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Abstract

Hybrid deterministic-stochastic methods provide an efficient alternative to a fully stochastic

treatment of models which include components with disparate levels of stochasticity. How-

ever, general-purpose hybrid solvers for spatially resolved simulations of reaction-diffusion

systems are not widely available. Here we describe fundamentals of a general-purpose spa-

tial hybrid method. The method generates realizations of a spatially inhomogeneous hybrid

system by appropriately integrating capabilities of a deterministic partial differential equation

solver with a popular particle-based stochastic simulator, Smoldyn. Rigorous validation of

the algorithm is detailed, using a simple model of calcium ‘sparks’ as a testbed. The solver is

then applied to a deterministic-stochastic model of spontaneous emergence of cell polarity.

The approach is general enough to be implemented within biologist-friendly software frame-

works such as Virtual Cell.

Author Summary

Mechanisms of some cellular phenomena involve interactions of molecular systems of

which one can be described deterministically, while the other is inherently stochastic. Cal-

cium ‘sparks’ in cardiomyocytes is one such example, in which dynamics of calcium ions,

which are usually present in large numbers, can be described deterministically, whereas

the channels open and close stochastically. The calcium influx through the channels ren-

ders the entire system stochastic, but a fully stochastic treatment accounting for each cal-

cium ion is computationally expensive. Fortunately, such systems can be efficiently solved

by hybrid methods in which deterministic and stochastic algorithms are appropriately

integrated. Here we describe fundamentals of a general-purpose deterministic-stochastic

method for simulating spatially resolved systems. The internal workings of the method

are explained and illustrated by applications to very different phenomena such as calcium

‘sparks’, stochastically gated reactions, and spontaneous cell polarization.
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Introduction

It is not uncommon for a cell-biological model to include some components that might be

stochastic in nature (small copy numbers, rare events), whereas others, if uncoupled, would

behave deterministically (large copy numbers, fast reactions). Through their interaction, fluc-

tuations in a stochastic subsystem may induce significant random perturbations in the ‘deter-

ministic’ one, thus rendering the entire system stochastic. Calcium sparks in cardiomyocytes

and other cells [1] is one such example, where calcium released from intracellular stores

through calcium channels may, in turn, influence probabilities of opening and closing of those

channels. Here, calcium concentration can often be regarded as a ‘deterministic’ component

of the system, whereas the dynamics of calcium channels is inherently stochastic. Similarly,

stochastic openings of voltage-sensitive ion channels depend on the ‘deterministic’ membrane

potential, which, in turn, is affected by stochastic electric currents passing through the chan-

nels [2]. Stochasticity in otherwise deterministic cellular subsystems may also be brought

about by their coupling to dynamics of cytoskeletal filaments, translation events, and other

processes involving macromolecules and small organelles present in small numbers.

Simulating such systems as fully stochastic can be prohibitively slow. Indeed, simulating

calcium sparks stochastically with an account of every single calcium ion would be computa-

tionally expensive because their number is typically large. But in the limit of large copy num-

bers, the intrinsic fluctuations due to discreteness of molecules are insignificant, and one can

design faster hybrid algorithms, in which deterministic and stochastic approaches are appro-

priately combined. While these efficient methods are approximate, the larger the copy num-

bers in the ‘deterministic’ subsystem, the more accurate their outcome.

Numerical approaches to interacting systems with disparate levels of stochasticity are an

area of active interdisciplinary research. In the context of cell-biological applications, various

hybrid approaches were proposed for ‘well-mixed’ models of biochemical networks with fast

and slow components [3, 4]. In these models, a fast component, whose copy numbers are only

moderately large, is often modeled as a Wiener stochastic process, rather than deterministi-

cally. The corresponding numerical techniques are a combination of methods of solving sto-

chastic ordinary differential equations (SDEs) [5], also termed Langevin equations in the

physics literature, and Gillespie-type algorithms [6, 7] that simulate stochastic reaction events

in the slow component. Unlike stochastic hybrids, the deterministic-stochastic models are

mathematically defined as piecewise deterministic Markov processes [8, 9], in which the sys-

tem develops deterministically between consecutive stochastic events. Numerical approaches

to such systems are based on a formulation that couples differential equations, which describe

continuous variables, with equations that govern probability distributions of the stochastic

components. The coupling occurs through ‘deterministic’ rates dependent on discrete stochas-

tic variables and transition probability rates that are functions of continuous variables. Effi-

cient numerical methods for solving deterministic-stochastic models rely on generating

Monte Carlo realizations of a hybrid system. For this, a kinetic Monte Carlo algorithm advanc-

ing a stochastic subsystem in time must work in conjunction with a deterministic integrator

that updates continuous variables by solving the corresponding differential equations.

A variety of algorithms were proposed for spatially uniform, or well-mixed, deterministic-

stochastic models. Fixed time step methods, applied to hybrid models of membrane potential

[2] and calcium dynamics [10], are conceptually straightforward but incur time-discretization

errors in stochastic variables. In adaptive methods, which were first proposed for solving deter-

ministic-stochastic models of biochemical networks [11], the treatment of a stochastic subsys-

tem is essentially free of time-discretization errors. In these algorithms, accurate sampling of

stochastic reaction events coupled to continuous variables is achieved by adapting Gillespie’s
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methods for systems whose transition rates explicitly depend on time. A similar approach was

used in a hybrid stochastic algorithm for well-mixed systems with fast and slow components

[12]. It should be noted that in adaptive methods, special care is required for ensuring synchro-

nous treatment of the ‘deterministic’ and stochastic subsystems. A rigorous convergence anal-

ysis of the hybrid adaptive methods was given in [13].

Numerical methods for spatially resolved deterministic-stochastic models are less common.

A method described in [14] approximates a stochastic subsystem by a reaction-diffusion mas-

ter equation [15–18]. In this approximation, a spatial domain is partitioned into subvolumes

which are assumed to be well-mixed at any time, and a state of the stochastic subsystem is

described in terms of copy numbers per subvolume. The master equation is then solved by an

optimized variant of the Next Subvolume method [19]. Designed for models with relatively

slow deterministic dynamics, the method of [14] is applicable only if the stochastic subsystems

involve sufficiently large copy numbers per subvolume [20, 21].

Stochastic subsystems with relatively low copy numbers can be described in terms of

states and spatial locations of individual molecules. The particle-based approach was used

to simulate a simple model of assembly of RNA granules in which RNA molecules bind to

core complexes [22]. In the model, spatial distributions of RNA molecules were modeled

deterministically by partial differential equations. The core complexes and RNA granules

were treated stochastically as individual particles interacting with the deterministic subsys-

tem while undergoing random walks. A similar approach was adopted in modeling actin

bundles and asters [23, 24], where the stochastic subsystem was comprised of tips of actin

filaments while ‘deterministic’ actin monomers were modeled as well-mixed because of

their relatively fast diffusion.

States and positions of individual channels were also used to define stochastic subsystems in

spatial versions of the deterministic-stochastic models of membrane potential [25] and calcium

release from inositol 1,4,5-trisphosphate (InsP3)-receptor channels [26–28, 2]. Algorithmically,

the methods in these studies combined deterministic descriptions in terms of partial differential

equations and the event-driven time stepping schemes [11]. Calcium-induced calcium release

in cardiac muscle cells [29] was already mentioned above as a mechanism that naturally lends

itself to a hybrid numerical treatment. Playing a key role in ensuring robustness of heart con-

tractions in response to action potentials, it has been studied extensively by various methods

[30], including mathematical modeling [31]. The calcium release in cardiomyocytes occurs by

way of clustered ryanodine receptor channels (RyR) and, in a healthy heart, takes the form of an

avalanche of calcium ‘sparks’, the localized spikes of calcium concentration [32]. Recent

advances in experimental technologies have generated renewed interest in detailed predictive

computational modeling of calcium dynamics in heart muscle cells for normal and pathological

conditions [33, 34]. Similar to calcium release from the (InsP3)-receptor channels, the problem

entails coupling of a spatial deterministic description of calcium and stochastic kinetics of RyR

channels and can be solved efficiently by a hybrid numerical method.

All of the above approaches were largely specific solutions to a specific modeling problem or

a restricted domain of problems. In this article, we describe a general-purpose spatial determin-

istic-stochastic algorithm and discuss techniques used for its validation. The work was moti-

vated by the need of providing tools for simulating spatial hybrid models to a wide range of cell

scientists. The method is designed to be applicable to a broad spectrum of models, including

those where continuous and discrete variables are defined both in volume and in the encom-

passing membranes. The current implementation of the method appropriately combines capa-

bilities of one of the Virtual Cell (VCell) [35–39] spatial deterministic solvers and an efficient

particle-based simulator called Smoldyn [40, 41]. (Note that Smoldyn has been recently adapted

to accommodate a different type of hybrid stochastic models [42], in which the subsystems with
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disparate levels of stochasticity are segregated in space but can interact in a ‘handshaking’ region

[43–46].) The development of the VCell hybrid solver benefited from recent integration of

Smoldyn into VCell as a method of solving spatial stochastic models [47]. A distinct feature of

our hybrid solver is that the simulations of widespread fluctuations originating from point

sources can be carried out in realistic geometries taken from experimental images, as both

VCell and Smoldyn provide tools for simulating reaction-diffusion systems in arbitrary geome-

tries [48, 49, 40].

This article is focused on physical underpinnings of the method and its algorithmic details,

with special emphasis on rigorous validation of its key elements. Hybrid algorithms, often pro-

posed heuristically, may appear intuitive, but their rigorous analysis and validation constitute

a challenging task [12, 25, 7]. This is particularly true in the context of spatially resolved mod-

els. Tests against deterministic limits, while necessary, are insufficient because convergence to

a correct deterministic limit does not yet guarantee correct behavior in the stochastic regime.

Analytical solutions of stochastic models, required for convergence studies in the stochastic

regime, are rare, particularly for spatial hybrid systems. In addition to truncation errors due to

the time-space discretization, common to deterministic integrators, probability distributions

and correlation functions obtained by Monte Carlo techniques include statistical errors due to

finite numbers of realizations. Thus, the validation of a spatial hybrid solver entails analysis of

multidimensional datasets representing multiple realizations of a hybrid system obtained with

varying discretization parameters.

The paper is organized as follows. The algorithm, along with its mathematical fundamen-

tals, is described in Section Mathematical problem and algorithm using a simple model of cal-

cium sparks as an example. It is then applied to two very different cell-biological phenomena.

The calcium spark model introduced in Section Mathematical problem and algorithm is used

in Section Validation of the method for validation of the method against analytical results and

numerical solutions obtained by alternative methods. In Section Application to a hybrid model
of spontaneous cell polarization, the method is applied to a hybrid model of spontaneous cell

polarization; the actual VCell MathModel script for this application is included in S3 Text as

an illustration of the software implementation. A summary of results and discussion of possi-

ble improvements conclude the paper.

Results

The mathematical problem and algorithm

Mathematically, the algorithm is based on a formulation of a deterministic-stochastic system,

which is somewhat similar to how Wiener processes are described in terms of Langevin equa-

tions. To illustrate the approach and explain the workings of the algorithm, we employ a sim-

ple model of calcium sparks, whose ‘deterministic’ subsystem consists of a single variable, the

calcium concentration U(r,t), and its stochastic subsystem is comprised of calcium channels,

through which calcium flows into the cell from intracellular stores. In muscle cells, calcium

channels form small regularly distributed clusters. For simplicity, we will treat the calcium

sources as single channels having two states, open and closed. The corresponding discrete sto-

chastic variables are Ξi(r,t)� δ(r − ri)ξi(t), where the Dirac deltas δ(r − ri) define channel loca-

tions and the stochastic variables ξi(t) accept two values: 1 (open state) and 0 (closed state).

The index i enumerates the channels, and r,ri 2Ωcell, where Ωcell denotes the space of a cell.

Dynamics of the continuous variable U(r,t) are affected by the following mechanisms: cal-

cium release through channels, calcium diffusion, and removal of calcium from the cytosol via

calcium pumps. The variable is therefore governed by a partial differential equation (PDE)

Spatial Hybrid Solver for Models in Cell Biology
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with stochastic source terms,

@tU ¼ r � ðDrUÞ þ Jð
XNch

i¼1
Xiðr; tÞÞ � VpðU � U0Þ; ð1Þ

where D is the calcium diffusion constant, J is the calcium flux through an open channel, Nch is

the total number of channels in the cell, Vp is the calcium pump rate constant, and U0 is the

steady-state calcium concentration in the absence of open channels. Eq (1) is subject to bound-

ary conditions imposed at the cell membrane. For example, if calcium fluxes at the plasma

membrane can be ignored, the corresponding no-flux boundary condition can be written as

� Dðn � rUÞj@Ocell
¼ 0; ð2Þ

where n is an outward normal to the cell membrane @Ωcell.

Dynamics of the stochastic subsystem are described by a two-component probability distri-

bution function, fPi
0
ðtÞ; Pi

1
ðtÞg, given that in our simple model a channel has only two states.

The differential Chapman-Kolmogorov equation that governs Markov processes [5] reduces

in this case to

Pi
0
ðt þ dtÞ ¼ ð1 � ki

ondtÞP
i
0
ðtÞ þ ki

offP
i
1
ðtÞdt

Pi
1
ðt þ dtÞ ¼ ð1 � ki

offdtÞP
i
1
ðtÞ þ kionP

i
0
ðtÞdt

ði ¼ 1; 2; . . .;NchÞ; ð3Þ

where ki
on and ki

off are the rate constants for channel openings and closings, respectively.

(Because Pi
0
ðtÞ þ Pi

1
ðtÞ � 1, it is sufficient to solve only for one of the components, say, for

Pi
1
ðtÞ.) Importantly, parameters ki

on and ki
off may depend on U(r,t); this would couple Eq (3)

with Eqs (1 and 2) and also make the equations with different i, which otherwise would be

independent, indirectly affect each other. Note that because of coupling with Ξi(r,t), U(r,t) also

becomes a stochastic variable.

Eqs (1–3) fully determine the time-dependent behavior of the deterministic-stochastic sys-

tem for given initial conditions fUðr; 0Þ; fPi
1
ð0Þgg. Their generalization to multivariate (multi-

state) models is straightforward, yielding descriptions that retain the structure and features of

Eqs (1–3). Specifically, a multivariate spatial piecewise-deterministic Markov process is defined

in terms of random variables of two types [16, 28], the continuous ‘U-type’ and discrete ‘Ξ-type’

variables. Using vector notation for sets of these variables, all possible outcomes of the process,

{U(r),X(r)}, form an infinite-dimensional function space [28]. The only practical approach to

solving numerically for a time-dependent probability density functional p({U(r),X(r)},t) is by

Monte Carlo simulations of individual realizations of a system based on generation of pseudo-

random numbers. The description in the mold of Eqs (1–3) provides an intuitive script for an

algorithm of this type. (Alternatively, one can seek a direct numerical solution of a functional

equation governing p({U(r),X(r)},t) [5], which, however, quickly runs into memory constraints.

Still, this approach can be used for testing purposes, see subsection Fully coupled systems with
finite diffusion: validation against direct solutions of Fokker-Planck equation).

Our spatial hybrid algorithm employs fixed time step integration due to its conceptual and

logistical simplicity. The downside is that the stability constraints imposed on the time step,

which should be sufficiently small to resolve fast ‘deterministic’ reactions, may result in slow

performance. The inefficiency can be partially alleviated by applying an automatic pseudo-

steady-state treatment [50].

A key element of a hybrid method is how the numerical treatments of the ‘deterministic’

and stochastic subsystems are merged. In our algorithm, the PDEs are discretized in space

using a finite-volume scheme [51], in which a computational domain Ω is partitioned into Nω

subvolumes: Ω = {ωj}, j = 1,. . ., Nω. The U-type variables are discretized respectively as U(r)!
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{Uj� U(rj)}, where rj is the center of ωj and Uj has a meaning of a subvolume average:

Uj ¼ jojj
� 1

Z

oj

UðrÞd3r, where |ωj| stands for the volume of ωj. Spatial histograms of stochastic var-

iables that use the same subvolumes {ωj} as bins would have the similar meaning. Indeed, let NΞ be

the number of particles of a given type Ξ; then the histogram Xs
j ¼ jojj

� 1

Z

oj

XNX

i¼1

XiðrÞjxi¼sd
3r

describes the density of particles of the molecular type Ξ in state s in the vicinity of rj or, more pre-

cisely, the number of particles Ξi|ξ = s in ωj divided by the volume of ωj (s = 1,. . ., Nst(Ξ); here,

Nst(Ξ) is the number of states of a particle of type Ξ). For example, the spatial binning of the sto-

chastic source term of Eq (1) yields jojj
� 1

Z

oj

XNch

i¼1

XiðrÞjxi¼1
d3r ¼ nj=jojj, where nj is the number

of open calcium channels inside ωj. Then, as expected, Jnj/|ωj| is the rate of change of calcium con-

centration due to the influx through open channels located in the vicinity of rj. As a result, both

the deterministic and stochastic rates can now be expressed in terms of sets fUj;X
s
jg with compo-

nents defined for the same spatial grid, which makes advancing the hybrid system in time concep-

tually straightforward.

A realization of a piecewise deterministic Markov process at time t + Δt is generated on

the basis of a known state at time t as follows. For sufficiently small time steps Δt, such that

the sum of the O(Δt) terms in the expansion of the total transition probability for a particle is

less than 1, a particle may undergo at most one stochastic transition per Δt from its current

state to a new one. (For the example described by Eq (3), this requirement yields a condition

Dt << 1=maxðkion; k
i
offÞ). Thus, without loss of generality, occurrences of the stochastic transi-

tions can be assigned to the end points of the interval Δt. Therefore during the interval, the

variables X(r,t) remain unchanged and, upon the binning described above, the equations for

U(r,t) become regular deterministic PDEs (see, e.g., Eq (1) of the simple calcium sparks

model). The updated values U(r,t + Δt) are then found by integrating the PDEs over Δt with

the corresponding boundary conditions (exemplified by Eq (2)). In our method, this is done

by employing a fixed time step PDE solver of VCell.

The update of variables X(r,t) is carried out by employing Smoldyn, a particle-based fixed

time step Monte Carlo package [40, 41]. Using again the simple calcium spark model as an

example, the transitions of a channel between open and closed states can be interpreted as

‘unimolecular’ reactions, which are simulated by Smoldyn through acceptance-rejection sam-

pling. First, those of the rate parameters kion and ki
off in Eq (3) that depend on U(r,t) are updated

accordingly. Next, given known states of the channels ξi(t) at time t, the probability of a transi-

tion to occur by the end of the time interval is computed. If, for example ξi(t) = 0, i.e. the ith
channel is in a closed state at time t, then Pi

0
ðtÞ ¼ 1 and Pi

1
ðtÞ ¼ 0. As a result, the first of Eq

(3) becomes dPi
0
=dt ¼ � ki

onP
i
0
, and because the rate constants stay fixed during the time inter-

val, Pi
0
ðt þ DtÞ ¼ expð� ki

onDtÞ and Pi
1
ðt þ DtÞ ¼ 1 � expð� ki

onDtÞ. Finally, a random number

r is generated and compared with Pi
1
ðt þ DtÞ. If r < Pi

1
ðt þ DtÞ, the transition to the open

state with ξi(t + Δt) = 1 is accepted, otherwise it is rejected. The similar logic applies to channels

that are open at time t.
Note that bimolecular reactions, in which one of the participants is described by a U-type

variable and the other is represented by a Ξ-variable, can be approximated in deterministic-

stochastic models as unimolecular. Indeed, the copy numbers described by variables of U-type

are assumed to be deterministically large even within ωj, so the changes due to binding to, or
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PLOS Computational Biology | DOI:10.1371/journal.pcbi.1005236 December 13, 2016 6 / 23



unbinding from, discrete particles can be ignored. In other words, the molecules described in

terms of concentrations could be treated as ‘catalysts’ in this type of interactions.

In summary, the algorithm includes the following steps:

Initializing the system:

i. Use initial conditions of the problem to initialize variables U(r,0) and X(r,0). If the initial

condition for Ξ-type variables are given by their probability distribution functions P(X(r),

0), then sample P(X(r), 0). The current version of the solver supports sampling of a uniform

spatial distribution of particles.

ii. Use U(r,0) to initialize the transition rate parameters for the Ξ-type variables.

iii. Compute initial binned densities for Ξ-type variables.

Advancing the system in time:

iv. Determine U(r,t + Δt) by integrating the PDEs using U(r,t) and the spatial binning of the

Ξ-type variables computed in steps (iii) and (vii) as initial conditions. In the current ver-

sion of the algorithm, this is done by calling the VCell semi-implicit PDE solver.

v. Find X(r,t + Δt), using X(r,t) as initial conditions. Currently, Monte Carlo routines of Smol-

dyn are utilized to implement this step.

vi. Use U(r,t + Δt) to update the transition rate parameters for Ξ-type variables;

vii. Use X(r,t + Δt) to update the binned densities for Ξ-type variables.

Validation of the method

Accuracy of our spatial deterministic-stochastic solver is affected by truncation errors, arising

from discretization of space and time, and statistical errors due to finite numbers of Monte

Carlo realizations. The algorithm was validated against analytical results and through compari-

son with alternative methods. The calcium spark model introduced in the previous section was

used as a testbed for the tests described below.

Convergence of solutions of a hybrid system with separable variables. If transition

parameters for Ξ-variables, such as ki
on and ki

off in Eq (3), are independent of U-variables, the

X–subsystem is separable and can be solved independently. For this case, the probabilities of

the channel states in the calcium spark model, fPi
0
ðtÞ; Pi

1
ðtÞg, and the expectation values of the

spatial average of U(r,t), �U exactðtÞ ¼ E½jOcellj
� 1

Z

Ocell

Uðr; tÞdr�, can be determined analytically by

integrating Eqs (1–3), see S1 Text. This allows us to compute solution errors and analyze con-

vergence of hybrid solutions.

In this test, we used the hybrid method to solve Eqs (1–3) in a simple quasi-2D geometry

Ωcell = [0,10.1]×[0,2.1]×[0,0.5] μm3 with the arrangement of channels shown in Fig 1A and

the following parameter set: J = 10 μM�μm3/s, U0 = 0.1 μM, kon = 1 s-1, koff = 5 s-1, Vp = 1 s-1,

D = 1 μm2/s, and Nch = 24. Simulations, initialized at ξi(0) = 0 (for all i = 1,. . ..Nch) and U(r,0) =

U0, were run to T = 5 s, at which the system began approaching a steady state.

The solution errors defined as ε ¼ max
0�t�T

j �U exact� < jOcellj
� 1

Z

Ocell

Uðr; tÞdr�>N j, where the

angular brackets<. . .>N denote averaging over N realizations, were computed for solutions

U(r,t) obtained with varying mesh sizes, time steps Δt and N. Fig 1B demonstrates ε as a func-

tion of N and Δt (inset) for solutions computed with the spatial resolution Δx = Δy = 0.1 μm,

Δz = 0.5 μm, such that the truncation error is mainly due to discretization of time. For Δt = 2
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ms, the power fit yields an exponent close to � 1

2
, indicating that for small Δt, the solution error,

as expected, is largely determined by its statistical component. Overall, the data indicate con-

vergence of< �U ðtÞ>N to �U exact, but the validation is limited to cases with separable stochastic

subsystems.

Fully coupled systems in the limit of fast diffusion: validation against different solv-

ers. One way to validate a hybrid solver for conditions in which the variables are inseparable

is to use a fully coupled calcium spark model in the limit of large D. Because the system is well-

mixed in this limit, a reference solution can be obtained by solving the corresponding fully sto-

chastic system using a non-spatial stochastic simulator.

In the tests, the full coupling was achieved by replacing kon with konU(r,t)/U0, and the VCell

hybrid solver was run with kon = 0.1 s-1, D = 1000 μm2/s and Δt = 0.2 ms. All other parameters,

as well as the initial conditions, geometry, and mesh, were the same as in the previous subsec-

tion. The reference solution was obtained by solving the corresponding well-mixed problem

with a VCell nonspatial stochastic solver that implements a ‘next reaction’ algorithm proposed

by Gibson and Bruck [7]. This algorithm is an adaptive event-driven method free of time-dis-

cretization error (see Introduction).

Time-dependent solutions obtained by the two solvers are illustrated in Fig 2. The

results, shown for three time points, are based on 10,000 realizations. Because of the large

D, the realizations of U(r,t) obtained by the VCell hybrid solver were nearly uniform in

space for any of the presented times. Still, for comparison with the nonspatial solver, they

were averaged over Ωcell, and the symbol U, used in Figs 2 and 3 and below, denotes spatial

averages (as well as calcium concentrations in the well-mixed problem). The marginal

probability density function p(U,t), defined as pðU; tÞ ¼
P
fxig

pðU; fxig; tÞ, where p(U,{ξi},

t) is the joint probability distribution, was approximated by computing a normalized

20-bin histogram over the range of U and dividing the frequencies by the lengths of the

intervals. Insets of Fig 2 illustrate the probabilities of the number of open channels, which

are defined as Pðn; tÞ ¼
R

UpðU; fxig; tÞjP
iðxiÞ ¼ ndU ; they were determined by computing

the corresponding histograms. Fig 2 demonstrates that the time-dependent solution

Fig 1. Test with a separable stochastic subsystem. (A) Channel arrangement (upper panel) and a snapshot of simulation results for U(r,t ) at t =1 s (lower

panel). (B) The multi-trial mean,< jOcellj
� 1
R

Ocell
Uðr; tÞdr >, converges to an exact expectation value with the increasing number of trials and decreasing time

step Δt (data points for Δt = 0.02 s, 0.006 s, and 0.002 s are shown as triangles, squares, and circles, respectively). Inset: convergence with respect to Δt

(shown for N = 104).

doi:10.1371/journal.pcbi.1005236.g001
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obtained by the VCell hybrid solver for a fully coupled system in the limit of fast diffusion

is consistent with the results obtained by an adaptive nonspatial solver for the correspond-

ing well-mixed model. The differences between the two solutions at t = 1 s, 2 s, 3 s com-

puted in L2-norm for p(U,t) (first number) and P(n,t) (second number) are as follows:

(0.0126, 0.0018), (0.0077, 0.0024), and (0.0043, 0.0026).

Similarly, Fig 3 demonstrates good agreement between the steady state distributions

obtained by the spatial hybrid solver for the case of fast diffusion and the corresponding solu-

tion of a well-mixed system by the Gibson-Bruck method; the corresponding differences in L2-

norm are 0.0127 and 0.0017 for p(U,t) and P(n,t), respectively, or�1% of the corresponding

maximum values. The results in Fig 3 are shown for t = 30 s, which is sufficient for accurately

approximating p(U,1) and P(n,1) by p(U,t) and P(n,t) (the solution becomes stationary at t
� 10 s).

Alternatively, reference solutions of coupled hybrid models in the limit D!1 can be

obtained by solving directly the corresponding Fokker-Planck equations [5]. Unlike the sto-

chastic approach of the hybrid method, direct solution of a Fokker-Planck equation does not

involve Monte Carlo techniques and therefore is free of statistical error. While the direct

Fig 2. Time-dependent solutions of a fully coupled problem with large D. Results from VCell hybrid (dots) are validated against a reference solution

of the corresponding well-mixed system obtained by Gibson-Bruck nonspatial solver (solid line). Probability density functions of U and probability

distributions of the numbers of open channels in insets (black columns for VCell hybrid, white columns for Gibson-Bruck) are based on 10,000 realizations

by each solver and shown for three time points, t = 1 s, 2 s, 3 s.

doi:10.1371/journal.pcbi.1005236.g002

Spatial Hybrid Solver for Models in Cell Biology

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1005236 December 13, 2016 9 / 23



approach is not practical for solving realistic spatial models because of the excessively large

dimensionality of a discretized domain, it can be used for testing purposes, for appropriately

downsized test problems. Consider for simplicity a system with a single channel placed at the

origin. Averaging Eq (1) over Ωcell with the account of Eq (2) then yields @tU = Jξ/|Ωcell| −
Vp(U − U0) with U ¼ jOcellj

� 1
R

Ocell
UðrÞdr. The continuous and discrete variables are again cou-

pled by replacing kon with konU/U0. Upon nondimensionalization: r ¼
U � U0

U0
, τ = tVp, a ¼

koff
Vp

,

b ¼
kon
koff

, a ¼ J
U0VpjOcellj

, the equation for U reduces to dr

dt
¼ ax � r, while αβ(ρ + 1) and α become

the respective dimensionless versions of the ‘on-’ and ‘off-’ parameters for the transition prob-

ability rates in Eq (3).

A corresponding joint probability density function p(ρ,ξ,τ), defined in this case in a one-

dimensional domain {ρ,ξ} with a two-valued discrete variable ξ, has two components: p0(ρ,τ) =

p(ρ,ξ = 0,τ) and p1(ρ,τ) = p(ρ,ξ = 1,τ). The governing Chapman-Kolmogorov equation then

reduces to

@tp0ðr; tÞ ¼ � @r½� rp0ðr; tÞ� þ R

@tp1ðr; tÞ ¼ � @r½ða � rÞp1ðr; tÞ� � R
; ð4Þ

where R = α(p1(ρ,τ) − β(ρ + 1)p0(ρ,τ)). Eq (4) are to be solved with the initial conditions

p0(ρ,0) = δ(ρ), p1(ρ,0) = 0 and the boundary conditions @ρp0|ρ = 0 = @ρp1|ρ = 0 = 0. Thus, in

the limit of fast diffusion, the Fokker-Planck formulation is equivalent to a set of hyperbolic

equations (Eq (4)).

In the test, the single-channel hybrid system was solved by the VCell hybrid solver in 3D

geometry, Ωcell = [−0.5,0.5]×[−0.5,0.5]×[−0.5,0.5], for α = β = 1, a = 24. The dimensionless dif-

fusion constant, d = D/(Vpl2) with l = 1 μm, was set at 104, and the simulations were run with

the time step Δτ = 0.002 and the mesh sizes Δx = Δy = Δz = 0.1. The results for the probability

density function p(ρ,τ) = p0(ρ,τ) + p1(ρ,τ) are shown in Fig 4 for time τ = 30, sufficiently long

to accurately approximate the steady-state distribution p(ρ,1) with p(ρ,τ). The hybrid solution

based on 10,000 realizations (dots) agrees well with the direct solution of Eq (4) obtained by a

VCell fully-implicit PDE solver [39] with the mesh size Δρ = 0.1 (solid curve).

Fully coupled systems with finite diffusion: validation against direct solutions of

Fokker-Planck equations. The idea of testing the hybrid solver against a fully stochastic

Fig 3. Steady-state solution of a fully coupled system in the limit of large D. As in Fig 2, the near steady-state solution of a fully coupled

system was obtained by VCell hybrid for the fast-diffusion limit and validated against Gibson-Bruck stochastic nonspatial solver. Results from

each solver are based on 20,000 realizations and shown for t = 30 s, the time long enough for the system to become sufficiently close to its

steady state.

doi:10.1371/journal.pcbi.1005236.g003
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simulator, which worked in the limit of fast diffusion (see previous subsection), turned out to

be not particularly practical for testing spatially heterogeneous solutions of hybrid models. As

discussed in Introduction, treating such models by a fully stochastic spatial solver is computa-

tionally expensive, because the copy numbers of ‘deterministic’ species must be large not only

in total but locally as well. Also, the probability rates originating from the ‘hybrid’ terms in sto-

chastic subsystems depend on large local copy numbers describing ‘deterministic’ variables

and therefore are fast, thus necessitating a small integration time step. As a result, obtaining an

accurate solution that entails multiple runs of a fully stochastic solver becomes prohibitively

slow.

It is still possible to achieve fairly large local copy numbers for single-channel calcium spark

models with low-dimensional geometries. We used Smoldyn to obtain fully stochastic solu-

tions of a quasi-1D coupled model for different total copy numbers of calcium ions and com-

pared them to the corresponding solution obtained by the hybrid solver. As expected, the

probability distributions obtained with larger total numbers of particles were closer to the

hybrid solution, but suppressing the errors due to the finiteness of the copy numbers describ-

ing the ‘deterministic’ variable and due to the finiteness of the number of Monte Carlo trials

proved to be challenging because of the constraints described above.

For more accurate comparison, we used direct numerical solution of the Fokker-Planck

equation, which, as mentioned earlier, is free of statistical error. In the case of finite D, this

approach has its own limitations due to an exponential increase of the domain size with the

number of spatial degrees of freedom. We therefore again employed the quasi-1D single-chan-

nel test problem and solved it on coarse meshes. For finite D, the problem is formulated in

terms of the probability density functionals, p0(ρ(x),τ) and p1(ρ(x),τ). Here and below x and d

Fig 4. Spatial hybrid vs. Fokker-Planck formulation in the limit of large D. Probability density function of

dimensionless continuous variable ρ is shown for t = 30 s, sufficient for accurate approximation of the system’s

steady state. Results from VCell hybrid (dots) are based on 10,000 realizations, and Fokker-Planck equations (Eq

(4)) were solved by VCell fully implicit advection-diffusion solver with mesh size Δρ/ρmax = 0.004 (solid curve). The

L2-norm of the difference between the two solutions is 0.0137.

doi:10.1371/journal.pcbi.1005236.g004
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are the dimensionless spatial coordinate and diffusion coefficient. The corresponding generali-

zation of Eq (4) yields functional Fokker-Planck equations that include diffusion-related terms

[5]:

@tp0ðrðxÞ; tÞ ¼ R �
R
dx

d

drðxÞ
½ðd � L̂rðxÞ � rðxÞÞp0ðrðxÞ; tÞ�

@tp1ðrðxÞ; tÞ ¼ � R �
R
dx

d

drðxÞ
½ðd � L̂rðxÞ þ ðadðxÞ � rðxÞÞp1ðrðxÞ; tÞ�

: ð5Þ

In Eq (5), x 2 [0,xmax] and for every x, ρ(x) 2 [0,ρmax(x)], where ρmax(x) define the ranges of

possible values of ρ(x); d

drðxÞ is the operator of functional (variational) differentiation, L̂ is the

diffusion operator, which in the continuous limit can be symbolically written as L̂ ¼ @2
xx, and

δ(x) is the Dirac delta-function. The term describing transitions between the states of the chan-

nel, which was placed at the origin as in the fast diffusion test, is R = α(p1 − β(ρ(0) + 1)p0).

Note that because the spatial coordinate x has the dimension of length, the units of the normal-

ized diffusion constant, denoted as D in Eq (5) and below, are those of length squared. The

problem is solved with the initial conditions, p0(ρ(x),0) = δ(ρ(x)), p1(ρ(x),0) = 0 and with the

zero-flux boundary conditions on all boundaries for ρ and x. Discretization of Eq (5) and solu-

tion of the discretized equations are described in S2 Text.

The direct numerical solutions of Eq (5) were compared with the hybrid solutions obtained

for the same spatial grid. The hybrid formulation in this case includes the following equation,

@trðx; tÞ ¼ d � @2

xxrðx; tÞ þ adðxÞxðtÞ � rðx; tÞ;

where ξ(τ) is the Poisson stochastic process with the ‘on-’ and ‘off-’ rate constants αβ(ρ(0) + 1)

and α, respectively. Fig 5 illustrates comparison of the solution of the functional Fokker-Planck

Fig 5. Validation of spatially inhomogeneous solutions (finite D), imax = 2. Solutions for probability density

function p(ρ) are shown for τ = 1. Results from VCell hybrid (triangles for i = 0 and circles for i = 1) are based on

12,500 realizations. Solutions of the corresponding functional Fokker-Planck equation (solid curves) were obtained

with Δρ = 1.25e-3. The L2-norms of the differences of the two solutions are� 1.9% (i = 0) and 3.3% (i = 1) of the

respective maximum values.

doi:10.1371/journal.pcbi.1005236.g005
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equation on the two-dimensional grid, imax = 2 (xmax = 4, Δx = 2), and the corresponding solu-

tion by the VCell hybrid solver, which were obtained for α = 10, β = 1, a ¼ 20=3
, and d = 1. The

results are shown for the probability density function p(ρ(xi),τ) = p0(ρ(xi),τ) + p1(ρ(xi),τ) at τ =

1. Integration with the spatial hybrid solver was performed with the time step Δτ = 1e-4, and

the results are based on 12,500 realizations. The values of p(ρ(xi),τ) (dots in Fig 5) were com-

puted by building 20-bin histograms in [0,ρmax(i)] and dividing the frequencies by Δρ. The

results obtained by the two very different methods are in overall good agreement. Note that

the discrepancies of�5% near the maximum of p(ρ(x1),τ) indicate that the interval [0,ρmax(1)]

is under-resolved, but Δρ could not be made significantly smaller due to memory constraints.

These limitations are more restrictive for three-dimensional grids, so the reference data for

imax = 3 were obtained by extrapolating to Δρ = 0 a series of solutions computed with different

Δρ, an approach that has been applied in a different context in [52] (see S2 Text for details).

Fig 6 demonstrates comparison of the extrapolated curves with the solution obtained by the

VCell hybrid solver with imax = 3 (xmax = 6, Δx = 2) for α = 20, β = 0.5, a = 20, d = 50. The

hybrid solution was based on 12,500 simulations obtained with Δτ = 2e-5. As in the previous

test, the values of p(ρ(xi),τ) were computed using the 20-bin histograms calculated for each

[0,ρmax(i)].
The good agreement of the solutions obtained for the same spatial grids by the entirely dif-

ferent methods validates the hybrid solver for conditions of slow diffusion and full coupling of

the stochastic and ‘deterministic’ components.

Other capabilities and limitations of the method. The tests described in the previous

subsections verify key elements of the spatial hybrid method exemplified by a simple model of

calcium sparks of Section Mathematical problem and algorithm. Here we briefly discuss other

functionality of the VCell hybrid solver not included in Eqs (1–3) and limitations of the cur-

rent version of the method.

In the test examples, positions of the channels were fixed but in general, particles constitut-

ing a stochastic subsystem can diffuse and/or drift (see Section Application to a hybrid model of

Fig 6. Validation of spatially inhomogeneous solutions (finite diffusion), imax = 3. Solutions for probability

density function p(p) are shown for τ = 1. Results from VCell hybrid for positions near the channel (i = 0, squares),

away from the channel (i = 2, circles) and in between (i = 1, triangles) are based on 12,500 realizations. The curves

are extrapolations to Δρ = 0 of numerical solutions of the corresponding Fokker-Planck equation, computed with

Δρs/ (1.5)-s 0, s = 0,1,. . .,5. The L2-norms of the differences of the two solutions are� 1.3% (i = 0 and i = 1) and

1.5% (i = 2) of the respective maximum values.

doi:10.1371/journal.pcbi.1005236.g006
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spontaneous cell polarization). Thus, vectors ri describing their positions could be continuous

functions of time governed by a stochastic process. Also not included in the tests is the binding

of discrete particles to one another (the channels in the test problems undergo first-order

(unimolecular) reactions). The hybrid solver supports these additional capabilities via Smol-

dyn [40], which approximates particles as points and implements their diffusion in space by

sampling the exact diffusion propagator, which in and of itself does not incur additional

numerical errors for any Δt. In a hybrid setting, however, diffusion of particles may amplify

truncation errors due to discretization of time and space (see Convergence of solutions of a
hybrid system with separable variables). Indeed, an interaction of a diffusing particle with

‘deterministic’ species can be equivalently described as the interaction between a fixed particle

and the ‘deterministic’ species with increased diffusivities. Therefore, to maintain comparable

accuracy of computations on a similar spatial grid, simulations of a hybrid model with diffus-

ing particles should be run with appropriately decreased Δt.
The bimolecular reactions are simulated by Smoldyn as diffusion-limited, i.e. two particles

positioned within a binding distance connect instantaneously. By default, the binding distance

is set automatically on the basis of a given Δt, diffusion coefficients of the binding partners,

and a desired macroscopic rate constant. Whereas with Δt!0, the method converges to solu-

tions of reaction-diffusion systems with diffusion-limited reactions, the numerical error due to

finite Δt results in radial pair distributions that would have been produced if the intrinsic bind-

ing occurred with a finite rate [40]. In our hybrid algorithm, these limitations of Smoldyn

apply to bimolecular reactions within a stochastic subsystem.

We now consider limitations in treating bimolecular reactions where a continuously

described molecule binds to a discrete particle. Because the hybrid approach assumes that the

molecules of the ‘deterministic’ subsystem are expressed in large copy numbers, one can

ignore sequestration of a continuous variable in such reactions, i.e. approximate a continu-

ously described species as a catalyst (see discussion in section Mathematical problem and algo-
rithm). In some applications, however, possible variations of concentrations as a result of such

binding may need to be taken into account. For these problems, the hybrid method yields

accurate results if diffusion is sufficiently fast, i.e. the binding is dominated by the intrinsic

binding and the resulting depletion is small. Note that in the current implementation of our

method, the treatment of the binding partners belonging to the different subsystems is slightly

asynchronous, see steps (iv) and (v) of the algorithm described in section Mathematical prob-
lem and algorithm. This causes deviations from local mass conservation, which are usually

small but may exacerbate and even cause numerical instability if Δt is insufficiently small.

To test our method in the opposite limit of diffusion-influenced reactions that may result in

significant depletion of the continuous component in the immediate vicinity of a particle, we

applied it to a model of stochastically gated reactions, for which accurate numerical results and

analytical asymptotics have been obtained in [53]. In this model, macromolecule M, expressed

in relatively low numbers, switches stochastically between inert and reactive configurations

with the rate constants of activation and inactivation a and b. When in the reactive configura-

tion, the macromolecule can bind ligand L to form complex C (see [53] and references

therein). The binding is modeled as diffusion-influenced with the reaction rate described as

4pDr2

c@rrMactiveL
ðr; tÞjr¼rc ¼ kf rMactiveL

ðrc; tÞ � kr½C�;

where rMactiveL
ðr; tÞ is the pair distribution function of the ligand and reactive macromolecule;

the macromolecule is modeled as a sphere with radius rc; D is the sum of diffusion coefficients

of M and L, and κf, κr are the forward (binding) and reverse (unbinding) rate constants,

respectively. Of interest is the effect of slow diffusion on the relaxation function of reversible
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binding of the gated receptor,
Ceq� CðtÞ
Ceq� Cð0Þ

, where C(t) is the total number of complexes in the space

Ω occupied by the system at time t and Ceq = C(1). Specifically, it is predicted that the relaxa-

tion function has a power-law tail/ t−3/2 at t>> τD, where tD ¼ r2
c=D [53].

In a hybrid version of the model, the ligands are assumed to be expressed in large copy

numbers and are described deterministically by their concentration L(r,t), whereas the macro-

molecules are represented by discrete variables Μiðr; tÞ ¼ dðr � riÞðm
ð1Þ

i ðtÞ; m
ð2Þ

i ðtÞ; m
ð3Þ

i ðtÞÞ
T

with r,ri 2 Ω, i = 1,. . .,N, and N is the total number of macromolecules in the system. Each of

the stochastic components m
ðaÞ

i ðtÞ that describe respectively the inert, active, and complex

states, assumes values 0 or 1 in such a way that
X

a
m
ðaÞ

i ¼ 1. We assume that the macromole-

cules are immobile in all forms and randomly distributed throughout Ω.

In the corresponding ‘Langevin-like’ formulation, L(r,t) is governed by the equation,

@tLðr; tÞ ¼ Dr2Lðr; tÞ � kfLðr; tÞ
XN

i¼1
Μiðr; tÞjmð2Þi ¼1

þ kr

XN

i¼1
Miðr; tÞjmð3Þi ¼1

; ð6Þ

which is subjected to a Dirichlet boundary condition, L(r,t)|@Ω = L0 = 1 μM� 602 μm-3, and

realizations of m
ðaÞ

i ðtÞ are governed by Poisson processes with the following transition probabil-

ities,

pða ¼ 2; t þ dtÞja ¼ 1; tÞ ¼ adt; pða ¼ 1; t þ dtÞja ¼ 1; tÞ ¼ 1 � adt

pða ¼ 1; t þ dtÞja ¼ 2; tÞ ¼ bdt; pða ¼ 3; t þ dtÞja ¼ 2; tÞ ¼ kfLðr; tÞdt

pða ¼ 2; t þ dtÞja ¼ 2; tÞ ¼ 1 � bdt � kfLðr; tÞdt

pða ¼ 2; t þ dtÞja ¼ 3; tÞ ¼ krdt; pða ¼ 3; t þ dtÞja ¼ 3; tÞ ¼ 1 � krdt

; ð7Þ

where the states are specified by the index of a nonzero component. The system was solved by

the hybrid solver in a 3D rectangular domain Ω = [0,10]3 μm3, with the diffusion coefficient

D = 1 μm2/s. Values of other parameters were correspond to Fig 2A in [53]: rc = (0.3/(4πL0))1/3

� 0.0341 μm; a ¼ b ¼ t� 1
D with tD ¼ r2

c=D� 1.163 × 10−3 s; κf = 4πDrc� 0.429 μm3 /s and

kr ¼ kfL0 ¼ 0:3t� 1
D � 258 s-1. As in [53], the macromolecules were initially unbound and

equally partitioned between the inert and reactive states; thus C(0) = 0, and the relaxation func-

tion reduces to 1 − C(t)/Ceq. The total number of macromolecules was N = 20000, equivalent

to� 3.322 × 10−2 μM, and the initial ligand concentration was L0 = 1 μM.

The relaxation function, shown in Fig 7 as dots with error bars representing the standard

deviation, was obtained from a hybrid solution based on 4052 realizations. The simulations

were run with time step Δt = 10−5 s and mesh size h = 0.2 μm. In the simulations, the maximal

depletion of ligands in the vicinity of particles was about 40%. The results of Fig 7 are similar

to those presented in Fig 2A of [53]. The relaxation function starts as an exponential, but later

approaches the predicted power-law asymptotic,
kf ð1þa=bÞð4pDtÞ� 3=2

krð1þa=bþL0kf =krÞ
2 (dashed curve in Fig 7). How-

ever, the solution significantly overestimates the steepness of the initial exponential decrease

(solid curve in the inset of Fig 7), and the value of Ceq which was approximated as Cjt¼110�tD
.

These readouts depend on accurate description of gradients of L(r,t) in the vicinity of the parti-

cles. Solving the model on a finer mesh with h = 0.034 μm indeed improved the solution (dashed

curve in the inset of Fig 7). In this case, we solved the problem in Ω = [0,1.7]3 μm3 with the

same particle density, initial ligand concentration, and kinetic constants, and observed the

maximal local depletion of ligands of about 75%. Still, the new solution differs noticeably from

the result of [53], and decreasing h further is not necessarily helpful, since the mesh size is

already close to rc. We therefore conclude that in this application, the accuracy of our hybrid

method is largely limited by the fact that particles are approximated as points. Note also that
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the handling of strong depletion of continuous variables in the vicinity of discrete particles

might be improved by employing multiscale approaches proposed for cases with spatial separa-

tion of subsystems with disparate levels of stochasticity [43–46]. Overall, the test shows that

even at the limits of applicability, the method produces qualitatively, and in some respects

quantitatively, reasonable results.

The VCell spatial hybrid solver also applies to models where continuous and discrete vari-

ables are defined both in the volume and in surrounding membranes. Subroutines supporting

surface-bound stochastic sources were validated using a version of the model of calcium

sparks, in which channels were placed on the cell membrane. For this case, the terms with sto-

chastic variables move from the PDE to its boundary conditions. Diffusion on surfaces was rig-

orously validated separately in VCell [49] and Smoldyn.

Application to a hybrid model of spontaneous cell polarization

In this section, we formulate a deterministic-stochastic model of spontaneous emergence of

cell polarity and simulate it with our method. The model is a hybrid version of a fully stochas-

tic mechanism originally proposed by Altschuler et al. [54].

Division, differentiation, and proliferation of living cells rely on mechanisms of symmetry

breaking. A key element of these mechanisms is emergence of asymmetric (polar) distributions

of signaling molecules, often in form of molecular clusters. While clustering may be spurred

by external cues, many cell types can polarize spontaneously (see [54, 55] and references

therein). Positive feedback in cell signaling is thought to play a crucial role in establishing cell

polarity. The model by Altschuler et al. demonstrates that the positive feedback combined with

stochasticity is sufficient for the emergence of a unipolar distribution of membrane-bound

molecules. In the model, molecules from a cytoplasmic pool randomly associate with, and dis-

sociate from, the membrane. While in the membrane, they diffuse but also recruit more

Fig 7. Hybrid solution of a system of stochastically-gated reactions, Eqs (6 and 7). For t >> τD, the

probability that a macro-molecule remains unbound (dots with error bars) deviates from an exponential and

approaches the power-law predicted in [53] (dashed curve). Inset: initial exponential decay of the relaxation

function obtained with h = 0.2 μm (solid curve) and h = 0.034 μm (dashed curve).

doi:10.1371/journal.pcbi.1005236.g007
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molecules from the pool. The positive feedback reinforces the clustering. Remarkably, stochas-

ticity of the system is critical for self-polarization: the effect disappears if the copy number of

molecules in the membrane exceeds a certain threshold, so that there are no asymmetric solu-

tions in the deterministic limit.

However, it is not uncommon for the membrane molecular clusters to involve large num-

bers of molecules. One such example is focal adhesions whose formation is initiated by mem-

brane proteins called integrins. Activated by their binding to extracellular matrix, the integrins

recruit many other molecules from the cytosol, which together form a focal adhesion. In our

deterministic-stochastic model, the membrane receptor proteins that initiate clustering are

distinguished from the cytosolic proteins recruited to the membrane. We assume that num-

bers of receptor proteins are sufficiently small to be represented by discrete variables, whereas

copy numbers of cytosolic proteins, both recruited to the membrane and remaining in the

cytoplasm, can be modeled continuously in terms of surface densities and volumetric concen-

trations. We then solve this hybrid model numerically using our method to determine if it

retains the property of spontaneous polarization.

The corresponding ‘Langevin-like’ formulation of the problem is as follows. Consider a cell

Ω with the plasma membrane @Ω. Let U(r,t) (r 2Ω) be the volume density of the proteins in

the cytoplasm and S(r,t) (r 2 @Ω) be the surface density of the proteins recruited to the mem-

brane. To describe receptor proteins residing in the membrane, we introduce discrete variables

Γi(r,t) = δ(r − ri(t))γi(t) with r 2 @Ω and i = 1,. . ., Nr, where Nr is the total number of receptors

in the membrane. The discrete random variables γi(t) accept two values: 0 (inactive receptor)

and 1 (active receptor), whereas ri(t) are continuous random variables in @Ω (see discussion in

subsection Other capabilities and limitations of the method).

Variables U(r,t) and S(r,t) form the ‘deterministic’ subsystem of the model and are gov-

erned by the following equations:

@tU ¼ DUDU

@tS ¼ DSDsSþ k1U
PNr

i¼1
Gi � k2S

; ð8Þ

where Δ is the Laplacian in Ω, whereas Δs is the Laplace-Beltrami operator describing diffusion

in @Ω (see, e.g., [49]); DU and DS are the corresponding diffusion constants. The two other

terms in the equation for S are the rates with which the cytosolic proteins are recruited to, and

dissociated from, the membrane; k1, k2 are the corresponding on- and off- rate constants. The

boundary condition for the equation describing U reflects the local mass conservation,

� DUðnrUÞj@Ocell
¼ � k1U

PNr
i¼1

Gi þ k2S; ð9Þ

where n is the outward normal.

Realizations of γi(t) are governed by Poisson processes with the following transition proba-

bilities:

PðGiðr; t þ dtÞ
gi¼1
jGiðr; tÞgi¼0

Þ ¼ k3Sðr; tÞdt

PðGiðr; t þ dtÞ
gi¼1
jGiðr; tÞgi¼1

Þ ¼ 1 � k4dt

PðGiðr; t þ dtÞ
gi¼0
jGiðr; tÞgi¼1

Þ ¼ k4dt

PðGiðr; t þ dtÞ
gi¼0
jGiðr; tÞgi¼0

Þ ¼ 1 � k3Sðr; tÞdt

; ð10Þ

where k3, k4 are the on- and off- rate constants for receptor activation. Stochastic variables ri(t)
are modeled on an assumption that inactive receptors diffuse in the membrane, while active

Spatial Hybrid Solver for Models in Cell Biology

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1005236 December 13, 2016 17 / 23



receptors are immobile. Accordingly,

riðt þ dtÞ ¼
riðtÞ þ drðriðtÞ; dtÞ; if giðtÞ ¼ 0

riðtÞ; if giðtÞ ¼ 1
; ð11Þ

(

where dr(ri(t), dt) is a realization of a Wiener-type stochastic process described by Green’s

function for the diffusion operator @t − DΓΔs on @Ω; the function is centered at ri(t). The initial

positions of the receptors ri(0) are uniformly distributed in @Ω. Other initial conditions are

discussed below.

The model includes a positive feedback between Γi(r,t) and S(r,t), given that the rate of

recruitment of cytosolic proteins to the membrane depends on Γi(r,t), while the receptor

activation rate depends on S(r,t). It is easy to see that the system described by Eqs (8–11)

has an inactive steady state: γi(t) = 0 for all i, S(r,t) = 0, and U(r,t) = U0 (U0 is the initial uni-

form concentration of the cytosolic protein). For some parameter sets, however, the inactive

steady state can become unstable or the model may exhibit multi-stability. These possibili-

ties can be explored by solving the model with varying initial conditions. Alternatively, one

can transiently perturb the inactive steady state used as an initial condition. The latter

approach was implemented in the example below by adding a pre-activation pulse to the

intrinsic activation rate PðGiðr; t þ dtÞ
gi¼1
jGiðr; tÞgi¼0

Þ ¼ ðk0e� t=t þ k3Sðr; tÞÞdt and, corre-

spondingly, PðGiðr; t þ dtÞ
gi¼0
jGiðr; tÞgi¼0

Þ ¼ 1 � ðk0e� t=t þ k3Sðr; tÞÞdt; k0 and τ are the rate

and time constants of the pulse.

The model has been solved by the spatial hybrid method in a spherical cell with radius

R = 4 μm for the following model parameters: U0 = 1 μM, Nr = 1000, DU = 10 μm2/s, DS = DΓ =

0.1 μm2/s, k1 = 0.01 μM-1s-1, k2 = 0.01 s-1, k3 = 0.01 μm-2s-1, k4 = 0.1 s-1. For this parameter set,

the inactive state is unstable: activation of a single receptor drives the system to its active state

with an average of about 800 active receptors. Interestingly, spatial averages of all variables

have reached their active steady-state regimes relatively quickly (by t = 10 s, for the robust pre-

activation characterized by k0 = 10 s-1 and τ = 1 s, and by t� 350 s, when just ten receptors

were initially activated), whereas the cluster structure evolves on a much longer time scale, see

results in Fig 8 obtained for k0 = 10 s-1 and τ = 1 s.

Fig 8. Cell polarization: coalescence of a multi-cluster system into a single cluster. Distributions of proteins recruited to the membrane from the

interior (top) and active receptors (bottom), obtained by solving the model of Eqs (8–11) with VCell spatial hybrid for parameters specified in the text.

Local surface densities increase in large clusters, as the number of clusters diminishes (see color scales).

doi:10.1371/journal.pcbi.1005236.g008
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As in the original stochastic model [54], the hybrid mechanism yields a spatially heteroge-

neous steady state with a single cluster of activated receptors and recruited proteins. But unlike

the original model, the total number of proteins in clusters can be large, because the condition

of small copy numbers applies in the hybrid model only to the receptors initiating the cluster-

ing. Note the increase of local densities in the surviving clusters (see color scales in Fig 8),

which is consistent with the early stabilization of spatial averages. While the ‘attractive’ spatial

correlations of active receptors originate from the positive feedback, a corresponding deter-

ministic formulation does not yield a spatially heterogeneous steady state (as was the case with

the original model [54]), indicating that the discreteness and stochasticity of the receptors also

play an essential role in establishing the polar distributions of membrane-bound molecules.

Interestingly, the kinetics of cell polarization predicted by the model is reminiscent of glassy

behavior, in which a system approaches a stable steady state by going through a long sequence

of metastable states [56].

Methods

The deterministic-stochastic algorithm described in this article integrates a spatial particle-

based fixed time step Monte Carlo method (Smoldyn) and a conventional PDE solver with

compatible time-stepping (one of the VCell solvers). The PDE solver utilizes finite-volume

spatial discretization of PDEs [48, 49], which ensures local mass conservation, and a semi-

implicit time discretization scheme, in which the diffusion/ advection operator applies to vari-

ables at time t + Δt while the reaction and membrane flux terms are evaluated at time t [50,

51]. To ensure consistency in handling geometry by the two methods, triangulation of surfaces

is performed by applying Taubin smoothing [57] to watertight pixilated surfaces emerging

from segmentation of space. The approach is applicable both to geometries defined analytically

and to irregular realistic geometries based on experimental images.

Implementation in VCell Math workspace of the hybrid model of spontaneous cell polari-

zation described in Section Application to a hybrid model of spontaneous cell polarization is

detailed in S3 Text. The corresponding VCell MathModel, ‘Hybrid_cell_polarity_public’,

along with simulation results, can be found by logging to VCell, http://vcell.org, and searching

the database of public MathModels under username ‘boris’.

Discussion

Stochastic processes are ubiquitous in cellular systems. A deterministic-stochastic description

of interacting components with disparate degrees of stochasticity provides an efficient alterna-

tive to a full stochastic treatment of the problem. In a hybrid numerical approach, an appropri-

ate integration of deterministic and stochastic methods yields significant computational

savings.

In this paper, we describe a general-purpose hybrid method for solving spatial determin-

istic-stochastic models in realistic cell geometries. The emphasis is placed on the physical fun-

damentals of the method and its testing. The method is based on a formulation in terms of

stochastic variables of two types: continuous variables, described by partial differential equa-

tions with stochastic source terms, and discrete variables governed by stochastic jump pro-

cesses. Numerically, the algorithm is a Monte Carlo fixed time step integrator generating

realizations of the hybrid system. The current implementation utilizes a VCell fixed time step

PDE solver coupled with a particle-based stochastic simulator Smoldyn.

Validating a hybrid deterministic-stochastic numerical scheme is conceptually nontrivial

and logistically challenging. We tested our method against analytical results and numerical

solutions obtained by alternative methods. The expected convergence of solution error was
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observed in tests with a separable stochastic subsystem. Testing of the method in conditions of

full coupling was performed in the limit of fast diffusion against well-mixed solutions obtained

with nonspatial Gibson-Bruck method and against a direct solution of a corresponding Fok-

ker-Planck equation. The latter approach was also used for testing spatially heterogeneous

solutions of fully coupled hybrid systems.

The method has been applied to a hybrid model of spontaneous cell polarization based on

the original idea of Altschuler et al. [54]. The solution recapitulates emergence of a stable

asymmetric distribution of membrane-bound molecules, as a result of positive feedback and

stochasticity. But in the hybrid version, the total number of membrane molecules is free from

the small copy number requirement, which now applies only to the number of receptors that

initiate clusters. The model predicts glassy-like kinetics of coalescence of the multi-cluster

structure into a single cluster.

While the VCell spatial hybrid solver is practical for many typical applications, its perfor-

mance may become suboptimal for cases with disparate time scales (‘stiff’ problems), as the

integration is done with a fixed time step. The handling of the discrete variables can be opti-

mized by incorporating adaptive approaches, although potential savings should be weighed

against costs associated with additional logistical complexity, particularly since the inefficien-

cies are often caused by stiffness of the deterministic subsystem. While the stiffness caused by

fast reactions that persist throughout the time of interest can be addressed by applying the

VCell automatic quasi-steady-state approximation (see discussion in Section Mathematical
problem and algorithm), the treatment of continuous variables would generally benefit from

implementation of time-step control commonly employed in deterministic numerical

algorithms.

Supporting Information

S1 Text. Exact mathematical expectation value of the spatial average of the ‘deterministic

variable in a hybrid model with separable subsystems

(DOCX)

S2 Text. Discretization of Eq (5) and solution of discretized equations

(DOCX)

S3 Text. Implementation of the hybrid model of spontaneous cell polarization in VCell

Math Workspace

(DOCX)
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