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Abstract
From the timing of amoeba development to the maintenance of stem cell pluripotency,

many biological signaling pathways exhibit the ability to differentiate between pulsatile and

sustained signals in the regulation of downstream gene expression. While the networks

underlying this signal decoding are diverse, many are built around a commonmotif, the inco-

herent feedforward loop (IFFL), where an input simultaneously activates an output and an

inhibitor of the output. With appropriate parameters, this motif can exhibit temporal adaptation,

where the system is desensitized to a sustained input. This property serves as the foundation

for distinguishing input signals with varying temporal profiles. Here, we use quantitative

modeling to examine another property of IFFLs—the ability to process oscillatory signals. Our

results indicate that the system’s ability to translate pulsatile dynamics is limited by two con-

straints. The kinetics of the IFFL components dictate the input range for which the network is

able to decode pulsatile dynamics. In addition, a match between the network parameters and

input signal characteristics is required for optimal “counting”. We elucidate one potential

mechanism by which information processing occurs in natural networks, and our work has

implications in the design of synthetic gene circuits for this purpose.

Author Summary

From circadian clocks to ultradian rhythms, oscillatory signals are found ubiquitously in
nature. These oscillations are crucial in the regulation of cellular processes. While the fun-
damental design principles underlying the generation of these oscillations are extensively
studied, the mechanisms for decoding these signals are underappreciated. With implica-
tions in both the basic understanding of how cells process temporal signals and the design
of synthetic systems, we use quantitative modeling to probe one mechanism, the counting
of pulses. We demonstrate the capability of an Incoherent Feedforward Loop motif for the
differentiation between sustained and oscillatory input signals.
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Introduction
From Ca+2 signaling to coordination of cell fates, oscillatory signals are essential to regulation
of cellular processes [1–4]. The dynamic properties of such signals are crucial for controlling
behaviors of single cells and cell populations [5]. As such, the mechanisms underlying the gen-
eration of these signals are well-established [2, 6, 7]. For instance, the network constraints gov-
erning the circadian clock elucidate design principles dictating the generation of both natural
and synthetic pulses [8–10]. Some general requirements for the generation of oscillations
include ‘nonlinear’ reaction rates and negative feedback [9]. A systems-level approach to oscil-
lation characterization examines the topologies in natural systems that give rise to pulse gener-
ation [9]. This demonstrates the necessity of ‘nonlinear’ kinetic rate laws for the destabilization
of the steady state in the generation of oscillations [9]. While this constraint allows the genera-
tion of pulses with a diverse set of network motifs, negative feedback (especially negative feed-
back with a time delay) is found in all these cases. This component is used to reset the network
to its initial state [2, 9]. Engineered systems based on such design constraints demonstrate the
capability to generate synthetic oscillators mimicking those found in nature [6]. Even in the
absence of any apparent regulation, transient oscillations in gene expression can emerge from
cell-size control [11].

Despite the ubiquity of oscillations in biology, much less is known about how cells process
these signals. In particular, how do cells distinguish between oscillatory and sustained inputs?
For a given oscillatory input, how do cells retrieve encoded information from the frequency
and amplitude? For signal processing in the frequency domain, computational methods illus-
trate one potential mechanism, where a critical frequency defines the bandwidth for high fidel-
ity signal propagation for each network [3]. This capacity can be changed with an increased
oscillation amplitude or with increased kinetic rates. Regardless of the strategies that give rise
to signal encoding, it is important to further understand how cells process oscillatory signals.

Many natural biological networks exhibit the ability to distinguish oscillatory and sustained
signals. While several studies describe the contrasting downstream phenotypes, the architec-
tures that give rise to such outcomes remain unclear. One common motif shared by such net-
works is the Incoherent Feed-Forward Loop (IFFL), in which an input both activates and
represses a single output (Fig 1A) [4, 12, 13]. For example, oscillations in the transcription fac-
tor Ascl1 play a critical role in driving the proliferation of multipotent neural progenitor cells
(NPCs) [14, 15]. In contrast, the sustained expression of Ascl1 promotes neuronal fate differen-
tiation in NPCs [15, 16]. In social amoeba Dictyostelium discoideum, 3’ 5’-cyclic adenosine
monophosphate (cAMP) oscillations result in the optimal gene expression for development
while continuous stimulation inhibits transcription (Fig 1B) [17–19]. cAMP directly induces
the expression of contact site A gene (csaA) while repressing the transcriptional activity of
GtaC on csaA [17]. Additionally, the number of cAMP pulses regulates the coordination of
development.

An IFFL also underlies the regulation of neuronal regeneration by cAMP response element
binding protein (CREB). CREB activates regeneration-associated genes (RAGs) and nuclear fac-
tor interleukin-3-regulated protein (NFIL3), which negatively regulates RAGs (Fig 1C) [20]. In
Drosophila, the constitutive activation of CREB upregulates a single RAG, Arg1, while CREB
oscillations induced by neuronal injury increase the transcription of all members [20, 21].

The IFFL motif is also found downstream of p53 in the regulation of cell fate decisions. The
tumor suppressor p53 oscillates in response to γ-radiation, and the number of oscillations
increase the level of damage. In contrast, UV radiation induction results in a sustained pulse of
p53 [22]. While p53 oscillations lead to cell cycle arrest, sustained p53 activation induces apo-
ptosis [23, 24]. Here, p53 activates P53 upregulated modulator of apoptosis (PUMA), which
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plays a role in the induction of apoptosis, and Slug, a transcription factor which represses the
activity of PUMA (Fig 1D) [25].

In mammalian cells, pulsatile dynamics of extracellular signal-regulated kinases (ERK) in
response to epidermal growth factor (EGF) result in proliferation [26–28]. However, nerve
growth factor (NGF) induces sustained ERK, driving differentiation [16]. Here, the transcrip-
tion factor Myc and the cyclin-dependent kinase inhibitor p21 are both activated by ERK [29,
30]. Myc, an inducer of proliferation, represses the activity of p21, an inhibitor of cell cycle pro-
gression (Fig 1E) [31–35].

Tumor necrosis factor-α (TNFα) can stimulate oscillations in the transcription factor NF-
κB, which in turn triggers nonspecific inflammatory response genes in immune cells [36]. In
addition, persistence of the NF-κB oscillations dictates the resulting transcriptional profile [37,
38]. In contrast, bacterial liposaccharides (LPS) promote sustained NF-κB activation, which
induces a LPS-specific expression program [39]. We identify a potential IFFL where NF-κB
activates the expression of both IL8, a cytokine, and BCL3, a competitor for NF-κB target pro-
moters including IL8 (Fig 1F) [40].

The common occurrence of IFFLs in these networks suggests a role in processing transient
or oscillatory signals. This motif is ideal for decoding oscillatory signals due to its ability to
react to fold-changes rather than the absolute concentration of an input [12, 13, 41, 42]. In
addition, IFFLs are one of the major core topologies that can drive temporal adaptation, the
generation of a pulse in response to a sustained input [43]. In essence, this network is able to
desensitize a system to a sustained stimulus while maintaining the ability to respond to periodic
stimulation. This property is the fundamental principle behind the ability to differentiate pul-
satile and sustained signals.

Here, we examine a mechanism by which IFFLs process oscillations and the conditions that
facilitate counting of pulses. This network exists in two states—one in which the system resets
when the counting mechanism fails due to a conflict between the signal requirements and the
actual input, and one where pulses result in a stepwise increase of the output. To differentiate

Fig 1. IFFL is a commonmotif underlying processing of transient or oscillatory signals. (A) An IFFL often underlies signal decoding processes.
In an IFFL, an input both activates and represses a single output. (B) GATA in development. Oscillating and sustained cAMP dynamics regulate the
developmental program in social amoeba. (C) CREB in regeneration. CREB temporal dynamics control neural regeneration. (D) p53 in cell fate
decisions. Pulsatile and sustained p53 stimulation results in either cell cycle arrest or apoptosis respectively. (E) ERK in cell fate decisions.
Differentiating between pulsatile and sustained ERK stimulation is required for the regulation of stem cell differentiation and proliferation. (F) NF-κB in
immune responses. Differentiating between pulsatile and sustained NF-κB stimulation is required for the induction of non-specific inflammatory
responses and LPS-specific expression programs.

doi:10.1371/journal.pcbi.1005101.g001
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between sustained and oscillatory signals, the network must display both states. The system
must exhibit a stepwise increase of the output in response to oscillatory signals while having no
response to sustained signals. Analogous to the use of radios to transform information from
the frequency and amplitude domains of electromagnetic waves, the IFFL acts as a decoder,
recognizing pulsatile signals.

Results
Wemodel an IFFL consisting of three components (Fig 2A): an input node (S), an intermediate
node (X), and an output node (R). S activates the production of both X and R, while X induces
the degradation of R through Hill kinetics. The dynamics of the motif can be described with
two dimensionless ordinary differential equations (ODE):

dr
dτ

¼ βΦ τð Þ � ðγR

xn

xn þ 1
þ γoÞr; ð1Þ

dx
dτ

¼ βΦ τð Þ � x; ð2Þ

whereΦ(τ) represents the input signal, which can be sustained, oscillatory, or transient. Unless
noted otherwise, we defineΦ(τ) as a periodic square wave function with k pulses:Φ(τ) = 1
when iT + τo� τ< iT + D + τo andΦ(τ) = 0 otherwise. Here, i is the index of a pulse (0� i<
k), τo is the start time of the first pulse, T is the cycle period, and D (< T) is the pulse duration.

Fig 2. Processing of oscillating signals by an IFFL. (A) Signal processing by an IFFL. In this model, a pulsing input (Φ(τ)) simultaneously
stimulates the production of an intermediate (X) and a reporter (R). X induces the degradation of R through a threshold response. The fundamental
constraints for counting shown are based on the full model (Methods) while Eqs 1 and 2 are the non-dimensionalized form of the model. Here, the
duration (D) represents the length of the pulse while the cycle period (T) represents the time between the start points of two adjacent pulses. The
specific parameters of the IFFL limits the duration range for which counting can occur; only sufficiently short pulses are counted while pulses of a
longer duration will shut down the system. (B) Time courses demonstrate counting mechanism. Using β = 1.2, γR = 10, γO = 0, and T = 4 (Left: D = 1
Right: D = 3). The top row contains time courses of the input pulses for two different pulse durations, either a pulsing input or a simulated sustained
input. The second row shows time courses for X. The bottom row shows time courses for R. With identical parameters, an IFFL motif can generate two
distinct outputs depending on the length of the duration of the input pulses. When x is below the threshold of induction, the circuit maintains the ability
to produce a stepwise increase of r. However, when x overcomes the threshold, the circuit loses this ability. For a single parameter set, both outputs
are desired to differentiate between oscillating and sustained signals. This ability is maintained in the case of an input pulse with the form of a sine
function (S1 Fig). (C) Calibration curve for ideal counting. Using β = 1.2, γR = 10, γO = 0, and T = 4 (D = 1) The sample calibration curve is for a pulse
duration within the optimal duration range, therefore it is able to demonstrate ideal counting. With an increasing number of input pulses from 1–4 in the
top panel, R exhibits a stepwise increase. The linearity is demonstrated in the bottom panel by R2 � 0.99.

doi:10.1371/journal.pcbi.1005101.g002
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For all simulations we assume that τo = 1. x denotes the concentration of X, r denotes that of R,
and τ denotes time. γo represents the basal degradation rate constant of R, γR is the maximal
induced degradation rate of R by X, and β is the maximal synthesis rate of X and R. We require
that the induced degradation of R have an ultrasensitive dependence on X, as indicated by a
high Hill coefficient (n = 110). Such ultrasensitive dependence can be achieved with oligomeri-
zation, tandem binding sites, increased cascade lengths, covalent modification cycles, or titra-
tion by inhibitors [44–48]. For titration, competitive binding of the inhibitor sets an activation
threshold to be overcome, thereby increasing the Hill coefficient.

We considerΦ(τ) with varying durations and cycle periods: a longer duration corresponds
to a more sustained signal. We first consider the case where the degradation of R is solely
induced by X (γo = 0). Fig 2B illustrates typical time courses of X and R in response to two dif-
ferent oscillatory signals. In either case, X peaks in response to each individual pulse and
returns to a basal level before the subsequent pulse. When the duration is sufficiently small (Fig
2B: left column), r exhibits a linear stepwise increase with an increasing number of pulses (for a
constant β and pulse duration). For a long duration (Fig 2B: right column), however, R exhibits
transient pulses similar to that of X. That is, only an input with a sufficiently short duration
generates a more sustained output. The critical determinant of these divergent outcomes is the
dynamics of X, which triggers the effective degradation of R when it reaches its half-activation
threshold (x = 1). For a sufficiently short duration, x never reaches 1, and thus is unable to trig-
ger the degradation of R. As a result, r increases with each additional input pulse. In contrast,
for a long duration, x exceeds 1 for each pulse, leading to the periodic resetting of R.

For an input signal with short pulses, R can count the number of pulses: the level of R at a
fixed time point (r(τE)) is approximately proportional to the number of pulses for a fixed pulse
duration and amplitude (Fig 2C). A least-squares linear regression on r(τE) versus the number of
pulses provides a quantitative measure for the quality of counting. The slope of this line measures
the strength of the response. For instance, the slope is near zero for the signal with long pulses
(S2 Fig), indicating no response (Fig 2B). The quality of the fit, as measured by R2, quantifies the
performance of counting. In all our simulations, we consider R2 = 0.99 as the cut-off for high-
quality counting. With 0< R2< 0.99, low-quality counting emerges as r saturates (reaches a
steady state) over time. This characteristic impairs the ability to predict r(τE) with an increasing
number of pulses. In addition, the absolute failure of counting occurs when R2 = 0.

In the base model (Fig 2), we assume that R is degraded solely by X. In general, however, a
basal level degradation of R can deteriorate the counting quality (Fig 3A). A highly unstable
reporter (γo = 0.05; Fig 3B) decreases the counting quality such that R2 < 0.99. The decreased
slope also indicates the weakened response to the oscillating input. This loss of counting is
attributed to the decreased timespan for which r can be maintained in the absence of the input.
Therefore, to reduce the impact of endogenous degradation of the reporter on the counting
quality, γo can be minimized through the use of a highly stable reporter.

Relaxing this assumption, we reach the same conclusions for reliable counting when γo is
sufficiently small: our simulations demonstrate that the counting capability can be maintained
in the general condition (γo > 0), like in the base case (Fig 4). IFFL kinetics constrains the abil-
ity to process oscillatory signals; therefore, we predict that both the production rate (β) and the
induced degradation rate of the output (γR) are core parameters. In Fig 4A, we evaluate the
range of the counting capability with respect to two parameters, β and D (sample time courses
shown in Fig 4B). Even in the presence of basal degradation (γo = 0.01), counting can be main-
tained for appropriate combinations of β and D. We observe that as β increases, the range of
durations for which counting occurs decreases while increasing the slope for different numbers
of pulses (for R2 � 0.99). On the other hand, increasing D increases the slope in cases when R2

� 0.99 due to the increased time for R production.
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To differentiate between pulsing and sustained inputs, Xmust overcome the activation
threshold in the case of a sustained input. Therefore, the network cannot discern signals when
β� 1 because the threshold can never be reached. In this case, the network is unable to display
the two necessary states to discern signals, illustrated by R2 � 0.99 at all pulse durations (Fig
4A). However, when β> 1, the system has the potential to discriminate inputs (illustrated by a
range of durations where R2 = 0 and a range where R2 � 0.99) and the pulse duration restricts
the counting capability. To count, the duration of input’s OFF state in each cycle (T − D) needs
to be long enough to reset the basal level of the intermediate such that the subsequent pulse
will not push x to 1. Generally, shorter pulse durations are more likely to exhibit this capability
due to the longer duration of the OFF state (Fig 4B). The boundary between counting and no
counting is determined by whether each pulse can drive X to the threshold, leading to complete
degradation of R. The level of X at the end of the first pulse is (1 − e−D). Therefore, the bound-
ary between the two regions is set by β ¼ 1

1�e�D, which approximates the border observed in

numerical simulations (Fig 4A).
For a small γo, another critical parameter for counting is the rate constant for induced deg-

radation, γR. Fig 4C and 4D depicts the case when β> 1 with a varying γR and pulse duration
for a constant cycle period. With a constant β, we expect the counting range to remain

Fig 3. γo mediates counting quality.Using β = 1.2, γR = 10, T = 4, and D = 1, time courses are shown to
demonstrate cases of high quality counting and poor counting through the manipulation of γo. (A) High Quality
counting (R2� 0.99) occurs in the case of a small γo (γo = 0.01), as characterized by the linearity of the calibration
curve composed of the final r of between 1 and 10 pulses. (B) In the case of a large γo (γo = 0.05), the nonlinearity of
the calibration curve and small slope demonstrate low quality counting (0 < R2 < 0.99).

doi:10.1371/journal.pcbi.1005101.g003
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constant. Instead, numerical simulations demonstrate a monotonically decreasing trend of the
counting range as γR increases. Above a point, increasing γR has no impact on counting
because a higher γR provides no additional benefit on the ability to degrade R in the case of a
sustained input. Below this point, however, the range of pulse durations that can count
increases, but the ability to differentiate pulsing and more sustained inputs diminishes due to a
higher range of low-quality counting (0< R2< 0.99). For a sufficiently low γR, the system can-
not discriminate between the two types of inputs (Fig 4C). We attribute this characteristic to
the decreased impact of the intermediate on the degradation of the reporter, which is required
for maintaining temporal adaptation.

The kinetics of the system prevent the complete degradation of x to 0 after each pulse, lead-
ing to the progressive accumulation of X with each additional pulse. Starting from a basal level,
X reaches the maximum concentration (peak) at the end of the pulse, and returns to a new
basal level before the next pulse:

xbasal; i ¼ xpeak; i�1e
�ðT�DÞ; ð3Þ

Fig 4. Dynamic constraints underlying reliable counting.Using γO = 0.01, γR = 10, T = 4, β = 0–4 (Panels A and B). (A) Effects of varying β
and duration on R2 and slope. Simulation results for the R2 and slope of the calibration curve as both β and the pulse duration changes from 0–4
with a constant period of 4. From the graph of the R2 values, below the analytical border (solid line), counting is maintained (predominantly R2�
0.99), but is lost above this border (R2 = 0). From the graph of the slope, optimal counting (region with the highest slope) lies between the
analytical border and the dashed line. In both plots, the region under the dotted line (at β = 1 in white) is where the IFFL cannot differentiate
between pulsing and sustained inputs. (B) Effects of varying β and duration on time courses. Time courses with varying number of pulses
demonstrate the range of counting for a changing β. As β increases, the ability to differentiate between different numbers of pulses increases
while the range of counting decreases. Using γO = 0.01, β = 1.2, T = 4, γR = 0–3 (Panels C and D). (C) Effects of varying γR and duration on R2

and slope of calibration curves. Simulation results for the R2 value and the slope of the calibration curve as γR changes from 0–3 and the pulse
duration changes from 0–4 with a constant period of 4. As γR decreases, the network loses the capability to distinguish between pulsing and
sustained inputs. (D) Effects of varying γR and duration on time courses. Time courses with different number of pulses demonstrate the range in
the counting capability for a changing γR. As γR increases, the range of the counting capability decreases.

doi:10.1371/journal.pcbi.1005101.g004
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xpeak; i ¼ β� ðβ� xbasal; iÞe�D; ð4Þ

where xpeak, i is the peak concentration of X after the ith pulse, xbasal, i is the basal concentration
of X before the ith pulse, and T = cycle period. To start, xpeak, 0 = 0 while both xbasal, i and xpeak, i
increase alongside i. Counting fails at pulse nc, when xpeak, nc> 1. We term nc the counting
capacity of an IFFL for a given input signal, which sets the maximum number of pulses the net-
work can count. As nc approaches1, the network can maintain counting when the negligible
accumulation of X allows for indefinite counting. This exists when the pulse duration satisfies
1�e�D

1�e�T <
1
β
. In addition, as T approaches1, the analytical border converges to 1 = β(1 − e−D) such

that counting is maintained when 1> β(1 − e−D).
Fig 5 shows that the duration at which counting exists decreases with increasing β. Consis-

tent with the numerical analysis where slopes are generally higher at shorter pulse durations
with an increasing β, higher synthesis rates of X shorten the duration range for which counting
can occur (Fig 4). Thus, a higher βmeans that X will reach the threshold at shorter pulse dura-
tions, resulting in the loss of the counting capability beyond this duration. The curve of the
boundary signifies that increasing the cycle period has little impact on the duration at which
counting is lost (Fig 5). More specifically, at the analytical border, the duration at which
1�e�D

1�e�T ¼ 1
β
is maintained relies on β. However, at low periods, the duration at which counting

exists relies more heavily on the cycle period. As the pulse duration approaches the cycle
period, there is less time for X to return to the basal value before subsequent pulses. This effect
has a greater impact in the case of low cycle periods. Although the basal level of X will never
return to the initial value, if x remains below the activation threshold, negligible increases can
maintain the counting capability.

Fig 5. Dynamic constraint underlying counting capability. The analytical border 1�e�D

1�e�T ¼ 1
β
describes the effect of

changing β (β = 12 or 2 or 1.2) on the relative duration (D/T) at which counting is lost. To the left of the solution for
each β is the region with counting while the region to the right has no counting capability.

doi:10.1371/journal.pcbi.1005101.g005
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The analytical solution 1> β(1 − e−D) defines the conditions under which indefinite
counting occurs based on the peak concentration of the intermediate. When γo > 0, however,
the number of pulses any particular system can count becomes finite due to the saturation of
the reporter. This is described in S1 Text, which gives the final level of R at time τE (> (k − 1)T +
D + τ0) after any arbitrary number of pulses (k> 0) when 1> β(1 − e−D) as r τEð Þ ¼ β

γo
(1-

e�γoD)
Pk�1

i¼0 e
�γoðτE�τ0�ðiTþDÞÞ. τ0, the time at which the pulses start, can impact the parameter

range with the counting capability. Depending on γo, a series of pulses that start at the begin-
ning of the simulation interval can have a different r(τE) than those that start near the end of
the interval. To analyze the effect of the other parameters, we constrain our analysis by assum-
ing a constant τ0 for all simulations. Here, r(τE) is a monotonically increasing function of the
number of pulses, regardless of the other parameters (as long as X does not accumulate beyond
its threshold to trigger the degradation of R). When γo = 0, r(τE) is proportional to k: r(τE) =
kβ. However, the dependence of r(τE) on k deviates from the proportionality as γo increases.
This is consistent with the numerical simulation results illustrated by Fig 3.

The key constraint for IFFLs to distinguish oscillatory signals resides in its ability for tempo-
ral adaptation where the network responds with a pulse to a sustained input. As long as an
IFFL maintains this characteristic, the motif can respond to periodic stimulation and act as a
pulse counter. Each time the input is removed, the intermediate is reset and the system can
respond to subsequent pulses. We illustrate this principle by considering alternative implemen-
tations of the IFFL satisfying this constraint.

We examine the reliance of counting on the current architecture by shifting the ultrasensi-
tive response to the production of X through a positive feedback loop (S1 Text). Like the initial
model, this alternative model maintains the ability to count in the base case with no endoge-
nous R degradation (S3 Fig). Here, when β is large, the linear dependence of the degradation of
R on both X and R causes any X to induce the degradation of R, preventing counting. However,
when β is small, R degrades slowly because of low concentrations of X, preventing the differen-
tiation between sustained and pulsing inputs. Like in the initial model, γo dictates the length of
time during which R remains constant and should be minimized to maximize the duration
range in which counting can occur. For a large γR, the presence of a small concentration of R
or X will lead to the efficient degradation of R, preventing the ability to count. Meanwhile, a
small γR will be unable to induce the effective degradation of R even at high concentrations of
X. To demonstrate the robustness of this counting mechanism, we develop additional models
to take into account common properties of biological systems including time delay, modifica-
tions to the current architecture, and noise (S1 Text; S1, S3, S5, S8 and S9 Figs).

Discussion
Here, we analyze an underappreciated phenomenon in information processing by signaling
networks: processing of oscillatory signals. In this context, we illustrate the unique ability of
incoherent feedforward loops (IFFL) with proper network parameters to distinguish transient
(or oscillatory) and sustained signals. For oscillatory signals, we analyze the extent to which the
network is able to count the number of pulses. Additionally, we establish the dynamic con-
straints of the input signals and network parameters such that counting can occur. With the
appropriate parameters, the ability of an IFFL motif to respond to transient signals but not to
sustained signals relies upon the property of temporal adaptation in response to a sustained sig-
nal. Insights from our model can be used to identify natural information decoding systems and
understand the effect of perturbations to such networks.

Our results can be applied to GtaC shuttling in social amoeba, which differentiates between
pulsing and sustained cAMP and matches optimal signals to the ideal transcript accumulation.
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Cai et. al. show that when the network regulating CsaA is subjected to high frequency inputs,
GtaC is unable to respond to each pulse, resulting in a decreased transcript accumulation. Simi-
larly, a lower than optimal (natural) cAMP frequency results in a decrease in the overall tran-
script concentration. This phenomenon suggests the presence of a band-pass filter. As in Fig 5,
this system illustrates the idea that a decreased frequency (higher period) corresponds to a
reduced fraction of the period during which counting can occur. Here, the parameters of the
endogenous circuit dictate the range of frequencies that can be decoded resulting in dynamics
similar to those explained by our IFFL model.

In a similar manner, the frequency of ERK activation has been implicated in cell-fate deter-
mination. While previous studies have demonstrated the dependence of differential cell fates
(differentiation or proliferation) on specific growth factors, Ryu et. al. illustrate that this deci-
sion relies more heavily on the frequency of ERK activity than on the growth-factor identity
[49]. Unlike with the sustained application of growth factors, synthetic pulses provide control
over the frequency of the ERK activity. This results in differentiation at intermediate frequen-
cies and proliferation at high and low frequencies with a growth factor traditionally known to
solely induce proliferation. While this shift in cell fates has been shown experimentally, the
mechanisms underlying this frequency decoding are still unknown.

Evolution may have selected for an optimal pulse frequency for social amoeba and in mam-
malian cell differentiation for different purposes. However, despite differences in signaling
dynamics, the IFFL is a general motif found downstream of divergent signals in both cases.
Generally, IFFLs are known for acting as sign-sensitive accelerators by increasing the response
time of gene expression, dictated by the specific combination of kinetic parameters [13]. While
some parameter sets allow the IFFL to act as pulse generators or band-pass filters, others speed
up an output response [13, 50]. In addition, the IFFL has been shown to generate both time-
dependent and dose-dependent biphasic responses [51]. Our analysis defines the quantitative
constraints of another property of IFFLs, the capability for counting.

In natural systems, motifs do not exist in isolation and the dynamics of a motif in isolation
may not persist when placed in the context of a larger network. Despite this caveat, our anal-
ysis is valuable for two major reasons. First, we identify a new property of IFFLs—the poten-
tial for information processing. The importance of IFFLs in signal processing is implied with
its presence in many natural networks that are able to respond differentially to oscillatory
and sustained signals (Fig 1). Considering this caveat, we explore the extent by which the
counting mechanism, can persist in the presence of different perturbations in S1 Text (e.g.
introduction of time delay, alterations to the current architecture, and cellular noise). Second,
our analysis is useful for guiding the design and implementation of synthetic gene circuits,
which are often intended to operate in relative isolation from other regulatory networks in
the host cell.

Understanding the constraints of this network for decoding mechanisms is important in the
design of synthetic circuits with more complex functions [52, 53]. The conclusions from our
study can be used in the design of a synthetic pulse counter [54, 55]. Many synthetic gene cir-
cuits respond to the characteristics of static signals. In contrast, circuits adapted from our
model would respond to the temporal dynamics of input signals. This would provide a wider
range of input attributes, giving rise to a larger spectrum of potential circuit responses. In addi-
tion, by matching IFFL characteristics to natural cellular oscillations, synthetic signal decoding
circuits would have the capability to respond to natural as well as synthetic stimuli.

Natural systems including those involved in cell proliferation, cell death, and neural regen-
eration convert oscillatory and sustained signals into distinct biological outcomes. In the case
of disease, these circuits become deregulated, altering the function of networks required for
information encoding or decoding. Insights derived from our model for the pulse counting
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mechanism will be important for future work in understanding the ways in which these pertur-
bations impact the way cells decode information.

Methods
We use the following system of ODEs to define the IFFL network:

d½R�
dt

¼ k1 Φ tð Þ � dR

½X�n
½X�n þ Kn

x

R½ � � dRo R½ � ð5Þ

d½X�
dt

¼ k2Φ tð Þ � dx X½ � ð6Þ

where k1 and k2 are rate constants for the production of R and X respectively, and dx and dRo
are rate constants for the endogenous degradation of X and R respectively. The term ½X�n

½X�nþKn
x
rep-

resents the threshold response through Hill kinetics for the induction of the degradation of R
by X, with a maximal degradation rate of dR. Unless noted otherwise, we defineΦ(t) as a peri-
odic square wave function with k pulses:Φ(t) = 1 when iT0 + to� t< iT0 + D0 + to andΦ(t) = 0
otherwise. Here i (0� i< k) is the pulse index, to is the start time, T0 is the cycle period, and D0

is the pulse duration.
We assume a square waveform input to simplify analysis. However, this assumption can be

relaxed; numerical simulations indicate that other wave forms, such as sinusoidal input signals
(S1 Fig), can also be counted. In our model, we assume first-order kinetics for the endogenous
degradation of R and X. We assume that the induced degradation by X occurs through an
ultrasensitive threshold response. In general, this arm can be found in other positions while
maintaining the network structure. Our analysis can be generalized to other forms of the motif,
as illustrated by the alternative models (S1 Text).

We non-dimensionalize the model by defining:

x ¼ ½X�
Kx

; r ¼ ½R�k2
k1Kx

; τ ¼ tdx; τ0 ¼ t0dx; D ¼ D0 dx; T ¼ T 0 dx; γR ¼ dR

dx

; γo

¼ dRo

dx

; and β ¼ k2
Kxdx

This leads to Eqs 1 and 2.

Supporting Information
S1 Text. Supporting Information.
(DOCX)

S1 Fig. Incoherent Feedforward Loop and pulse counting. (A) Time courses for pulses
defined by a sine function. This panel uses β = 1.2, γR = 10, γO = 0, and T = 4 (Left: D = 1 Right:
D = 3). The top row contains the time courses of the input pulses for two different pulse dura-
tions, either a pulsing input or a simulated sustained input (with a sine waveform). The second
row shows the time courses for X. The bottom row shows the time courses for R. With identical
parameters, an IFFL motif can generate two distinct outputs depending on the length of the
duration of the input pulses. When X is below the threshold of induction, the circuit maintains
the ability to produce a stepwise increase of R. However, when X overcomes the threshold, the
circuit loses this ability. For a single parameter set, both outputs are desired to quantify the sys-
tem as being capable of counting. (B) Calibration curve for ideal counting. This panel uses β =
1.2, γR = 10, γO = 0, and T = 4 (D = 1). The sample calibration curve is for a pulse duration
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within the optimal duration range, therefore it is able to demonstrate ideal counting. With an
increasing number of input pulses from 1–4 in the top panel, R exhibits a stepwise increase.
The linearity is demonstrated in the bottom panel by R2 > 0.99.
(TIF)

S2 Fig. Failure in counting.Here, A and B both use β = 1.2, γR = 10, γO = 0, and T = 4 (D = 3),
a parameter set which demonstrates the inability to count. (A) Time course for failed counting.
With an increasing number of pulses, X overcomes the activation threshold and the ability to
produce a stepwise increase of R is lost. (B) Calibration curve for failed counting. The sample
calibration curve is for a pulse duration outside the optimal duration range, therefore it is able
to demonstrate the case when counting fails. With an increasing number of input pulses from
1–10 r is suppressed and the non-linearity is demonstrated by R2 < 0.99.
(TIF)

S3 Fig. Counting with the alternative model. (A) Alternative incoherent feedforward loop
motif (Model in S1). In this model, a pulsing input simultaneously stimulates the production of
X and R. Here, the threshold response is implemented with the additional production of X
through a positive feedback loop. (B) Calibration curves for ideal or failed counting. The top
panel uses β = 1.2, γR = 0.01, γO = 0, α = 100, and T = 10 (D = 1). The sample calibration curve
is for a pulse duration within the optimal duration range, therefore it demonstrates counting.
The bottom panel uses β = 1.2, γR = 0.01, γO = 0, α = 100, and T = 10 (D = 9). The sample cali-
bration curve is for a pulse duration outside the optimal duration range, therefore it demon-
strates the case when counting fails.
(TIF)

S4 Fig. An IFFL can maintain robust counting of oscillating signals in the presence of addi-
tional time delay in the inhibition arm. (A) Signal processing by an IFFL (Model in S2). In
this model, a pulsing input (S) simultaneously stimulates the production of an intermediate
(X1) and a reporter (R). The first intermediate (X1) then activates the production of the second
intermediate (X) that induces the degradation of R through a threshold response. The funda-
mental constraints for counting shown are based on the full model (S1 Text). (B) Time courses
demonstrate counting mechanism. Using β0 = 1, β@ = 1.2, γR = 10, δ = 1, γO = 0, and T = 4 (Left:
D = 1 Right: D = 3). The top row contains time courses of the input pulses for two different
pulse durations, either a pulsing input or a simulated sustained input. The second row shows
time courses for X1. The third row shows time courses for X. The bottom row shows time
courses for R. Despite the addition of time delay (of ~10% of the pulse duration) through an
additional component, the IFFL motif maintains the ability to distinguish input signals with
longer or shorter pulses.
(TIF)

S5 Fig. An IFFL can maintain robust counting of oscillating signals in the presence of addi-
tional time delay in the activation arm. (A) Signal processing by an IFFL (Model in S3). In
this model, a pulsing input (S) simultaneously stimulates the production of an intermediate (X)
and an intermediate reporter (R1). The intermediate reporter (R1) then activates the production
of the reporter (R), which is degraded by the intermediate (X) through a threshold response.
The fundamental constraints for counting shown are based on the full model (S1 Text). (B)
Time courses demonstrate counting mechanism. Using β0 = 5, β@ = 1.2, γR = 10, γR1 = 5, γO = 0,
and T = 4 (Left: D = 1 Right: D = 3). The top row contains time courses of the input pulses for
two different pulse durations, either a pulsing input or a simulated sustained input. The second
row shows time courses for X. The third row shows time courses for R1. The bottom row shows
time courses for R. Despite the addition of time delay (of ~10% of the pulse duration) through
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an additional component, the IFFL motif maintains the ability to distinguish input signals with
longer or shorter pulses.
(TIF)

S6 Fig. Distinguishing between a sustained input and an oscillatory input that are on aver-
age at the same level. (A) Time courses demonstrate counting mechanism. Using β = 1.2, γR =
10, γO = 0, and T = 4 (Left: D = 1 Right: D = 3). The top row contains time courses of the input
pulses for two different pulse durations, either a pulsing input or a simulated sustained input.
The second row shows time courses for X. The bottom row shows time courses for R. (B) Time
courses demonstrate differentiation between a sustained and oscillatory input. Using β = 0.337,
γR = 10, γO = 0. Here, the amplitude of the sustained input is equivalent to the mean of the
oscillating input in panel A (D = 1).
(TIF)

S7 Fig. Ultrasensitivity (as indicated by a high Hill coefficient) in induced degradation is
critical for robust counting. Time courses of the reporter. Using β = 1.2, γR = 10, γO = 0, T = 4,
D = 1. Here, we show time courses for R with varying values for the Hill coefficient (n = 5, 50,
110, or 1000) to demonstrate that the specific value for n is irrelevant. The hill coefficient must
simply be high enough to induce a threshold response.
(TIF)

S8 Fig. Stochastic simulations of IFFL. (A) Time courses demonstrate the effect of noise in
the case of a small molecular number (Model S5). Using k1 = k2 = 5, dx = 1, dR = 10, n = 100,
dRo = 0, Kx = 4, and T = 4 (D = 1) in equations 20–21. The top row shows time courses of the
input pulses in the case of an oscillating input. The second row shows time courses for R in the
absence of noise. The third row shows time courses for X in the presence of noise (ξ = 10). The
fourth row shows time courses for R in the presence of noise. The bottom row shows the cali-
bration curve for the system in the presence of noise. With an increasing number of input
pulses from 1–10, R is unable to exhibit a stepwise increase due to the impact of noise on the
low molecular number of the components; this poor linearity is demonstrated by R2 < 0.99.
(B) Time courses demonstrate the effect of noise in the case of an increasing molecular number
(Model S5). Using k1 = k2 = 50, dx = 1, dR = 10, n = 100, dRo = 0, Kx = 40, and T = 4 (D = 1) in
equations 20–21. The top row contains time courses of the input pulses in the case of an oscil-
lating input. The second row shows time courses for R in the absence of noise. The third row
shows time courses for X in the presence of noise (ξ = 10). The fourth row shows time courses
for R in the presence of noise. The bottom row shows the calibration curve for the system in
the presence of noise. With an increasing number of input pulses from 1–10, R is unable to
exhibit a stepwise increase due to the impact of noise on the low molecular number of the com-
ponents; the poor linearity is demonstrated by R2 < 0.99. (C) Time courses demonstrate the
effect of noise in the case of a sufficiently high molecular number (Model S5). Using k1 = k2 =
500, dx = 1, dR = 10, n = 100, dRo = 0, Kx = 400, and T = 4 (D = 1) in equations 20–21. The top
row contains time courses of the input pulses in the case of an oscillating input. The second
row shows time courses for R in the absence of noise. The third row shows time courses for X
in the presence of noise (ξ = 10). The fourth row shows time courses for R in the presence of
noise. The bottom row shows the calibration curve for the system in the presence of noise.
With an increasing number of input pulses from 1–10, R is able to exhibit a stepwise increase
despite the presence of noise due to the sufficiently high molecular number. Here, the linearity
is demonstrated by R2 � 0.99.
(TIF)
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S9 Fig. The implementation of the threshold response in an IFFL through repression. (A)
Signal processing by an IFFL (Model S6). In this model, a pulsing input (S) simultaneously
stimulates the production of an intermediate (X) and a reporter (R). The intermediate represses
the production of R through a threshold response. The fundamental constraints for counting
shown are based on the model described in S1 Text. (B) Time courses demonstrate counting
mechanism. Using β = 12, γO = 0, and T = 4 (Left: D = 1 Right: D = 3). The top row contains
time courses of the input pulses for two different pulse durations, either a pulsing input or a
simulated sustained input. The second row shows time courses for X. The bottom row shows
time courses for R. Here, an IFFL motif can generate two distinct outputs depending on the
length of the duration of the input pulses.
(TIF)
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