BIOLOGY

©PLOS

COMPUTATIONAL

CrossMark

click for updates

E OPEN ACCESS

Citation: van Heck RGA, Ganter M, Martins dos
Santos VAP, Stelling J (2016) Efficient Reconstruction
of Predictive Consensus Metabolic Network Models.
PLoS Comput Biol 12(8): €1005085. doi:10.1371/
journal.pcbi.1005085

Editor: Jennifer L. Reed, University of Wisconsin-
Madison, UNITED STATES

Received: January 26, 2016
Accepted: July 29, 2016
Published: August 26, 2016

Copyright: © 2016 van Heck et al. This is an open
access article distributed under the terms of the
Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any
medium, provided the original author and source are
credited.

Data Availability Statement: All relevant data are
within the paper and its Supporting Information files.

Funding: We gratefully acknowledge financial
support from the Swiss Initiative for Systems Biology
(SystemsX.ch, project MetaNetX) reviewed by the
Swiss National Science Foundation (SNF), the
Wageningen university IPOP project, and the
European projects INFECT (Project reference:
305340) and EmPowerPutida (Project reference:
635536). The funders had no role in study design,
data collection and analysis, decision to publish, or
preparation of the manuscript.

RESEARCH ARTICLE

Efficient Reconstruction of Predictive
Consensus Metabolic Network Models

Ruben G. A. van Heck'2®, Mathias Ganter'®, Vitor A. P. Martins dos Santos?®*,
Joerg Stelling™*

1 Department of Biosystems Science and Engineering and Swiss Institute of Bioinformatics, ETH Zurich,
Basel, Switzerland, 2 Laboratory of Systems and Synthetic Biology, Wageningen University, Wageningen,
The Netherlands, 3 LifeGlimmer GmbH, Berlin, Germany

@ These authors contributed equally to this work.
* vitor.martinsdossantos @wur.nl (VAPMdS); joerg.stelling@bsse.ethz.ch (JS)

Abstract

Understanding cellular function requires accurate, comprehensive representations of
metabolism. Genome-scale, constraint-based metabolic models (GSMs) provide such rep-
resentations, but their usability is often hampered by inconsistencies at various levels, in
particular for concurrent models. COMMGEN, our tool for COnsensus Metabolic Model
GENeration, automatically identifies inconsistencies between concurrent models and semi-
automatically resolves them, thereby contributing to consolidate knowledge of metabolic
function. Tests of COMMGEN for four organisms showed that automatically generated con-
sensus models were predictive and that they substantially increased coherence of knowl-
edge representation. COMMGEN ought to be particularly useful for complex scenarios in
which manual curation does not scale, such as for eukaryotic organisms, microbial commu-
nities, and host-pathogen interactions.

Author Summary

Many large-scale mathematical models describe metabolism to understand how microbes
and other organisms (including humans) function and interact with each other and with
their environment. Making these models is extremely time- and effort-intensive; it
requires gathering and combining information from many sources, including the organ-
ism’s genome sequence, biological databases, scientific literature, and expert advice. The
exact procedure and resources used depend on the model creators’ expertise and research
interests, such that independently created models for the same organism are often very dif-
ferent and can hardly be compared. However, each model typically contains unique infor-
mation that is ‘lost” when working with a different model. To integrate the available
knowledge, we developed a computational tool to build consensus metabolic models. Our
tool—COMMGEN- combines independently generated models by matching identical
parts and resolving differences between inconsistent parts. We apply our tool to four sets
of models of different organisms. In all these sets, COMMGEN identified and resolved
hundreds of inconsistencies. COMMGEN can be generally applied to standardize and
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ing microbial communities and host-pathogen interactions.

Introduction

Genome-scale constraint-based metabolic models (GSMs) are curated organism-specific
knowledge repositories [1]. They integrate many distinct (bio)chemical entities and typically
account for thousands of metabolites, reactions and genes. When assuming that metabolism is
in a steady state, GSMs also enable metabolic simulations with applications in genome annota-
tion [2,3], analysis of omics data [4-6], phenotype predictions [7-9], organism comparison [9-
12], drug discovery [7,13,14], and metabolic engineering [8,15]. GSMs thereby quantitatively
reconstruct the internal metabolic and transport wiring of the modeled organism and thus
increase our systems level understanding.

Genome-scale metabolic reconstructions consist of metabolites, metabolic reactions
(including boundary reactions and a biomass reaction), cellular compartments, and genes
[1,16]. The reactions are organized according to the cellular compartments in which they are
active. Enzyme-driven (as opposed to spontaneous) reactions are associated with Gene-pro-
tein-reaction rules (GPR), which include one or more genes. For multiple genes, the GPR indi-
cates whether alternative isozymes or enzyme complexes catalyze the reaction [17]. A
reaction’s equation consists of substrates and products with their corresponding stoichiome-
tries. A reaction’s reversibility describes whether the reaction operates forward, backward, or
bi-directionally. The reaction flux bounds specify the reaction’s capacity, that is, the absolute
upper and lower bounds of the reaction flux. Transport reactions transfer metabolites between
cellular compartments, whereas boundary reactions define nutrient uptake and secretion. The
biomass reaction, finally, reflects the molecular composition of a cell or organism and repre-
sents cell or organism growth. Together, these entities and their encoding in a GSM aim to rep-
resent the current knowledge of the organism’s metabolism.

However, even for well-studied organisms such as Saccharomyces cerevisiae or Bacillus sub-
tilis, many uncertainties remain during GSM construction. These uncertainties are typically
manually addressed based on expert knowledge and scientific literature, which involves a labo-
rious iterative process that can take several years, for example, for eukaryotes [1]. The main
sources of uncertainties are: (i) incomplete and erroneous information from heterogeneous
and potentially contradictory data sources such as insufficiently curated and inconsistent gene
annotations [18], alternative naming and spelling variants of metabolites (different name-
spaces) [18-21], and conflicting reaction reversibilities [2,22]; (ii) subjectivity in interpreting
literature sources; (iii) integration of qualitative and quantitative data (e.g., inconsistent growth
data); and (iv) incompatible levels of detail between and among (reference) databases; for
example, databases may represent metabolic pathways by detailed individual reactions or by a
single lumped reaction [18], and they may use varying structural definitions for metabolite
classes such as lipids and polymers [21,23].

As a consequence, when several GSMs for the same organism are developed independently,
they are complementary and only partially overlapping [24,25]. The extent of variation
between models for the same organism can be dramatic. For example, the well-established
human and yeast GSMs agree only on 3% [18] and 35% [20] of their reactions, respectively,
when ignoring electron, proton, and water imbalances. Differences between GSMs resulting
from different modeling frameworks and model authors can even be more substantial than bio-
logical differences between organisms [26]. Any GSM-driven analysis, which needs to

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1005085 August 26,2016 2/21



©PLOS

COMPUTATIONAL

BIOLOGY

Consensus Metabolic Network Models

(somewhat arbitrarily) select one GSM when several are available, thus, only operates on a sub-
set of the available information.

To represent metabolism more comprehensively, and thereby improve our understanding
of a target organism, alternative GSMs of a target organism can be integrated into a so-called
consensus model of the respective organism, one per organism. Consensus models have an
increased scope (by combining unique parts of initial GSMs) and they are more consolidated
(by identifying shared parts of initial GSMs that are likely to be reliable). When discrepancies
exist between GSMs, these must be carefully examined to select the most appropriate modeling
alternative. However, while consensus models have been generated successfully for several
(model) organisms such as budding yeast and human, this required extensive manual curation
by communities of domain experts [10,20,24,25,27]. To alleviate this bottleneck and render
GSMs truly useful for the understanding of cellular function and evolution, community func-
tion, and host-pathogen interactions, semi-automatic consensus model generation approaches
have been proposed. It has been shown that the combination of complementary GSMs of the
same organism reduces existing gaps in individually reconstructed GSMs [28,29]. These
approaches focused mainly on reconciling namespaces (a particularly important challenge for
matching metabolites) or on curating the underlying databases [18,21]. Thereby, existing
methods address only a small subset of the problems in consensus model generation described
above. For example, they do not identify and curate cases when two initial GSMs represent the
same metabolic process at different levels of granularity [30].

Here, we present COMMGEN, a tool for COnsensus Metabolic Model GENeration that rec-
onciles two or more distinct GSMs of the same organism beyond a common namespace.
COMMGEN automatically identifies similarities, dissimilarities, and complements of the met-
abolic networks based on an extensive classification of problems that typically arise during
GSM integration and on novel algorithms to resolve these problem classes. For several model
organisms, we show that semi-automatically created consensus GSMs in a standardized name-
space [31] are substantially more consolidated than achievable by a common namespace alone,
and that they retain or even improve on the initial GSMs’ predictive capabilities. Because the
consensus GSMs contain the information from each initial GSM, they comprehensively repre-
sent our best understanding of the organisms’ metabolic networks.

Results

Our analyses addressed model building, testing and refinement in a stepwise fashion. We started
by identifying the classes of inconsistencies that exist between models for four widely different
albeit representative microbes. We subsequently set up the framework for COnsensus Metabolic
Model GENeration, and tested it on the four case studies for functionality and predictability.

Inconsistency classes arising in model merging

To systematically resolve inconsistencies between two or more Initial GSMs (IGSMs) to be
integrated, we defined three main (coupled) inconsistency categories: metabolites, reactions,
and compartments. We explain these categories and the inconsistency classes they contain
using examples from four sets of IGSMs that cover gram-positive and gram-negative bacteria
as well as yeast (Fig la).

Metabolites. IGMs often represent a specific chemical compound differently because
metabolite identifiers are ambiguous and they reside in different namespaces [31]. When one
simply merges IGSMs, that is, adds the IGSMs’ contents, this leads to redundant pathways
(Fig 1b) that may differ in metabolites, gene associations, stoichiometries, and reversibilities.
The essential step of identifying and merging different metabolites that represent the same
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Fig 1. Models used in this study and classification of inconsistencies. (a) Overview of the used initial GSMs.
(b) Instances of identical metabolites with different MnXRef identifiers. (c) Non-identical metabolites that perform
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identical functions in the network context. (d) Alternative modeling of polymers. (e) Nested and encompassing
reactions. (f) Alternative usage of redox pairs. (g) Alternative reactions with consequences for redox metabolism.
(h) Partially overlapping reactions differing in phosphate products. (i) Lumped vs. non-lumped representation of a
pathway. (j) Invalid transport reaction (IR08663). (k) Alternative transport reactions for putrescine. (I) Alternative
transport reactions for glycine. (m) Invalid boundary reaction (R841). Circles represent chemical species, arrows
chemical reactions, and grey boxes different compartments. Red nodes indicate instances of identical species
within the network context whose alternative names are separated by horizontal lines. Rectangular boxes contain
the original reaction names, rounded rectangles their corresponding GPRs, where '&' represents a logical AND,
and'|' alogical OR. Edges with filled circles represent reversible reactions. Stoichiometric coefficients unequal to
one are indicated at their respective arrows. The shown reactions originate from GSMs of four different organisms:
B. subtilis (d), as represented in iYO844 [3] (blue) and iBSu1103 [36] (orange); M. tuberculosis (m), as
represented in iINJ661 [14] (blue) and GSMN_TB [7] (orange);P. putida (b,c,e,f,h,l,j,k), as represented in iJN746
[33] (blue) and iJP962 [10] (orange); and S. cerevisiae (g,l), as represented in iIN80O [48] (blue) and IMM904
[18,37] (orange) and iND750 [49] (pink).

doi:10.1371/journal.pcbi.1005085.g001

chemical compound in different namespaces has been emphasized previously [29-31]. How-
ever, more complicated situations exist when different metabolites actually represent different
chemical compounds, but these compounds have the same function in their network context.
This typically arises when metabolites are modeled at different granularity, for example, as
‘iron” and ‘Fe*", or ‘glucose’ and ‘alpha-D-glucose’. Common metabolites may also have differ-
ent chemical sum formulas in different IGSMs, for example, depending on whether functional
groups are specified or not (Fig 1c), or when polymers are modeled with a different numbers of
subunits (Fig 1d). In such cases, the merging of metabolites has to prevent stoichiometric
inconsistencies in the consensus model: if a merged polymer can be produced from fewer sub-
units than result from its degradation, mass conservation is violated. Hence, a common name-
space is not sufficient to identify common metabolites in IGSMs.

Reactions. A particular biological process is often represented differently in two models
because of uncertainties, disagreements, errors, and modeling decisions, resulting in alternative
representations of a single reaction or of reaction sets. These alternatives need to be identified
and matched to avoid reaction redundancies (Fig 1b) and violations of mass balances due to
inconsistent stoichiometries (Fig 1c and 1d). However, inconsistencies may extend beyond
namespaces and stoichiometries. They often result from modeling decisions, both in capturing
individual reactions, and in the granularity of representation for metabolic processes. Nested
reactions, where one reaction is a perfect subset of another reaction with respect to metabolites,
are possible consequences. In the example in Fig le, the cofactor NADH may be used, but it is
not required—for a consensus model, a decision between these alternatives eventually has to be
made. Alternative modeling decisions on cofactor usage are common in IGSMs as shown in Fig
1f with a ‘choice’ between using NADH and NADPH and in Fig 1g, where the same chemical
conversion can either yield NADP from NADPH or NADPH from NADP. More complex cases
to resolve are partially overlapping reactions and lumped reactions, where multiple reactions are
artificially represented by fewer reactions. Fig 1h shows an example of two alternative reactions
that generate triphosphate or pyrophosphate and monophosphate, respectively; simply merging
the two IGSMs would feed the side-products into different pathways because no reaction exists
that interconverts these metabolites directly. Such inconsistencies are not only found between
IGSMs, where they are expected, but also within IGSMs, as demonstrated in Fig 1i. Hence, it is
important to consider the network context of the IGSMs and of the merged GSM.

Compartments. IGSMs of the same organism may consider different subcellular compart-
ments (Fig 1a), affecting the localization and multiplicity of reactions as well as the incorporated
transport reactions. For example, in Fig 1j, the two IGSMs for a gram-negative bacterium have
the same net reaction for the import of cysteine into the cytoplasm. In one IGSM this requires
one reaction because the periplasm is not explicitly modeled, whereas the more detailed
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transport in the other IGSM requires two reactions. After identifying this class of inconsisten-
cies, a consensus model can either replace the transporter connecting the extracellular space
with the cytoplasm by two reactions, or remove the entire periplasm and retain a single trans-
port reaction. Because transporters and transport reactions are notoriously difficult to identify
and characterize [1], IGSMs are often inconsistent in transport reactions. Fig 1k shows an
extreme example: a single merging artifact effectively destroys the model of the proton gradient
because protons can be transported across the membrane in either direction by simultaneous
import and export of putrescine. Inconsistencies in transport reactions can also lead to thermo-
dynamically infeasible cycles [1] such as ATP generation resulting from cycling glycine over the
membrane (Fig 11). Finally, boundary reactions, which are not mass-balanced because they
exchange material with the environment, are sometimes lumped with transport reactions for
the same chemical compound and thus first require standardization (Fig 1m). Overall, therefore,
a broad spectrum of unrelated but interconnected inconsistencies at the metabolite, reaction,
and compartment levels need to be identified and resolved for consensus model generation.

The COMMGEN framework

COMMGEN is a software tool that is designed to address the above problems in consensus
model generation, leading to a semi-automatic reconciliation of two or more GSMs for a given
organism. In terms of software architecture, COMMGEN operates on GSMs in SBML format
[32], the standard modeling language for systems biology (Fig 2a). The IGSMs are first converted
into a common chemical naming system using the MnXRef namespace [31]. Next, COMMGEN
combines all reactions of the IGSMs into a Basic Consensus Model (BCM). The BCM is used to
identify and reconcile inconsistencies between and within the IGSMs, ultimately yielding a
Refined Consensus Model (RCM) in SBML format. Because many inconsistencies are intercon-
nected, it is difficult to identify a consensus between IGSMs, to distinguish between conflicting
and complementary model parts, and to resolve all inconsistencies automatically. COMMGEN
therefore resolves all unambiguous cases automatically, and it guides the user to decide on the
remaining cases. COMMGEN records all changes such that the user can automatically repeat the
procedure with minimal effort, including manual alterations of previously made choices.

To identify and address all the different inconsistency classes described above, COMMGEN
iteratively applies a set of independent methods (Fig 2b). All methods automatically identify
instances of their respective inconsistency classes. Metabolite matching is a core element of
model merging. We developed a novel algorithm to identify sets of metabolites that represent
the same chemical compound based on their network context, that is, their neighboring metabo-
lites and reactions, thereby addressing the issue of different granularity in IGSMs for metabolites
(see Methods for details). Performance tests for P. putida networks revealed very high sensitivity
and specificity of the algorithm, even when only a minority of the network is used to infer
matching metabolite sets (Fig 2c). Metabolite matching allows COMMGEN subsequently to
reconcile the associated reactions: metabolites are merged, through which novel pathways and
branching points can be formed, and alternative representations of biochemical reactions
become apparent. Specifically, COMMGEN matches sets of reactions in the following categories
(see Methods for the respective algorithms): (i) reactions with identical metabolites but different
stoichiometries; (ii) nested reactions; (iii) reactions that differ only in redox pairs; (iv) partially
overlapping reactions; and (v) lumped reactions. Furthermore, it deals with differences in sub-
cellular compartmentalization by (i) facilitating the removal of transporters; (ii) enabling the
removal of entire compartments; (iii) resolving differences in the modeling of boundary reac-
tions; (iv) identifying different transport reactions for the same metabolite across the same
membrane; and (v) identifying identical biochemical conversions in different compartments.
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COMMGEN’s methods differ in the extent to which identified inconsistencies can be
resolved automatically (Fig 2b). For some categories, the user can choose to automatically han-
dle inconsistencies, for example, to deal with differences in reaction directionality. Conditionally
automatic refers to inconsistency classes where some instances can be addressed automatically,
but others cannot: if two matched reactions differ only in stoichiometric coefficients, COMM-
GEN can automatically select the elementally balanced reaction, but only when exactly one reac-
tion is balanced. Manual intervention is always possible, and it is required when inconsistencies
are too complex and diverse for a well-performing heuristic for automation. Manual curation is
also advisable when an erroneous choice may substantially impact model performance. For
example, a single incorrect match between two metabolites with different chemical sum formu-
las can have severe consequences for the correctness of model predictions. Hence, although the
COMMGEN method for network-based metabolite matching performs extremely well (Fig 2¢),
we recommend manual confirmation of predicted matches.

a b

Any number of input GSMs

Category COMMGEN method Automatic solving
Metabolites Metabolite matching 1:1 -
Metabolite matching 2:2 -
Compartments Alternative transport reactions -
¢ ¢ ¢ Invalid transport reactions +
Alternative compartmentalisation +/-
Unknown compartment +/-
MnXRef namespace Invalid boundary reactions +
conversion Remove compartment +
Reactions Identical net reactions +/-
Alternative stoichiometries +/-
. . Lumped reactions -
Combine GSMs into Alternative redox .
Base Consensus model Nested reactions +/-
¢ Partially overlapping reactions -
Iterative C 1
application of
COMMGEN
methods 0.8 .
206
=
X ‘®
Export Refined S
Consensus Model 0 04

Y oy o

0 0.2 0.4 0.6 0.8 1
MnX COBRA SBML 1 - Specificity
Fig 2. COMMGEN framework. (a,b) Overview of COMMGEN workflow and available methods. The COMMGEN
methods are either fully automatic (+), conditionally or optionally automatic (+/-), or they always require manual
intervention (-). (¢) Performance of the metabolite matching methods if run without manual intervention, leading to
ROC-curves of the classification of metabolites as identical or non-identical based on their network context. Lines
correspond to different fractions of the network information being randomly discarded: black, 0%; red, 30%; green,
60%; blue, 90%. The shades indicate the standard deviations in the classification. The data presented here was
obtained using the Pseudomonas putida GSMs iJP962 [10] and iJN746 [33]; analysis results for the other sets of
GSMs and additional information can be found in S5 Protocol.

doi:10.1371/journal.pcbi.1005085.9g002
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Model generation with COMMGEN: Case study for P. putida

To describe COMMGEN operation in detail and to evaluate the framework’s performance, we
focus on consensus model generation for Pseudomonas putida, for which the two GSMs iJP962
[8,10] and iJN746 [33] have been developed independently (Fig 1a). The initial overlap
between these two models is surprisingly low: they only have 58% of their genes, 33% of their
metabolites and 2% of their reactions in common. Conversion into the MnXRef namespace
[31] only increases the common part to 44% for metabolites and 11% for reactions.

To quantitatively determine the occurrences of inconsistencies and their resolution, we clas-
sify reactions as consensus reactions (shared between the GSMs) and unique reactions. We fur-
ther categorize unique reactions according to whether they are unrelated to any inconsistency,
related to a single inconsistency, or related to multiple inconsistencies (a reaction may appear
in the last category because COMMGEN methods are not mutually exclusive in the inconsis-
tencies they identify). Because the identified inconsistencies ultimately depend on namespace
consistency, user-defined settings, and user choices, we quantified the resolution of inconsis-
tencies by automatic processing to remove user bias as much as possible. After creating the
BCM from the IGSMs and merging the identical reactions, the fraction of consensus reactions
was low (11%) and approximately half of the unique reactions were associated with at least one
inconsistency (Fig 3a; S1 Protocol). The inconsistencies exemplified in Fig 1 are, thus, not iso-
lated cases; they merely illustrate the main problems in consensus model generation.

Next, we employed a four-step automatic process to reconcile inconsistencies between the
IGSMs and to converge to an automatically generated RCM (Fig 3a). First, COMMGEN
increased the namespace consistency through our network context-based metabolite matching

a BCM RCM - Step 1 RCM-Step2 RCM - Step 3 RCM - Step 4
206R Metabolite matching Invalid transport reactions Identical net reactlons Alternative stoichiometries
(11%) 467R  p94R ?;‘;?,f 9% (7%)
(24%)  (16%) 672R (18%) 717R  619R 120R 120R
(37%) (37%) (38%) (7%) (7%)
638R
(40%)
863R
385R
(45%) (20%)  (34%) 728R T04R T41R 41R
242R (38%) 6%) (45%) (46%)
(13%)
Reaction classification: ¥ Consensus [l Unique, no inconsistency Unique, 1 inconsistency [l Unique, >1 inconsistency
b RCM C RCM d 350 e 600
No metabolite matching Manually finished w30 [ Irreversible . I Active
1($$R 11R 52R S I Reversible S I Inactive
427R o) (1% 5 250 =
23%) ™) g 8
(23%) 275R 3 200 8
(15%) 5 150 S
9] @
697R € 100 €
994R 754R (46%) 3 3
(54%) (50%) 50
0 +/+ +/- =/+ -/- +/+ +/= =/+ -/-
Reversibility in IGSMs Activity in IGSMs

Fig 3. Application of COMMGEN to P. putida GSMs. (a) Automatic inconsistency identification and reconciliation substantially increases
consensus and reduces inconsistencies. Reactions are classified into consensus reactions (green) and unique reactions involving no
(blue), a single (orange), or multiple (red) inconsistencies. (b, ¢) Characteristics of the refined consensus model as in (a) without network-
based metabolite matching (b), or after manually addressing the remaining inconsistencies (¢). (d) Numbers of reversible (‘+’) and
irreversible (‘-*) reactions in the RCM, grouped by the four possible combinations of reversibilities in the IGSMs. (e) Numbers of active and
inactive reactions in the RCM, grouped by being active (‘+’) or inactive (‘-‘) in the IGSMs.

doi:10.1371/journal.pcbi.1005085.9003
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method (note that we manually confirmed the proposed matches such that subsequently iden-
tified inconsistencies were not overestimated). This increased the overlap to 53% for metabo-
lites and 16% for reactions. In the second step, COMMGEN addressed the difference in
cellular compartments in the P. putida GSMs (Fig 1a). In particular, transport reactions from
iJP962 that immediately take up metabolites from the extracellular space into the cytoplasm
were split such that they match the transport processes from iJN746, and periplasmic instances
of the involved metabolites were added. Next, COMMGEN identified and merged sets of reac-
tions with practically (ignoring protons and water) identical net formula. These sets include
reactions that have different GPR rules or different reaction directionalities, or that did not
have identical net formulas prior to the splitting of transport reactions or the COMMGEN-
based metabolite matching. In this step, we processed inconsistent reaction reversibilities using
our previously published method to predict reaction directionalities based on metabolite pat-
terns [2], and we processed inconsistent gene associations by combining the GPR rules with a
‘strict’ heuristic (see S2 Protocol). Finally, COMMGEN identified and merged reactions that
involve the same metabolites, but differ in stoichiometric coefficients; directionality and GPR
inconsistencies were handled as above.

The detailed data shown in Fig 3a emphasize the interdependencies of inconsistencies that
may arise in model merging, in particular, that resolving inconsistencies may facilitate subse-
quent identification of more inconsistencies, resulting in an increased number of identified
inconsistent reactions. The four automated steps increased the share of reactions that are con-
sensus reactions originating from both IGSMs from 11% (in the BCM) to 39% (in the RCM),
while also substantially reducing the number of reactions associated with inconsistencies (Fig
3a). We evaluated the significance of the metabolite matching step by re-running the process
without it, which lead to only 23% consensus reactions (Fig 3b). In addition, we used the auto-
matically generated RCM as the starting point for manual curation guided by COMMGEN
methods. This allowed us to reconcile most of the remaining inconsistencies and to obtain a
consensus for 50% of the reactions (Fig 3c). In summary, our detailed case study for P. putida
therefore provides evidence for the efficiency of the COMMGEN framework, and in particular
of its novel methods such as network context-based metabolite matching.

Automatically generated consensus models are functional and
predictive

We next asked, to what extent automated consensus model generation preserved or even
extended functionality of the IGSMs, initially focusing on the P. putida models. Our automated
method involved the probabilistic prediction of reaction directionalities [2] to resolve reaction
inconsistencies, instead of simply setting all reactions with conflicting directionalities to revers-
ible, which would tend to overestimate the organism’s metabolic capabilities. It maintained
reaction directions in case of consensus between the IGSMs, although the prediction method is
agnostic to matches between models; it constrained directions in many cases when such con-
straints existed in only one IGSM (Fig 3d). The benefits of this approach are best exemplified
with a concrete example (Fig 4a). The P. putida BCM contains a small set of reactions that
together allow for non-physiological CO, fixation. This incorrect CO, fixation cycle was auto-
matically removed when inconsistent directionalities of a reaction present in both IGSMs were
processed, thereby preventing a major error in the RCM. Note that direction prediction also
identified a reaction assigned with a direction that is not consistent with the remainder of the
network (see also Fig 1i), namely a directed lumped reaction common to both IGSMs, and a
bidirectional non-lumped reaction set present in only one model. Another important aspect of
model consolidation is the extent to which active reactions in the IGSMs (that is, reactions that
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Fig 4. Subnetwork analysis for P. putida. (a) Example error of ‘naive’ iGSM merging where the initial P. putida BCM contains a
biologically inaccurate carbon dioxide fixation cycle due to incorrect directionalities in the IGSMs. This error is automatically resolved as
COMMGEN assigns reaction directionalities opposite to those shown with dashed reaction arrows. (b) Example for a new metabolic
function in the consensus model. P. putida can grow on L-quinate as its sole carbon source. Neither of the initial models captures this
behavior, whereas the consensus model provides the necessary, complementary reactions.

doi:10.1371/journal.pcbi.1005085.9004

can carry metabolic flux in principle) are preserved. As shown in Fig 3e, essentially all active
reactions in one of the networks remained active in the RCM, and only reactions that were
non-functional in both IGSMs remained inactive. In growth phenotype predictions, the RCM
occasionally disagreed with all IGSMs, suggesting ‘new’ metabolic functions. For example,
while neither of the IGSMs captured that P. putida can grow on L-quinate as sole carbon
source, complementation of reactions in the RCM enabled a biologically consistent model
behavior (Fig 4b). These aspects together indicate overall functionality of the automatically
generated consensus model.

The performance of GSMs as mathematical models for cellular metabolism is typically eval-
uated by assessing their ability to correctly predict wild type and mutant growth phenotypes
across different growth conditions [34]. We performed corresponding simulations for auto-
matically refined consensus models as well as for their ancestors (IGSMs and BCM) for each of
the four evaluated organisms (Fig 1a). Specifically, we computed sensitivity, specificity, accu-
racy, and Matthew’s correlation coefficient (MCC; unlike accuracy it takes the total numbers of
true and false test cases into account) [35] for growth phenotype predictions (see S3 Protocol
for details). Fig 5a shows the performance indicators for the IGSMs, the BCMs, and the auto-
matically refined consensus models for each organism. In nearly all metrics, the IGSMs outper-
formed the BCM (except for P. putida), and they were outperformed by the RCM (except for B.
subtilis). For B. subtilis, resolving inconsistencies in the BCM decreased all scores except sensi-
tivity. This can be explained by one IGSM (iBSu1103) being largely based on a predecessor
(iYO844); in addition, iBSul103 was optimized for correct growth predictions using Grow-
Match [34,36]. Information from iYO844 can thus include errors that were deliberately
removed from iBSul103 and it can reverse changes made by the performance optimization.
Thus, although the prediction profiles of the RCMs largely resemble the IGSM profiles, RCMs
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doi:10.1371/journal.pcbi.1005085.g005

on average outperform both the IGSMs and the BCMs, indicating efficiency of the automated
consensus model generation methods in COMMGEN even in terms of prediction capabilities.
Notably, user choices of the biomass reaction do not influence the performance substantially

(Fig 5a), pointing to robustness of the methods as well.

Automatic reconciliation is comparable to manual consensus model
generation

Finally, we wanted to evaluate how automatic consensus model generation compares to its
(largely) manual counterpart. We focused on the community approach to establish a yeast con-
sensus model [20] based on the IGSMs iMM904 [37] and iLL672 [38] because this first model
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reconciliation effort is especially well documented. Fig 5b shows that transfer of the IGSMs
into a standardized namespace alone identifies only small subsets of common metabolites and
reactions. COMMGEN’s automated reconciliation method, in contrast, achieves nearly the
same extent of matching between the IGSMs as reported for the manual curation. The auto-
matically generated RCM showed good performance in mutant phenotype predictions (sensi-
tivity = 0.98, specificity = 0.28, accuracy = 0.87 and MCC = 0.42; note that a comparison to the
manual consensus model is impossible because the community effort did not aim at establish-
ing a model suitable for FBA). In addition, COMMGEN directly identifies many inconsisten-
cies between model reactions that result, for example, from different numbers of
compartments in the IGSMs (Fig 5¢). These would be clear starting points for domain experts
for subsequent COMMGEN -assisted manual curation. We believe that the combination of
automated procedures with close-to-manual quality and of support for targeted manual cura-
tions would substantially enhance future community efforts.

Discussion

Genome-scale constraint-based metabolic models are both integrated knowledge repositories
and predictive mathematical models. In terms of knowledge representation, a consensus model
should be more consolidated than individual GSMs due to shared parts, more comprehensive
due to unique parts, and more accurate due to reconciliation of inconsistencies in similar parts.
A consensus model, however, can propagate errors in the initial models’ unique parts, and it
may be less consistent than the initial models, especially when inconsistencies in similar model
parts were not identified or reconciled.

Inconsistencies in GSMs are typically nested, not mutually exclusive, and therefore difficult
to address, which so far prevented the development of methods for the automated generation
of consensus models [30]. Manual network reconciliation, the predominant approach applied
today, is difficult and cumbersome because the number of inconsistencies between just two or
three IGSMs already runs in the thousands. Based on a systematic classification of inconsisten-
cies, COMMGEN automatically identifies and semi-automatically reconciles inconsistencies
between and within two or more IGSMs. The inconsistencies could theoretically be reconciled
fully automatically, but automated resolution depends on the used reference databases, which
vary to a large extent [18]. Therefore, COMMGEN does not entirely remove the need for man-
ual inspection and curation. For example, our framework relies on network similarity between
alternative realizations of metabolites and reactions in order to match them. Because the reac-
tions surrounding biomass formation are often implemented very differently in different
GSMs, they are not matched. While our implementation lets the user choose one of the IGSM
biomass reactions, a manual update seems necessary as long as COMMGEN does not automat-
ically fetch external information that would enable an automatic reconciliation of the biomass
reaction. In addition, there exists a trade-off between sensitivity and specificity for the identifi-
cation of inconsistent reactions, which limits the detection of lumped and non-lumped path-
way representations with a different net reaction. Also, the identification of similar or identical
reactions in different cellular compartments is difficult to achieve automatically (but an exten-
sion of the current framework could progress in this direction by combining the information
from metabolite instances in different compartments prior to metabolite matching). COMM-
GEN thus forms a necessary bridge between full automation and high-quality manual curation
for consensus metabolic model generation.

Regarding a GSM’s predictive mathematical model character, it is important to note that
remaining inconsistencies in a consensus model can have severe effects, for example, when
inconsistencies resulting from model merging are not adequately addressed. As a
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consequence, individual GSMs may outperform a consensus model in terms of predictive abil-
ity even though the latter is more representative of the available information. COMMGEN’s
aim (and design) is to compare and reconcile IGSMs in order to obtain a high-quality repre-
sentation of the IGSMs’ combined information. In contrast to model optimization methods
such as GrowMatch [34], COMMGEN does not create a model optimized for predictive abil-
ity, and it does not use corresponding experimental information. However, our example appli-
cations also demonstrated that automatically generated consensus models almost always have
higher predictive power than the manually curated IGSMs and that these models can be com-
parable to manually constructed consensus models as shown for yeast. COMMGEN increases
coherence with the actual biological system while maintaining predictive power. This balance
is of utmost importance for the usability and reliability of GSM:s to elucidate cell function
interactions.

As demonstrated by our case study for P. putida, we argue that (semi-) automatically gener-
ated consensus models provide the basis for additional improvements due to their comprehen-
siveness and standardized naming system. Gap-filling methods [2,39] may be able to close gaps
that are not apparent in the IGSMs. One can use existing methods [2,40] to re-evaluate reaction
directionalities, especially for reactions that differed in the IGSMs. Compartment assignment
methods [41] can resolve remaining compartmentalization issues and optimization methods
[34,42] may alter the model to increase its predictive ability. Finally, a good consensus model is
a solid foundation for new models by providing a basis for GSMs of similar organisms, and via
its integration into multi-scale whole-cell or tissue models [36].

More generally, the systematic integration of heterogeneous information is an essentially
unsolved challenge in (post-)genomic biology. For metabolism, consensus GSMs are formal-
ized means for complementing incomplete information, and for identifying and addressing
errors through the comparison of independently generated GSMs for the same organism.
COMMGEN automatically identifies and semi-automatically resolves widespread and highly
interlinked inconsistencies between initial GSMs, thereby moving beyond existing approaches
for manual and computer-aided consensus model generation. It can therefore facilitate the
construction of new models by comparing and combining information from automatic model
construction tools such as the modelSEED [43] and manual model construction efforts, and
facilitate GSM updates using a reference—both tasks are analogous to consensus GSM
generation.

While we focus here on the reconciliation of multiple GSMs for the same species, we argue
that COMMGEN’s methods and standardization are more widely applicable. The identifica-
tion of similar, yet distinct, biochemical entities can help to compare metabolic capabilities of
organisms in detail via their GSMs, or even to compare entire pathway databases. However,
dealing with different species will require new, systematic preprocessing steps to map gene sets
in different organisms functionally to each other (e.g., via orthology or enzyme classification
numbers), which is a topic of future research. In addition, COMMGEN’s methods for identify-
ing redundancies and hierarchical relationships in networks can be used to further advance
standardization of terms and ontologies. We therefore expect COMMGEN to be of substantial
aid in future integration of knowledge for metabolic networks, to greatly accelerate model-
building processes and to thereby improve subsequent high-throughput model-based network
analyses. Although COMMGEN will not directly address the domain-specific problems, these
capabilities will lay a solid foundation for the systematic, genome-scale comparison of meta-
bolic spaces within and across genera and will have substantial impact for large-scale evolu-
tionary analyses, design of microbial communities, and understanding of host-microbe
(pathogen, microbiome) interactions.
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Methods
Genome-scale metabolic models

iJN746 and iJP962 were requested from and received by email from the first authors of the cor-
responding papers. GSMN-TB was downloaded from http://sysbio3.thms.surrey.ac.uk/. iNJ661
was obtained from the supplementary files of the corresponding paper. The remaining models
were taken from the model repository at www.metanetx.org. See S1 Dataset for details.

Evaluation of model performance

For comparison to experimental data, the models were loaded into the COBRA toolbox [44].
The bounds of the boundary reactions were adjusted based on the medium composition and,
where necessary, additional flexibility was provided to individual models. Gene knockout
strains were simulated by removing the reactions requiring the encoded protein. To discrimi-
nate growth from no growth for wild type strains a default cut-off value (10~°) was used
whereas a minimal relative growth rate (30%) to the wild type was used for mutant strains. See
S3 Protocol for details.

Matching metabolites based on network context

In a metabolic network, reaction nodes are only connected to the metabolite and gene nodes
that are involved in the corresponding reaction. Similarly, metabolite and gene nodes are only
connected to reaction nodes. However, reaction nodes are not informative for the identity of
metabolites as two metabolites representing the same chemical compound are non-overlapping
in their connected reaction nodes. Therefore, we characterize metabolites by the other metabo-
lite and gene nodes that are connected to the same reactions. We use this information to quan-
tify how similar metabolites from different models are based on their network context. These
similarity scores are then compared to the scores of metabolites that are known to match
because they are present in both models: pairs of metabolites that score comparable to these
shared metabolites may consist of functionally equivalent chemical compounds. We use a
user-defined percentile of shared metabolite scores as a threshold to identify similar metabo-
lites. The method is described in the following:

i. We create a Boolean metabolite-to-metabolite matrix M,,, (m x m) where a 1 indicates that
the two metabolites share a reaction.

ii. We create a Boolean gene-to-metabolite matrix Mg (g x m) where a 1 indicates that the
metabolite and gene share a reaction.

iii. We create an attribute matrix M, ((m + g) x m) by vertically concatenating M, and M,,.

iv. We normalize M, by dividing each row by its sum such that the numbers in each row sum
up to 1. Thereby, the values in M, reflect both that a metabolite is connected to a metabolite
or gene and how rare (defining) this connection is.

v. We discard rows from M, that correspond to metabolites and genes that are not included in
both models for these cannot aid in the identification of common metabolites between the
models.

vi. We discard the columns from M, that correspond to metabolites that are identified to be
the same in both GSMs.

vii. We create a scoring matrix M, (m x m) where the number at position i,j corresponds to the
Pearson’s correlation coefficient between columns i and j of M,.
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viii. We distinguish between similar and non-similar metabolites in M, using a minimal score.
The minimal score equals a user-defined percentile of scores for metabolites that are pres-
ent in both models.

Identification of lumped reactions

A lumped reaction is an artificial reaction that represents the net effect of multiple individual
reactions. Therefore, if the lumped and non-lumped representations carry flux in opposite
directions, steady state is maintained as they cancel each other out. We use this property to
identify lumped reactions by linear programming. The method is described in the following:

i. We determine the directionality for each reaction as forward, backward, or reversible.

ii. We transform each reaction such that it only runs in the forward direction; backward reac-
tions are reversed and reversible reactions are split into two reactions.

ili. We update the stoichiometric matrix S (m x r) accordingly.

iv. We remove the boundary reactions from S as these reflect exchanges of metabolites
between the organism and the medium.

v. We define the linear programming (LP) problem:

max{c'x}

s.t.

vi. We initiate the variables of the LP problem
c: Vector (1 x r) containing the objective coefficient for each reaction. We set each value to
-1 to penalize flux through each reaction; this ensures that the total flux in the network is
minimized.
Ib: Vector (1 x r) containing the lower bounds of each reaction. As all reactions are forward
reactions, every value is set to 0.
ub: Vector (1 x r) containing the upper bounds of each reaction. As all reactions are for-
ward reactions, every value is set to 1000.
b: Vector (m x 1) containing the desired accumulation or dissipation of each metabolite.
Each value in this vector is set to 0 to ensure a steady-state flux distribution.

vii. We select a reaction LR with index i;  to be considered as a lumped reaction. We set:
c(irr) = -1000
Ib(irg) =-1.
LR is thus now allowed to carry flux in the backward direction, which results in a positive
contribution to the objective value.

viii. We run the LP problem as defined under step v.
The LP problem returns a flux distribution x that either only contains zeros (no non-
lumped representation available), or contains a flux distribution such that the flux
through LR is maximized in the reverse direction while having a minimal flux through the
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rest of the network. In the first case, we skip steps ix and x. In the latter case, we identified
a set NL; of corresponding non-lumped reactions.

ix. We save the set NL, for future reference.

x. We modify the LP problem such that any alternative sets NL, may be identified.
¢(NL,) = 3 x ¢(NL,)
This effectively further penalizes flux through the reactions of NL, such that it becomes
more ‘rewarding’ to use other reactions.

xi. We repeat steps viii-x (replace NL; by NL,, NLs, . . .) until:
a. No non-zero solution to the problem exists, or
b. The number of reactions in NL, exceeds a user-defined threshold (default: 5), or
c. There is a recurring set NL,.

xii. We filter the different sets NL such that only sets remain that overlap to a pre-defined
extent in gene associations with LR.

xiil. We repeat steps v-xi such that we obtain sets NL for each reaction in the model.

Identification of alternative transport

Alternative transport reactions result in the transport of a metabolite between two compart-
ments with a different net reaction. We identify metabolites with alternative transport reactions
one metabolite at a time. If a metabolite is present in two or more compartments, we identify
all transport reactions for this metabolite by selecting reactions where the metabolite is on both
sides of the equation. If two of these reactions transport the metabolite between the same two
compartments, these reactions are alternative transport reactions.

Identification of invalid transport

Invalid transport reactions are reactions that transport metabolites between two unconnected
compartments. We identify these by forming a list of all compartments that are directly con-
nected through transport reactions in the IGSMs and asking the user to indicate if any of these
are invalid. For any of the invalid compartment connections, we identify reactions that contain
metabolites from both compartments; these reactions are invalid transport reactions.

Identification of alternative compartmentalization

We create a separate stoichiometric matrix S, (m x r) for each compartment. These matrices
only contain reactions of which all metabolites are in the same compartment. Columns (reac-
tions) that are identical between these matrices represent identical reactions with an alternative
compartmentalization.

Identification of unknown compartment

In the MnXRef namespace, metabolites with an unclear compartmentalization are placed in
the compartment UNK_COMP. For each reaction that contains a metabolite in UNK_COMP,
we identify reactions from the other IGSM(s) that involve all metabolites with known compart-
mentalization similarly to the identification of alternative stoichiometries. These reactions are
then filtered for reactions that also involve the metabolite with the unknown
compartmentalization.
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Identification of invalid boundary reactions

Boundary (exchange) reactions are artificial reactions that represent the exchange of metabolites
with the medium. They only involve a single metabolite, and have no metabolites on the other
side of the equation. In some models these reactions are lumped together with transport reac-
tions that import metabolites from the extracellular compartment. After the MnXRef namespace
conversion these reactions are still annotated as boundary reactions, and are thus easily identified
in COMMGEN by searching for boundary reactions with non-extracellular metabolites.

Removing a compartment

To combine GSMs with an alternative compartmentalization, it is sometimes most straightfor-
ward to remove a compartment ‘RC’ from a GSM and move its reactions to a different target
compartment ‘TC’. We defined four categories of reactions in RC, which are treated differently
when RC is removed: (i) Reactions that only involve metabolites from RC are moved to TC; (ii)
Multi-compartment reactions that transport a metabolite between RC and TC are removed;
(iii) Multi-compartment reactions involving RC and TC that involve a chemical conversion are
kept, but all metabolites from RC are placed in TC; (iv) Multi-compartment reactions involving
RC and a metabolite other than TC are kept, and all metabolites from RC are placed in TC.

Identification of identical net reactions

Identical net reactions are reactions that involve the same set of metabolites in the same stoichi-
ometries, but they may be defined in opposing directions. Therefore, we create a double stoi-
chiometric matrix Sqp,; (m x 2r) that contains the normal stoichiometric matrix S (m x r), as
well as its negative -S (m x r). We then identify columns (reactions) in Sgp; that are identical.

Identification of alternative stoichiometries

We convert the S (m x r) matrix to a Boolean (0/1) representation Sy, (m x r). We then identify
columns in ;o4 that are identical; these correspond to reactions involving the same metabolites,
but in different stoichiometries.

Identification of alternative redox pairs

GSMs often differ in their involvement of redox pairs in any particular reaction. The first step
in identifying these inconsistencies is the creation of a list of redox pairs. COMMGEN comes
with a list of commonly used redox pairs in the MnXRef namespace, and this list can be
expanded by the user. COMMGEN can suggest expansions for this list by selecting metabolite
pairs that co-occur frequently (> 80% of reactions). We identify reactions that are identical
except for their redox pairs by expanding the stoichiometric matrix S (m x r) to S,4x (m+1 x1)
by adding an artificial metabolite ‘redox pair’. Then, for each reaction that involves a redox
pair, we put the stoichiometric coefficients of the redox metabolites in S 4, to ‘0’, and add a ‘1’
in the ‘redox pair’ row instead. We then use the same approach as for the identification of alter-
native stoichiometries to identify reactions that only differ in stoichiometries and redox pairs.

Identification of nested reactions

We convert the S (m x r) matrix to a Boolean (0/1) representation Sy, (m X r). For each column
(reaction) we then identify other columns that contain nonzero elements on each row where
the respective column has a nonzero element. These sets of columns (reactions) are potentially
nested reactions. We then confirm these sets by detecting sets where two or more metabolites
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that are on the same side of the equation for one reaction, are on the same side of the equation
for the other reaction.

Identification of similar reactions

Similar reactions are reactions from different IGSMs that share a predefined number of genes,
substrates and products. We identify similar reactions by constructing three sets of pairs of reac-
tions: (i) reactions that originate from different IGSMs, (ii) reactions that share the required
number of substrates and products, and (iii) reactions that share the required number of genes.
All combinations of two reactions in each of these three sets are considered similar reactions.

Implementation and simulation

All computational simulations and analyses were performed using MATLAB [45]. Gurobi [46]
was used as linear programming solver for flux balance analysis.

Namespace conversion

COMMGEN uploads SBML files to MetaNetX.org [47], where the namespace conversion into
MnXRef [31] is performed, and downloads the resulting model. Because errors may be intro-
duced at this stage (incorrect namespace conversion of individual metabolites) the mapping is
presented to the user who can reject incorrect matches. See S4 Protocol for details.

File formats and accessibility

The COMMGEN version used for this paper is freely available as MATLAB code as S6 Proto-
col. A current version of COMMGEN can be found at https://gitlab.com/Rubenvanheck/
COMMGEN.

Supporting Information

S1 Dataset. Models. This file contains the original models, the input models, the BCMs, and
the RCMs for COMMGEN as well as an overview of the changes made between original and
input models.

(Z1P)

S1 Protocol. Automatic RCM creation. This file contains the code that was used in order to
obtain the data for Fig 3a-3c.
(ZIP)

S2 Protocol. Effect of COMMGEN on gene rules. Upon the merging of reactions differing in
gene rules a choice has to be made in how the final gene rule looks. This file shows how the
consensus procedure as applied for this study affects the use of ‘OR’ and ‘AND’ operators.
(Z1P)

$3 Protocol. Growth phenotypes. This file contains the scripts and reference data for the pre-
diction of growth and no-growth phenotypes and subsequent creation of Fig 5a.
(ZIP)

$4 Protocol. Example scripts. This file contains two example scripts of how to start with
COMMGEN.
(Z1P)
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S5 Protocol. Matching of metabolites between models. This file contains the code that was
used in order to obtain the ROC curve in Fig 2c.
(ZIP)

$6 Protocol. COMMGEN. This file contains the code for COMMGEN and is recommended
to use when running scripts from other additional files. However, we recommend obtaining
the current version of COMMGEN from https://gitlab.com/Rubenvanheck/ COMMGEN.
(ZIP)
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