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Abstract
The development of sensory receptive fields has been modeled in the past by a variety of

models including normative models such as sparse coding or independent component

analysis and bottom-up models such as spike-timing dependent plasticity or the Bienen-

stock-Cooper-Munro model of synaptic plasticity. Here we show that the above variety of

approaches can all be unified into a single common principle, namely nonlinear Hebbian

learning. When nonlinear Hebbian learning is applied to natural images, receptive field

shapes were strongly constrained by the input statistics and preprocessing, but exhibited

only modest variation across different choices of nonlinearities in neuron models or synap-

tic plasticity rules. Neither overcompleteness nor sparse network activity are necessary for

the development of localized receptive fields. The analysis of alternative sensory modalities

such as auditory models or V2 development lead to the same conclusions. In all examples,

receptive fields can be predicted a priori by reformulating an abstract model as nonlinear

Hebbian learning. Thus nonlinear Hebbian learning and natural statistics can account for

many aspects of receptive field formation across models and sensory modalities.

Author Summary

The question of how the brain self-organizes to develop precisely tuned neurons has puz-
zled neuroscientists at least since the discoveries of Hubel and Wiesel. In the past decades,
a variety of theories and models have been proposed to describe receptive field formation,
notably V1 simple cells, from natural inputs. We cut through the jungle of candidate
explanations by demonstrating that in fact a single principle is sufficient to explain recep-
tive field development. Our results follow from two major insights. First, we show that
many representative models of sensory development are in fact implementing variations
of a common principle: nonlinear Hebbian learning. Second, we reveal that nonlinear
Hebbian learning is sufficient for receptive field formation through sensory inputs. The
surprising result is that our findings are robust of specific details of a model, and allows for
robust predictions on the learned receptive fields. Nonlinear Hebbian learning is therefore
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general in two senses: it applies to many models developed by theoreticians, and to many
sensorymodalities studied by experimental neuroscientists.

Introduction

Neurons in sensory areas of the cortex are optimally driven by stimuli with characteristic fea-
tures that define the receptive field of the cell. While receptive fields of simple cells in primary
visual cortex (V1) are localized in visual space and sensitive to the orientation of light contrast
[1], those of auditory neurons are sensitive to specific time-frequencypatterns in sounds [2].
The concept of a receptive field is also useful when studying higher-order sensory areas, for
instance when analyzing the degree of selectivity and invariance of neurons to stimulus proper-
ties [3, 4].

The characteristic receptive fields of simple cells in V1 have been related to statistical prop-
erties of natural images [5]. These findings inspired various models, based on principles as
diverse as sparse sensory representations [6], optimal information transmission [7], or synaptic
plasticity [8]. Several studies highlighted possible connections between biological and norma-
tive justifications of sensory receptive fields [9, 10, 11, 12], not only in V1, but also in other sen-
sory areas [13], such as auditory [14, 15] and secondary visual cortex (V2) [16].

Since disparate models appear to achieve similar results, the question arises whether there
exists a general underlying concept in unsupervised learningmodels [15, 17]. Here we show
that the principle of nonlinear Hebbian learning is sufficient for receptive field development
under rather general conditions. The nonlinearity is defined by the neuron’s f-I curve com-
bined with the nonlinearity of the plasticity function. The outcome of such nonlinear learning
is equivalent to projection pursuit [18, 19, 20], which focuses on features with non-trivial statis-
tical structure, and therefore links receptive field development to optimality principles.

Here we unify and broaden the above concepts and show that plastic neural networks,
sparse codingmodels and independent component analysis can all be reformulated as nonlin-
ear Hebbian learning. For natural images as sensory input, we find that a broad class of nonlin-
ear Hebbian rules lead to orientation selective receptive fields, and explain how seemingly
disparate approaches may lead to similar receptive fields. The theory predicts the diversity of
receptive field shapes obtained in simulations for several different families of nonlinearities.
The robustness to model assumptions also applies to alternative sensorymodalities, implying
that the statistical properties of the input strongly constrain the type of receptive fields that can
be learned. Since the conclusions are robust to specific properties of neurons and plasticity
mechanisms, our results support the idea that synaptic plasticity can be interpreted as nonlin-
ear Hebbian learning, implementing a statistical optimization of the neuron’s receptive field
properties.

Results

The effective Hebbian nonlinearity

In classic rate models of sensory development [21, 8, 6], a first layer of neurons, representing
the sensory input x, is connected to a downstream neuron with activity y, through synaptic
connections with weights w (Fig 1a). The response to a specific input is y = g(wT x), where g is
the frequency-current (f-I) curve. In most models of Hebbian plasticity [22, 23], synaptic
changes Δw of the connectionweights depend on pre- and post-synaptic activity, with a linear
dependence on the pre-synaptic and a nonlinear dependence on the post-synaptic activity, Δw
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/ x h(y), in accordance with models of pairing experiments [24, 10]. The learning dynamics
arise from a combination of the neuronal f-I curve y = g(wTx) and the Hebbian plasticity func-
tion Δw/ x h(y):

Dw / x hðgðwTxÞÞ ¼ x f ðwTxÞ ð1Þ

where we define the effective Hebbian nonlinearity f≔ h � g as the composition of the nonline-
arity in the plasticity rule and the neuron’s f-I curve. In an experimental setting, the pre-synap-
tic activity x is determined by the set of sensory stimuli (influenced by, e.g., the rearing
conditions during sensory development [25]). Therefore, the evolution of synaptic strength, Eq
1, is determined by the effective nonlinearity f and the statistics of the input x.

Many existing models can be formulated in the framework of Eq 1. For instance, in a classic
study of simple-cell formation [8], the Bienenstock-Cooper-Munro (BCM)model [22] has a
quadratic plasticity nonlinearity, hθ(y) = y(y − θ), with a variable plasticity threshold θ = hy2i,
and a sigmoidal f-I curve, y = σ(wT x). Since the threshold θ is adapted on a time scale suffi-
ciently slow to sample the statistics of hy2i [28], and on a time scale faster than the learning
dynamics [29], we may consider it as fixed, and the dynamics are well describedby nonlinear
Hebbian learning,Δw/ x hθ(σ(wTx)), with a nonlinearity modulated by θ.

More realistic cortical networks have dynamical properties which are not accounted for by
rate models. By analyzing state-of-the-art models of cortical neurons and synaptic plasticity,
we inspectedwhether plastic spiking networks can be reduced to nonlinear Hebbian learning.
We considered a generalized leaky integrate-and-fire model (GIF), which includes adaptation,
stochastic firing and predicts experimental spikes with high accuracy [26], and we approximate
its f-I curve by a linear rectifier, g(u) = a(u − θ)+, with slope a and threshold θ (Fig 1b).

As a phenomenologicalmodel of synaptic plasticity grounded on experimental data [27],
we implemented triplet spike-timing dependent plasticity (STDP) [24]. In this STDP model,
the dependence of long-term potentiation (LTP) upon two post-synaptic spikes induces in the
corresponding rate model a quadratic dependence on the post-synaptic rate, while long-term

Fig 1. The effective Hebbian nonlinearity of plastic cortical networks. (a) Receptive field development

between an input layer of neurons with activities xi, connected by synaptic projections wi to a neuron with

firing rate y, given by an f-I curve y = g(wTx)). Synaptic connections change according to a Hebbian rule Δwi

/ xi h(y). (b) f-I curve (blue) of a GIF model [26] of a pyramidal neurons in response to step currents of 500

ms duration (dashed line: piece-wise linear fit, with slope a = 143 Hz/nA and threshold θ = 0.08 nA). (c)

Plasticity function of the triplet STDP model [24] (blue), fitted to visual cortex plasticity data [27, 24], showing

the weight change Δwi as a function of the post-synaptic rate y, under a constant pre-synaptic stimulation xi

(dashed line: fit by quadratic function, with LTD factor b = 22.1 Hz). (d) The combination of the f-I curve and

plasticity function generates the effective Hebbian nonlinearity (dashed line: quadratic nonlinearity with LTD

threshold θ1 = 0.08 nA, LTP threshold θ2 = 0.23 nA).

doi:10.1371/journal.pcbi.1005070.g001
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depression (LTD) is linear. The resulting rate plasticity [24] is h(y) = y2 − by, with an LTD fac-
tor b (post-synaptic activity threshold separating LTD from LTP, Fig 1c), similar to the classic
BCMmodel [22, 8].

Composing the f-I curve of the GIF with the h(y) for the triplet plasticity model, we have an
approximation of the effective learning nonlinearity f = h � g in cortical spiking neurons (Fig
1d), that can be described as a quadratic rectifier, with LTD threshold given by θ1 = θ and LTP
threshold given by θ2 = θ+b/a. Interestingly, the f-I slope a and LTD factor b are redundant
parameters of the learning dynamics: only their ratio counts in nonlinear Hebbian plasticity.
Metaplasticity can control the LTD factor [24, 30], thus regulating the LTP threshold.

If one considers a linear STDP model [31, 32] instead of the triplet STDP [24], the plasticity
curve is linear [23], as in standard Hebbian learning, and the effective nonlinearity is shaped by
the properties of the f-I curve (Fig 2a).

In the following we consider these rate approximations of STDP and analyze the develop-
mental properties of spiking neurons through their effective nonlinearities.

Sparse coding as nonlinear Hebbian learning

Beyond phenomenologicalmodeling, normative principles that explain receptive fields devel-
opment have been one of the goals of theoretical neuroscience [33]. Sparse coding [6] starts
from the assumptions that V1 aims at maximizing the sparseness of the activity in the sensory
representation, and became a well-known normative model to develop orientation selective
receptive fields [9, 12, 13]. We demonstrate that the algorithm implemented in the sparse cod-
ing model is in fact a particular example of nonlinear Hebbian learning.

The sparse codingmodel aims at minimizing an input reconstruction error
E ¼ 1

2
jjx � Wyjj2 þ lSðyÞ, under a sparsity constraint S with relative importance λ> 0.

For K hidden neurons yj, such a model implicitly assumes that the vector wj of feed-forward
weights onto neuron j are mirrored by hypothetical “reconstruction weights”, W = [w1 . . .

wK]. The resulting encoding algorithm can be recast as a neural model [34], if neurons are
embedded in a feedforwardmodel with lateral inhibition, y = g(wTx − vTy), where v are
inhibitory recurrent synaptic connections (see Methods). In the case of a single output neu-
ron, its firing rate is simply y = g(wTx). The nonlinearity g of the f-I curve is threshold-like,
and determined by the choice of the sparsity constraint [34], such as the Cauchy, L0, or L1
constraints (Fig 2a, see Methods).

If weights are updated through gradient descent so as to minimize E, the resulting plasticity
rule is Oja’s learning rule [35], Δw/ x y − w y2. The second term −w y2 has a multiplicative
effect on the strength of synapses projecting onto the same neuron (weight rescaling), but does
not affect the receptive field shape, whereas the first term x y drives feature selectivity and
receptive field formation.

Together, these derivations imply that the one-unit sparse coding algorithm can be imple-
mented by an effective nonlinear Hebbian rule combined with weight normalization. Although
the plasticity mechanism is linear, Δw/ x y, a nonlinearity arises from the f-I curve, y = g(wTx),
so that the effective plasticity is

Dw / x gðwTxÞ ð2Þ

This analysis reveals an equivalence between sparse codingmodels and neural networks with
linear plasticity mechanisms, where the sparsity constraint is determined by the f-I curve g.

While Oja’s rule is commonly associated with principal component analysis (PCA), devel-
oping connections that project the input in the direction of largest variance [35], this relation is
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Fig 2. Simple cell development from natural images regardless of specific effective Hebbian

nonlinearity. (a) Effective nonlinearity of five common models (arbitrary units): quadratic rectifier (green, as

in cortical and BCM models, θ1 = 1., θ2 = 2.), linear rectifier (dark blue, as in L1 sparse coding or networks

with linear STDP, θ = 3.), Cauchy sparse coding nonlinearity (light blue, λ = 3.), L0 sparse coding nonlinearity

(orange, λ = 3.), and negative sigmoid (purple, as in ICA models). (b) Relative optimization value hF(wTx)i for

each of the five models in a, for different preselected features w, averaged over natural image patches x.

Candidate features are represented as two-dimensional receptive fields. For all models, the optimum is

achieved at the localized oriented receptive field. Inset: Example of natural image and image patch (red

square) used as sensory input. (c) Receptive fields learned in four trials for ten effective Hebbian functions f

(from top: the five functions considered above, u3, − sin(u), u, (|u| − 2)+, − cos(u)) (left column), and their

opposites − f (right column). The first seven functions (above the dashed line) lead to localized oriented

filters, while a sign-flip leads to random patterns. Linear or symmetric functions are exceptions and do not

develop oriented filters (bottom rows).

doi:10.1371/journal.pcbi.1005070.g002
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only valid for linear neurons. When nonlinear neurons are considered, Oja’s rule is also sensi-
tive to higher-order statistics, as analyzed below.

Similarly, algorithms performing independent component analysis (ICA), a model class
closely related to sparse coding, also perform effective nonlinear Hebbian learning, albeit
inversely, with linear neurons and a nonlinear plasticity rule [36]. For variants of ICA based on
information maximization [7] or kurtosis [36] different nonlinearities arise (Fig 2a), but Eq 2
applies equally well. Hence, various instantiations of sparse coding and ICAmodels not only
relate to each other in their normative assumptions [37], but when implemented as iterative
gradient update rules, they all employ nonlinear Hebbian learning.

Simple cell development for a large class of nonlinearities

Since the models described above can be implemented by similar plasticity rules, we hypothe-
sized nonlinear Hebbian learning to be a general principle that explains the development of
receptive field selectivity. Nonlinear Hebbian learning with an effective nonlinearity f is linked
to an optimization principle with a function FðuÞ ¼

R u
0
f ðu0Þdu0 [19, 20]. For an input ensem-

ble x, optimality is achieved by weights ~w that maximize hFð~wTxÞi, where angular brackets
denote the average over the input statistics. Nonlinear Hebbian learning is a stochastic gradient
ascent implementation of this optimization process, called projection pursuit [18, 19, 20]:

~w ¼ maxwhFðw
TxÞi ) D w / x f ðwTxÞ ð3Þ

Motivated by results from ICA theory [38] and statistical properties of whitened natural
images [5], we selected diverse Hebbian nonlinearities f (Fig 2a) and calculated the correspond-
ing optimization value hF(wTx)i for different features of interest that we consider as candidate
RF shapes, with a whitened ensemble of patches extracted from natural images as input (see
Methods). These include a random connectivity pattern, a non-local oriented edge (as in princi-
pal components of natural images) and localizedoriented edges (as in cat and monkey simple
cells in the visual cortex), shown in Fig 2b. The relative value of hF(wTx)i between one feature
and another was remarkably consistent across various choices of the nonlinearity f, with local-
ized orientation-selective receptive fields as maxima (Fig 2b). Furthermore, we also searched for
the maxima through gradient ascent, so as to confirm that the maxima are orientation selective
(Fig 2c, left). Our results indicate that receptive field development of simple cells is mainly gov-
erned by the statistical properties of natural images, while robust to specificmodel assumptions.

The relevant property of natural image statistics is that the distribution of a feature derived
from typical localized oriented patterns has high kurtosis [5, 6, 39]. Thus to establish a quanti-
tative measure whether a nonlinearity is suitable for feature learning, we define a selectivity
index (SI), which measures the relative value of hF(.)i between a variable l with a Laplacian dis-
tribution and a variable g with Gaussian distribution [38]: SI = (hF(l)i − hF(g)i)/σF (see
Methods). The Laplacian variable has higher kurtosis than the Gaussian variable, serving as a
prototype of a kurtotic distribution. Since values obtained by filtering natural images with
localized oriented patterns have a distribution with longer tails than other patterns [5], as does
the Laplacian variable compared to the Gaussian, positive values SI> 0 indicate good candi-
date functions for learning simple cell-like receptive fields from natural images. We find that
each model has an appropriate parameter range where SI> 0 (Fig 3). For example the qua-
dratic rectifier nonlinearity needs an LTP threshold θ2 below some critical level, so as to be use-
ful for feature learning (Fig 3a).

A sigmoidal functionwith threshold at zero has negative SI, but a negative sigmoid, as used
in ICA studies [7], has SI> 0. More generally, whenever an effective nonlinearity f is not suited
for feature learning, its opposite − f should be, since its SI will have the opposite sign (Fig 2c).

Nonlinear Hebbian Learning Unifies Receptive Field Formation
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This implies that, in general, half of the function space could be suitable for feature learning
[38], i.e. it finds weights w such that the distribution of the feature wTx has a long tail, indicat-
ing high kurtosis (“kurtotic feature”). The other half of the function space learns the least kur-
totic features (e.g. random connectivity patterns for natural images, Fig 2b and 2c).

This universality strongly constrains the possible shape of receptive fields that may arise dur-
ing development for a given input dataset. For whitened natural images, a learnable receptive
field is in general either a localized edge detector or a non-localized random connectivity pattern.

While there is no simple description for the class of suitable functions, we may gain some
intuition by considering the class of rectified power functions, FðuÞ ¼ ur

þ
, r 2 <+. In the case

of powers r> 2, the selectivity index is positive. As a consequence, any supra-linear nonlinear-
ity f ðuÞ ¼ upþ with p> 1 should be suitable for feature learning. In Table 1, we include the
appropriate parameter range for various effective nonlinearities.

Fig 3. Selectivity index for different nonlinearities f. (a) Quadratic rectifier (small graphic, three examples

with different LTP thresholds) with LTD threshold at θ1 = 1: LTP threshold must be below 3.5 to secure

positive selectivity index (green region, main Fig) and learn localized oriented receptive fields (inset). A

negative selectivity index (red region) leads to a random connectivity pattern (inset) (b) Linear rectifier:

activation threshold must be above zero. (c) Sigmoid: center must be below a = − 1.2 or, for a stronger effect,

above a = +1.2. The opposite conditions apply to the negative sigmoid. (d) Cauchy sparse coding

nonlinearity: positive but weak feature selectivity for any sparseness penalty λ > 0. Insets show the

nonlinearities for different choices of parameters.

doi:10.1371/journal.pcbi.1005070.g003

Table 1. Parameter ranges for suitable effective nonlinearities and corresponding optimization functions.

Effective nonlinearity f(u) Optimization function F(u) Parameter range

Linear rectifier (u − θ)+ ðu � yÞ
2

þ
θ > 0

Quadratic rectifier � b ðu � 1Þ
þ
þ ðu � 1Þ

2

þ
� b

2
ðu � 1Þ

2

þ
þ 1

3
ðu � 1Þ

3

þ
b < 3.5

Sigmoid (1 + e − 2(u − a)) − 1 1

2
logð1 þ e2ðu� aÞÞ |a| > − 1.2

Negative sigmoid −(1 + e−2(u−a))−1
� 1

2
logð1 þ e2ðu� aÞÞ |a| < −1.2

Power up
þ

1

pþ1
upþ1
þ

p > 1

doi:10.1371/journal.pcbi.1005070.t001
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An important special case is an effective linear curve, f(u) = u, which arises when both f-I
and plasticity curves are linear [21]. Because the linear model maximizes variance h(wTx)2i, it
can perform principal component analysis [35], but does not have any feature selectivity on
whitened input datasets, where variance is constant (Fig 2c).

Symmetric effective nonlinearities, f(u) = f(−u), are also exceptions, since their correspond-
ing optimization functions are asymmetric, F(u) = −F(−u), so that for datasets with symmetric
statistical distributions, P(x) = P(−x), the optimization value will be zero, hFasym.(wTxsym.)i = 0.
As natural images are not completely symmetric, localized receptive fields do develop, though
without orientation selectivity, as illustrated by a cosine function and a symmetric piece-wise
linear function as effective nonlinearities (Fig 2c, bottom rows).

Predicting receptive field diversity

Sensory neurons display a variety of receptive field shapes [40], and modeling efforts [41, 9, 12]
have attempted to understand the properties that give rise to the specific receptive fields seen
in experiments.We show here that the shape diversity of a model can be predicted by our pro-
jection pursuit analysis, and is primarily determined by the statistics of input representation,
while relatively robust to the specific effective nonlinearity.

We studied a model with multiple neurons in the second layer, which compete with each
other for the representation of specific features of the input. Each neuron had a piece-wise lin-
ear f-I curve and a quadratic rectifier plasticity function (seeMethods) and projected inhibitory
connections v onto all others. These inhibitory connections are learned by anti-Hebbian plas-
ticity and enforce decorrelation of neurons, so that receptive fields represent different posi-
tions, orientations and shapes [42, 43, 44]. For 50 neurons, the resulting receptive fields
became diversified (Fig 4a–4c, colored dots). In an overcomplete network of 1000 neurons, the
diversity further increased (Fig 4d–4f, colored dots).

For the analysis of the simulation results, we refined our inspection of optimal oriented
receptive fields for natural images by numerical evaluation of the optimality criterion hF(wTx)i
for receptive fields w = wGabor, described as Gabor functions of variable length, width and spa-
tial frequency. For all tested nonlinearities, the optimization function for single-neuron recep-
tive fields varies smoothly with these parameters (Fig 4, grey-shaded background). The single-
neuron optimality landscape was then used to analyze the multi-neuron simulation results. We
found that receptive fields are located in the area where the single-neuron optimality criterion
is near its maximum, but spread out so as to represent different features of the input (Fig 4).
Thus the map of optimization values, calculated from the theory of effective nonlinearity,
enables us to qualitatively predict the shape diversity of receptive fields.

Although qualitatively similar, there are differences in the receptive fields developed for
each model, such as smaller lengths for the L0 sparse codingmodel (Fig 4c). While potentially
significant, these differences across models may be overwhelmedby differences due to other
model properties, such as different network sizes or input representations.This is illustrated by
observing that receptive field diversity for a given model differ substantially across network
sizes (Fig 4).

We also studied the variation of receptive field position and orientation. For all five nonline-
arities considered, the optimization value is equal for different positions of the receptive field
centers, confirming the translation invariance in the image statistics, as long as the receptive
field is not too close to the border of the anatomically allowed fan-in of synaptic connections
(Fig 5b). Also, all nonlinearities reveal the same bias towards the horizontal and vertical orien-
tations (Fig 5c). These optimality predictions are confirmed in single neuron simulations,
which lead mostly to either horizontal or vertical orientations, at random positions (Fig 5d).

Nonlinear Hebbian Learning Unifies Receptive Field Formation
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When the network is expanded to 50 neurons, recurrent inhibition forces receptive fields to
cover different positions, though excluding border positions, and some neurons have non-car-
dinal orientations (Fig 5e). With 1000 neurons, receptive fields diversify to many possible com-
binations of position, orientation and length (Fig 5f).

High sensitivity to input correlations

Natural images have non-uniform spectral properties, with higher variance at low spatial fre-
quencies [39]. Since Hebbian learning is sensitive to second-order correlations, in order to
learn receptive fields driven by higher-order statistics, most studies pre-whiten the input, mak-
ing the variance uninformative [36]. While there is evidence that the early sensory pathway
induces decorrelation across neurons [45], it is unlikely for the input to the visual cortex to be
perfectly white.

To analyze the impact of residual second-order correlations, we simulated nonlinear Heb-
bian learning with natural image patches that have been only approximately whitened. Instead
of estimating the whitening filter from input correlation matrix, we used the preprocessing fil-
ter from the original sparse coding studies [6, 37], which assumes that natural images possess
an ideal power-law energy spectra (seeMethods).

Fig 4. Optimal receptive field shapes in model networks induce diversity. (a-f) Gray level indicates the

optimization value for different lengths and widths (see inset in a) of oriented receptive fields for natural

images, for the quadratic rectifier (left, see Fig 2a), linear rectifier (center) and L0 sparse coding (right).

Optima marked with a black cross. (a-c) Colored circles indicate the receptive fields of different shapes

developed in a network of 50 neurons with lateral inhibitory connections. Insets on the right show example

receptive fields developed during simulation. (d-f) Same for a network of 1000 neurons.

doi:10.1371/journal.pcbi.1005070.g004
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Fig 5. Diversity of receptive field size, position and orientation. (a) The optimization value of localized

oriented receptive fields, within a 16x16 pixel patch of sensors, as a function of size (see Methods), for five

nonlinearities (colors as in Fig 2a). Optimal size is a receptive field of width around 3 to 4 pixels (filled

triangles). (b) The optimization value as a function of position of the receptive field center, for a receptive field

width of 4 pixels, indicates invariance to position within the 16x16 patch, except near the borders. (c) The

optimization value as a function of orientation shows preference toward horizontal and vertical directions, for

all five nonlinearities. (d) Receptive field position, orientation and length (colored bars) learned for 50 single-

neuron trials. The color code indicates different orientations. (e) Receptive field positions and orientations

learned in a 50 neuron network reveal diversification of positions, except at the borders. (f) With 1000

neurons, positions and orientations cover the full range of combinations (top). Selecting 50 randomly chosen

receptive fields highlights the diversification of position, orientation and size (bottom). Receptive fields were

learned through the quadratic rectifier nonlinearity (θ1 = 1., θ2 = 2.).

doi:10.1371/journal.pcbi.1005070.g005
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In Fig 6, we show the receptive fields learned for non-white inputs through nonlinear Heb-
bian learning. For networks with few neurons (Fig 6a and 6b), nonlocal receptive fields
develop, with shapes similar to the principal components of natural images [6]. It reflects that
when second-order correlations are present, these dominate over higher-order statistics, in
which case the models we have considered will not reproduce the development of localized ori-
ented filters. However, when considering an overcomplete network with 1000 neurons, smaller
receptive fields are learned (Fig 6c). Our optimization framework provides a new perspective
on this phenomena. For non-white inputs, second-order correlation dominate the

Fig 6. Receptive fields for non-whitened natural images. (a-i) Receptive field obtained for network

simulations with the quadratic rectifier (top), linear rectifier (center) and L0 sparse coding (bottom). For few

neurons (left and center), the principal components dominate the optimization and receptive fields are

nonlocal, since they extend over most of the image patch. For an overcomplete network with 1000 neurons

(right), lateral inhibition promotes diversity of receptive fields, including more localized ones. (insets) Sample

receptive fields developed for each simulation.

doi:10.1371/journal.pcbi.1005070.g006
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optimization values, making principal components optima. However, whenmore neurons are
added, competition drives the diversification of receptive fields away from the optima, and
localized filters with optimization values driven by higher-order statistics can be learned.

We also compare the receptive fields developed for different nonlinearities (Fig 6d–6i). Par-
ticularly, the quadratic rectifier appears to develop more elongated filters compared to the lin-
ear rectifier network, while the L0 sparse coding network develops shorter ones. However,
these differences across nonlinearities are minor compared to the difference to the receptive
fields for white inputs (Fig 4) or compared to the differences observed across different network
sizes. Thus, our results suggest that efforts to model receptive field shapes observed experimen-
tally [41, 40, 9, 12] should pay particular attention to network size and input preprocessing,
which may have a greater effect than the properties of the particularmodel.

Beyond V1 simple cells

Nonlinear Hebbian learning is not limited to explaining simple cells in V1. We investigated if
the same learning principles apply to receptive field development in other visual or auditory
areas or under different rearing conditions.

For auditory neurons [14], we used segments of speech as input (Fig 7a) and observed the
development of spectrotemporal receptive fields localized in both frequency and time [2] (Fig
7d). The statistical distribution of input patterns alignedwith the learned receptive fields had
longer tails than for random or non-local receptive fields, indicating temporal sparsity of
responses (Fig 7d). Similar to our simple cell results, the learned receptive fields show higher
optimization value for all five effective nonlinearities (Fig 7g).

For a study of receptive field development in the secondary visual cortex (V2) [16], we used
natural images and the standard energymodel [46] of V1 complex cells to generate input to V2
(Fig 7b). The learned receptive field was selective to a single orientation over neighboring posi-
tions, indicating a higher level of translation invariance. When inputs were processed with this
receptive field, we found longer tails in the feature distribution than with random features or
receptive fields without orientation coherence (Fig 7e), and the learned receptive field had a
higher optimization value for all choices of nonlinearity (Fig 7h).

Another important constraint for developmental models are characteristic deviations, such
as strabismus, caused by abnormal sensory rearing. Under normal binocular rearing condi-
tions, the fan-in of synaptic input from the left and right eyes overlap in visual space (Fig 7c).
In this case, binocular receptive fields with similar features for left and right eyes develop. In
the strabismic condition, the left and right eyes are not aligned,modeled as binocular rearing
with non-overlapping input from each eye (Fig 7c). In this scenario, a monocular simple cell-
like receptive field developed (Fig 7f), as observed in experiments and earlier models [28]. The
statistical distributions confirm that for disparate inputs the monocular receptive field is more
kurtotic than a binocular one, explaining its formation in diverse models [47] (Fig 7f and 7i).

Our results demonstrate the generality of the theory across multiple cortical areas. Selecting
a relevant feature space for an extensive analysis, as we have done with simple cells and natural
images, may not be possible in general. Nonetheless, nonlinear Hebbian learning helps to
explain why some features (and not others) are learnable in network models [15].

Discussion

Historically, a variety of models have been proposed to explain the development and distribu-
tion of receptive fields.We have shown that nonlinear Hebbian learning is a parsimonious
principle which is implicitly or explicitly present in many developmental models [6, 7, 8, 9, 10,
11, 12, 24, 38, 42, 47]. The fact that receptive field development is robust to the specific
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nonlinearity highlights a functional relation between different models. It also unifies feature
learning across sensorymodalities: receptive fields form around features with a long-tailed
distribution.

Relation to previous studies

Earlier studies have already placed developmental models side by side, comparing their norma-
tive assumptions, algorithmic implementation or receptive fields developed. Though consistent
with their findings, our results lead to revised interpretations and predictions.

Fig 7. Nonlinear Hebbian learning across sensory modalities. (a) The auditory input is modeled as

segments over time and frequency (red) of the spectrotemporal representation of speech signals. (b) The V2

input is assembled from the output of modeled V1 complex cells at different positions and orientations.

Receptive fields are represented by bars with size proportional to the connection strength to the complex cell

with the respective position and orientation. (c) Strabismic rearing is modeled as binocular stimuli with non-

overlapping left and right eye input patches (red). (d-f) Statistical distribution (log scale) of the input projected

onto three different features for speech (d), V2 (e) and strabismus (f). In all three cases, the learned

receptive field (blue, inset) is characterized by a longer tailed distribution (arrows) than the random (red) and

comparative (green) features. (g-i) Relative optimization value for five nonlinearities (same as in Fig 2), for

the three selected patterns (insets). The receptive fields learned with the quadratic rectifier nonlinearity (θ1 =

1., θ2 = 2.) are the maxima among the three patterns, for all five nonlinearities, for all three datasets.

doi:10.1371/journal.pcbi.1005070.g007
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The similarities between sparse coding and ICA are clear from their normative correspon-
dence [37]. Nevertheless, the additional constraint in ICA, of having at most as many features
as inputs, makes it an easier problem to solve, allowing for a range of suitable algorithms [36].
These differ from algorithms derived for sparse coding, in which the inference step is difficult
due to overcompleteness. We have shown that regardless of the specific normative assump-
tions, it is the common implementation of nonlinear Hebbian learning that explains similari-
ties in their learning properties. Since a given normative model may have very different
algorithms, as exemplified by the family of ICA algorithms [36], this result is not trivial, and it
has previously not been clear how sparse coding and ICAmodels related to each other at the
algorithmic level.

In contrast to the idea that in sparse coding algorithms overcompleteness is required for
development of localized oriented edges [37], we have demonstrated that a sparse coding
model with a single neuron is mathematically equivalent to nonlinear Hebbian learning and
learns localized filters in a setting that is clearly “undercomplete”. Thus differences observed in
receptive field shapes between sparse coding and ICAmodels [40] are likely due to differences
in network size and input preprocessing. For instance, the original sparse codingmodel [37]
applied a preprocessing filter that did not completely whiten the input, leading to larger recep-
tive fields (Fig 6).

Studies that derive spiking models from normative theories often interpret the development
of oriented receptive fields as a consequence of its normative assumptions [11, 12]. In a recent
example, a spiking network has been related to the sparse codingmodel [12], using neural
properties defined ad hoc. Our results suggest that many other choices of neural activations
would have given qualitatively similar receptive fields, independent of the sparse coding
assumption. While in sparse coding the effective nonlinearity derives from a linear plasticity
rule combined with a nonlinear f-I curve, our results indicate that a nonlinear plasticity rule
combined with a linear neuron model would give the same outcome.

In order to distinguish between different normative assumptions, or particular neural
implementations, the observation of “oriented filters” is not sufficient and additional con-
straints are needed. Similarly receptive shape diversity, another important experimental con-
straint, should also be considered with care, since it cannot easily distinguish betweenmodels
either. Studies that confront the receptive field diversity of a model to experimental data [41,
40, 9, 12] should also take into account input preprocessing choices and how the shape changes
with an increasing network size, since we have observed that these aspects may have a larger
effect on receptive field shape than the particulars of the learningmodel.

Empirical studies of alternative datasets, including abnormal visual rearing [47], tactile and
auditory stimuli [15], have also observed that different unsupervised learning algorithms lead
to comparable receptive fields shapes. Our results offer a plausible theoretical explanation for
these findings.

Past investigations on nonlinear Hebbian learning [20, 38] demonstrated that many nonlin-
earities were capable of solving the cocktail party problem. Since it is a specific toy model, that
asks for the unmixing of linearly mixed independent features, it is not clear a priori whether
the same conclusions would hold in other settings.We have shown that the results of [20] and
[38] generalize in two directions. First, the effective nonlinear Hebbian learningmechanism is
also behind other models beyond ICA, such as sparse codingmodels and plastic spiking net-
works. Second, the robustness to the choice of nonlinearity is not limited to a toy example, but
also holds in multiple real world data. Our approach of identifying generic principles enables
us to transfer results from one model, such as orientation selectivity or optimization of higher-
order statistics to other models within the general framework. Therefore our insights may con-
tribute to predict the outcome of a variety of developmental models in diverse applications.
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Robustness to normative assumptions

Many theoretical studies start from normative assumptions [7, 9, 11, 37], such as a statistical
model of the sensory input or a functional objective, and derive neural and synaptic dynamics
from them. Our claim of universality of feature learning indicates that details of normative
assumptions may be of lower importance.

For instance, in sparse coding one assumes features with a specific statistical prior [9, 37].
After learning, this prior is expected to match the posterior distribution of the neuron’s firing
activity [9, 37]. Nevertheless, we have shown that receptive field learning is largely unaffected
by the choice of prior. Thus, one cannot claim that the features were learned because they
match the assumed prior distribution, and indeed in general they do not. For a coherent statis-
tical interpretation, one could search for a prior that would match the feature statistics. How-
ever, since the outcome of learning is largely unaffected by the choice of prior, such a statistical
approach would have limited predictive power. Generally, kurtotic prior assumptions enable
feature learning, but the specific priors are not as decisive as one might expect. Because norma-
tive approaches have assumptions, such as independence of hidden features, that are not gener-
ally satisfied by the data they are applied to, the actual algorithm that is used for optimization
becomesmore critical than the formal statistical model.

The concept of sparseness of neural activity is used with two distinct meanings. The first
one is a single-neuron concept and specifically refers to the long-tailed distribution statistics of
neural activity, indicating a “kurtotic” distribution. The second notion of sparseness is an
ensemble concept and refers to the very low firing rate of neurons, observed in cortical activity
[48], which may arise from lateral competition in overcomplete representations. Overcomple-
teness of ensembles makes sparse coding different from ICA [37]. We have shown here that
competition betweenmultiple neurons is fundamental for receptive field diversity, whereas it is
not required for simple cell formation per se. Kurtotic features can be learned even by a single
neuron with nonlinear Hebbian learning, and with no restrictions on the sparseness of its firing
activity.

Recent studies have also questioned normative explanations for V1 receptive fields by
highlighting that these models do not accurately capture the statistics of natural images [49,
50]. The generative models learned for sparse coding or ICA do not generate qualitatively good
samples of natural image patches [50]. In particular, the performance in the quantitative crite-
ria that these models are designed to optimize, such as likelihood of the data [50] or higher-
order redundancy [49], is sometimes only marginally better than that of simpler models. Fur-
ther studies are necessary to elucidate more complex models going beyond the two-layer
model considered here.

For instance, models of spiking networks learning spatio-temporal patterns have been pro-
posed based on diverse principles such as reward-modulated plasticity [51, 52], novelty-like
global factors [53, 54] and temporal correlations [55, 56]. It would be interesting to investigate
if generality principles can also shed light on such models. Furthermore, top-down inputs form
a substantial part of the incoming signal to sensory areas [57] and it is unclear how they might
affect learning and representation in sensory networks. Multi-layered models of probabilistic
inference may provide ways to integrate these aspects under a coherent framework for sensory
development [58, 59, 60].

Our arguments can be formulated using Marr’s three levels of analysis: the computational
level, the algorithmic level and the implementational level [61]. We have argued that the algo-
rithmic level, through nonlinear Hebbian learning, is fundamental in understandingmany cur-
rent models of sensory development, while being consistent with multiple biological
implementations and computational goals. Our results show that the models and experimental
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evidence considered were not sufficient to conclusively discriminate between normative
assumptions, indicating indeterminacy at the computational level. Since ultimately one also
wants a normative understanding of sensory networks, our results argue for more experimental
evidence to be taken into account, requiringmore complex models, which in turn shall be
describedby, or derived from, precise computational objectives, such as probabilistic inference
or efficient coding.

Interaction with input preprocessing and homeostatic mechanisms

The concept of nonlinear Hebbian learning also clarifies the interaction of feature selectivity
with input preprocessing. Most studies of receptive field development consider pre-whitened
inputs, which may be justified by the evidence that the early sensory pathway decorrelates neu-
ral activity [62]. However, we have shown that developmental models are highly sensitive to
second-order statistics, and even residual correlations will substantially alter receptive field
development. When correlations at low spatial frequencies were present in the input images,
nonlinear Hebbian learningmodels learned nonlocal receptive fields.

In this case, additional mechanisms become necessary to reproduce the development of
localized receptive fields as observed in the visual cortex. One possibility is that the competi-
tion in overcomplete networks drives the diversify of receptive fields away from principal
components, so that neurons become sensitive to higher-order statistics [6]. Another explana-
tion is that the restriction on the arborization of input connections is responsible for local
properties of V1 receptive fields [63], in which case localization is not related to higher-order
statistics. These considerations demonstrate how alternative input preprocessing can radically
change the interpretation of developmental studies, and suggests that more attention should
be paid to the preprocessing steps performed in modeling studies. Importantly, it highlights
the necessity of more investigations on learning models with robustness to second-order
correlations.

In studies of spiking networks, the input is restricted to positive rates, possibly through an
on/off representation, as observed in the LGN [63]. In such alternative representations, trivial
receptive fields may develop, such as a single non-zero synapse, and additional mechanisms,
such as hard bounds on each synaptic strength, a� wj� b, may be necessary to restrict the
optimization space to desirable features [10].

Instead of constraining the synaptic weights, one may implement a synaptic decay as in
Oja’s plasticity rule [35], Δw/ x y − w y2 (see also [64]). Because of its multiplicative effect, the
decay term does not alter the receptive field, but only scales its strength. Thus, it is equivalent
to rescaling the input in the f-I curve, so as to shift it to the appropriate range (Fig 3). Similar
scaling effects arise from f-I changes due to intrinsic plasticity [11, 30, 65] or due to the sliding
threshold in BCM-likemodels, where the effective nonlinearity is modulated by the current
weights. Since we have shown that receptive field development is robust to the specific nonline-
arity, we expect our results in general to remain valid in the presence of such homeostatic
mechanisms. The precise relation between nonlinear Hebbian learning, spiking representations
and homeostasis in the cortex is an important topic for further studies.

Universality supports biological instantiation

The principle of nonlinear Hebbian learning has a direct correspondence to biological neurons
and is compatible with a large variety of plasticity mechanisms. It is not uncommon for biolog-
ical systems to have diverse implementations with comparable functional properties [66]. Dif-
ferent species, or brain areas, could have different neural and plasticity characteristics, and still
have similar feature learning properties [67, 68]. The generality of the results discussed in this
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paper reveals learning simple cell-like receptive fields from natural images to be much easier
than previously thought. It implies that a biological interpretation of models is possible even if
some aspects of a model appear simplified or even wrong in some biological aspects. Universal-
ity also implies that the study of receptive field development is not sufficient to distinguish
between different models.

The relation of nonlinear Hebbian learning to projection pursuit endorses the interpretation
of cortical plasticity as an optimization process. Under the rate coding assumptions considered
here, the crucial property is an effective synaptic change linear in the pre-synaptic rate, and
nonlinear in the post-synaptic input. Pairing experiments with random firing and indepen-
dently varying pre- and post-synaptic rates would be valuable to investigate these properties
[27, 69, 70]. Altogether, the robustness to details in both input modality and neural implemen-
tation suggests nonlinear Hebbian learning as a fundamental principle underlying the develop-
ment of sensory representations.

Methods

Spiking model

A generalized leaky integrate-and-fire neuron [26] was used as spiking model, which includes
power-law spike-triggered adaptation and stochastic firing, with parameters [26] fitted to pyra-
midal neurons. The f-I curve g(I) was estimated by injecting step currents and calculating the
trial average of the spike count over the first 500 ms. The minimal triplet-STDPmodel [24]
was implemented, in which synaptic changes follow

d
dt
wðtÞ ¼ AþyðtÞ�yþðtÞ�xþðtÞ � A� xðtÞ�y � ðtÞ ð4Þ

where y(t) and x(t) are the post- and pre-synaptic spike trains, respectively: y(t) = ∑f δ(t − tf),
where tf are the firing times and δ denotes the Dirac δ-function; x(t) is a vector with compo-
nents xiðtÞ ¼

P
fdðt � tfi Þ, where t

f
i are the firing times of pre-synaptic neuron i; w is a vec-

tor comprising the synaptic weights wi connecting a pre-synaptic neuron i to a post-synaptic
cell. A+ = 6.5 � 10−3 and A− = 5.3 � 10−3 are constants, and �yþ, �xþ and �y � are moving averages,
implemented by integration (e.g. t @�y

@t ¼ � �y þ y), with time scales 114.0 ms, 16.8 ms and
33.7 ms, respectively [24]. For estimating the nonlinearity h(y) of the plasticity, pre- and post-
synaptic spike trains were generated as Poisson processes, with the pre-synaptic rate set to
20 Hz.

A linear rectifier g(x) = a(x − b)+ was fitted to the f-I curve of the spiking neuron model by
squared error optimization. Similarly, a quadratic function h(x) = a(x2 − bx) was fitted to the
nonlinearity of the triplet STDP model. The combination of these two fitted functionswas plot-
ted as fit for the effective nonlinearity f(x) = h(g(x)).

Sparse coding analysis

A sparse codingmodel, with K neurons y1, . . ., yK, has a nonlinear Hebbian learning formula-
tion. The sparse codingmodelminimizes a least square reconstruction error between the vector
of inputs x and the reconstruction vector Wy, where W = [w1 . . .wK], and y = (y1, . . ., yK) is the
vector of neuronal activities, with yj� 0 for 1� j� K. The total error E combines a sparsity
constraint S with weight λ and the reconstruction error, E ¼ 1

2
jjx � Wyjj2 þ l

P
SðykÞ. E

has to be minimal, averaged across all input samples, under the constraint yj� 0 for all j.
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The minimization problem is solved by a two-step procedure. In the first step, for each
input sample, one minimizes E with respect to all hidden units yj

d
dyj
E ¼ 0 , wT

j ðx � WyÞ � lS0ðyjÞ ¼ 0

, wT
j x �

X

k6¼j

ðwT
j wkÞyk � jjwjjj

2yj � lS0ðyjÞ ¼ 0

, yj þ lS0ðyjÞ ¼ wT
j x �

X

k6¼j

ðwT
j wkÞyk

, yj ¼ gðwT
j x �

X

k6¼j

vjkykÞ

ð5Þ

where we constrained the vector wj of synapses projecting onto unit yj by ||wj||2 = 1, defined
the activation function g(.) = T−1(.), the inverse of T(y) = (y+λS0(y)), and defined recurrent syn-
aptic weights vjk ¼ wT

j wk. For each input sample x, this equation shall be iterated until conver-
gence. The equation can be interpreted as a recurrent neural network, where each neuron has
an activation function g, and the input is given by the sum of the feedforward drive wT

j x and a
recurrent inhibition term −∑k 6¼ j vjk yk. To avoid instability, we implement a smoothmembrane
potential uj, which has the same convergence point [34]

tu
d
dt
ujðtÞ ¼ � ujðtÞ þ ðw

T
j x �

X

k6¼j

vjkykðtÞÞ

yjðtÞ ¼ gðujðtÞÞ
ð6Þ

initializedwith uj(t) = 0.
In the second step, we optimize the weights wj, considering the activations yj obtained in the

previous step. Our derivation follows the approach of the original sparse coding study [6],
which is related to the Expectation-Maximization (EM) algorithm, in which at this stage the
latent variables (here the activations y) are treated as constants, so that dy

dwj
¼ 0, and, in particu-

lar, d
dwj
SðyÞ ¼ 0. We obtain a standard gradient descent implementation of the least square

regression optimization, leading to a learning rule

Dwj /
d
dwj

E ¼ ðx � WTyÞ yj ¼ x yj � wj y
2

j �
X

k6¼j

wkykyj

The decay term wj y2
j has no effect, since the norm is constrained to ||wj|| = 1 at each step.

For a single unit y, the model simplifies to a nonlinear Hebbian formulation, Dw / x gðwT
j xÞ.

For multiple units, it can be interpreted as projection pursuit on an effective input, not yet rep-
resented by other neurons, ~xj ¼ x �

P
k6¼jwkyk, which simplifies to Dwj / ~x j gðwT

j ~xjÞ.
There are two non-local terms that need to be implemented by local mechanisms so as to be

biologically plausible. First, the recurrent weights depend on the overlap between receptive
fields, wT

j wk, which is non-local. The sparse codingmodel assumes independent hidden neu-
rons, which implies that after learning neurons should be pair-wise uncorrelated, cov(yj, yk) = 0.
As an aside we note that the choice vjk ¼ wT

j wk does not automatically guarantee decorrelation.
Decorrelationmay be enforced through plastic lateral connections, following an anti-Hebbian
rule [42, 12], Δvjk/ (yj−hyji) � yk, where hyji is a moving average (we use τ = 1000 input sam-
ples). Thus by substituting fixed recurrent connections by anti-Hebbian plasticity, convergence
Δvjk = 0 implies cov(yj, yk) = 0. While this implementation does not guarantee vjk ¼ wT

j wk after
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convergence, neither does vjk ¼ wT
j wk guarantee decorrelation cov(yj, yk) = 0, it does lead to

optimal decorrelation, which is the basis of the normative assumption. Additionally we con-
strain vjk� 0 to satisfy Dale’s law. Although some weights would converge to negative values
otherwise,most neuron pairs have correlated receptive fields, and thus positive recurrent
weights.

Second, we ignore the non-local term
P

k 6¼ j wk yk yj in the update rule. Although this
approximation is not theoretically justified, we observed in simulations that receptive fields do
not qualitatively differ when this term is removed.

The resulting Hebbian formulation can be summarized as

yj ¼ gðwT
j x �

X

k6¼j

vjkykÞ

Dwj / x yj
Dvjk / ðyj � hyjiÞ � yk

ð7Þ

This derivation unifies previous results on the biological implementation of sparse coding:
the relation of the sparseness constraint to a specific activation function [34], the derivation of
a Hebbian learning rule from quadratic error minimization [35], and the possibility of approxi-
mating lateral interaction terms by learned lateral inhibition [42, 12].

Nonlinearities and optimization value

The optimization value for a given effective nonlinearity f, synaptic weights w, and input sam-
ples x, is given by R = hF(wTx)i, where FðuÞ ¼

R u
0
f ðu0Þdu0 and angular brackets indicate the

ensemble average over x. Relative optimization values in Figs 2b and 5 were normalized to
[0, 1], relative to the minimum and maximum values among the considered choice of features
w, R� = (R − Rmin)/(Rmax − Rmin). The selectivity index of a nonlinearity f is defined as
SI = (hF(l)i − hF(g)i)/σF, where l and g are Laplacian and Gaussian variables respectively, nor-

malized to unit variance. sF ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sFðlÞsFðgÞ
p is a normalization factor, with sFð:Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

hFð:Þ2i
q

.
The selectivity of an effective nonlinearity f is not altered by multiplicative scaling,
~f ðuÞ ¼ af ðuÞ, neither by additive constants when the input distribution is symmetric,
~f ðuÞ ¼ af ðuÞ þ b. The effective nonlinearities in Fig 2 included the linear rectifier

f ðuÞ ¼
0; if u < y

u � y; if u � y

(

, the quadratic rectifier

f ðuÞ ¼
0; if u < y

ðu � yÞðu � y � bÞ; if u � y

(

, the L0 sparse coding nonlinearity

f ðuÞ ¼
0; if u < l

u; if u � l

(

, the Cauchy sparse coding nonlinearity f = T − 1, where

TðyÞ ¼
0; if y < 0

y þ 2ly=ð1 þ y2Þ; if y � 0

(

, the negative sigmoid f(u) = 1 − 2/(1 + e − 2u), a

polynomial function f(u) = u3, trigonometric functions sin(u) and cos(u), a symmetric piece-

wise linear function f ðuÞ ¼
0; if juj < y

juj � y; if juj � y

(

, as well as, for comparison, a linear

function f(u) = u.
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Receptive field learning

Natural image patches (16 by 16 pixel windows) were sampled from a standard dataset [6] (106

patches). Patches were randomly rotated by ±90° degrees to avoid biases in orientation. The
dataset was whitened by mean subtraction and a standard linear transformation x� = Mx,
where M = RD − 1/2 RT and hx xTi = RDRT is the eigenvalue decomposition of the input corre-
lation matrix. In Fig 6, we used images preprocessed as in [6], filtered in the spatial frequency
domain byMðf Þ ¼ fe� ðf =f0Þ4 . The exponential factor is a low-pass filter that attenuates high-fre-
quency spatial noise, with f0 = 200 cycles per image. The linear factor f was designed to whiten
the images by canceling the approximately 1/f power law spatial correlation observed in natural
images [39]. But since the exponent of the power law for this particular dataset has an exponent
closer to 1.2, the preprocessed images exhibit higher variance at lower spatial frequencies.

Synaptic weights were initialized randomly (normal distribution with zero mean) and, for
an effective nonlinearity f, evolved through wkþ1 ¼ wk þ Z xk f ðwT

k xkÞ, for each input sam-
ple xk, with a small learning rate η. We enforced normalizedweights at each time step, ||w||2 =
1, throughmultiplicative normalization, implicitly assuming rapid homeostatic mechanisms
[30, 29]. For multiple neurons, the neural version of the sparse codingmodel described in Eq 7
was implemented. In Figs 4 and 6, the learned receptive fields were fitted to Gabor filters by
least square optimization. Receptive fields with less than 0.6 variance explained were rejected
(less than 5% of all receptive fields).

Receptive field selection

In Fig 2b, the five selected candidate patterns are: random connectivity filter (weights sampled
independently from the normal distribution with zero mean), high-frequencyFourier filter
(with equal horizontal and vertical spatial periods,Tx = Ty = 8 pixels), difference of Gaussians
filter (σ1 = 3., σ2 = 4.), low-frequency Fourier filter (Tx = 16, Ty = 32), and centered localized
Gabor filter (σx = 1.5, σy = 2.0, f = 0.2, θ = π/3, ϕ = π/2). Fourier filters were modeled as wab =
sin(2πa/Tx) � cos(2πb/Ty); difference of Gaussians filters as the difference between two centered
2D Gaussians with same amplitude and standard deviations σ1 and σ2; and we considered stan-
dard Gabor filters, with center (xc, yc), spatial frequency f, width σx, length σy, phase ϕ and
angle θ. In Figs 4 and 6 we define the Gabor width and length in pixels as 2.5 times the standard
deviation of the respective Gaussian envelopes, σx and σy. In Fig 5a, a Gabor filter of size s had
parameters σx = 0.3 � s, σy = 0.6 � s, f = 1/s and θ = π/3. In Fig 5b and 5c, the Gabor filter parame-
ters were σx = 1.2, σy = 2.4, f = 0.25. All receptive fields were normalized to ||w||2 = 1. In Figs 4
and 6, the background optimization value was calculated for Gabor filters of different widths,
lengths, frequencies, phases ϕ = 0 and ϕ = π/2. For each width and length, the maximum value
among frequencies and phases was plotted.

Additional datasets

For the strabismus model, two independent natural image patches were concatenated, repre-
senting non-overlapping left and right eye inputs, forming a dataset with 16 by 32 patches [28].
For the binocular receptive field in the strabismus statistical analysis (Fig 7a), a receptive field
was learned with a binocular input with same input from left and right eyes. As V2 input, V1
complex cell responses were obtained from natural images as in standard energymodels [46],
modeled as the sum of the squared responses of simple cells with alternated phases. These sim-
ple cells were modeled as linear neurons with Gabor receptive fields (σx = 1.2, σy = 2.4, f = 0.3),
with centers placed on a 8 by 8 grid (3.1 pixels spacing), with 8 different orientations at each
position (total of 512 input dimensions). For the non-orientation selective receptive field in the
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V2 statistical analysis (Fig 7d), the orientations of the input complex cells for the learned recep-
tive field were randomized. As auditory input, spectrotemporal segments were sampled from
utterances spoken by a US English male speaker (CMUUS BDL ARCTIC database [71]). For
the frequency decomposition [14], each audio segment was filtered by gammatone kernels,
absolute and log value taken and downsampled to 50 Hz. Each sample was 20 time points long
(400 ms segment) and 20 frequency points wide (equally spaced between 0.2 kHz and 4.0 kHz).
For the non-local receptive field in the auditory statistical analysis (Fig 7g), a Fourier filter was
used (Tt = Tf = 10). For all datasets, the input ensemble was whitened after the preprocessing
steps, by the same linear transformation described above for natural images, and all receptive
fields were normalized to ||w||2 = 1.
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