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Abstract

Many antimicrobial and anti-tumour drugs elicit hormetic responses characterised by low-

dose stimulation and high-dose inhibition. While this can have profound consequences for

human health, with low drug concentrations actually stimulating pathogen or tumour growth,

the mechanistic understanding behind such responses is still lacking. We propose a novel,

simple but general mechanism that could give rise to hormesis in systems where an inhibitor

acts on an enzyme. At its core is one of the basic building blocks in intracellular signalling,

the dual phosphorylation-dephosphorylation motif, found in diverse regulatory processes

including control of cell proliferation and programmed cell death. Our analytically-derived

conditions for observing hormesis provide clues as to why this mechanism has not been pre-

viously identified. Current mathematical models regularly make simplifying assumptions

that lack empirical support but inadvertently preclude the observation of hormesis. In addi-

tion, due to the inherent population heterogeneities, the presence of hormesis is likely to be

masked in empirical population-level studies. Therefore, examining hormetic responses at

single-cell level coupled with improved mathematical models could substantially enhance

detection and mechanistic understanding of hormesis.

Author Summary

Hormesis is a highly controversial and poorly understood phenomenon. It describes the

idea that an inhibitor molecule, like an anti-cancer or anti-microbial drug, can inadver-

tently stimulate cell growth instead of suppressing it. This can have a profound effect on

human health leading to failures in clinical treatments. Therefore, getting at the mechanis-

tic basis of hormesis is critical for drug development and clinical practice, however molec-

ular mechanisms underpinning hormesis remain poorly understood. In this paper we use

a mathematical model to propose a simple and yet general mechanism that could explain

why we find hormesis so widely in living systems. In particular, we discover that hormesis

is present within a fundamental structure that forms a basic building block of many intra-

cellular signalling pathways found in diverse processes including control of cell reproduc-

tion and programmed cell death. The benefits of our study are two-fold. Having simple

molecular understanding of the causes of hormetic responses can greatly improve the

design of new drug compounds that avoid such responses. Moreover, due to the
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fundamental nature of the newly proposed mechanism, our findings have a potential

broad applicability to both anti-cancer and anti-microbial drugs.

Introduction

Hormesis is a phenomenon describing biphasic dose response relationships that exhibit low-

dose stimulation and high-dose inhibition [1]. Many medical agents such as antibacterials,

antifungals, and anti-tumour drugs have been found to display hormetic response [2] with the

earliest observations dating back to 1800s. In particular, low concentrations of certain antifun-

gals were found to stimulate fungal growth [3] or metabolism [4] while inducing toxicity at

high concentrations. From the early 1920s the concept of low-dose stimulation and high-dose

toxicity of various chemical elements with respect to bacterial growth was widely recognised

[5]. We now know that bacteria can exhibit hormetic response to a wide range of antibiotic

drugs, regardless of their mode of action [6]. This phenomenon is also found in tumour cells

exposed to anti-tumour drugs. In fact, hormesis has been observed in an astonishingly broad

range of tumour types including pancreatic, colon and breast (reviewed in [7]).

Despite the overwhelming body of research, some dating back a century, that documents

hormetic responses to a broad range of compounds, their clinical significance has only rela-

tively recently come to the fore [2]. The consequence of hormesis could have a profound effect

for human health [8, 9]. Drug concentration generally varies substantially within the human

body and as drug gets cleared, the associated low concentration can in turn stimulate pathogen

or tumour growth. Therefore understanding the mechanistic basis of hormesis is vital for both

drug development and clinical practice.

The vast majority of targets for antibiotics, antifungals and anti-tumour drugs fall into the

following categories: enzymes, receptors, transporters and DNA/RNA and the ribosome [10].

However how such drug-target interactions lead to hormesis remains poorly understood. The

biological explanations put forward are overcompensation after a disruption of homeostasis

(reviewed in [11]), direct stimulatory response [12], superimposition of different monotonic

dose-response curves [13], or heterogenic susceptibility of different tissues to the same stimuli

[14]. These explanations provide understanding of hormesis at a phenotypic level but lack

understanding at the molecular level. Some inroads have also been made with respect to mam-

malian cells focusing on drug mechanisms mediated via receptor and/or cell signalling path-

ways (reviewed in [7]). For example, biphasic dose response could occur through interaction

of two different receptor subtypes that mediate/activate opposing stimulatory and inhibitory

pathways via the same antagonist [15]. However, hormetic response is a built in feature of

such receptor mediated mechanisms rather than an emergent property of the underlying bio-

logical system.

An area of research where understanding of the mechanisms giving rise to hormesis is par-

ticularly lacking involves enzyme-targeting drugs. Known as enzyme inhibitors, they are

designed to block enzyme activity leading to disruption of bacterial cell wall [16], fungal mem-

branes [17] and fungal cell wall [18] as well as programmed tumour cell death [19], to name a

few. With regards to hormetic dose-responses to antibiotics, a recent study focusing on inhibi-

tion of a specific enzyme, Dihydropteroate synthase, suggested the involvement of bacterial

quorum sensing [20]. To our knowledge, mechanisms behind hormetic dose-response to

enzyme-inhibiting antifungals are not known.

In recent years kinase inhibitors, a subset of enzyme inhibitors, have been shown to be very

effective therapeutic agents in a broad range of diseases, including cancers. Amongst other
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enzyme inhibitors, significant attention has been focused on those inhibiting the mitogen-

activated protein kinase (MAPK) pathway [21–24], which is of fundamental importance to

human health as abnormal regulations of MAPK contribute to tumour progression [25].

The observations of hormesis in MAPKs as a result of inhibition of BRAF oncogene are

widespread: low doses of RAF inhibitors designed to cease tumour proliferation [26] can cause

a paradoxical activation of tumour cell activity through undesired MAPK up-regulation [8, 9,

27–32]. Current explanations of hormetic responses induced by RAF kinase inhibition involve

complex phenomena affecting regulatory mechanisms, feedback pathways or enzymatic activ-

ity [33], making them difficult to generalise. More generally, enzyme competition for the same

substrate was recently proposed as a simpler mechanism giving rise to hormetic effects of

enzyme-targeting Alzheimer’s drugs [34].

In this paper we put forward a novel, simple but general mechanism driving hormetic

responses in systems where an inhibitor acts on an enzyme. We develop a mathematical model

based on a basic building block in intracellular signalling, namely a dual phosphorylation-

dephosphorylation motif, to which a kinase inhibitor is applied. In a broader context, dual-

phosphorylation can be found in diverse processes such as circadian rhythms [35], virulence

regulation [36, 37], mitotic entry [38], transcription [39, 40], cytokine production [40], as well

as in MAPK pathways which regulate primary cellular activities in eukaryotes including prolif-

eration and programmed cell death [41, 42].

The model demonstrates that under certain conditions the steady state amount of the dou-

ble-phosphorylated protein substrate in the cycle can substantially increase at low inhibitor

doses compared to the base level without inhibition. Therefore the dose-response curve of the

double-phosphorylated substrate possesses a hallmark of hormesis: it is upward sloping at low

inhibitor doses and downward sloping at high inhibitor doses. The existence of hormesis in

our model depends on the mechanism of inhibition and the dissociation rates of the kinase-

substrate-inhibitor complexes. We also found that the magnitude of hormetic responses

depends on the substrate-kinase ratio in a non-monotone way.

The benefits of our study are two-fold. Our mechanism is based on a principal component

of intracellular signalling pathways, and as such has a potential broad applicability. Moreover

having simple molecular understanding of the causes of hormetic responses can greatly

improve the design of new drug compounds that avoid such responses.

Materials and Methods

The mathematical model

We consider a simple dual phosphorylation-dephosphorylation motif, whereby a distinct

kinase protein is phosphorylating a separate protein substrate. Multiple phosphorylations can

occur in close proximity or in diverse sites on a protein and here we focus on the former,

instances of which can be found in activation of conventional MAPK enzymes [43], cell-cycle

regulation via cyclin-dependent kinase 1 [44], regulation of other non-MAPK kinases [45] and

ion channel trafficking [46]. The motif we consider is a subset of futile cycles [47, 48] also

known as a single stage module in the context of MAPK pathways [49, 50]. Based on the exper-

imental evidence for MAPK pathways [51–53] we assume that our motif follows a distributive

mechanism consisting of two sequential phosphorylation steps and two sequential dephos-

phorylation steps that share the same intermediate mono-phosphorylated form. In particular,

the protein substrate (C) is first converted into a mono-phosphorylated form (CP) and subse-

quently into a double-phosphorylated form (CPP), through a chain of reactions facilitated by a

kinase (kin). Conversely CPP is converted back to CP which is subsequently converted to C,

through a chain of reactions facilitated by a phosphatase (pho). In the distributive mechanism,
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the kinase(phosphatase) facilitates at most one phosphorylation (dephosphorylation) in each

molecular encounter [48].

Therefore our dual phosphorylation-dephosphorylation motif can be described by the fol-

lowing reaction kinetic equations, which are a simplification of the reaction scheme described

in [54]:

Cþ kin Ð
k1

k� 1

C � kin!k2 CP þ kin;

CP þ kin Ð
k3

k� 3

CP � kin!
k4 CPP þ kin;

CPP þ pho Ð
k5

k� 5

CPP � pho!
k6 CP þ pho;

CP þ pho Ð
k7

k� 7

CP � pho!
k8 Cþ pho:

ð1Þ

Next we describe the assumptions behind the introduction of an inhibitor into Eq (1), based

on the general modifier mechanism also known as hyperbolic or partial competitive inhibition

[55]. We assume that the inhibitor (inh) is able to react with the kinase and the substrate-

kinase intermediate complexes C � kin and CP � kin according to the following inhibition

scheme:

kinþ inh Ð
df

dr
kin � inh;

C � kinþ inh Ð
e1

e� 1

C � kin � inh Ð
e2

e� 2

Cþ kin � inh;

CP � kinþ inh Ð
e3

e� 3

CP � kin � inh Ð
e4

e� 4

CP þ kin � inh:

ð2Þ

The first- and second-order rates ki and ei in Eqs (1) and (2) and the association and dissocia-

tion rates df and dr in Eq (2) are considered dimensionless. In our system intermediate sub-

strate-kinase-inhibitor complexes are able to dissociate into a substrate and kinase-inhibitor

complex with forward e2, e4 and backward e−2, e−4 rates [56].

The model describing the time evolution of the substrate, kinase, phosphatase and inhibitor

concentrations is based on the law of mass action and assumes the total conservation of mass

holds for all four compounds. The details of the system of 9 differential equations and the cor-

responding analysis are presented in S1 Appendix. (with Supplementary Tables A1 and A2

containing model parameter values). This model system is studied under steady state condi-

tions, that is, when all concentrations of reactants have reached a dynamic equilibrium.

Numerical simulations are conducted with Matcont, a continuation package in MATLAB

used for numerical bifurcation analysis of ODEs [57].

Results

In the absence of an inhibitor, the double phosphorylation motif Eq (1) can possess either a

single or two stable steady states of the doubly-phosphorylated form of the substrate CPP, [50,

54, 58, 59]. Therefore in our study we consider two cases: first, when the motif Eq (1) is mono-

stable and second, when this motif is bi-stable.

In the case of a single stable steady state (CPP
�) in the absence of an inhibitor, we find that

CPP can exhibit biphasic (or hormetic) response to an inhibitor as illustrated in Fig 1. In partic-

ular, the observed dose-response curve in the presence of an inhibitor has an inverted U-

shape: for sufficiently low inhibitor doses the computed steady-state values of CPP increase
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monotonically, while for sufficiently large inhibitor doses, the computed steady-state values of

CPP monotonically decrease.

Moreover, by making simplifying assumptions that e−2 = e−4 = 0, e2 >>e1, e4 >>e3 and the

inhibitor has fast off rate, we can analytically derive the slope of the dose-response curve, in

other words the slope of the relationship between the steady-state value of CPP and the total

amount of inhibitor at low doses (see S1 Appendix for details). This allows us to identify two

primary factors necessary for the hormesis to be observed:

(C1) the strong dissociation effect of intermediate substrate-kinase-inhibitor complexes

C � kin � inh and CP � kin � inh, corresponding to e2, e4 > 0,

(C2) large dissociation rate of kinase-inhibitor complexes.

Note that the hormesis is still observed in numerical simulations when e−2, e−4 > 0 (Fig A1

in S1 Appendix).

In addition the above conditions (C1-C2) can also be used to forecast the presence of a hor-

metic dose response in the second case under our consideration, namely when in the absence

of an inhibitor the motif Eq (1) has two stable steady states CPP,1
� (Fig 2A) and CPP,2

� (Fig 2B).

In this case the numerical simulations predict that cells with high base level of double-phos-

phorylated substrate will respond differently to inhibition from the cells with low base level of

double-phosphorylated substrate. In particular, cells with initially high levels of CPP (at steady

state CPP,1
�) will exhibit a monotone decreasing dose-response (Fig 2A) while cells with low

initial levels of CPP (at steady state CPP,2
�) will exhibit a hormetic response (Fig 2B).

The magnitude of hormetic response can differ between the mono- and bi-stable cases

under consideration as illustrated in Figs 1 and 2B. In the mono-stable case the CPP value at

dose inh� is approximately two-fold higher compared to the base level CPP
� value in the

Fig 1. Dose response curve (log scale) for the double-phosphorylated substrate CPP in the presence

of an inhibitor (inhtot), in the case when the motif Eq (1) is monostable. In the absence of the inhibitor the

stable steady state value of the double-phosphorylated substrate is denoted by CPP*. With the inhibitor

present, the dose response exhibits hormetic properties whereby for sufficiently low inhibitor doses

(inhtot<inh*) the computed steady state values of CPP increase monotonically, before monotonically

decreasing for inhibitor concentrations inhtot>inh*. The magnitude of hormetic response is calculated as a

difference between the CPP value at inh* and CPP*.

doi:10.1371/journal.pcbi.1005216.g001
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absence of an inhibitor (Fig 1). In the bi-stable case the CPP value at dose inh� is approximately

six-fold higher than the base level CPP,2
� value in the absence of an inhibitor (Fig 2B).

In general, we find that the ratio of total mass of protein substrate to kinase mass influences

the magnitude of hormetic response in a non-monotone way as shown in Fig 3. For sufficiently

small substrate-kinase ratio, a hormetic response is not observed (absence of hormesis is

labelled as 100% response in Fig 3 because the maximal response is equal to the baseline of no

inhibition). However, the hormetic response increases sharply as the substrate-kinase ratio

increases. Further increases of this ratio lead to a sharp decline in the magnitude of hormetic

response, which continues to increase slowly for sufficiently large substrate-kinase ratios (see

Fig 3 inset). Therefore, the magnitude of hormetic response peaks at intermediate values of the

substrate-kinase ratio, as frequently observed in the MAPK pathway [60] for example, while

hormesis is not observed for low substrate-kinase ratios.

Discussion

Hormetic responses to enzyme-targeting drugs have been observed in both prokaryotes [20,

61, 62] and eukaryotes [8, 9, 27, 31, 32] but the mechanistic understanding behind such

responses is still lacking. In this paper we focus on eukaryotic cells and propose a novel, simple

but general mechanism that could give rise to hormesis in systems where an inhibitor acts on

an enzyme.

At the core of our newly-proposed mechanism is one of the basic building blocks in intra-

cellular signalling, the dual phosphorylation-dephosphorylation motif, found in diverse regu-

latory processes including MAPK pathways which control cell proliferation and programmed

cell death in eukaryotes [41, 42]. We analytically derive conditions that lead to hormetic dose-

response of the doubly-phosphorylated substrate in the presence of a kinase inhibitor. The

conditions required for hormesis to be observed are surprisingly simple and involve two main

Fig 2. Dose response curve (log scale) for the double-phosphorylated substrate CPP in the presence of an inhibitor

(inhtot), in the case when the motif Eq (1) is bistable. In the absence of the inhibitor there are two stable steady states of the

double-phosphorylated substrate (A) CPP,1* and (B) CPP,2*. Cell populations at these two steady state will react differently to the

presence of an inhibitor: (A) cells at CPP,1* will exhibit a monotone dose-response while (B) cells at CPP,2* will exhibit a hormetic

dose response whereby for sufficiently low inhibitor doses (inhtot<inh*) the computed steady state values of CPP increase

monotonically, before monotonically decreasing for inhibitor concentrations inhtot>inh*. The dotted lines indicate a discontinuous

jump in the steady state values of CPP in the presence of the inhibitor. The magnitude of hormetic response is calculated as a

difference between the CPP value at inh* and CPP,2*.

doi:10.1371/journal.pcbi.1005216.g002
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factors: (C1) strong dissociation effect of intermediate substrate-kinase-inhibitor complexes

and (C2) large dissociation rate of kinase-inhibitor complexes.

Crystallographic studies of kinase inhibitors bound to their targets demonstrate that a num-

ber of different conformational states can be induced. Type 1 kinase inhibitors are defined as

binding the kinase in its active conformation and crystal structures of ternary complexes of

ATP analogues bound with substrate peptides are reported (for review see [63, 64]). Indeed it

is not uncommon for crystal systems of substrate peptide complexes to be used in Structure

Based Design campaigns to develop Type 1 kinase inhibitors [65].

Given the fundamental nature of the dual phosphorylation-dephosphorylation motif and

the relative simplicity of the derived conditions necessary to observe hormesis, why was this

mechanism previously overlooked in theoretical literature? A further examination of the (C1)

condition could provide a potential answer. In general, when considering partial competitive

enzyme inhibition [55] as we do here, classical enzyme kinetics literature [55, 56] assumes not

only equilibrium concentrations of different enzyme species but it also assumes that at those

equilibrium concentrations there is no flux through substrate-kinase-inhibitor complexes.

However, we find that in our study as flux decreases the maximum hormetic response also

decreases (Fig 4) indicating that under the no-flux assumption, hormetic responses could be

overlooked.

Once a new mechanism is proposed to explain a particular biological phenomenon, ideally

it should be put to test. However, there are a number of difficulties associated with in vitro
tests of our model predictions. First, biochemical assays involved with in vitro studies are not

standardised and vary between research groups, making comparisons between already pub-

lished observations difficult. Second, testing our model predictions requires measurements of

single and double phosphorylation outputs, this could be problematic as antibody specificity

required to distinguish these outputs might not readily be available. This would particularly be

relevant for systems where phosphorylation sites are situated close together. Third, ensuring

that the condition for observing hormesis e2, e4 > 0 is satisfied experimentally is challenging as

Fig 3. Maximum hormetic response. The maximum hormetic response is calculated as the maximal

increase in CPP over all inhibitor doses, relative to the base line amount of CPP in the absence of inhibition.

Since the baseline is represented at a level of 100%, hormesis is present if the maximum response strictly

exceeds the baseline (> 100%). This maximum response is plotted (black dots) as a function of different

substrate-kinase ratios achieved by varying the total mass of substrate and keeping the total mass of kinase

constant.

doi:10.1371/journal.pcbi.1005216.g003
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kinase biochemical assays would not usually include phosphatase activity. Furthermore vary-

ing rates of reactions individually or measuring fluxes in such systems is equally difficult.

Having discussed difficulties associated with testing our model in reductionist in vitro sys-

tems, we next consider whether these difficulties could be overcome with a cell-based experi-

mental systems. In particular, our model predicts that hormetic dose-response could be a

wide-spread feature of MAPK pathways when exposed to enzyme inhibitors. However we

argue here that the non-trivial biphasic dose-response associated with hormesis might often be

overlooked when performing experiments at cell population level, as we now discuss.

Consider the case where in the absence of an inhibitor, the double phosphorylation motif

Eq (1) possesses two stable steady states of the doubly-phosphorylated form of the substrate

CPP. This means that tumour cells within a population can be grouped into two types: type-1

cells with ‘high’ CPP and type-2 cells with ‘low’ CPP. In reality these heterogeneous cell pheno-

types can emerge not only due to multistability of the system [50, 54] but also due to stochastic

fluctuations which lead to different concentrations of the the total protein substrate [66, 67]. In

general, an untreated tumour is likely to harbour different proportions of cells in different phe-

notypic states [68].

We show that different cell types can respond differently to the presence of an inhibitor.

Namely, our model predicts that in certain cases cells with initially high levels of CPP (at steady

state CPP,1
�) will exhibit a monotone decreasing dose-response (Fig 2A) while cells with low

Fig 4. Relationship between the maximum hormetic response and the flux C � kin � inh! C + inh � kin.

The maximum hormetic response is calculated as the maximal increase in CPP over all inhibitor doses,

relative to the base line amount of CPP in the absence of inhibition. Since the baseline is represented at a level

of 100%, hormesis is present if the maximum response strictly exceeds the baseline (> 100%). The flux is

computed as e2[C � kin � inh] − e−2[C][kin � inh] using the steady state values [C](inh*), [kin � inh](inh*), [C � kin �

inh](inh*) with inh* being the dose with the maximum hormetic response (see Fig 1). As e−2 increases, the

flux decreases to 0.

doi:10.1371/journal.pcbi.1005216.g004
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initial levels of CPP (at steady state CPP,2
�) will exhibit a hormetic response (Fig 2B). This has

an important consequence for measuring CPP at a population level as it is frequently done

[69], as well as determining inhibitory concentrations (IC). Such consequences are best illus-

trated with the following example.

Let us assume, for example, that 88% of the tumour cells are type-1 cells and 12% of the

tumour cells are type-2 cells. We can then simulate our model to generate dose response curves

of CPP for both type-1 (Fig 5, green line) and type-2 (Fig 5, blue line) phenotypes. In addition,

we can also numerically generate sampled values of the combined dose response of the entire

population as would be measured, for instance, in a western blot or population-based imaging

assay for C PP (Fig 5, red dots). By fitting a logistic curve to the sampled values of the combined

dose response (Fig 5, red dashed line) we can estimate the inhibitor concentration causing

50% inhibition of the entire population, denoted IC50. However, the same inhibitor concentra-

tion has the opposing effects on the two sub-populations: while it inhibits type-1 cells, it actu-

ally stimulates type-2 cells. This can be observed by comparing steady-state values of CPP in

the absence of inhibition (CPP,1
� for type-1 and CPP,2

� for type 2) to the steady-state values of

CPP in the presence of the inhibitor (CPP,1
�� for type-1 and CPP,2

�� for type 2) at the IC50 con-

centration estimated for the entire population (Fig 5). In particular, the inhibition of type-1

cells can be seen from CPP,1
�>CPP,1

�� while the stimulation of type-2 cells can be seen from

CPP,2
�<CPP,2

��. Such unexpected stimulatory effects of the population-level IC50 exerted on

type-2 sub-population could be further amplified when taking into account the imperfect drug

penetration in a tumour [70]. In that case tumour cells would actually experience a lower

inhibitor concentration IC�<IC50, which could lead to significant increases in steady-state val-

ues of CPP (denoted by CPP,2
x in Fig 5), compared to the steady-state values of CPP in the

absence of inhibition (denoted by CPP,2
� in Fig 5). A numerical example with balanced type-1

and type-2 cell populations is presented in Fig A5 of S1 Appendix, showing that in this case it

is also possible to mask the hormetic response at the population level, although the maximal

hormetic response of the type-2 cells at the corresponding IC50 is substantially lower.

The presence of hormetic responses to an inhibitor which are masked at a population level

could, therefore, complicate the interpretation of, and understanding gained from, preclinical

models. Such complex sub-population effects have been noted for example in the NF-κB path-

way, controlling DNA transcription, cytokine production and cell survival [71]. In particular,

studies have shown that observing non-synchronous cells at a population level may under-rep-

resent oscillatory behaviour of nuclear shuttling [40, 72–74].

Examining hormetic responses at single-cell level could substantially improve detection

rates as well as help identify mechanisms driving hormesis. However, while measuring and

analysing single-cell bacterial dose response to antibiotics is already feasible [75], such meth-

odology has rarely been implemented for studying dose-responses of tumour cells. Therefore,

a wider application of single-cell dose-response techniques used for prokaryotes to tumour

cells will greatly enhance our understanding of hormesis in cancer settings.

The conclusions of our study are based on the assumption that the dual phosphorylation-

dephosphorylation motif presented in Eq (1) follows a distributive mechanism, whereby kinase

(phosphatase) facilitates at most one phosphorylation (dephosphorylation) in each molecular

encounter. This is motivated by the experimental evidence for MAPK pathways [51–53]. How-

ever, phosphorylation and dephosphorylation cycles can also follow a processive mechanism

in which the kinase (phosphatase) facilitates two or more phosphorylations (dephosphoryla-

tions) before the final product is released [48]. In addition, a quasi-processive mechanism has

been recently proposed to operate under the physiological condition of molecular crowding,

which is a critical factor converting distributive into processive phosphorylation [76–78]. Our

model can readily be extended to consider these alternative scenarios.

Kinase Inhibition and Hormesis
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The findings presented here are relevant to applications in drug discovery relating to

MAPK inhibition. Whereas inhibitors are specifically designed to target and suppress various

stages in the MAPK pathways, the hormesis phenomenon leads to the opposite effect lowering

the effectiveness of the compound and potentially leading to failure in the clinic [8, 9, 32].

Therefore, understanding mechanisms that lead to this undesired effect is important for

designing inhibitors that would avoid them. Indeed, a recent study proposed a novel inhibitor,

designed specifically to avoid MAPK activation at low-doses [79].

Our study could help achieve a similar goal. In particular, a straight forward approach to

mitigate the risk of hormetic response is to favour inhibitor mechanisms of action for which

this is impossible under our model. Protein substrate competitive inhibitors is one such exam-

ple as these would generally, through steric hindrance, prohibit the formation of the necessary

tertiary complex. In practice, structural biology can be employed to confirm that substrate and

inhibitor complexes are mutually exclusive.

Overall, we argue that mathematical models are particularly useful tools in the drug-discov-

ery process. Given the difficulties associated with measuring hormetic responses empirically

be it with reductionist in vitro biochemical assays or cell based systems, the involvement of

mathematical models in this process is of paramount importance. What we demonstrate here

is that theoretical models classically make assumptions that immediately discount the

Fig 5. Heterogeneous populations. Dose response curves of type-1 (green line) and type-2 (blue line) cells

in the presence of an inhibitor (inhtot), in the case when motif Eq (1) is bistable. A logistic curve (red line) is

fitted to sample points (red dots) generated numerically from a population containing 88% type-1 cells and

12% type-2 cells. The logistic fit to data is used to estimate IC50 of the total population (see Supplementary

Information). In the absence of the inhibitor type-1 cells are at CPP,1* stead state while type-2 cells are at

CPP,2*. In the presence of the inhibitor at IC50, while the total population exhibits 50% inhibition, the same

concentration has the opposing effects on the two sub-populations. In particular, type-1 cells are inhibited,

which can be deduced from the observation that the steady state CPP,1** calculated at the population-level

IC50 is lower than the steady state CPP,1* calculated in the absence of the inhibitor. Contrary to this type-2

cells are stimulated since the steady state CPP,2** calculated at the population-level IC50 is higher than the

steady state CPP,2* calculated in the absence of the inhibitor. This stimulatory effect is amplified even further

for IC*<IC50, as seen by comparing the relatively high values of the steady state CPP,2
x at IC* to the relatively

low values of the steady state CPP,2* in the absence of the inhibitor.

doi:10.1371/journal.pcbi.1005216.g005
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possibility of observing hormetic responses in cell signalling pathways in the presence of inhib-

itors. Namely the assumption of no flux through substrate-kinase-inhibitor complex in motif

Eq (2) is widespread in theoretical literature despite the lack of empirical support. It is, there-

fore, crucial that model assumptions are regularly challenged so that important behaviours are

not overlooked.

Supporting Information

S1 Appendix. The file contains a detailed mathematical model describing the time evolu-

tion of the substrate, kinase, phosphate and inhibitor concentrations, alongside the corre-

sponding analysis and model parametrisation.

(PDF)
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16. Nicolaou KC, Boddy CNC, Bräse S, Winssinger N. Chemistry, biology, and medicine of the glycopeptide

antibiotics. Angew Chem Int Ed Engl. 1999; 38(15):2096–2152. doi: 10.1002/(SICI)1521-3773

(19990802)38:15%3C2096::AID-ANIE2096%3E3.0.CO;2-F PMID: 10425471

17. Maertens Ja. History of the development of azole derivatives. Clin Microbiology Infect. 2004; 10 Suppl

1:1–10. doi: 10.1111/j.1470-9465.2004.00841.x PMID: 14748798

18. Denning DW. Echinocandin antifungal drugs. The Lancet. 2003; 362(9390):1142–1151. doi: 10.1016/

S0140-6736(03)14472-8 PMID: 14550704

19. Nitiss J. Targeting DNA topoisomerase II in cancer chemotherapy. Nat Rev Cancer. 2009; 9(5):338–

350. doi: 10.1038/nrc2607 PMID: 19377506

20. Deng Z, Lin Z, Zou X, Yao Z, Tian D, Wang D, et al. Model of hormesis and its toxicity mechanism

based on quorum sensing: A case study on the toxicity of sulfonamides to Photobacterium phosphor-

eum. Environ Sci Technol. 2012; 46(14):7746–7754. doi: 10.1021/es203490f PMID: 22715968

21. Chapman PB, Hauschild A, Robert C, Haanen JB, Ascierto P, Larkin J, et al. Improved survival with

vemurafenib in melanoma with BRAF V600E mutation. N Engl J Med. 2011; 364(26):2507–2516. doi:

10.1056/NEJMoa1103782 PMID: 21639808

22. Sosman JA, Kim KB, Schuchter L, Gonzalez R, Pavlick AC, Weber JS, et al. Survival in BRAF V600-

mutant advanced melanoma treated with vemurafenib. N Engl J Med. 2012; 366(8):707–714. doi: 10.

1056/NEJMoa1112302 PMID: 22356324

23. Hauschild A, Grob JJ, Demidov LV, Jouary T, Gutzmer R, Millward M, et al. Dabrafenib in BRAF-

mutated metastatic melanoma: a multicentre, open-label, phase 3 randomised controlled trial. The Lan-

cet. 2012; 380(9839):358–365. doi: 10.1016/S0140-6736(12)60868-X PMID: 22735384

24. Flaherty KT, Puzanov I, Kim KB, Ribas A, McArthur GA, Sosman JA, et al. Inhibition of mutated, acti-

vated BRAF in metastatic melanoma. N Engl J Med. 2010; 363(9):809–819. doi: 10.1056/

NEJMoa1002011 PMID: 20818844

25. Roberts P, Der C. Targeting the Raf-MEK-ERK mitogen-activated protein kinase cascade for the treat-

ment of cancer. Oncogene. 2007; 26:3291–3310. doi: 10.1038/sj.onc.1210422 PMID: 17496923

26. Davies H, Bignell GR, Cox C, Stephens P, Edkins S, Clegg S, et al. Mutations of the BRAF gene in

human cancer. Nature. 2002; 417(6892):949–954. doi: 10.1038/nature00766 PMID: 12068308

27. Hall-Jackson CA, Eyers PA, Cohen P, Goedert M, Boyle FT, Hewitt N, et al. Paradoxical activation of

RAF by a novel RAF inhibitor. Chem Biol. 1999; 6(8):559–568. doi: 10.1016/S1074-5521(99)80088-X

PMID: 10421767

28. Poulikakos PI, Zhang C, Bollag G, Shokat KM, Rosen N. RAF inhibitors transactivate RAF dimers and

ERK signalling in cells with wild-type BRAF. Nature. 2010; 464(7287):427–30. doi: 10.1038/

nature08902 PMID: 20179705

29. Heidorn SJ, Milagre C, Whittaker S, Nourry A, Niculescu-Duvas I, Dhomen N, et al. Kinase-dead BRAF

and oncogenic RAS cooperate to drive tumor progression through CRAF. Cell. 2010; 140(2):209–221.

doi: 10.1016/j.cell.2009.12.040 PMID: 20141835

30. Hatzivassiliou G, Song K, Yen I, Brandhuber BJ, Anderson DJ, Alvarado R, et al. RAF inhibitors prime

wild-type RAF to activate the MAPK pathway and enhance growth. Nature. 2010; 464(7287):431–435.

doi: 10.1038/nature08833 PMID: 20130576

31. Andrews MC, Behren A, Chionh F, Mariadason J, Vella LJ, Do H, et al. BRAF inhibitor-driven tumor pro-

liferation in a KRAS-mutated colon carcinoma is not overcome by MEK1/2 inhibition. J Clin Oncol. 2010;

31(35):e448–e451. doi: 10.1200/JCO.2013.50.4118 PMID: 24190114

32. Zimmer L, Hillen U, Livingstone E, Lacouture ME, Busam K, Carvajal RD, et al. Atypical melanocytic

proliferations and new primary melanomas in patients with advanced melanoma undergoing selective

BRAF Inhibition. J Clin Oncol. 2012; 30(19):2375–2383. doi: 10.1200/JCO.2011.41.1660 PMID:

22614973

33. Holderfield M, Nagel TE, Stuart DD. Mechanism and consequences of RAF kinase activation by small-

molecule inhibitors. Br J Cancer. 2014; 111(4):640–645. doi: 10.1038/bjc.2014.139 PMID: 24642617

Kinase Inhibition and Hormesis

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1005216 November 29, 2016 12 / 15

http://dx.doi.org/10.1093/toxsci/kfh007
http://www.ncbi.nlm.nih.gov/pubmed/14600281
http://dx.doi.org/10.1093/toxsci/kfn023
http://www.ncbi.nlm.nih.gov/pubmed/18281258
http://dx.doi.org/10.1016/0022-5193(77)90390-3
http://www.ncbi.nlm.nih.gov/pubmed/592862
http://dx.doi.org/10.1002/(SICI)1521-3773(19990802)38:15%3C2096::AID-ANIE2096%3E3.0.CO;2-F
http://dx.doi.org/10.1002/(SICI)1521-3773(19990802)38:15%3C2096::AID-ANIE2096%3E3.0.CO;2-F
http://www.ncbi.nlm.nih.gov/pubmed/10425471
http://dx.doi.org/10.1111/j.1470-9465.2004.00841.x
http://www.ncbi.nlm.nih.gov/pubmed/14748798
http://dx.doi.org/10.1016/S0140-6736(03)14472-8
http://dx.doi.org/10.1016/S0140-6736(03)14472-8
http://www.ncbi.nlm.nih.gov/pubmed/14550704
http://dx.doi.org/10.1038/nrc2607
http://www.ncbi.nlm.nih.gov/pubmed/19377506
http://dx.doi.org/10.1021/es203490f
http://www.ncbi.nlm.nih.gov/pubmed/22715968
http://dx.doi.org/10.1056/NEJMoa1103782
http://www.ncbi.nlm.nih.gov/pubmed/21639808
http://dx.doi.org/10.1056/NEJMoa1112302
http://dx.doi.org/10.1056/NEJMoa1112302
http://www.ncbi.nlm.nih.gov/pubmed/22356324
http://dx.doi.org/10.1016/S0140-6736(12)60868-X
http://www.ncbi.nlm.nih.gov/pubmed/22735384
http://dx.doi.org/10.1056/NEJMoa1002011
http://dx.doi.org/10.1056/NEJMoa1002011
http://www.ncbi.nlm.nih.gov/pubmed/20818844
http://dx.doi.org/10.1038/sj.onc.1210422
http://www.ncbi.nlm.nih.gov/pubmed/17496923
http://dx.doi.org/10.1038/nature00766
http://www.ncbi.nlm.nih.gov/pubmed/12068308
http://dx.doi.org/10.1016/S1074-5521(99)80088-X
http://www.ncbi.nlm.nih.gov/pubmed/10421767
http://dx.doi.org/10.1038/nature08902
http://dx.doi.org/10.1038/nature08902
http://www.ncbi.nlm.nih.gov/pubmed/20179705
http://dx.doi.org/10.1016/j.cell.2009.12.040
http://www.ncbi.nlm.nih.gov/pubmed/20141835
http://dx.doi.org/10.1038/nature08833
http://www.ncbi.nlm.nih.gov/pubmed/20130576
http://dx.doi.org/10.1200/JCO.2013.50.4118
http://www.ncbi.nlm.nih.gov/pubmed/24190114
http://dx.doi.org/10.1200/JCO.2011.41.1660
http://www.ncbi.nlm.nih.gov/pubmed/22614973
http://dx.doi.org/10.1038/bjc.2014.139
http://www.ncbi.nlm.nih.gov/pubmed/24642617


34. Ortega F, Stott J, Visser SAG, Bendtsen C. Interplay between α-, β-, and γ-secretases determines

biphasic amyloid-β protein level in the presence of a γ-secretase inhibitor. J Biol Chem. 2013; 288

(2):785–792. doi: 10.1074/jbc.M112.419135 PMID: 23152503

35. Nishiwaki T, Satomi Y, Kitayama Y, Terauchi K, Kiyohara R, Takao T, et al. A sequential program of

dual phosphorylation of KaiC as a basis for circadian rhythm in cyanobacteria. EMBO J. 2007; 26

(17):4029–4037. doi: 10.1038/sj.emboj.7601832 PMID: 17717528

36. Horstmann N, Saldana M, Sahasrabhojane P, Yao H, Su X, Thompson E, et al. Dual-site phosphoryla-

tion of the control of virulence regulator impacts group A streptococcal global gene expression and path-

ogenesis. PLoS Pathog. 2014; 10(5):e1004088. doi: 10.1371/journal.ppat.1004088 PMID: 24788524

37. Whitmore SE, Lamont RJ. Tyrosine phosphorylation and bacterial virulence. Int J Oral Sci. 2012; 4

(1):1–6. doi: 10.1038/ijos.2012.6 PMID: 22388693

38. Bulavin DV, Higashimoto Y, Demidenko ZN, Meek S, Graves P, Phillips C, et al. Dual phosphorylation

controls Cdc25 phosphatases and mitotic entry. Nat Cell Biol. 2003; 5(6):545–551. doi: 10.1038/ncb994

PMID: 12766774

39. Martin-Verstraete I, Charrier V, Stülke J, Galinier A, Erni B, Rapoport G, et al. Antagonistic effects of

dual PTS-catalysed phosphorylation on the Bacillus subtilis transcriptional activator LevR. Mol Micro-

biol. 1998; 28(2):293–303. doi: 10.1046/j.1365-2958.1998.00781.x PMID: 9622354

40. Hoffmann A, Levchenko A, Scott ML, Baltimore D. The IκB-NF-κB signaling module: temporal control

and selective gene activation. Science. 2002; 298(5596):1241–1245. doi: 10.1126/science.1071914

PMID: 12424381

41. Widmann C, Gibson S, Jarpe MB, Johnson GL. Mitogen-activated protein kinase: conservation of a

three-kinase module from yeast to human. Physiol Rev. 1999; 79(1):143–180. PMID: 9922370

42. Chang L, Karin M. Mammalian MAP kinase signalling cascades. Nature. 2001; 410(6824):37–40. doi:

10.1038/35065000 PMID: 11242034

43. Cargnello M, Roux PP. Activation and function of the MAPKs and their substrates, the MAPK-activated

protein kinases. Microbiol Mol Biol Rev. 2011; 75(1):50–83. doi: 10.1128/MMBR.00031-10 PMID:

21372320

44. Ayeni JO, Varadarajan R, Mukherjee O, Stuart DT, Sprenger F, Srayko M, et al. Dual phosphorylation

of Cdk1 coordinates cell proliferation with key developmental processes in Drosophila. Genetics. 2014;

196(1):197–210. doi: 10.1534/genetics.113.156281 PMID: 24214341

45. Fu Z, Larson KA, Chitta RK, Parker SA, Turk BE, Lawrence MW, et al. Identification of yin-yang regula-

tors and a phosphorylation consensus for male germ cell-associated kinase (MAK)-related kinase. Mol

Cellr Biol. 2006; 26(22):8639–8654. doi: 10.1128/MCB.00816-06 PMID: 16954377

46. Kilisch M, Lytovchenko O, Arakel EC, Bertinetti D, Schwappach B. A dual phosphorylation switch con-

trols 14-3-3-dependent cell surface expression of TASK-1. J Cell Sci. 2016; 129(4):831–842. doi: 10.

1242/jcs.180182 PMID: 26743085

47. Samoilov M, Plyasunov S, Arkin AP. Stochastic amplification and signaling in enzymatic futile cycles

through noise-induced bistability with oscillations. Proc Nat Acad Sci USA. 2005; 102(7):2310–2315.

doi: 10.1073/pnas.0406841102 PMID: 15701703

48. Wang L, Sontag ED. On the number of steady states in a multiple futile cycle. J Math Biol. 2008; 57

(1):29–52. doi: 10.1007/s00285-007-0145-z PMID: 18008071

49. Huang CY, Ferrell JE. Ultrasensitivity in the mitogen-activated protein kinase cascade. Proc Nat Acad

Sci USA. 1996; 93(19):10078–10083. doi: 10.1073/pnas.93.19.10078 PMID: 8816754

50. Qiao L, Nachbar RB, Kevrekidis IG, Shvartsman SY. Bistability and oscillations in the Huang-Ferrell

model of MAPK signaling. PLoS Comput Biol. 2007; 3(9):1819–1826. doi: 10.1371/journal.pcbi.

0030184 PMID: 17907797

51. Ferrell JE, Bhatt RR. Mechanistic studies of the dual phosphorylation of mitogen-activated protein

kinase. J Biol Chem. 1997; 272(30):19008–19016. doi: 10.1074/jbc.272.30.19008 PMID: 9228083

52. Burack WR, Sturgill TW. The activating dual phosphorylation of MAPK by MEK is nonprocessive. Bio-

chemistry. 1997; 36(20):5929–5933. doi: 10.1021/bi970535d PMID: 9166761

53. Zhao Y, Zhang ZY. The mechanism of dephosphorylation of extracellular signal-regulated kinase 2 by

mitogen-activated protein kinase phosphatase 3. J Biol Chem. 2001; 276(34):32382–32391. doi: 10.

1074/jbc.M103369200 PMID: 11432864

54. Markevich NI, Hoek JB, Kholodenko BN. Signaling switches and bistability arising from multisite phos-

phorylation in protein kinase cascades. J Cell Biol. 2004; 164(3):353–359. doi: 10.1083/jcb.200308060

PMID: 14744999

55. Cornish-Bowden A. Fundamentals of enzyme kinetics. London: Portland Press; 1995.

Kinase Inhibition and Hormesis

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1005216 November 29, 2016 13 / 15

http://dx.doi.org/10.1074/jbc.M112.419135
http://www.ncbi.nlm.nih.gov/pubmed/23152503
http://dx.doi.org/10.1038/sj.emboj.7601832
http://www.ncbi.nlm.nih.gov/pubmed/17717528
http://dx.doi.org/10.1371/journal.ppat.1004088
http://www.ncbi.nlm.nih.gov/pubmed/24788524
http://dx.doi.org/10.1038/ijos.2012.6
http://www.ncbi.nlm.nih.gov/pubmed/22388693
http://dx.doi.org/10.1038/ncb994
http://www.ncbi.nlm.nih.gov/pubmed/12766774
http://dx.doi.org/10.1046/j.1365-2958.1998.00781.x
http://www.ncbi.nlm.nih.gov/pubmed/9622354
http://dx.doi.org/10.1126/science.1071914
http://www.ncbi.nlm.nih.gov/pubmed/12424381
http://www.ncbi.nlm.nih.gov/pubmed/9922370
http://dx.doi.org/10.1038/35065000
http://www.ncbi.nlm.nih.gov/pubmed/11242034
http://dx.doi.org/10.1128/MMBR.00031-10
http://www.ncbi.nlm.nih.gov/pubmed/21372320
http://dx.doi.org/10.1534/genetics.113.156281
http://www.ncbi.nlm.nih.gov/pubmed/24214341
http://dx.doi.org/10.1128/MCB.00816-06
http://www.ncbi.nlm.nih.gov/pubmed/16954377
http://dx.doi.org/10.1242/jcs.180182
http://dx.doi.org/10.1242/jcs.180182
http://www.ncbi.nlm.nih.gov/pubmed/26743085
http://dx.doi.org/10.1073/pnas.0406841102
http://www.ncbi.nlm.nih.gov/pubmed/15701703
http://dx.doi.org/10.1007/s00285-007-0145-z
http://www.ncbi.nlm.nih.gov/pubmed/18008071
http://dx.doi.org/10.1073/pnas.93.19.10078
http://www.ncbi.nlm.nih.gov/pubmed/8816754
http://dx.doi.org/10.1371/journal.pcbi.0030184
http://dx.doi.org/10.1371/journal.pcbi.0030184
http://www.ncbi.nlm.nih.gov/pubmed/17907797
http://dx.doi.org/10.1074/jbc.272.30.19008
http://www.ncbi.nlm.nih.gov/pubmed/9228083
http://dx.doi.org/10.1021/bi970535d
http://www.ncbi.nlm.nih.gov/pubmed/9166761
http://dx.doi.org/10.1074/jbc.M103369200
http://dx.doi.org/10.1074/jbc.M103369200
http://www.ncbi.nlm.nih.gov/pubmed/11432864
http://dx.doi.org/10.1083/jcb.200308060
http://www.ncbi.nlm.nih.gov/pubmed/14744999


56. Segel I. Enzyme kinetics: behavior and analysis of rapid equilibrium and steady-state enzyme systems.

Wiley; 1993.

57. Dhooge A, Govaerts W, Kuznetsov YA. MATCONT: A MATLAB package for numerical bifurcation anal-

ysis of ODEs. ACM Trans Math Software. 2003; 29:141–164. doi: 10.1145/779359.779362

58. Ortega F, Garcés JL, Mas F, Kholodenko BN, Cascante M. Bistability from double phosphorylation in

signal transduction: kinetic and structural requirements. FEBS J. 2006; 273(17):3915–3926. doi: 10.

1111/j.1742-4658.2006.05394.x PMID: 16934033

59. Conradi C, Mincheva M. Catalytic constants enable the emergence of bistability in dual phosphoryla-

tion. J R Soc Interface. 2014; 11(95):20140158. doi: 10.1098/rsif.2014.0158 PMID: 24647909

60. Wang M, Weiss M, Simonovic M, Haertinger G, Schrimpf SP, Hengartner MO, et al. PaxDb, a database

of protein abundance averages across all three domains of life. Mol Cell Proteomics. 2012; 11(8):492–

500. doi: 10.1074/mcp.O111.014704 PMID: 22535208

61. Yoh M, Frimpong E, Voravuthikunchai S, Honda T. Effect of subinhibitory concentrations of antimicro-

bial agents (quinolones and macrolide) on the production of verotoxin by enterohemorrhagic Escheri-

chia coli O157:H7. Can J Microbiol. 1999; 45(9):732–739. doi: 10.1139/w99-069 PMID: 10526400

62. Seyedsayamdost MR. High-throughput platform for the discovery of elicitors of silent bacterial gene

clusters. Proc Nat Acad Sci USA. 2014; 111(20):7266–7271. doi: 10.1073/pnas.1400019111 PMID:

24808135

63. Brown NR, Noble ME, Endicott JA, Johnson LN. The structural basis for specificity of substrate and

recruitment peptides for cyclin-dependent kinases. Nat Cell Biol. 1999; 1(7):438–443. doi: 10.1038/

15674 PMID: 10559988

64. Zhang J, Yang PL, Gray NS. Targeting cancer with small molecule kinase inhibitors. Nature Rev Can-

cer. 2009; 9(1):28–39. doi: 10.1038/nrc2559 PMID: 19104514

65. Bullock AN, Debreczeni J, Amos AL, Knapp S, Turk BE. Structure and substrate specificity of the Pim-1

kinase. J Biol Chem. 2005; 280(50):41675–41682. doi: 10.1074/jbc.M510711200 PMID: 16227208

66. Feinerman O, Veiga J, Dorfman JR, Germain RN, Altan-Bonnet G. Variability and robustness in T cell

activation from regulated heterogeneity in protein levels. Science. 2008; 321(5892):1081–1084. doi: 10.

1126/science.1158013 PMID: 18719282

67. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011; 144(5):646–674. doi:

10.1016/j.cell.2011.02.013 PMID: 21376230

68. Gerlinger M, Rowan AJ, Horswell S, Larkin J, Endesfelder D, Gronroos E, et al. Intratumor heterogene-

ity and branched evolution revealed by multiregion sequencing. N Engl J Med. 2012; 366(10):883–892.

doi: 10.1056/NEJMoa1113205 PMID: 22397650

69. Little AS, Balmanno K, Sale MJ, Newman S, Dry JR, Hampson M, et al. Amplification of the driving

oncogene, KRAS or BRAF, underpins acquired resistance to MEK1/2 inhibitors in colorectal cancer

cells. Sci Signal. 2011; 4(166):ra17. doi: 10.1126/scisignal.2001752 PMID: 21447798

70. Meads MB, Gatenby RA, Dalton WS. Environment-mediated drug resistance: a major contributor to

minimal residual disease. Nat Rev Cancer. 2009; 9(9):665–674. doi: 10.1038/nrc2714 PMID: 19693095

71. Gerondakis S, Grossmann M, Nakamura Y, Pohl T, Grumont R. Genetic approaches in mice to under-

stand Rel/NF-κB and IκB function: transgenics and knockouts. Oncogene. 1999; 18:6888–6895. doi:

10.1038/sj.onc.1203236 PMID: 10602464

72. Kearns JD, Basak S, Werner SL, Huang CS, Hoffmann A. IκB� provides negative feedback to control

NF-κB oscillations, signaling dynamics, and inflammatory gene expression. J Cell Biol. 2006; 173

(5):659–664. doi: 10.1083/jcb.200510155 PMID: 16735576

73. Mothes J, Busse D, Kofahl B, Wolf J. Sources of dynamic variability in NF-κB signal transduction: a

mechanistic model. BioEssays. 2015; 37(4):452–462. doi: 10.1002/bies.201400113 PMID: 25640005

74. O’Dea EL, Barken D, Peralta RQ, Tran KT, Werner SL, Kearns JD, et al. A homeostatic model of IκB
metabolism to control constitutive NF-κB activity. Mol Syst Biol. 2007; 3:111. doi: 10.1038/msb4100148

PMID: 17486138

75. Millard BL, Niepel M, Menden MP, Muhlich JL, Sorger PK. Adaptive informatics for multifactorial and

high-content biological data. Nat Methods. 2011; 8(6):487–492. doi: 10.1038/nmeth.1600 PMID:

21516115

76. Aoki K, Yamada M, Kunida K, Yasuda S, Matsuda M. Processive phosphorylation of ERK MAP kinase

in mammalian cells. Proc Nat Acad Sci USA. 2011; 108:12675–12680. doi: 10.1073/pnas.1104030108

PMID: 21768338

77. Aoki K, Takahashi K, Kaizu K, Matsuda M. A quantitative model of ERK MAP kinase phosphorylation in

crowded media. Sci Rep. 2013; 3:1541. doi: 10.1038/srep01541 PMID: 23528948

Kinase Inhibition and Hormesis

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1005216 November 29, 2016 14 / 15

http://dx.doi.org/10.1145/779359.779362
http://dx.doi.org/10.1111/j.1742-4658.2006.05394.x
http://dx.doi.org/10.1111/j.1742-4658.2006.05394.x
http://www.ncbi.nlm.nih.gov/pubmed/16934033
http://dx.doi.org/10.1098/rsif.2014.0158
http://www.ncbi.nlm.nih.gov/pubmed/24647909
http://dx.doi.org/10.1074/mcp.O111.014704
http://www.ncbi.nlm.nih.gov/pubmed/22535208
http://dx.doi.org/10.1139/w99-069
http://www.ncbi.nlm.nih.gov/pubmed/10526400
http://dx.doi.org/10.1073/pnas.1400019111
http://www.ncbi.nlm.nih.gov/pubmed/24808135
http://dx.doi.org/10.1038/15674
http://dx.doi.org/10.1038/15674
http://www.ncbi.nlm.nih.gov/pubmed/10559988
http://dx.doi.org/10.1038/nrc2559
http://www.ncbi.nlm.nih.gov/pubmed/19104514
http://dx.doi.org/10.1074/jbc.M510711200
http://www.ncbi.nlm.nih.gov/pubmed/16227208
http://dx.doi.org/10.1126/science.1158013
http://dx.doi.org/10.1126/science.1158013
http://www.ncbi.nlm.nih.gov/pubmed/18719282
http://dx.doi.org/10.1016/j.cell.2011.02.013
http://www.ncbi.nlm.nih.gov/pubmed/21376230
http://dx.doi.org/10.1056/NEJMoa1113205
http://www.ncbi.nlm.nih.gov/pubmed/22397650
http://dx.doi.org/10.1126/scisignal.2001752
http://www.ncbi.nlm.nih.gov/pubmed/21447798
http://dx.doi.org/10.1038/nrc2714
http://www.ncbi.nlm.nih.gov/pubmed/19693095
http://dx.doi.org/10.1038/sj.onc.1203236
http://www.ncbi.nlm.nih.gov/pubmed/10602464
http://dx.doi.org/10.1083/jcb.200510155
http://www.ncbi.nlm.nih.gov/pubmed/16735576
http://dx.doi.org/10.1002/bies.201400113
http://www.ncbi.nlm.nih.gov/pubmed/25640005
http://dx.doi.org/10.1038/msb4100148
http://www.ncbi.nlm.nih.gov/pubmed/17486138
http://dx.doi.org/10.1038/nmeth.1600
http://www.ncbi.nlm.nih.gov/pubmed/21516115
http://dx.doi.org/10.1073/pnas.1104030108
http://www.ncbi.nlm.nih.gov/pubmed/21768338
http://dx.doi.org/10.1038/srep01541
http://www.ncbi.nlm.nih.gov/pubmed/23528948


78. Sun J, Yi M, Yang L, Wei W, Ding Y, Jia Y. Enhancement of tunability of MAPK cascade due to coexis-

tence of processive and distributive phosphorylation mechanisms. Biophys J. 2014; 106(5):1215–1226.

doi: 10.1016/j.bpj.2014.01.036 PMID: 24606945

79. Zhang C, Spevak W, Zhang Y, Burton EA, Ma Y, Habets G, et al. RAF inhibitors that evade paradoxical

MAPK pathway activation. Nature. 2015; 526(7574):583–586. doi: 10.1038/nature14982 PMID:

26466569

Kinase Inhibition and Hormesis

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1005216 November 29, 2016 15 / 15

http://dx.doi.org/10.1016/j.bpj.2014.01.036
http://www.ncbi.nlm.nih.gov/pubmed/24606945
http://dx.doi.org/10.1038/nature14982
http://www.ncbi.nlm.nih.gov/pubmed/26466569

