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Abstract

We explore the relationship among experimental design, parameter estimation, and system-

atic error in sloppy models. We show that the approximate nature of mathematical models

poses challenges for experimental design in sloppy models. In many models of complex bio-

logical processes it is unknown what are the relevant physical mechanisms that must be

included to explain system behaviors. As a consequence, models are often overly complex,

with many practically unidentifiable parameters. Furthermore, which mechanisms are rele-

vant/irrelevant vary among experiments. By selecting complementary experiments, experi-

mental design may inadvertently make details that were ommitted from the model become

relevant. When this occurs, the model will have a large systematic error and fail to give a

good fit to the data. We use a simple hyper-model of model error to quantify a model’s dis-

crepancy and apply it to two models of complex biological processes (EGFR signaling and

DNA repair) with optimally selected experiments. We find that although parameters may be

accurately estimated, the discrepancy in the model renders it less predictive than it was in

the sloppy regime where systematic error is small. We introduce the concept of a sloppy

system–a sequence of models of increasing complexity that become sloppy in the limit of

microscopic accuracy. We explore the limits of accurate parameter estimation in sloppy sys-

tems and argue that identifying underlying mechanisms controlling system behavior is better

approached by considering a hierarchy of models of varying detail rather than focusing on

parameter estimation in a single model.

Author Summary

Sloppy models are often unidentifiable, i.e., characterized by many parameters that are

poorly constrained by experimental data. Many models of complex biological systems are

sloppy, which has prompted considerable debate about the identifiability of parameters
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and methods of selecting optimal experiments to infer parameter values. We explore how

the approximate nature of models affects the prospect for accurate parameter estimates

and model predictivity in sloppy models when using optimal experimental design. We

find that sloppy models may no longer give a good fit to data generated from “optimal”

experiments. In this case, the model has much less predictive power than it did before

optimal experimental selection. We use a simple hyper-model of model error to quantify

the model’s discrepancy from the physical system and discuss the potential limits of accu-

rate parameter estimation in sloppy systems.

Introduction

Mathematical models play an important role in understanding complex biological systems.

Mathematical models often synthesize a large amount of information about a system into a

single representation that can be used to give both conceptual insights into mechanisms and to

make predictions about different experimental conditions. As our mechanistic understanding

of the underlying biological processes grows, so too do the scope and complexity of mathemat-

ical models used to describe them. However, mathematical models are never a complete repre-

sentation of a biological system. This is a strength, not a weakness, of mathematical modeling.

Mathematical models always include simplifying approximations and abstractions that pro-

vide insights into which components of the system are ultimately responsible for a particular

behavior [1]. Mathematical models, therefore, ought to represent the judicious distillation of

the essence of the behavior in question.

Indeed, biological models cover an enormous range of scales and scopes and mechanistic

models are usually formulated in terms of the immediately underlying physical components.

Molecular mechanisms, for example, are modeled as dynamic simulations of complex macro-

molecules, and systems biology models of gene regulation and protein interactions involve

ordinary differential equations for the time evolution of chemical kinetics. Larger scale phe-

nomenon, such as tumor growth or tissue response to radiation treatments involve models

that are more removed from fundamental physics, but nevertheless attempt to reflect the effec-

tive mechanisms driving a particular behavior. This approach is appropriate; it is both imprac-

tical and theoretically unsatisfying to “model bulldozers with quarks” [2].

Unfortunately, it is very difficult to identify a priori which components of a complex system

can be ignored, i.e., which degrees of freedom are irrelevant. It is therefore common for mathe-

matical models to be very complex and include more mechanisms than are strictly necessary

to explain a phenomenon. When overly complex models are fit to data, the parameters associ-

ated with the irrelevant mechanisms are difficult to infer from observations. These parameters

are said to be (practically) unidentifiable. Parameter identifiability is (locally) measured by the

Fisher Information Matrix (FIM) [3–5]:

Imn ¼ �
@

2 logPðxjyÞ
@ym@yn

* +

¼
@ logPðxjyÞ

@ym

@ logPðxjyÞ
@yn

* +

; ð1Þ

where P(ξ|θ) is the probability distribution for random variable ξ given parameters θ and h�i

means expectation value. (Both ξ and θ can be vector quantities.) A small eigenvalue of the

FIM indicates that a combination of parameters (given by the corresponding eigenvector) can

vary by a large amount without affecting the behavior of the system.
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In many cases, particularly in the context of modeling chemical kinetics in systems biology,

the eigenvalues of a model’s FIM are “sloppy”, i.e., have a uniform spacing of FIM eigenvalues

on a log scale spread over many orders of magnitude [6–10]. However, the phenomenon is not

unique to biochemical kinetics models; sloppiness has been observed in a wide variety of mod-

els in biology, physics, and engineering [8–12].

The exponential eigenvalue distribution of sloppy models quantifies that several parameter

combinations are exponentially less important for explaining system behavior than others.

Practically all of the system behavior can be controlled by tuning a small number of stiff

parameter combinations (i.e., eigendirections with largest FIM eigenvalues) while varying the

sloppy parameter combinations has relatively little effect on the model behavior. Because of

this, sloppiness is closely related to parameter identifiability and is often (incorrectly) used as

synonym for practical unidentifiability. In principle, however, these two concepts are distinct,

as we illustrate in Fig 1.

Fig 1. Sloppiness vs. identifiability. Although sloppiness and parameter identifiability are closely related,

they are actually two distinct concepts. Sloppiness refers to an approximate uniform spacing of FIM

eigenvalues spread over many orders of magnitude. In the most commmon case (first column) this means

that many eigenvalues will be small and also correspond to unidentifiable parameter combinations. However,

it is possible (in principle) for all the eigenvalues to be large (second column) so that sloppy models can be

identifiable (as in references [13, 14]). It is also possible for model parameters to be unidentifiable and not

sloppy (third column) or identifiable and not sloppy (fourth column). We here take λ * 1 as the cutoff between

identifiable and unidentifiable motived by arguments in Fig 2.

doi:10.1371/journal.pcbi.1005227.g001
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Fig 1 illustrates different cases categorized by their sloppiness and identifiability properties.

Sloppy models are characterized by a logarithmic hierarchy of FIM eigenvalues (independent

of scale) while unidentifiable models have small eigenvalues (in a sense to be made more pre-

cise shortly). Examples of all four possible combinations illustrated in Fig 1 can be found in

science. Examples of sloppy, unidentifiable models (first column) abound in the systems biol-

ogy literature (see references [8, 9, 12] for several examples). Because of the ubiquity of sloppi-

ness in the systems biology, it was suggested that accurate parameter estimation in sloppy

models was impossible (or at least impractical) because of the unreasonable data requirements

[9]. However, there are cases of identifiable sloppy models (second column, see for example

references [13–15]).

Unidentifiable models that are not sloppy (third column) are often characterized by a

“small parameter”. A small parameter is a small dimensionless number appearing in a model

that renders certain aspects of the model unimportant. The canonical example is a system with

well-separated time scales [16]. In this case, the small-parameter is the ratio of time scales, and

singular perturbation theory makes explicit the approximation in which the fast dynamics are

slaved to the slow variables. In general, the small parameter separates which mechanisms can

be ignored from those that are relevant. For a sufficiently small parameter, the gap between the

identifiable and unidentifiable parameters becomes very large as in the third column.

Identifiable, non-sloppy models (fourth column) are those in which all parameters are

more-or-less equally easily to infer from data. In our experience, linear least squares models

often fall into this category. However, models from other fields can also fit this description for

appropriate observations [15] or if the model is reduced [17, 18].

It is important to note that being unidentifiable does not mean a model is not predictive. In

many cases, models with very large uncertainties in their parameters may nevertheless make

falsifiable predictions [19]. Indeed, it has been argued that the irrelevance of microscopic com-

plications enables effective modeling at different scales without the need to accurately account

for all details [20]. It is therefore possible the unidentifiability is necessary for rather than a

obstacle to predictive modeling.

Analyses based the eigenvalues of the FIM are limited for several reasons. First, the FIM is

really only meaningful in the asymptotic limit, i.e., the limit of infinite data and identifiable

models. Second, the FIM eigenvalues are dependent on parameterization. Specifically, re-

parameterizing a model with parameters θ = f(ϕ) where f is some (non-singular) function leads

to a new FIM related to the first by

I� ¼
@f
@�

� �T

Iy

@f
@�

� �

; ð2Þ

where @f/@ϕ is the Jacobian matrix of the parameter transformation, Iθ is the FIM for the θ
parameterization and Iϕ is the FIM for the ϕ parameterization. For an appropriate choice of

f(ϕ), it is possible to transform eigenvalues of Iϕ to be any positive numbers. A simple example

of a possible reparameterization is changing the units of parameters (e.g., from meters to nano-

meters), although in principle any nonsingular f is permissible.

It was shown in reference [21] using information geometry [22–24] that the FIM eigenval-

ues often reflect a global, parameterization-independent property of the model. In this

approach, the set of all possible model outputs (found by varying the parameters over all physi-

cally possible values) generates a manifold of possible predictions with the FIM acting as a Rie-

mannian metric. This idea is illustrated in Fig 2. For sloppy models, this manifold is often

bounded by a hierarchy of widths, reminiscent of the hierarchy of sloppy eigenvalues. Indeed,

when the model is parameterized by dimensionless parameters (e.g., using log-parameters),
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the widths are approximately given by the square root of the eigenvalues Wm �
ffiffiffiffiffi
lm

p
, as in ref-

erence [21, Fig 3].

The concept of manifold widths makes the notion of identifiability distinct from issues

related to model parameterization. For example, a small FIM could be an artifact of a poorly

chosen parameterization. The value of the parameters could indeed vary over a numerically

large range, but the apparent unidentifiability may just be a consequence of poorly chosen units

(for example). If this is the case, sufficiently large variations in the parameters will change the

model predictions in a statistically significant way. In contrast, the existence of manifold widths

demonstrates that there are parameter combinations that can vary infinitely without appreciably

affecting the model behavior. These parameter combinations are truly unidentifiable.

We describe parameters that are unidentifiable as being irrelevant or unimportant. These

parameters correspond to manifold widths much less than the scale of the experimental noise,

i.e., FIM eigenvalues much less than one. These parameter combinations could be fixed to

arbitrary values or removed from the model without affecting the ability of the model to give a

good fit to the data. In contrast, parameters with widths much greater than the experimental

noise need to be tuned to reproduce the observed behavior. These parameters can be accu-

rately inferred from data, and we call them relevant or important. Parameters between these

two extremes we call marginal.

Optimal experimental design has been proposed as a way to improve the identifiability of

model parameters [13, 14, 25–33]. Experimental design is a broad subject; in this paper, we use

the term to refer to the general process of using numerical simulations to identify potential

experiments to render model parameter identifiable. Many different approaches are available

[34–41]. Consider, for example, the model of Brown et al. [6] of EGFR signaling. This model

has 48 unknown parameters (mostly reaction rates and Michaelis constants) and is the seminal

example of a sloppy model [6, 7, 9]. Apgar et al. [13] identified five experiments (from a

Fig 2. Model manifold widths define relevant and irrelevant parameters. (Left) The set of all possible model

outputs defines a manifold of predictions. The true model ideally corresponds to a point near the manifold (red dot).

For typical sloppy models, the manifold is bounded by a hierarchy of widths that are approximately given by the

square-roots of the FIM eigenvalues (when parameterized in natural units). Widths of the model manifold are

measured in units of the standard-deviation of the data, so that widths much less than one are practically

indistinguishable from noise. Widths larger than one, on the other hand, are distinguishable from noise and must be

tuned to reproduce the observations. This suggests describing parameter combinations corresponding to large

eigenvalues and large widths as relevant or important for the model. In contrast, those parameters corresponding

to small eigenvalues and widths are irrelevant or unimportant. We describe widths comparable to the experimental

noise as marginal.

doi:10.1371/journal.pcbi.1005227.g002
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candidate pool of 164,000) for which, if performed, the FIM would have no small eigenvalues

and all parameters could be identifiable. Notably, the model was unidentifiable for each of the

experiments individually; however, the unidentifiable parameter combinations were different

for each experiment. When the experiments were fit collectively, therefore, the parameters

could all be estimated to within 10%, so the experiments were described as complementary [13,

Fig 1]. Although these optimal experiments still require considerably more data than is typical

in order to have the desired effect [14], the dramatic reduction in the range of FIM eigenvalues

Fig 3. Experimental design in sloppy system. Sloppy models are characterized by an exponential distribution of

FIM eigenvalues (left). Black lines are FIM eigenvalues for the model in question. Red lines represent additional

eigenvalues that would be introduced by using a more realistic model. Optimal experimental design selects

experiments so as to shift all the black eigenvalues above some desired threshold (dashed line). Under these new

experimental conditions, the red eigenvalues could (1) remain irrelevant, (2) become relevant, or (3) become

marginally relevant.

doi:10.1371/journal.pcbi.1005227.g003
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(and manifold widths) is nevertheless encouraging. Subsequent work [5, 15] has confirmed

this result: carefully chosen, complementary experiments can have a dramatic effect on param-

eter identifiability. When selecting optimal experiments, it is of course important to limit the

search to those experiments for which the model is valid. However, for in many cases it is diffi-

cult to know a priori which experiments these will be.

In practice the true distribution (red dot) in Fig 2 does not lie on the model manifold.

There are always some systematic errors that result from approximations in the model. How-

ever, if the model contains all of the relevant parameters, the systematic errors will not be

larger than the experimental noise and can primarily be ignored. By including additional

mechanisms in the model, the model manifold will come closer to the true distribution, usually

at the cost of including additional irrelevant parameters. We use the terms “model discrep-

ancy” and “model error” to mean the degree to which the true distribution is realizable by the

model.

In this paper we consider the effects of model discrepancy on parameter estimation in

sloppy models, i.e., what effect the approximations inherent to the model have on the prospect

of accurate parameter estimation. Although all mathematical models employ some simplifying

approximations, in most well-understood examples, the validity of the approximation can be

traced to the existence of a small parameter in the system as discussed above. In addition to

suppressing irrelevant details, the small parameter also helps identify under which experimen-

tal regime the approximation is valid (those experiments for which the parameter is small).

For example, thermodynamics becomes exact in the limit of large system size. As long as

experimental probes are restricted to sufficiently large systems, the corrections due to statisti-

cal mechanical fluctuations will be small and the approximate model can be treated, for all

intents and purposes, as being an exact surrogate of the physical reality.

However, in many physical systems there is no obvious small parameter, making it difficult

to know a priori which physical details are relevant [12]. (This is one reason that models often

include unnecessary details.) What is more problematic, the near-uniform spacing of FIM

eigenvalues in sloppy models suggests that there is no clear separation between relevant and

irrelevant details. If more mechanisms were added to a sloppy model, there would be more

FIM eigenvalues. However, this new model will likely be sloppy too, so that the new eigenval-

ues will not be much smaller (on a log scale) than the those of the original model. Optimal

experimental design chooses complementary experiments so as to make the small eigenvalues

become larger. What then is the effect of this process on the eigenvalues of the more accurate

model? Do they also become larger? If so, the approximate model will not be able to fit the

data accurately, leading to less predictive models. This question is illustrated in Fig 3 and the

primary purpose of this paper is to explore this possibility.

In this paper we demonstrate the complicated relationship between models and experimen-

tal conditions using two models of EGFR signaling. We then introduce a simple hyper-model

to quantify the systematic error in the model. We next consider models of DNA repair as a sec-

ond example. We find in both cases that the model’s predictive power is appreciable reduced

after fitting to optimally chosen experiments. This loss in predictive power is the result of

larger systematic errors which come in spite of more accurately constrained parameter values.

Results

EGFR Signaling

We begin with an illustrative example; consider a model of EGFR signaling due to Brown et al.

[6]. The model contains 48 unknown parameters (reaction rates and Michaelis constants) that

were originally fit to 63 data points [6]. These data gave limited measurements of activity levels
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a few proteins after EGF and NGF stimulation in conjunction with a few knockout perturba-

tions. Notably, this model gave a reasonable fit to experimental (not simulated) data. Further-

more, the model also made accurate, falsifiable predictions for the system behavior under

novel perturbation experiments that were subsequently verified. From this, we conclude that

the model likely contained all of relevant biology and chemistry necessary for giving a mecha-

nistic explanation of these observations. However, the parameters were largely unconstrained

when fit to this data, with relative uncertainties ranging from a factor of 50 up to a factor of a

million.

In order to constrain the parameter estimates, Apgar et al. [13] proposed a set of five experi-

mental conditions specifically for the model of Brown et al. These experiments were selected

from a candidate pool of more than 160,000 possible experiments that included EGF and NGF

stimulations at various levels and in various combinations, as well as potential knockout and

over-expression perturbations. The five optimal experiments were chosen according to a

“greedy” algorithm to maximize the smallest eigenvalue of the FIM. Under these experimental

conditions, the authors expected to estimate all parameters to better than 10% accuracy. The

experiments were simulated and not physically performed.

Rather than actually perform the five experiments proposed by Apgar et al., we create a sec-

ond model to act as a surrogate for reality. The EGFR system is well studied and a model that

reflects our current understanding of the system [42] would contain far more than the 48

parameters of Brown et al. As a reasonable next step along the ladder of realism, we replace the

Michaelis-Menten approximations of the Brown et al. model by the mechanistic model from

which this approximation was derived. The mechanistic model of (Henri-)Michaelis-Menten

is two step enzyme-catalyzed reaction obeying mass-action kinetics: E + SÐ ES! E + P. This

change introduces several new parameters (from 48 to 70) as well as several new chemical spe-

cies corresponding to the intermediate enzyme-substrate complexes.

Note that there are a large class of mechanisms that could result in the same approximate

Michaelis-Menten equation, so implementing the mechanistic model described above also

makes several other simplifying assumptions. For example, a mechanistic model could also be

written as E + SÐ ESÐ EP! E + P, i.e., with an isomerisation step for the enzyme-substrate

complex. Indeed, there is a hierarchy of refining approximations one could make to this

model. Our choice represents what is likely the simplest next step in refining the mechanistic

description of Brown et al. For brevity, we refer to the original model of Brown et al. that

implements the Michaelis-Menten approximation as the approximate model. We refer to the

model of the Michaelis-Menten mechanism with mass-action kinetics as the mechanistic

model.

Using the model and parameter values of Brown et al., we simulate the experimental condi-

tions from reference [6] and add random noise to generate an initial data set characteristic of

that in reference [7]. We then fit the 70 parameter, mechanistic EGFR model to this initial

data. The resulting fit is both sloppy and unidentifiable as can be seen in Fig 4 (second col-

umn). Notably, the 70 parameter model has 22 more eigenvalues than the 48 parameter model,

but there is not a clear separation between the largest 48 and the smallest 22 eigenvalues. Fur-

thermore, it is not possible to equate the largest 48 eigenvalues with the 48 parameters of the

approximate model and the 22 smallest eigenvalues with the new parameter combinations

introduced by the more detailed kinetics.

Next, we simulate artificial data for each of the experiments suggested by Apgar et al. using

the 70 parameter mechanistic model and parameter values estimated from the first fit. We add

random noise to these simulations to create a second data set. This second data set, having

come from the more complicated model, acts as a surrogate for real experimental data. We

then fit the 48 parameter, approximate model to the second artificial data.

The Limitations of Model-Based Experimental Design and Parameter Estimation in Sloppy Systems
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The use of Michaelis-Menten kinetics in models of protein networks is somewhat contro-

versial. In many practical cases, such as the original experiments of Brown et al., the model

seems to work. However, the actual condition that must be satified is shown rigorously in ref-

erence [43] to be

½E�
½S� þ KM

� 1; ð3Þ

where [E] and [S] are the enzyme and substrate concentrations respecively and KM =

(kr + kcat)/kf is the Michaelis constant. From this condition we see that it is not strictly nec-

essary for [E]� [S] as is often (incorrectly) asserted. However, this condition is derived for

a single enzyme-substrate reaction in isolation and, as we will see below, is generally not a

sufficient condition for the Michaelis-Menten approximation to hold in a network context.

Nevertheless, Eq (3) suggests that the Michaelis-Menten model could be valid provided KM

is very large, even if E * S.

In choosing parameters for the mechanistic model, we therefore choose parameters such

that the combination KM = (kr + kcat)/kf is very large. This is always possible because the model

is unidentifiable when fit to the initial data. We were able to choose parameter values for all

reaction rates such that the Michaelis-Menten approximation would not give errors larger

than 10% for any of the reactions given the conditions of the network. This means that there is

no a-priori reason to think that the approximate model of Brown et al. would be a poor

approximation to the mechanistic model for our parameter values.

Even when enforcing the constraint that KM is large, we find that the approximate model

cannot give a reasonable fit to the data generated by the mechanistic model for the Apgar

Fig 4. FIM for the four EGFR models. Both the approximate Michaelis-Menten kinetics and mechanistic

mass-action kinetics are unidentifiable when fit to the data in reference [7]. Although the optimal experiments

in reference [13] lead to an identifiable (but still sloppy) model for the approximate Michaelis-Menten kinetics,

the mechanistic mass-action kinetics remain unidentifiable. Furthermore, the FIM of the mass-action model

suggests that a minimal model should include at least 60 parameters to explain the expanded observations,

i.e., the manifold has approximately 60 widths larger than the experimental noise. The approximate Michaelis-

Menten kinetics do not contain all of the relevant physics. The red dashed line corresonds to a relative

standard error of 1/e in the inferred parameters.

doi:10.1371/journal.pcbi.1005227.g004
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experiments. This is illustrated in Fig 5 where the systematic errors in the fit are clearly much

larger than random noise.

Because the error in the fit is large, we conclude that approximate Michaelis-Menten kinet-

ics do not contain the relevant mechanisms to explain the observations under the expanded

experimental conditions. This can be seen from the FIM eigenvalues in Fig 4. In particular,

observe that the FIM for the mechanistic mass-action model under the expanded experimental

condition contains approximately 60 eigenvalues larger than 1, so that there are about 60

directions on the model manifold with widths larger than the experimental noise. This indi-

cates that a minimal model would require about 60 parameters to fit this data; the 48 parame-

ter model of Brown et al. is clearly insufficient. Furthermore, the parameters of the

mechanistic mass-action model are unidentifiable for the experimental conditions of Apgar

et al. If the approximate model were replaced by the mechanistic model, it would require

another round of experimental design in order to find accurate parameter estimates.

Because the fit of the mechanistic mass action kinetics to the original experiment is uniden-

tifiable, there are many possible parameter values that would give equivalent fits. We generated

an ensemble of parameter values for the mechanistic model consistent with the original experi-

ments. When these ensembles generate data for the optimal experiments, we consistently find

that the best fits for the approximate model have large errors similar to that in Fig 5.

The discrepancy between the data and the fit in Fig 5 is reminiscent of over-fitting. This is

not the case however. Over-fitting occurs when the fit to a training data set is very good (i.e.,

too good) so that the predictions on a test set suffer as a result. In this language, the fit in Fig 5

is the training set (not the test set), so this is not an instance of over-fitting. Rather it is a

demonstrationg that the model cannot fit the data.

Fig 5. Fit of approximate Michaelis-Menten kinetics to mechanistic mass-action data. Because the

approximate model does not contain all of the relevant mechanisms for the expanded observations, it cannot

give a reasonable fit (i.e., within the expected variance of the experimental noise) to all of the experiments

simultaneously. We see here that several time series are fit quite badly which could guide a modeler in

identifying the missing relevant mechanisms.

doi:10.1371/journal.pcbi.1005227.g005
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Quantifying Model Error in Sloppy Systems

Motivated by the example of optimal experimental design in EGFR signaling described above,

we now propose a simple method to quantify model descrepancy when fitting data to approxi-

mate models.

We assume that parameters are estimated by least squares regression, although many of our

methods and results generalize. Least squares regression is justified by the assumption that the

data are generated from a model with additive Gaussian noise:

di ¼ yiðyÞ þ sixi ð4Þ

where di is the i-th data point, yi is the model prediction for the i-th data point, θ is a vector of

parameters, ξi is a random variable with zero mean and unit variance, and σi is the scale of the

noise. The random variable may account for any intrinsic stochasticity in the system, e.g., ther-

mal fluctuations in particle number or inconsistencies in experimental measurements. It may

also accommodate systematic errors such as model approximations, i.e., mechanisms that have

been left out of the model. The field of uncertainty quantification has begun to explore meth-

ods to account for the inadequacy of the model [44–49]. Minimizing the weighted sum of

square errors

w2ðyÞ ¼
X

i

ðdi � yiðyÞÞ
2

s2
i

ð5Þ

corresponds to a Maximum Likelihood Estimate (MLE) of the parameters for the model in

Eq (4).

The FIM for the model in Eq (4) is calculated as

Imn ¼
X

i

1

s2
i

@yi
@ym

@yi
@yn

: ð6Þ

The FIM is the inverse covariance matrix for the parameter estimates, so that the square root

diagonal elements of the inverse FIM correspond to the one-standard deviation statistical

uncertainties in the inferred parameters. It therefore follows that a well-conditioned FIM is

necessary for accurate parameter inference.

Because mathematical models are always approximations, a model’s discrepancy from

physical reality can always be improved by including additional physical mechanisms. This

increased realism usually comes at the cost of increased complexity, often in the form of addi-

tional parameters, additional physical degrees of freedom, and computational cost. Therefore,

a modeler is often faced with choosing from a hierarchy of models of increasing realism and

growing complexity. Overly complex models increase the possibility of over-fitting data or

over-explaining behavior while excessively simple models may lack all the relevant mecha-

nisms. Effective models strike a balance between these two extremes.

To formalize this concept and facilitate later discussion, we introduce the concept of a

sloppy system. We define a sloppy system as a physical system and a set of experimental proto-

cols that can be approximated by a hierarchy of mechanistic, mathematical models of growing

complexity that become sloppy in the limit of microscopic accuracy.

To make this definition more concrete, consider a model of a biological system. Of neces-

sity, the model does not include every mechanism that is present in the true physical system. It

is therefore possible to augment the model with additional mechanistic details, resulting in a

more realistic, but more complex model. By repeating this process, one can generate a

sequence of models of increasing realism that are better approximations to the actual physical
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system. The limit of this sequence converges on a model indistinguishable from the physical

system, i.e., the limit of microscopic accuracy.

Naturally, this sequence of models will introduce many parameters that are unidentifiable.

However, if the sequence of models is not just unidentifiable, but is also sloppy (i.e., as in the

first column of Fig 1 rather than the third column), then we say that the system is sloppy.

As an aside, we have introduced the concepts of “sloppy systems” and “limits of micro-

scopic accuracy” as useful abstractions. In practice, constructing more detailed mechanistic

models may have a number of challenges. For example, it may be necessary to include parame-

ters describing the experimental apparatus but that are separate from the biological system of

interest. These potential complications are beyond the scope of this paper which instead uses

these idealized concepts to explain our reported results.

The significance of a sloppy system is that models will always include marginal parameters

so that there is always a trade off between model identifiability and model predictivity. For a

fixed set of experimental protocols, there will always be some mechanistic details that are not

entirely identifiable but still facilitate predictivity in the model.

The concept of a sloppy system brings together a number of concepts that are each well-

known to modelers of complex systems. Considering multiple models of a single physical sys-

tem is as old as science, but has recently been employed with new sophistication in the context

of ensemble modeling [50] and multi-scale modeling [51–53]. The literature for parameter

identifiability and the related concept of sloppiness was discussed in the introduction. By

bringing these concepts together, we seek to explain the results of our EGFR simulations above

and argue that sloppy systems pose unique challenges for predictive modeling.

We now demonstrate that the EGFR system is a sloppy system. Fig 6 shows the FIM eigen-

values for several models of EGFR signaling under the experimental conditions of Brown et al.

[6]. Including more microscopic realism in the model requires additional parameters that

Fig 6. An example of a sloppy system. Observations of an EGFR signaling network can be explained by a

model that is identifiable and not sloppy. The 18 parameter model has FIM eigenvalues that span fewer than 4

orders of magnitude and are all larger than one. By including additional mechanisms in the model (more

parameters) the models become increasingly sloppy and less identifiable. The FIM eigenvalues ultimately

span more than 16 orders of magnitude, leading to the large parameter uncertainties reported in reference [7].

doi:10.1371/journal.pcbi.1005227.g006
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render the model less identifiable. Note that this sequence of models was constructed in

reverse–beginning from a sloppy model, irrelevant parameters were removed one at a time

using the manifold boundary approximation method [17, 18]. Here we reinterpret this result

as a demonstration of the existence of sloppy systems and emphasize the trade-off between

mechanistic accuracy and model simplicity. In general, all the models that belong to a sloppy

system cannot be ordered in a simple sequence as in Fig 6. There will often be a complex, hier-

archical relationship among models similar to that described by the adjacency graphs in refer-

ence [54].

In order to account for errors due to ignoring marginal parameters, we need to refine the

assumptions underlying Eqs (4)–(6). If the stochastic term in Eq (4) is dominated by experi-

mental noise, then σi can be estimated by repeated observations of data point i, in which case σi
scales like si � 1=

ffiffiffiffini
p

where ni is the number of repeated observations of data i. In this case, σi
becomes the standard deviation of the observations and is a measure of experimental repro-

ducibility. Henceforth, we assume that σi denotes the experimental uncertainty and is known

from experimental observations. We modify eq (4) to also include an error term δi due to

approximations in the model

di ¼ yiðyÞ þ sixi þ di: ð7Þ

The model error term δi will be a type of “hyper-model” that accounts for and quantifies errors

in the model in a phenomenological way without including additional mechanisms.

We adopt a simple hyper-model of the systematic error given by

di ¼ fsix
0

i ð8Þ

where f is a hyper-parameter that will be estimated from the data, and x
0

i is another Gaussian

random variable with zero mean and standard deviation of one. We illustrate this concept geo-

metrically in Fig 7. When this ansatz breaks down, it is an indication that relevant mechanisms

are missing from the model, i.e., that the unfit data has structure that could be modeled and

predicted.

Care must be taken in the interpretation of x
0

i. We have modeled the systematic error as a

random variable. Unlike experimental noise, the size of this uncertainty cannot be decreased

by repeated observations. Rather, the stochastic element in the model error represents the

(unknown) approximations in the model. The relevant statistical ensemble is the set of all pos-

sible model refinements that could be made to correct the model shortcomings.

We have assumed that the model errors x
0

i are uncorrelated among data points. We also

assume that the model is likely to give worse predictions for data points that also have large

experimental variation. These choices are convenient and constitute what is likely the simplest

possible such hyper-model. More sophisticated models could be used, and the meta-problem

of modeling the error in the model has been addressed in the context of uncertainty quantifica-

tion [44–49]. In the present context, these assumptions will give us a simple way of estimating

the error of the model from data. These assumptions will be valid provided that δi is small

compared to experimental noise. We will now use our hyper-model to provide a criterion for

including additional mechanisms in the model.

The negative log-likelihood for the model of Eqs (7) and (8) is

� lðy; f Þ ¼
X

i

ðdi � yiðyÞÞ
2

2s2
i 1þ f 2ð Þ

þ logsi þ
1

2
log 1þ f 2ð Þ þ

1

2
log2p

� �

: ð9Þ

The best fit values for the parameters θ are unchanged by Eqs (7) and (8), and an unbiased
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estimate of f is given by

f ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

w2

M � N
� 1

r

ð10Þ

where χ2 is the sum of squared error defined in Eq (5), M is the number of data points, and N
are the number of parameters in the vector θ. As a practical matter, the model can be fit using

Eq (5) as though there were no approximations in the model. This is due to our convenient

choice of δi in Eq (8).

The augmented FIM is given by

Iyf ¼

1

1þ f 2

� �

I 0

0 2
f

1þ f 2

� �2

ðM � NÞ

0

B
B
B
@

1

C
C
C
A
; ð11Þ

where I in the first entry is the N × N FIM in Eq (6). The zeros in the off-digonal terms are 1 ×
N and N × 1 zero vectors. It follows that the parameter covariance matrix must be modified

according to

CovðyÞ ¼
w2

M � N
I � 1; ð12Þ

where I is the FIM in Eq (6) and χ2 is the best fit cost that minimizes Eq (5).

It is worth noting that the parameter f contains the same information as the likelihood func-

tion as is made explicit by Eq (10). Indeed, Eq (12) is a standard statistical formula for

Fig 7. Quantifying model error. As in Fig 2, the model of interest forms a statistical manifold in data space,

represented by the black dashed line. Another more realistic model also forms a statistical manifold of higher

dimension (red surface). Experimental observations (blue dot) are generated by adding Gaussian noise of size σ to a

“true” model (red dot). The least squares estimate is the point on the approximate model (black dot) nearest to the

experimental observations. However, the distance from the best fit to the observed data has contributions from both

the experimental noise and the model error.

doi:10.1371/journal.pcbi.1005227.g007
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estimating parameter uncertainties in ordinary least squares regression in which the scale of

the noise is unknown.

The standard deviation of the estimate in f is given by

sf ¼
1þ f 2

f
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðM � NÞ

p : ð13Þ

We now consider how large an f can be acceptable. We seek a model’s whose approximations

do not limit is predictive power. That is to say, the model error should be small compared to

the experimental noise (f< 1) and unidentifiable from experimental observations. If the MLE

of model error is f, then the statistical uncertainty in that estimate should satisfy δf * f< 1. If

this is the case, then the systematic error will be relatively small and not significantly limit the

model’s predictive ability. This criterion gives

f ¼
1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðM � NÞ

p
� 1

q ð14Þ

as an acceptable value for f.

EGFR Model Revisited

With this background, we can now revisit the EGFR model above. The experimental condi-

tions of Apgar et al., included 7000 data points. If the approximate model were a good approxi-

mation, we would expect the fit to have a sum of squares error of approximately 7000 ± 84

where the range is one standard deviation of the Chi-squared distribution. However, fitting

the artificial data typically led to a best fit error greater than 100,000 and was never less than

96,000. This error corresponds to an estimated value of f = 3.7 with δf = 0.03.

The statistical uncertainty in the model parameters is larger than expected by a factor
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ f 2

p
¼ 3:8 for f = 3.7. The optimal experiments were designed to give less than 10% error

in parameter estimates, so that modified uncertainty would now be less than 40%. Considering

several parameters were initially unknown to a factor of a million, 40% appears to be a signifi-

cant reduction. Although the parameter estimates remain somewhat constrained, the predic-

tive power of the model is completely lost. This is because the effective error bars on the data

are also larger by a factor of 3.8. In our simulations we assumed that the fractional activity lev-

els of all proteins were measured to 10% accuracy. With 40% effective error bars, one standard

deviation on either side of the mean covers almost the entire range of possible predictions.

In addition to having a large value for f, the ansatz of Eq (8) breaks down for the fitting the

EGFR model. This is clearly seen by inspecting Fig 5. We speculate that it may be possible to

rescue some of the predictive power of the model by implementing a more sophisticated

hyper-model, such as introducing a separate f parameter for each time series or including

phenomenological parameters to account for correlations in systematic errors. However, this

possibility is beyond the scope of this work, but has been explored in the uncertainty quantifi-

cation literature [44, 45, 47].

DNA repair models. We now consider a model to predict the survival of jejunal crypt clo-

nogens after radiotherapy as in reference [55]. The model used is the linear-quadratic (LQ)

model [56] combined with Curtis’ lethal-potentially lethal (LPL) [57] and Kiefer’s repair-satu-

ration (RS) [58] models of post-radiation DNA repair. The LPL and RS models can be com-

bined into a pair of differential equations

du
dt
¼ d1r �

l1

1þ �u
� l2u � l3u

2 ð15Þ
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dv
dt
¼ d2r þ l2uþ l3u

2 ð16Þ

where u(t) and v(t) quantify the repairable and non repairable lesions. The parameter r is the

dose rate and is known from experimental conditions. The unknown parameters are δ1r and

δ2r which are the rates of induction of potentially lethal and lethal lesions, and λ1, λ2, and λ3

correspond to rates of repair, fixation, and binary misrepair respectively. � is the parameter for

repair saturation. Fixing the parameters δ2 = λ2 = � = 0 gives the LPL model. The RS model is

recovered by δ2 = λ3 = 0. There are a total of six parameters in the composite model, including

3 that are absent from the LPL formulation and 2 that are absent in the RS formulation.

Data from reference [55] explored survival rate for split doses. It reported a statistically sig-

nificant difference between those cells irradiated initially by a large and then a small dose and

vice versa. The RS model (and by extension the composite six parameter model) gave reason-

able fits to the data; however, the uncertainty in the inferred parameters was quite large. Opti-

mal experimental design was used as an avenue to provide better parameter estimates.

In order to identify the optimal experimental conditions for inferring the parameters in Eqs

(15) and (16), the experimental space was first explored numerically. Four experimental

parameters were varied: the radiation level r, the size of each radiation dose, as well as the rest

time between doses. In total, 21,870 experimental conditions were considered. The FIM for

each condition was calculated and nine experimental conditions chosen to augment the origi-

nal 19. Seven experiments were repeated to confirm results. The result of these 35 experiments

and the subsequent fit are given in the supplemental material.

The fit to the original 19 experiments gave a value f = 0.76 with δf = 0.41, indicating that the

model likely lacks some relevant mechanisms. Furthermore, the ansatz of Eq (8) is a good

approximation for this model and data set. Because f is not too big (less than one and within

two standard deviations of zero) the model remains predictive in spite of its relative simplicity.

Indeed, the model was able to reproduce and explain the asymmetric response to dose size.

However, the fit to the expanded 35 experiments gave f = 2.0 and δf = 0.33 so that f is now

more than 6 standard deviations larger than zero.

Similar to the simulated case of the EGFR system, the model is unable to give a reasonable

fit to the data. However, the shortcomings of the model are only manifest after the observation

conditions have been expanded. Unlike the EGFR system, the DNA repair models results are

fit to experiment data (not simulated). The case of crypt cell survival lacks a comprehensive

mechanistic description comparable to what has been done for the EGFR pathway. From the

results of the additional experiments, a simple interpretation of the asymmetry in the first data

set is that DNA repair is not monoexponential [59]. The higher-order terms would contribute

disproportionately when intervals are short (first data set). Overall the so-called “repair half-

time” (monoexponential) that fits the first data set best (and gives asymmetry) is shorter than

the actual “repair halftime” (a composite of several rates, reflecting a more complicated under-

lying biochemistry). However, it is not known what additional mechanisms should be included

to fit the new data. Although beyond the scope of this paper, we speculate that closer inspec-

tion of the points of model failure could lead to new insights into DNA repair models. We fur-

ther speculate that a hierarchy of models similarly exists for the DNA repair, and our inability

to fit the expanded data set indicates that a more complete model would have more than six

large eigenvalues in its FIM.

Significantly, the predictive power of the model is decreased dramatically when fit to the

expanded data set. After including the new data, we found that the model was no longer able

to predict the significant asymmetry in the dose response. This is similar to the EGFR case in
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which the effective error after fitting the optimal experimental conditions rendered the model

non-predictive.

Fundamental limits to parameter estimation in sloppy systems. Finally, we use the con-

cept of a sloppy system introduced above to explore the limits to which parameters can be

accurately estimated and the effect on the predictive power of the model. There are three cases

to consider, corresponding to the three scenarios depicted in Fig 3.

The first case arises when there is a clear separation between the relevant physics and the

irrelevant mechanisms. In this case, a complete model would have two well-separated groups

of eigenvalues, similar to case 1 in Fig 3. In this case, the irrelevant mechanisms can be safely

ignored and the remaining parameters can be estimated to more-or-less arbitrary accuracy. As

mentioned in the introduction, these cases can often be explained by a “small” parameter in

the system, such as a ratio of well-separated time or length scales. In these cases, the small

parameter explicitly suppresses the influence of the irrelevant details. The ideal gas law, for

example, gives very accurate predictions for pressure and volume over a wide range of densi-

ties and temperatures without accounting for fluctuations due statistical mechanics

considerations.

The second case is when the model ignores several relevant details. If a complete model has

large eigenvalues with no analog in an approximate model, then the approximate model will

give poor fits to data as we saw for the two test cases above. In this case, the parameter uncer-

tainty is not the bottleneck to model efficacy and is largely irrelevant. Rather, the systematic

errors in the model lead to inaccurate predictions and the model should be refined. Our results

suggest that this case may easily occur when optimal experimental design is applied to complex

models.

Finally, consider the case of a sloppy model for which there is no clear separation between

the important and unimportant model details. For many complex systems this appears to be a

common occurrence since the eigenvalues are often uniformly spaced on a log scale.

In order for an approximate model to fit the data, there must be a parameter in the model

that can be identified with each relevant mechanisms in the true model. Furthermore, in order

to have accurate parameter estimates, there should be no small eigenvalues in the approximate

model. Therefore, the ideal case is one in which there is a one-to-one correspondence between

the large FIM eigenvalues of the complete model and the parameters of the approximate model.

For the ideal scenario in which the parameters of the approximate model correspond to the

subspace of largest eigenvalues in the complete model, we can estimate the magnitude of the

model error. A missing parameter combination with eigenvalue λ will typically contribute an

amount λ to the sum of squared error. This is because
ffiffiffi
l
p

is approximately equal to the width

of the “model manifold” as in Fig 2. Therefore, the cost (i.e., squared error) of ignoring this

parameter will be λ.

Because eigenvalues in sloppy models are logarithmically spaced, we assume the approxi-

mate model is missing eigenvalues from a geometric series with ratio r. It follows that the con-

tribution to the χ2 value from model error is λ0r/(1 − r) where λ0 is the smallest eigenvalue in

the approximate model:

w2 � ðM � NÞ þ
l0r

1 � r
; ð17Þ

from which it follows that

f ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l0r

ð1 � rÞðM � NÞ

s

: ð18Þ
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Requiring that f< 1 so that the model error is less than the experimental noise gives

l0 <
1 � r
r

M � Nð Þ ð19Þ

as the threshold below which eigenvalues can be safely ignored by the model.

Discussion

In this paper we have explored the relationship among model discrepancy, experimental

design, and parameter estimation. Fig 8 summarizes are primary result. When trying to fit

complementary experiments to an approximate model, the best fit may often give an inade-

quate fit to the data. We explained this result by introducing the concept of sloppy systems as a

generalization of sloppy models. Since models are always incomplete, we argued that sloppy

models can always be made more accurate by including additional parameters. In addition to

making irrelevant parameters identifiable, optimally chosen experiments may often make the

Fig 8. Uncertainty ellipses and approximate models. Parameters inside the ellipses are consistent with

the data. Experimental design identifies complementary experiments to minimize the region of consistent

parameters. If the approximate model does not include the this region, the model will be non-predictive for the

collection of experiments.

doi:10.1371/journal.pcbi.1005227.g008
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ommitted parameters identifiable too, as illustrated in Figs 3 and 4. We have demonstrated

this for models of EGFR signaling and DNA repair. We have constructed a simple hyper-

model to quantify model error and shown that if a model does not give a good fit then its pre-

dictive power is dramatically reduced. For the two cases considered here, the models are more

predictive with unconstrained parameters when fit to a few experiments than they are after fit-

ting to several optimally selected experimental.

Mechanistic Mass-Action vs. Approximate Michaelis-Menten Kinetics

It is perhaps surprising that the approximate Michaelis-Menten model is inadequate even if Eq

(3) is satisfied. However, one should remember that this condition was derived for a single

enzyme-substrate reaction in isolation. One possible explanation of our results is that approxi-

mate Michaelis-Menten kinetics are not valid in a network. This explanation is problematic

however, because the approximate Michaelis-Menten model had been used previously to fit

real experimental data and make falsifiable predictions for new experiments. Indeed, in spite

of its dubious status, the Michaelis-Menten approximation is often used with much success in

many systems biology models. Therefore, while it is true that the Michaelis-Menten approxi-

mation is not generally valid, there is considerable evidence that it may sometimes be an safe

approximation.

To complicate matters, we have forced Eq (3) to be satisfied by requiring KM to be very

large. Naively, one would expect this restriction to lead to Km being unidentifiable. While this

would also be true for measurements of a single reaction, it does not generalize to the network

case, as our results demonstrate.

Furthermore, as the DNA repair results show, our results are not specific to the question of

approximate Michaelis-Menten kinetics. Rather, we have shown that the general question of

which physical details are necessary to include in a sloppy model can depend strongly, and in

unexpected ways, on which combinations of experiments the model is to explain.

Implications for Optimal Experimental Design

A common use for optimal experimental design is model falsification. Demonstrating the

shortcomings of model is hopefully accompanied by new insights into the system’s behavior.

Since none of models we have considered here were considered “correct” in the reductionist

sense, demonstrating that they are incomplete is not profound in itself. We suggested above

that errors in the fit could be used to motivate new hypotheses about microscopic mechanisms.

This possibility is beyond the scope of the current work that focuses on the implications for

parameter estimation in sloppy models.

A potential alternative to experimental design for parameter estimation, is experimental

design to constrain model predictions [28, 32]. Rather than constrain parameter estimates, one

seeks to identify a small number of experimental observations that are controlled by the same

few parameter combinations as the prediction one would like to make. In this approach, the

model parameters remain sloppy, but the model may be predictive in spite of uncertainty

about microscopic details.

It may be surprising that a model may be more predictive in the unidentifiable regime than

in the identifiable regime. The predictivity of the an unidentifiable model is enabled by the

narrow widths of the model manifold in Fig 2. The narrow widths guarantee that even infinite

fluctuations in parameters do not correspond to large fluctuations in predictions. It has been

suggested elsewhere that “sloppiness” can explain why models that make many uncontrolled

approximations may be usefully predictive [9, 20]. Our results lend some support to this
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hypothesis; for our test cases removing sloppiness was always accompanied by a decrease in

the predictive ability of the model.

Parameter Estimation in Sloppy Models

In previous work, sloppiness has been viewed as a challenge to be overcome or as a disease to

be cured [5, 13, 15]. From this perspective the major challenge of sloppy models has been

assumed to be the small eigenvalues of the FIM corresponding to practically unidentifiable

parameter combinations. This in turn has led (incorrectly) to the conflation of sloppiness and

practical unidentifiability. As we have argued here, the near uniform spacing of the eigenvalues

(on a log scale) also pose unique challenges for parameter estimation because there is no clear

cutoff between relevant and irrelevant mechanisms.

In order for an approximate model to be effective, it is important that the microscopic

details ommited from the model be irrelevant, i.e., unidentifiable. When modeling systems for

which all the relevant mechanisms are known, the validity of the model can usually be justified

by small parameters, e.g., separated scales or distance from a critical point. The small parame-

ter guarantees that the FIM eigenvalues for the irrelevant mechanisms are well-separated from

those of the relevant mechanisms (e.g., column 3 in Fig 1). Some amount of unidentifiability

in the physical system is therefore important for effective modeling.

For many complex systems, no such (known) small parameter exists and sloppy model

analysis reveals that there is no sharp distinction between the relevant and irrelevant mecha-

nisms. We speculate that in many cases the system (not just the model) is intrinsically sloppy

because there is no intrinsic scale separation to suppress irrelevant mechanisms in the system.

Therefore, a sequence of mechanistically more realistic models would have an eigenvalue

structure closer to that in column 1 in Fig 1 rather than Fig 3. If that is the case, then one

should not expect there to exist a mathematical model that can both be accurately calibrated

and accurately predict the system behavior. There will always be several parameters that are

marginal, i.e., not tightly constrained by data but are nevertheless necessary to explain the sys-

tem behavior. In this case there is a fundamental limit to the efficacy of optimal experimental

design: attempting to constrain the marginal parameters of a model of a sloppy system reduces

the accuracy of the model and limits its predictive ability as we have seen.

Rather than posing a problem for parameter identification in models of complex systems,

we argue here that sloppiness is important for successful modeling. Sloppy model analysis

reveals that in many cases a behavior of interest is controlled by only a small number of param-

eter combinations. This observation has been used to explain why relatively simple models can

make useful predictions. Indeed, it has been argued elsewhere that sloppiness may help explain

why the world in its microscopic complexity is comprehensible at different scales [20]. Our

results give credence to this position since removing sloppiness from a model reduced its pre-

dictive ability.

Another approach is to remove the sloppy parameters from the model. In principle, another

simple model may exist whose parameters correspond to the few relevant parameter combina-

tions in the sloppy model. Parameter estimation in such a model would be relatively straight-

forward. Recent advances in model reduction suggest that systematic construction of simple

models from complex representations may be generally possible [17, 18, 20].

Relevant and Irrelevant Parameters in Sloppy Systems

In some branches of physics, the distinction between relevant, irrelevant, and marginal param-

eters is defined rigorously in terms of the stability of the collective behavior to microscopic var-

iations in mechanistic details as measured by a renormalization group flow. In that context,
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relevant parameters correspond to degrees of freedom that must be tuned to achieve a behav-

ior. In this work, we have used relevant and irrelevant less precisely as synonyms for identifi-

able and unidentifiable as measured by the FIM eigenvalues. This equivalence is reasonable

because the the identifiable parameters are those that must be tuned to reproduce a behavior.

The equivalence of these definitions was demonstrated in reference [12]. However, one of the

hallmark features of sloppy models is the roughly uniform spacing of FIM eigenvalues, making

it difficult to make a clear delineation between relevant and irrelevant parameters.

Lacking a clear cutoff between important and unimportant parameter directions means

that some physical mechanisms may be either relevant or irrelevant depending on the experi-

mental conditions. We have shown this explicitly for the two cases considered here. The

model of Brown et al. [6] contained all of the relevant mechanisms (and many irrelevant ones)

for explaining several experimental observations of an EGFR pathway. In contrast, it did not

contain all of the relevant mechanisms for experimental conditions proposed by Apgar et al.

[13]. Similarly, the LPL model is sufficient for modeling single radiation doses, while the RS

model is necessary for modeling sequences of varied radiation doses and neither contains all

the relevant mechanisms for modeling the experiments described in this work.

These results demonstrate the need for a theory of modeling and approximation that identi-

fies which physical mechanisms are relevant for explaining different collective system behav-

iors. We have described two approaches that could be the beginnings of such a theory. First,

we have introduced the concept of a sloppy system in which multiple models of varying com-

plexity describe the same observations. Second, we have used a hyper-model to quantify the

limitations of a model. Although, most of these ideas have existed in some form in the litera-

ture, the unique contribution of this work is synthesizing the concepts to explain why sloppy

models pose unique challenges for system identification and why these problems are not

shared by unidentifiable models that are not sloppy.

Because simple models are not complete, they cannot make accurate predictions for all

experimental conditions. Of course, it is possible to extend a model by including more details

in order to extend its range of validity. In principle, a single, monolithic model could accu-

rately predict the outcome of all possible experiments. This possibility underlies the concept of

a sloppy system. Microscopically complete models effectively act as numerical experiments

and are a precursor to a more complete theory. In advancing to a more complete understand-

ing of a system, we believe it is useful to consider multiple models of varying complexity and

try to understand their limitations. Simultaneously considering multiple representations cre-

ates a rich and insightful theory into the mechanisms driving behavior that allow for abstrac-

tion and generalization. We believe that accounting for the approximations and context of a

model are essential for successful modeling.

Conclusion

In this paper we have proposed a “sloppy system hypothesis.” We speculate that the prevalance

of sloppy models in complex biological systems (and other areas of science) is not due to a lim-

itation in the measurement structure of the system, but reflects a property intrinsic to the sys-

tem itself. Because many complex systems lack an intrinsic scale separation (i.e., “small

parameter” as discussed in the introduction), there is no mechanism whereby irrelevant details

are necessarily suppressed in the model. Consequently, corrections to the mathematical model

are relevant at all scales so that an accurate model will necessarily have several “marginal

parameters” as in Fig 2. This hypothesis suggests that there is a fundamental limitation of opti-

mal experimental design in sloppy systems due to these marginal parameters; attempting to

constrain the marginal parameters of a model of a sloppy system reduces the accuracy of the
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model and limits its predictive ability. We have demonstrated this phenomenon on two com-

plex biological systems, EGFR signaling and DNA repair.

Mathematical modeling in the face of structural uncertainty is a problem of growing impor-

tance across science [44–49]. Because mathematical models by their very nature are not exact

replicas of physical processes, it is essential that they include the physical details relevant to the

behavior of interest. In some branches of science, most notably several areas in physics, the

equations governing some phenomena are sufficiently well-understood that numerical simula-

tions come very near to being surrogates for real experiments. When this is the case, accurate

parameter estimates reduce uncertainty in the model’s predictions. However, in many areas of

complexity science, particularly for systems with fewer symmetries and less homogeneity,

which physical details are relevant for explaining a particular behavior remains the theoretical

bottleneck.

Our results suggest that there is a need for better understanding of and accounting for the

approximations in complex models. In particular, optimal experimental design methods

should limit their search space to those experiments for which the model is an accurate

approximation. In spite of the growing documentation of microscopic biological mechanisms,

it is difficult to predict how the errors introduced by a given approximation (such as the steady

state approximation) will propogate to the predictions for the system’s collective behavior. In

other words, it is difficult to know a priori which mechanisms are relevant for a particular

behavior. We believe that better quantification of uncertainty will enable improved methods of

experimental design and the development of accurate models for predicting behavior in com-

plex systems.

Materials and Methods

Ethics Statement

Animals were maintained in an Association for Assessment and Accreditation of Laboratory

Animal Care approved facility, and in accordance with current regulations of the United States

Department of Agriculture and Department of Health and Human Services. The experimental

protocol was approved by, and in accordance with, institutional guidelines established by the

Institutional Animal Care and Use Committee.

UT MD Anderson Cancer Center

ACUF #: 00001061 RN00

Date Approved: 1/24/2014

Expiration Date: 1/2/2017

EGFR Models and Simulation

We use the model of EGFR signaling due to Brown et al. [7] formulated in terms of approxi-

mate Michaelis-Menten kinetics. We also constructed a similar model using mechanistic mass

action kinetics. This replaces each approximate Michaelis-Menten reaction with two mass-

action steps: E + SÐ ES! E + P. We first model each chemical reaction as an enzyme and

substrate reversibly binding into an enzyme-substrate complex, and then dissociating to yield

the original enzyme and the product. This gives four nonlinear ordinary differential equations

(ODEs) for each enzyme substrate ppreaction, including one each for the changes in concen-

tration of the enzyme, the substrate, the enzyme-substrate complex, and the resulting product.

In total, modeling the EGFR network using the same topology as the Brown model by means

of mechanistic mass action kinetics requires 54 independent, nonlinear ODES with 70 param-

eters. These equations are given in the supplement along with an sbml implementation of the

mechanistic model and are available on github [60].
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All models were simulated using in-house C, FORTRAN and python routines, including

methods to automatically calculate parameter sensitivities, included in the supporting infor-

mation. We use the approximate Michaelis-Menten model to simulate the original seven labo-

ratory experiments performed by Brown et al. using parameter values from reference [7]. We

then add random noise to results of this simulation and treat the results as if they were actual

laboratory results for the experiments. Finally, we fit this data to the mechanistic mass-action

model using the geodesic Levenberg-Marquardt algorithm [21, 61]. In order to help avoid

complications in which the fit is prematurely stuck at manifold boundaries (as described in

[21]), all fits were done with regularizing terms to keep parameters from drifting to infinite val-

ues. We use regularizing terms that take the form wi(log xi/xi0)2 for each parameter xi. Fits

were repeated for many different values of xi0 (i.e., the point at which the regularization was

centered) and weights wi. Weights were varied over four orders of magnitude (0.01 to 100),

and we observe that our final fits were robust to these choices, suggesting that our results are

not an artifact of having converged to a local optimum.

Using the mechanistic model with parameters from fitting the Brown experiments, we sim-

ulate the five experimental conditions proposed by Apgar et al. [13] and add random noise.

We then fit the approximate model to the these data as before.

Radiation Experiments

Experimental methods are the same as in reference [55]. C3Hf/KamLaw mice were exposed to

whole body irradiation using 300 kVp X-rays at a dose rate of 1.84 Gy/min, and the number of

viable jejunal crypts was determined using the microcolony assay. 14 Gy total dose was split

into unequal first and second fractions separated by 4 h. Data were analyzed using the LQ

model, the lethal potentially lethal (LPL) model, and a repair-saturation (RS) model.

Supporting Information

S1 Supporting Information. Data sets and model definitions used in the paper.
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