants. One example of this is in Fig 5B where one participant has significantly

higher Win Rate than Epicast and several other users. On the other hand, it is not clear

whether the variance of prediction error is sufficiently small to learn which users are the most

accurate in a reasonable amount of time—before the epidemic peak, for example. In other

words, differences in accuracy may be exploitable, but only if precision is sufficiently high. If

this is the case, then an adaptive weighting scheme could benefit the overall forecast. However,
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there is a critical obstacle that hinders the practical implementation of such a scheme: because

of backfill, the final measure of accuracy is not known for many months. Despite this, we pro-

pose, implement, and analyze one such scheme in S1 Text—the result is a small and statistically

insignificant increase in accuracy.

A natural evolution of systems such as those for epidemiological forecasting is the combina-

tion of human and statistical (machine) methods [41, 42]. The first question in such a project

is whether human predictions should be given as input to statistical methods or whether the

output of the statistical methods should be shown to humans for more informed predictions.

In theory both directions are viable, and there are intuitive reasons for each. In support of the

latter, people are naturally inclined to trust forecasts made by humans (or to distrust forecasts

made by machines), a phenomenon known as algorithm aversion [43]. Supporting the former,

on the other hand, is the observation that in many settings and in a variety of tasks, objective

machine prediction is often superior to subjective human prediction [44, 45]. We have begun

to explore both directions; currently, we show a subset of Epicast participants a confidence

band derived from a separate statistical method, and we are developing a retrospective analysis

wherein we compare performance of various statistical methods with and without a supple-

mental input of human prediction as an independent data source. In the meantime, we plan to

continue to host Epicast and collect predictions for the current flu season, and we end this sec-

tion with an open invitation to participate [34].

Conclusion

For years, both humans and machines have been employed to tackle difficult prediction prob-

lems, and the biases involved and the relative advantage of data-driven approaches are at least

well documented [43, 44], if not well understood. We do not make the claim that human judg-

ment is intrinsically more valuable or more capable than machines when making epidemiolog-

ical forecasts, but we do posit that there is value in understanding the strengths in each

approach and suspect that both can be combined to create a forecasting framework superior to

either approach alone.

Supporting information

S1 Text. Supporting Information. This document includes additional results and analysis,

including a breakdown by each HHS Region, forecasts of week of epidemic onset, performance

of a subset of “expert” users, and an adaptive weighting scheme.

(PDF)

S1 Data. Forecasts and ground truth.

(ZIP)
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